
A weighted distance-based approach for deriving
consensus tumor evolutionary trees
Ziyun Guang1, Matthew Smith-Erb1, Layla Oesper1,*
1Department of Computer Science, Carleton College, Northfield, MN 55057, USA

*Corresponding author. Department of Computer Science, Carleton College, Northfield, MN 55057, USA. E-mail: loesper@carleton.edu

Abstract
Motivation: The acquisition of somatic mutations by a tumor can be modeled by a type of evolutionary tree. However, it is impossible to ob-
serve this tree directly. Instead, numerous algorithms have been developed to infer such a tree from different types of sequencing data. But
such methods can produce conflicting trees for the same patient, making it desirable to have approaches that can combine several such tumor
trees into a consensus or summary tree. We introduce The Weighted m-Tumor Tree Consensus Problem (W-m-TTCP) to find a consensus tree
among multiple plausible tumor evolutionary histories, each assigned a confidence weight, given a specific distance measure between tumor
trees. We present an algorithm called TuELiP that is based on integer linear programming which solves the W-m-TTCP, and unlike other existing
consensus methods, allows the input trees to be weighted differently.

Results: On simulated data we show that TuELiP outperforms two existing methods at correctly identifying the true underlying tree used to cre-
ate the simulations. We also show that the incorporation of weights can lead to more accurate tree inference. On a Triple-Negative Breast
Cancer dataset, we show that including confidence weights can have important impacts on the consensus tree identified.

Availability: An implementation of TuELiP and simulated datasets are available at https://bitbucket.org/oesperlab/consensus-ilp/src/main/.

1 Introduction

Tumor progression has been recognized as an evolutionary
process where somatic mutations accumulate (Nowell 1976),
leading to the growth of a tumor. A tumor’s evolutionary his-
tory is the order and configuration in which these mutations
arose. A better understanding of this history provides impor-
tant insights into tumors’ development processes, such as the
selection for variants that lead to tumor growth and tumor
migration, which helps scientists develop more effective treat-
ment plan for patients (Fittall and Van Loo 2019).

Many computational methods have been developed to de-
rive the evolutionary histories of tumors, typically depicting
them as rooted trees where the nodes represent tumor cell
populations, and the edges indicate ancestral relationships
(Schwartz and Schäffer 2017). There has been explosive
growth in the methods that infer such a tumor tree from DNA
sequencing data. For example, Jahn et al. (2016) and Malikic
et al. (2019b) use single-cell data, Malikic et al. (2019a) uses
both single-cell and bulk sequencing data, and Myers et al.
(2019) uses longitudinal data. Different methods also con-
sider different types of mutations (e.g. SNVs, CNAs, etc.) as
input. Although advancements in different algorithms and
methods can produce improved inference of tumor evolution-
ary histories, interpretation can be challenging due to the mul-
tiple possible trees returned from these methods, even when
run on data from the same patient. It would be useful to com-
bine these sets of output trees to better infer a single evolu-
tionary history that best represents the tumor’s evolutionary
process.

In recent years, several approaches have been introduced
to identify a consensus tumor tree from a set of disparate
input trees for a single patient. GraPhyC, first introduced in

Govek et al. (2018) and then extended in Govek et al. (2020),
is a graph-theoretic approach that aims to find a consensus
tree with minimal total distance from all input trees for a
specified tree distance function. However, there are several
limitations to this method. First, it requires a pre-clustering
step to identify a set of mutation clusters before identifying a
consensus tree. This means that the approach is only able to
consider a single mutation clustering. Second, this method is
optimized for a specific distance measure called Parent–Child
(PC) distance. While this distance measure is easy to compute,
it has been suggested (DiNardo et al. 2019) that other dis-
tance measures may be more appropriate for comparing tu-
mor evolutionary trees. Aguse et al. (2019) instead find
multiple consensus trees, rather than a single tree. However,
this approach still relies upon optimization for the PC dis-
tance as well. More recently, Fu and Schwartz (2021) used a
different approach to the consensus tree problem which in-
stead aims to find a tree that maximizes directed partition
support from the input trees. This approach does consider dif-
ferent mutation clusterings, unlike GraPhyC and the method
from Aguse et al. (2019), but its implementation only allows
it to operate on trees which have nodes containing four or
fewer children. Consensus approaches have also recently be
used to detect evolutionary patterns across patients
(Christensen et al. 2020).

One major downside to all existing tumor tree consensus
methods is that they consider all input trees as equally
informative. However, tumor evolution inference methods
have been evolving quickly and make different assumptions
or use varying techniques (Schwartz and Schäffer, 2017).
Furthermore, there have been more studies where multiple
types of sequencing data are available for a single patient
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(e.g. Gawad et al. 2014; Leung et al. 2017; and others). These
studies can contain bulk, single-cell, and even longitudinal se-
quencing data, making features like the depth and quality of
these different datasets even more important to consider when
constructing consensus trees from them. For example, more
weight could be given to trees constructed using the higher
coverage data.

Here, we introduce an integer linear programming (ILP)
based method to solve the consensus tree problem, but that
allows for the input trees to have confidence weights. We
name our method TuELiP (Tumor Evolution integer Linear
Program). Specifically, we pose the Weighted m-Tumor Tree
Consensus Problem (W-m-TTCP), which given (i) a set of in-
put tumor trees, (ii) weights for each tree; and (iii) a tumor
tree distance measure, finds a consensus tree that minimizes
the total weighted distance from it to all input trees. In con-
trast to other existing distance-based consensus methods, our
approach allows all clusterings of mutations to be considered
when identifying a consensus tree, and optimizes for a more
complex distance measure [Ancestor–Descendant (AD) dis-
tance]. To our knowledge, TuELiP is the first tumor consen-
sus tree approach to allow for the input trees to be weighted
differently. We validate our approach on both simulated and
a Triple-Negative Breast Cancer (TNBC) dataset and show
that our method outperforms two competing methods. On
the real data, we show that including confidence weights can
have important impacts on the consensus tree identified.

2 Materials and methods
2.1 Problem formalization

Let ½m� ¼ f1; . . . ;mg be a set of m mutations. A tumor that
has acquired m mutations during its evolution, can be de-
scribed using the following definition. An m-tumor tree is a di-
rected rooted tree T where: (i) each node in the tree is labeled
by one or more mutations from the mutation set ½m�; and (ii)
the collection of mutation labels over all nodes form a partition
of the mutation set ½m�, which we call a “mutation clustering.”
The nodes in m-tumor trees correspond to clones in a heteroge-
neous tumor where its cell population contains a unique set of
somatic mutations. The direction of the edges indicate that a
child clone originated from the cells of a parent clone. Thus,
node labels represent the new mutations acquired by the clone
which distinguish it from its parent, and are also the mutations
that will be inherited by its descendants. It will also be useful to
refer to the space of all m-tumor trees. Therefore, we define T m

to be the set of all m-tumor trees. Finally, we also define lðvÞ �
½m� to be the cluster of mutations labeling node v.

A recent problem of interest in the computational cancer
field has been how to identify a consensus, or summary tree,
from a set of conflicting, but similar tumor trees. Two general
approaches to this problem have been proposed: (i) distance
based methods (Govek et al. 2020, 2018); and (ii) partition
based methods (Fu and Schwartz 2021). However, both types
of approaches treat all input trees equally, and often restrict
the trees considered to a subset of all possible m tumor trees.
Our approach builds upon the distance-based methods, but
allows for the input trees to be weighted rather than treated
equally, and considers the entire space of m tumor trees T m.
We introduce the following problem.

The Weighted m-Tumor Tree Consensus Problem (W-m-
TTCP): Given a set S ¼ fT1;T2; . . . ;Tng � T m of m-tumor
trees, an m-tumor tree distance measure dist(.,.), and a tree

weighting function w : S ! ½0;1� such that
Pn

i¼1 wðTiÞ ¼ 1,
find a consensus tree T� such that

T� ¼ arg min
T2T m

Xn

i¼1

wðTiÞ � distðT;TiÞ: (1)

We note that this formalization can easily be extended to
find k consensus trees, as is done by Aguse et al. (2019). Our
implementation of TuELiP also allows for the finding of all
consensus trees that minimize the objective function.

2.2 Distance measures

Distance-based consensus methods require the use of a dis-
tance measure that considers how similar two input trees are,
with lower values for more similar trees and higher values for
more dissimilar trees. Previous distance-based consensus
methods focused on one distance measure called PC distance
(Govek et al. 2020). This distance measure counts the number
of unique PC mutation relationships that appear in one tree
but not the other. This distance measure has been used in pre-
vious consensus approaches mainly due to how easy it is to
compute. However, it has been shown that other distance
measures, in particular, those that consider not just parental
but also longer range ancestral relationships may be more
accurate (DiNardo et al. 2019). One reason for this is that
ancestral mutations are inherited by all of their descendants,
not just their children. Therefore, we will focus on using a dis-
tance measure called AD distance originally proposed by
Govek et al. (2020) and described below.

For an m-tumor tree T, and distinct mutations i and j,
we say i is ancestral to j if i labels a node which is on the
path from the root to the node labeled by j. When i and j label
the same node, they are considered ancestral to each
other since their exact ordering is unknown. Additionally, if i
is ancestral to j, we say that (i, j) is an “Ancestor-
Descendant pair.” Given the m-tumor tree T, we define
/ADðTÞ ¼ fði; jÞji is ancestral to j in Tg to be the set of all AD
pairs in T. Given two m-tumor trees T1 and T2, the AD
distance between them is the number of AD pairs in one tree
but not the other. Formally, the “Ancestor-Descendant (AD)
distance measure” is defined as:

ADðT1;T2Þ ¼ j/ADðT1Þ n /ADðT2Þj þ j/ADðT2Þ n /ADðT1Þj:
(2)

2.3 Our method

We take a two-step approach to solving the W-m-TTCP when
the distance measure is AD distance. (i) We first use an ILP to
find a directed acyclic graph (DAG) whose nodes are labeled
with mutations and whose edges represent all ancestral rela-
tionships between those mutations. We will show that this
graph represents the transitive closure of the desired consen-
sus tree. (ii) We then turn the resulting DAG into a directed
tree through a transitive reduction. This is our consensus tree.
Figure 1 shows an overview of our approach. In contrast to
the existing methods (Govek et al., 2020; Fu and Schwartz,
2021), our approach considers all possible mutation cluster-
ings (i.e. assignment of mutation labels to nodes), rather than
restricting to a single mutation clustering, and utilizes a confi-
dence weight assigned to each input tree when constructing
the consensus tree.
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2.3.1 ILP variables and constraints

We start by introducing two sets of variables that model the an-
cestral relationships in our solution. For every pair of unique
mutations a;b 2 ½m� such that a 6¼ b, we introduce a variable
xab where xab ¼ 1 if mutation a is ancestral to mutation b, and
xab ¼ 0 if a is not ancestral to b. In the case if a and b label the
same node, both xab ¼ 1 and xba ¼ 1. For each mutation a 2
½m� we also introduce a variable ra where ra ¼ 1 if mutation a
labels the root of our consensus tree and ra ¼ 0 otherwise. For
a root with multiple labels, the corresponding set of variables
are all set to 1. Figure 2 shows a small example of how these
variables would be set for a specific m-tumor tree.

To ensure that these variables are set in a way that yields a
configuration consistent with the transitive closure of a valid
m-tumor tree, we introduce the following linear constraints.

xac � xab þ xbc � 1 8a;b; c 2 ½m�; a 6¼ b 6¼ c 6¼ a: (3)

xab þ xba � xac þ xbc � 1 8a;b; c 2 ½m�; a 6¼ b 6¼ c 6¼ a: (4)X
a2½m�

ra � 1: (5)

X
b2½m�;b6¼a

xab �
1

m� 1
� ra 8a 2 ½m�: (6)

X
b2½m�;b6¼a

xab � ðm� 2Þ � ra 8a 2 ½m�: (7)

xab 2 f0;1g 8a;b 2 ½m�; a 6¼ b: (8)

ra 2 f0;1g 8a 2 ½m�: (9)

We need to ensure that the ancestral relations output by
TuELiP are transitive. That is, if mutation a is ancestral to mu-
tation b and mutation b is ancestral to mutation c then we need
to enforce that mutation a is ancestral to mutation c. This is ac-
complished with constraint (3). Furthermore, we need to ensure
that if mutations a and b are both ancestral to c, then either a is
ancestral to b or b is ancestral to a, or a and b are in the same
node. This keeps all ancestral mutations on a single lineage
path. Accordingly, constraint (4) ensures that if both xac and
xbc are 1, then at least one of xab and xba is also set to 1.

We also need constraints that ensure that the output from
TuELiP is a connected DAG with a single root node.
Constraint (5) ensures that there is at least one mutation in the
root. To ensure the resulting graph is connected, constraint (6)
requires that all mutations labeling the root are ancestral to all
other m � 1 mutations (this includes any other mutations that

also label the root). Similarly, constraint (7) ensures that any
mutation that does not label the root must be ancestral to
fewer than m � 1 mutations. Additional explanation of these
constraints is provided in the Supplementary Appendix.

2.3.2 ILP objective function

Recall we want to find the setting of TuELiP variables subject
to our constraints that minimizes the total weighted AD dis-
tance from the set of input trees fT1; . . . ;Tng to the resulting
tree T� (whose transitive closure the ILP returns). To formu-
late this objective function using our variables, we introduce
the function dðT; a; bÞ, which is 1 if mutation a is ancestral to
mutation b in tree T, and 0 if a is not ancestral to mutation b
in tree T. We show below how to formulate our desired objec-
tive function we wish to minimize.

Xn

i¼1

wðTiÞ � ADðT�;TiÞ

¼
Xn

i¼1

wðTiÞ � ½j/ADðT�Þ n /ADðTiÞj þ j/ADðTiÞ n /ADðT�Þj�

¼
Xn

i¼1

wðTiÞ
" X

a;b2½m�
xabð1� dðTi; a;bÞÞ þ

X
a;b2½m�

ð1� xabÞdðTi; a;bÞ
#

¼
Xn

i¼1

wðTiÞ
X

a;b2½m�
½xabð1� dðTi; a;bÞÞ þ ð1� xabÞdðTi; a; bÞ�

¼
Xn

i¼1

wðTiÞ
X

a;b2½m�
½dðTi; a;bÞ þ xabð1� 2dðTi; a; bÞÞ�

We note this objective function has a very natural interpre-
tation. If the output tree does not have a ancestral to b given

Figure 1. Overview of the TuELiP method. Consensus tree is found as a transitive reduction on ILP output graph, which has edges between nodes that

are ancestral to each other in the final tumor tree.

Figure 2. A small example on how the variables used in our ILP

formulation might be set for a particular tree (xij denoting ancestral

relationship between mutations i and j and ri denoting whether mutation i

labels the root). For example, since mutation B is ancestral to mutation C

in the tree on the left, the variable xBC is set to 1.
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by the assignment of xab ¼ 0, but in a input tree Tk, a is ances-
tral to b, then the objective function helps to add a penaliza-
tion of wðTkÞ to the objective. Conversely, if the output tree
has a being ancestral to b given by xab ¼ 1, but in the input
tree Tj a is not ancestral to b, then dðTj; a; bÞ ¼ 0 and a penali-
zation of wðTjÞ will be added to the objective.

2.3.3 Transitive reduction from ILP solution

The final step for our approach is to convert the output from
the ILP into an m-tumor tree. Specifically, we construct a
DAG G� ¼ ðV�;E�Þ from the ancestral relationships indicated
by the xab variables and then create the m-tumor tree T� from
G� by finding its transitive reduction. Creation of G� is
straightforward. If xab ¼ xba ¼ 1, then a and b label the same
node in V�. There is an edge from node v to node w if any
mutation in l(v) is ancestral to any mutation in l(w). Because
of the enforced transitive property of ancestral relationships
[constraints (3) and (4)], it is sufficient to only consider a sin-
gle mutation in a node when constructing edges. Formally,
E� ¼ fðv;wÞjxab ¼ 1; a 2 lðvÞ;b 2 lðwÞ where v 6¼ wg. Finally,
we perform a transitive reduction of G� (Aho et al. 1972).
We then show that the output of the transitive reduction is
guaranteed to be an arborscence and is the returned consensus
tree.

2.4 Solving the W-m-TTCP

In order to show the efficacy of our approach to solving
the W-m-TTCP when the distance measure is AD distance,
we need to show that the output of our ILP, after a transitive
reduction, is guaranteed to be an arborescence. An
“arborescence” is a directed graph that contains a node called
the root and that has a directed path from the root to all other
nodes. First we make two observations (full proofs are pro-
vided in the Supplementary Appendix) that will be useful in
showing that the output of our method fits this definition.

Observation 1. The graph G� ¼ ðV�;E�Þ produced by our
ILP is acyclic.

For a directed acyclic graph G with n nodes, there is a con-
struction that finds a transitive reduction of G in Oðn2Þ,
denoted Gt, which is unique and defined as having the follow-
ing two conditions (Aho et al. 1972).

i) There is a directed path from node u to node v in Gt if
and only if there is a directed path from u to v in G.

ii) There is no graph with fewer edges than Gt satisfying
condition (i).

Observation 2. The transitive reduction of G�, denoted as
ðG�Þt , is acyclic.

We can now prove the following theorem about the output
of our method.

Theorem 1. ðG�Þt is an arborescence.

Proof. To prove ðG�Þt is an arborescence, we must show
that for a node u, called the root, there exists one path from u
to any other node v (Gordon and McMahon 1989). We let u
be the node that contains mutations that are ancestral to all
other mutations. The existence of such a node is guaranteed

by our constraints and can be identified using the ra variables
from the ILP. Thus, there are paths from u to any other node
v in G�, which implies there exists a path from u to any other
node v in ðG�Þt per condition (i) above. Now, we need that
there cannot exist more than one path from u to any node v.

Assume that there do exist multiple paths from u to v. Also
since ðG�Þt is acyclic (by Observation 2), there must exist a
node on a path from u to v, say w (which may be v) that has
more than one parent. Let y and z be two arbitrary and dis-
tinct parents of w. Then, let a 2 lðyÞ and b 2 lðzÞ. By con-
straint (4), a is ancestral to b or b is ancestral to a, which
implies that in G�; ðy; zÞ 2 E� or ðz; yÞ 2 E�. Without loss of
generality, say that ðy; zÞ 2 E�, and so there must exist a path
from y to z in ðG�Þt. So, there exist distinct paths from u to v,
one that contains the edge (y, w), and one that contains the
edge (z, w). By removing the edge (y, w) from Gt, there still
exists a path from u to y, z, w, and v, namely the path that
went from u to y, to the edge (z, w), to x. Therefore, we have
constructed a graph with fewer edges than ðG�Þt that still fol-
lows property (i) of being a transitive reduction. This contra-
dicts property (ii) that ðG�Þt is the transitive reduction of G�.

Thus, for any node v in ðG�Þt, there is exactly one path
from the root u to v. This implies that ðG�Þt is an arbores-
cence. h

We have shown that the output of our method is an arbore-
sence, a type of directed tree, and is therefore a valid m-tumor
tree. Furthermore, we have shown that this tree minimizes the
total AD distance to the set of input trees.

2.5 Different mutation sets

We have also modified our approach to work with input trees
that contain different sets of mutations. In short, mutations
are only present in the consensus tree if they occur in more
than half of all the input trees. For more details, see the
Supplementary Appendix.

3 Results

We implemented TuELiP in Python 3.7.1 and use the MIP li-
brary v1.13.0 (Santos and Toffolo 2020). We test the applica-
tion of our method on both simulated and real data.

3.1 Simulated data

First, we describe our approach for simulated data creation.
Second, we assess TuELiP’s ability to solve the W-m-TTCP
problem. Third, we compare how well TuELiP does against
other consensus models at uncovering the true simulated tree
of a patient. Finally, we analyze the effects of using different
weighting schemes on the input trees.

3.1.1 Dataset creation

We simulate sets of input trees with a method similar to (Fu
and Schwartz 2021). We create 6 datasets, each composed of
100 trials over all combinations of 5 or 10 input trees and 10,
20, or 30 mutations per tree. For each trial, we generate a
ground truth tree with three steps: (i) randomly cluster muta-
tions such that the expected number of clusters/nodes is
1þ 3

4 m� 1Þð , (ii) randomly assign parental relationships to
each cluster such that all clusters have three or fewer children,
(iii) assign mutation frequencies to each cluster while adhering
to the sum rule (a cluster’s frequency must be greater than or
equal to the sum of its children’s frequencies) (Jiao et al.
2014). We create each input tree for the given trial with the
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following modifications to the ground truth tree. Each modifi-
cation is applied with the given probability during a traversal
of all nodes in the tree, as long as the sum rule is still followed:
(i) move the subtree rooted at each node with a probability of
1/3 to a grandparent or sibling node (ii), collapse edges be-
tween nodes with a probability inversely related to the close-
ness in mutation frequencies between the two nodes, (iii)
randomly expand multi-labeled nodes with a constant proba-
bility of 1/3 into a new parental node and a child node.
During the input tree generation process, we also ensure that
no tree has a branching factor exceeding four, which allows
us to run the consensus method ConTreeDP (Fu and
Schwartz 2021) on the simulated trees. For full details, see the
Supplementary Appendix.

3.1.2 Ability to solve W-m-TTCP

We evaluated the efficacy of TuELiP at solving the W-m-
TTCP compared to GraPhyC’s approach (Govek et al. 2020).
We do not evaluate ConTreeDP in this scenario because its
output is not a median tree, that is, it is not trying to minimize
the total distance to the input trees. Instead, ConTreeDP cre-
ates an output tree that maximizes directed partition support
from the input trees (Fu and Schwartz 2021), and this formu-
lation does not yet have a corresponding tumor tree distance.
For this experiment, we run both our method and GraPhyC
on all six simulated datasets and calculate the total distance
from each method’s consensus trees to all input trees for each
trial using PC distance (which GraPhyC optimizes for), AD
distance (which TuELiP optimizes for), as well as two other
tumor evolution tree distances: CASet and DISC (DiNardo
et al. 2019).

Since GraPhyC does not consider weights for input trees,
we weigh all trees equally in this experiment so we can make
fair comparisons. For each trial and distance measure, we cal-
culate the percent change of the total distance between
GraPhyC and TuELiP, in order to show the differences in out-
puts of these two methods directly. We define the percent
change from GraPhyC as the difference of TuELiP’s total dis-
tance to the input trees and GraPhyC’s total distance, all di-
vided by GraPhyC’s total distance to the input trees. Thus,
0% indicates their consensus trees were equally close to the
input trees, a �50% change would indicate TuELiP’s consen-
sus tree had a total distance to the input trees that is 50% less
than the distance from the output of GraPhyC to the input
trees, and a 50% change indicates that TuELiP’s tree had a to-
tal distance to the input trees that was 50% greater than the
output of GraPhyC. Figure 3 shows our results for PC and
AD distances. The results for CASet and DISC are similar to
AD and are included in the Supplementary Appendix.

We see that our approach always returns a solution closer
to, or equal to, all input trees in terms of AD distance (nega-
tive percent changes), while GraphyC usually (85% of trials)
outperforms or ties with regards to PC distance. It is not sur-
prising that TuELiP outperforms GraPhyC when considering
AD distance, as our method is designed to optimize for that
distance measure. However, it is notable that we still perform
better than GraPhyC in some situations when considering PC
distance, which GraPhyC is optimized for. Our method also
has a smaller AD percent change when there are 10 input
trees versus 5 input trees. We see similar trends to AD when
using CASet and DISC to measure percent change.
Specifically, TuELiP outperforms or ties GraPhyC in 94% tri-
als when using CASet and in 91% trials when using DISC.

Thus, TuELiP performs well under a variety of distance
measures.

3.1.3 Ability to uncover the true tree

To demonstrate TuELiP’s ability to uncover the true tree used
to create each simulation, we compare its performance to two
other consensus methods: GraPhyC (Govek et al. 2020) and
ConTreeDP (Fu and Schwartz 2021). Since neither of these
methods have the ability to consider weights for the input
trees, we set the weights for our method to be equal for all
trees.

We ran all three models on the 600 simulated trials and
counted the number of trials in which they returned the exact
ground truth tree. Figure 4 shows that TuELiP uncovers more
trees than the other methods for 5 input trees. However, for
10 input trees, TuELiP only uncovers more trees than
GraPhyC for 10 and 20 mutations, and uncovers slightly
fewer trees for 30 mutations (25% of true trees uncovered for
GraPhyC and 22% for TuELiP).

On all simulations for all models we also calculate the dis-
tance from their found consensus tree to the ground truth
tree. This allows for a more nuanced analysis of how well the
methods perform. We use three different distance measures in
this evaluation: (i) AD distance; (ii) CASet distance (DiNardo
et al. 2019); and (iii) DISC distance (DiNardo et al. 2019).
Unlike previous sections, we did not use PC distance here be-
cause the distance measure was only used to compare to
GraPhyC and does not represent longer range ancestral rela-
tionships within tumor trees. DiNardo et al. (2019) also
showed that PC distance has limited uses when comparing tu-
mor trees.

For trials with 5 input trees, the median distance from our
TuELiP’s consensus tree to the ground truth tree was lower
than the median distances of both ConTreeDP and GraPhyC
across all three distance metrics for 10, 20, and 30 mutations
in each tree. Restricting to the 300 trials with 5 input trees,
TuELiP found a tree that was closer to the ground truth tree
than the tree found by ConTreeDP in around 220 trials using
AD, CASet, and DISC. For the same 300 trials with 5 input
trees, TuELiP found a tree closer to the true tree than the

Figure 3. A boxplot showing how well our approach solves the W-m-

TTCP problem for PC distance, AD distance in terms of percent change

from the output found by GraPhyC. A negative value indicates that our

consensus tree is closer to the input trees than GraPhyC’s consensus

tree.
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output of GraPhyC in around 160 trials with the three dis-
tance metrics. When there were 10 input trees, TuELiP consis-
tently outperformed ConTreeDP by outputting trees closer to
the true tree in at least 244 trials using the three distances,
and TuELiP outperformed GraPhyC in at least 100 trials. In
the trials with 10 input trees, there were many more ties be-
tween TuELiP and GraPhyC in comparison to the trials with
5 input trees. There were 48 more ties in the trials with 10
trees versus 5 trees using AD, 47 more ties using CASet, and
47 more ties using DISC.

We observe that while GraPhyC identifies more consensus
trees correctly than TuELiP when there are 10 input trees,
each with 30 mutations (Fig. 3), it has a higher mean distance
to the true tree (11.09 using AD) than TuELiP (4.94 using
AD) in these same trials (Fig. 5). This means that while
GraPhyC is able to find the correct tree slightly more of the
time for this particular dataset, when it gets it wrong, it is sig-
nificantly more different from the correct tree than that in-
ferred by TuELiP.

3.1.4 Impact of input tree weighting

Our model allows a user to weight the input trees based on
their level of confidence in each. Existing methods
ConTreeDP or GraPhyC do not have this capability, so in our
previous experiments we weighted all trees equally in order to
be able to compare to these methods. In this section, we show
how our method performs under different weighting schemes
and show that this feature allows us to find improved consen-
sus trees.

To test the effect of different weights on input trees, we try
various weighting schemes and compare our distances to the
true tree used to create the simulation. For each trial in our
simulated data, we rank the input trees in ascending order of
AD distance to the true tree of the trial. We use this to first
create two baseline weighting schemes. The “Naive” weight-
ing scheme assigns a weight of 1 to the tree closest to the input
and a 0 to the other inputs, forcing the consensus tree to be
the one closest tree. The “Constant” scheme refers to weight-
ing all trees the same, as was done in the previous benchmark-
ing. Finally, we model how a user might use weights by
creating the “Linear” scheme where the closest tree was given
the highest weight (0.3 for trials with 5 trees, 0.15 for 10
trees), and then the weight of each ranked tree decreased by a
constant amount (0.05 for trials with 5 trees, 0.0111 for 10
trees). This weighting scheme is intended to mimic how a user

may use outside information (e.g. sequencing coverage and
type) to weight input trees. Table 1 shows the mean AD dis-
tance from the outputs of the three weighting schemes to the
true tree.

The “Linear” scheme outperformed the “Naive” weighting
scheme across trials with 5 and 10 input trees and 10, 20, and
30 mutations. “Linear” also outperformed “Constant” for all
cases except 5 trees and 30 mutations, in which its mean dis-
tance was 2% higher than the mean distance of the
“Constant” consensus trees. For the other cases, the “Linear”
weighting scheme had a mean distance of at least 28% less
than the mean distance of “Constant”. Additionally, out of
all 600 trials, the “Linear” weighting scheme uncovered the
true tree in 249 trials, compared to the “Constant” scheme
uncovering the tree in 221 trials, and “Naive” uncovering the
true tree in just 9 trials. This demonstrates the possible benefit
of being able to use weights when identifying consensus trees.
We also note that across all of the simulated data trials, the
“Naive” weighting scheme significantly performed the worst.
This further demonstrates the utility of finding the consensus
of several possible trees instead of trying to select the single
best input.

3.2 Real data
3.2.1 TNBC dataset

We apply our method to a single-cell TNBC dataset from
Wang et al. (2014). Karpov et al. (2019) applied three differ-
ent single-cell sequencing tumor evolution inference methods,
SCITE (Jahn et al. 2016), SiFit (Zafar et al. 2017), and
PhISCS (Malikic et al. 2019b) to this dataset to recover three
possible tumor evolution trees for the patient. Both GraPhyC
(Govek et al. 2020) and ConTreeDP (Fu and Schwartz 2021)
used this dataset in their original analysis after restricting the
set of trees to the same set of 19 mutations that appear in all
three trees. We use that same restricted dataset for our analy-
sis here.

3.2.2 Equal weights consensus tree

We first apply TuELiP GraPhyC, and ConTreeDP to this
TNBC dataset using constant weights for all three input trees.
The input trees and inferred trees by all three methods are
shown in Fig. 6. TuELiP and ConTreeDP generate identical
consensus trees, which is the same as the tree inferred by
PhISCS. The difference between this consensus tree and the
one generated by GraPhyC is the placement of the mutation
to the MAP3K4 gene. Our method and ConTreeDP have it in
a mutation cluster in the root with six other mutations, indi-
cating it is a relatively early mutation in this history of this tu-
mor, which is congruent with both the PhISCS and SCITE
patient trees. GraPhyC pulled the mutation out from the root
mutation cluster and made it a child of AFF4 and NTRK1, in-
dicating that it was a later mutation, which is only reflected in
the SiFIT tree. Furthermore, the total distance from our (and
ConTreeDP’s) consensus tree to the three input trees is lower
than the distance from GraPhyC’s consensus tree to the input
trees when using AD (24% lower), CASet (17% lower), and
DISC (18% lower) distances. One reason that GraPhyC likely
outputs this different tree is because it only considers a single
mutation clustering, and is therefore forced to put MAP3k4
in its own node. Both our method and ConTreeDP do not
have this limitation and in fact are able to consider all possible
mutation clusterings, leading to placing MAP3k4 on a node

Figure 4. The results of counting the proportion of trials in which each

method returned the exact true tree.
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Figure 5. Results showing how well ConTreeDP, GraPhyC, and TuELiP uncover the true tumor trees for our simulated data. We measure the distances

between the consensus trees and true trees using AD, CASet, and DISC.

Table 1. The mean AD distance from the output of TuELiP when using “Naı̈ve,” “Constant,” and “Linear” weighting schemes on the input trees.a

No. of mutations No. of trees “Naive” weighting “Constant” weighting “Linear” weighting

10 5 7.45 1.92 1.28
10 10 6.05 0.94 0.34
20 5 18.88 5.43 3.87
20 10 21.28 3.07 1.97
30 5 39.24 9.07 9.26
30 10 39.94 4.94 3.51

a The values in bold indicate they are the lowest mean AD distance of the three weighting schemes. See the Supplementary Appendix for a boxplot of each
trials’ distances.

Figure 6. (Left) Each tumor tree was inferred by a separate method for a single TNBC patient. (Right) Two consensus tree were generated by TuELiP (and

ConTreeDP) and GraPhyC. The nodes with yellow denote that they are labeled by mutation MAP3K4, the mutation whose placement differs between the

two consensus trees.
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with other mutations higher in the tree, which also is a better
solution in terms of AD distance.

3.2.3 Varied weights consensus trees

We also performed experiments on this TNBC dataset to
show the impact of varying the confidence weights in the in-
put trees when inferring a consensus tree. We varied the
weights of each patient tree to cover all permutations of three
numbers between 0 and 1 (with one decimal place) that sum
to 1. The full resulting outputs can be seen in the ternary
graph in Fig. 7 that indicates which tree, or trees, were output
for each weighting configuration. As one might expect, the
three corners of the plot, where one tree is much more heavily
weighted than the other two, are dominated by the input trees
found by SCITE, SiFIT, and PhISCS (labeled as Trees 1, 2 and
4, respectively, in the plot). Furthermore, the extent of these
regions demonstrate that if the confidence weight for an indi-
vidual tree exceeds 0.5 (meaning it exceeds the confidence of
the other two trees combined), our method will output that
tree. We also see two stripes across the plot where multiple
solutions are found. The orange stripe (Tie Set 1) with greater
than 100 solutions shows when we move away from the
highly weighted SCITE tree (which puts many mutations in
their own cluster) and start clustering the mutations, we ob-
tain trees more similar to the other trees.

We also see that if we weight all trees equally (marked with
a star in the plot), we return Tree 4 (the same as the input tree
from PhISCS). The region associated with this tree is larger
in the ternary plot than the regions associated with the
other two input trees. However, the exact consensus tree(s)
returned can change as these weights change. For example, if
we use the weights wðPhISCSÞ ¼ 0:3; wðSiFITÞ ¼ 0:4, and
wðSCITEÞ ¼ 0:3, which more strongly support the SiFIT tree,
we actually find that there are two optimal consensus trees, la-
beled as Tie Set 3 in the figure. This set includes the tree
returned when using equal weights (Tree 4 in the plot) as well

as an additional tree (Tree 3 in the plot) that is identical to
this tree except that the mutation to MAP3K4 labels its own
node inserted in-between the nodes labeled by PTEN,
TBX3,. . ., AKAP9 and by ECM2, NOTCH3,. . ., MAP2K7.
Both trees support this mutation as having occurred earlier
than what was predicted by GraPhyC, but provides additional
information on the uncertainty of when exactly this mutation
occurred. This experiment highlights the important variations
that may occur in inferred consensus trees when outside infor-
mation, such as different types of sequencing data being used
to infer different trees, allows for applying weights to these
trees.

This plot also shows other interesting features of the space
of consensus trees, which thus far have not been able to be
captured by other consensus methods that do not consider
weights for the input trees. For instance, we can see that a set
of 16 equally scoring trees separate the regions between the
PhISCS tree (Tree 4) and the SiFIT tree (Tree 2). A similar
boundary region, but with even more trees exists between the
regions dominated by the PhISCS tree (Tree 4) and the SCITE
tree (Tree 1). However in this case, we only were able to find
100 trees in each set before timing out. Having the ability to
explore the space of consensus trees, or even to be able to see
how quickly or slowly the consensus tree changes when
changing weights will provide additional information to sup-
port inferred consensus trees.

Two additional weighting experiments on trees inferred by
Malikic et al. (2019a) are located in the Supplementary
Appendix. These datasets include trees inferred from both
bulk-sequencing and single-cell sequencing data.

4 Discussion

In this work we introduce the Weighted m-Tumor Tree
Consensus Problem (W-m-TTCP), which given (i) a set of in-
put tumor trees, (ii) weights for each tree, and (iii) a tumor
tree distance measure, finds a consensus tree that minimizes
the total weighted distance from it to all input trees. We then
present an ILP method, TuELiP, that solves the W-m-TTCP
when the distance measure is AD distance. In contrast to the
existing distance-based consensus methods, TuELiP is able to
consider all possible mutation clusterings when identifying a
consensus tree and is optimized for a more appropriate dis-
tance measure (existing methods use the simpler PC distance).
Furthermore, in contrast to all existing tumor tree consensus
methods, TuELiP allows a user to weight different input trees
differently based upon any outside knowledge they have
about either the methods used to create those trees, or the
data from which they were derived.

On simulated data we show that TuELiP is able to find bet-
ter solutions to the W-m-TTCP when the distance measure is
AD distance and all trees are weighted equally than the
method GraPhyC. We also show that TuELiP is better at re-
covering the true underlying tree used to create the simulated
data than both GraPhyC and ConTreeDP. On a real TNBC
dataset, we found that TuELiP returned the same consensus
tree as ConTreeDP which better represents input trees when
equal weights were used. However, on this same dataset, we
saw that variations in the confidence weights of the input trees
could lead to alternative consensus trees being found—thus
indicating the impact of incorporating weights into the con-
sensus model.

Figure 7. The weights of each input tree from (Karpov et al. 2019) were

varied, while still adding up to 1, and used as input to TuELiP. Tree 1

(cyan) is the SCITE tree, Tree 2 (blue) is the SiFIT tree, and Tree 4 (yellow)

is the PhISCS tree. The number of ties are present when there is more

than one optimal tree for the given weight. All of the tree topologies can

be found in the Supplementary Appendix. The red star denotes the center

of the triangle in which all three trees were given a weight of 1
3
.
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There are a number of different methodological extensions
we hope to make to this work. Our work here focuses on us-
ing the AD distance. While this is an improvement from previ-
ous work that used the simpler PC distance, there are other
more specialized distance measures (e.g. DiNardo et al. 2019;
Karpov et al. 2019; Ciccolella et al. 2021; Jahn et al. 2021)
that might be even more appropriate to use. We would
also like to explore the solution space of the W-m-TTCP using
a generalization of the approach we took in Fig. 7. This
would help to discover if concrete things can be said
about when multiple optimal solutions exist for a given input,
or if different patterns exist for how consensus trees change
with weights.

Additionally, while our model presents a step forward as it
allows all input trees to be weighted differently, the best way
to choose such weights is not straightforward. We hope to do
additional work to show how different features of the input
data (e.g. inference algorithms used, sequencing type and cov-
erage, etc.) can affect the inferred consensus tree and may be
used when choosing weights.

Supplementary data

Supplementary data are available at Bioinformatics online.
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