
Getting	
 Started	
 with	
 Mercurial,	
 Bitbucket,	
 and	
 MacHG	

	

This	
 lab	
 will	
 help	
 get	
 your	
 group	
 set	
 up	
 using	
 the	
 Mercurial	
 version	
 control	
 system.	
 	
 MacHG	
 is	
 a	
 nice	

free,	
 open-­‐source	
 GUI	
 for	
 Mercurial.	
 	
 Bitbucket	
 is	
 a	
 free	
 (for	
 small	
 groups	
 and	
 academics)	
 web-­‐
based	
 project	
 hosting	
 service	
 that	
 supports	
 Mercurial.	
 	
 The	
 following	
 will	
 walk	
 you	
 through	
 the	

steps	
 to	
 use	
 these	
 3	
 services	
 for	
 your	
 group’s	
 project	
 development.	
 	
 Make	
 sure	
 you	
 follow	
 these	
 in	

order,	
 and	
 ask	
 questions	
 along	
 the	
 way	
 if	
 any	
 part	
 does	
 not	
 make	
 sense.	

	

Step	
 1	
 –	
 Set	
 up	
 a	
 bitbucket	
 account	
 and	
 repository	

(This	
 step	
 will	
 probably	
 go	
 fastest	
 if	
 1	
 group	
 member	
 who	
 will	
 be	
 setting	
 up	
 the	
 actual	
 repository	

has	
 his/her	
 own	
 computer	
 and	
 the	
 other	
 group	
 members	
 work	
 on	
 separate	
 computers):	

a. Every	
 member	
 of	
 your	
 group	
 should	
 make	
 their	
 own	
 account	
 on	
 bitbucket.org.	
 	
 Make	
 sure	

you	
 use	
 your	
 Carleton	
 email	
 address	
 to	
 sign	
 up	
 so	
 that	
 you	
 can	
 get	
 the	
 free,	
 unlimited	

academic	
 license,	
 which	
 has	
 no	
 restrictions	
 on	
 the	
 number	
 of	
 team	
 members	
 associated	
 with	

a	
 repository.	
 	
 I	
 also	
 recommend	
 using	
 a	
 new	
 password	
 just	
 for	
 this.	
 	

b. One	
 member	
 of	
 your	
 group	
 should	
 create	
 a	
 new	
 repository	
 on	
 bitbucket.	
 	
 After	
 creating	
 an	

account	
 bitbucket	
 should	
 bring	
 you	
 to	
 a	
 page	
 similar	
 to	
 the	
 following:	

	

	

	

To	
 create	
 a	
 new	
 repository	
 click	
 the	
 +	
 sign	
 (circled	
 above)	
 next	
 to	
 “Repositories”	
 towards	
 the	

upper	
 right	
 corner	
 of	
 the	
 website.	
 	
 Then	
 give	
 your	
 project	
 a	
 name,	
 make	
 sure	
 the	
 “Mercurial”	

box	
 is	
 checked,	
 and	
 also	
 check	
 the	
 “issue	
 tracking”	
 box.	
 	
 Select	
 whatever	
 language	
 your	

Comps	
 group	
 will	
 be	
 using	
 in	
 the	
 “language”	
 drop-­‐down	
 menu,	
 enter	
 a	
 description	
 for	
 your	

project,	
 and	
 leave	
 the	
 website	
 box	
 blank.	
 Finally,	
 click	
 “Create	
 Repository”.	

	

Bitbucket	
 should	
 now	
 take	
 you	
 to	
 your	
 new	
 repository’s	
 page,	
 which	
 will	
 look	
 something	
 like	

the	
 following:	

	
 	
 	

	
 	

	

Invite	
 your	
 other	
 group	
 members	
 to	
 your	
 repository	
 by	
 clicking	
 the	
 “Invite	
 your	
 friends”	

button,	
 circled	
 above.	
 	
 Enter	
 the	
 emails	
 each	
 group	
 member	
 used	
 for	
 their	
 bitbucket	
 account,	

and	
 make	
 sure	
 to	
 choose	
 “admin”	
 access	
 for	
 each	
 group	
 member	
 invited.	

c. The	
 rest	
 of	
 the	
 group	
 members	
 should	
 accept	
 invitations	
 to	
 the	
 project	
 they	
 receive	
 through	

email.	

	

Step	
 2	
 –	
 Set	
 up	
 and	
 install	
 your	
 public	
 SSH	
 key	

To	
 securely	
 exchange	
 files	
 between	
 the	
 bitbucket	
 repository	
 and	
 your	
 local	
 repository,	
 we’ll	
 be	

using	
 SSH.	
 In	
 order	
 to	
 use	
 SSH,	
 you’ll	
 need	
 to	
 generate	
 an	
 SSH	
 public	
 key	
 and	
 add	
 it	
 to	
 your	

bitbucket	
 account.	
 Each	
 person	
 in	
 your	
 group	
 should	
 do	
 the	
 following:	

a. Open	
 a	
 terminal	
 window.	

b. Type	
 in	
 the	
 following	
 command:	
 ssh-keygen -b 4096 -t rsa You	
 will	
 be	

prompted	
 for	
 a	
 file	
 name,	
 which	
 will	
 be	
 something	
 like	

/Accounts/username/.ssh/id_rsa Go	
 ahead	
 and	
 accept	
 the	
 default	
 filename.	

You’ll	
 then	
 be	
 asked	
 to	
 enter	
 a	
 passphrase.	
 Do	
 not	
 use	
 your	
 Carleton	
 password	
 for	
 this!	

You	
 can	
 use	
 the	
 same	
 password	
 you	
 used	
 for	
 bitbucket,	
 but	
 the	
 two	
 are	
 not	
 linked	
 so	
 it	

doesn’t	
 matter	
 what	
 password	
 you	
 use	
 (as	
 long	
 as	
 you	
 can	
 remember	
 it).	

c. Go	
 back	
 to	
 your	
 web	
 browser.	
 Log	
 into	
 bitbucket	
 if	
 you	
 are	
 not	
 currently	
 logged	
 in.	

d. Click	
 on	
 your	
 your	
 username	
 on	
 the	
 upper	
 left	
 of	
 your	
 screen,	
 then	
 click	
 on	
 the	
 Manage	

Account	
 button.	
 	
 The	
 system	
 should	
 now	
 display	
 the	
 account	
 settings	
 page.	

e. Click	
 SSH	
 keys.	
 The	
 SSH	
 key	
 page	
 should	
 now	
 be	
 displayed.	
 It	
 shows	
 a	
 list	
 of	
 any	
 existing	

keys	
 (this	
 will	
 be	
 blank	
 unless	
 you’ve	
 used	
 SSH	
 keys	
 on	
 other	
 bitbucket	
 projects).	

f. Go	
 back	
 to	
 your	
 terminal	
 window.	
 Copy	
 the	
 contents	
 of	
 the	
 public	
 key	
 file.	
 On	
 Linux,	
 you	
 can	

type	
 cat ~/.ssh/id_rsa.pub.	
 In	
 Mac	
 OSX	
 the	
 following	
 command	
 copies	
 the	
 key	
 to	

the	
 clipboard:	
 pbcopy < ~/.ssh/id_rsa.pub	

g. Go	
 back	
 to	
 your	
 browser,	
 click	
 on	
 Add	
 Key,	
 and	
 enter	
 a	
 label	
 for	
 your	
 public	
 key,	
 such	
 as	

Default public key.	

h. Paste	
 the	
 copied	
 public	
 key	
 into	
 the	
 Key	
 field:	

	

i. Press	
 Add	
 key.	
 The	
 system	
 adds	
 the	
 key	
 to	
 your	
 account.	

	

	

	

Step	
 3	
 –	
 Set	
 your	
 MacHG	
 preferences	
 	

Now	
 that	
 you	
 have	
 a	
 bitbucket	
 repository	
 and	
 SSH	
 public	
 key	
 set	
 up,	
 you	
 can	
 use	
 MacHG	
 to	
 access	

that	
 repository	
 locally.	
 At	
 some	
 point	
 each	
 group	
 member	
 is	
 going	
 to	
 want	
 to	
 log	
 on	
 to	
 their	
 own	

account	
 (or	
 own	
 computer)	
 to	
 do	
 the	
 following:	

a. Open	
 MacHG	
 from	
 Carleton	
 Apps	
 (shortcut	
 under	
 Applications).	
 (Or	
 download	
 it	
 for	
 your	

Mac,	
 if	
 you	
 have	
 one,	
 at	
 http://jasonfharris.com/machg/downloads/.)	

b. If	
 a	
 box	
 pops	
 up	
 asking	
 for	
 some	
 username	
 info,	
 put	
 in	
 your	
 name	
 and	
 <email	
 address>	
 and	

you	
 can	
 skip	
 part	
 f	
 below.	
 Ignore,	
 for	
 the	
 time	
 being,	
 any	
 other	
 error	
 messages	
 that	
 pop	
 up.	

c. Right	
 click	
 on	
 the	
 toolbar	
 area	
 and	
 choose	
 “customize	
 toolbar”.	

d. Drag	
 the	
 following	
 buttons	
 to	
 the	
 toolbar:	
 Update,	
 Commit,	
 Diff,	
 Reveal,	
 &	
 AddRemove.	

e. (optional	
 but	
 likely	
 what	
 you	
 want)	
 –	
 Choose	
 MacHG-­‐>Preferences	
 	
 from	
 the	
 menu	
 at	
 the	

very	
 top	
 of	
 your	
 screen.	
 You	
 should	
 be	
 on	
 the	
 “General”	
 tab.	
 	
 Change	
 “Double	
 Click”	
 to	
 “Open”	

and	
 “Command	
 Double	
 Click”	
 to	
 “Diff”.	

f. Still	
 in	
 Preferences,	
 go	
 to	
 the	
 “Advanced”	
 tab.	
 	
 Click	
 the	
 “Edit”	
 button	
 next	
 to	
 '~/Application	

Support/MacHg/hgrc'.	
 	
 In	
 the	
 file	
 that	
 opens,	
 the	
 very	
 last	
 line	
 should	
 say	
 “username	
 =	
 ”.	
 	

Change	
 whatever	
 is	
 there	
 to	
 your	
 name	
 and	
 <email	
 address>.	
 	
 For	
 instance	
 the	
 last	
 two	
 lines	

of	
 Jeff’s	
 file	
 is	

	

	
 	
 	
 	
 	
 [ui]	

	
 	
 	
 	
 	
 username	
 =	
 Jeff	
 Ondich	
 <jondich@carleton.edu>	

	

This	
 is	
 what	
 shows	
 up	
 every	
 time	
 you	
 commit	
 a	
 change	
 to	
 the	
 repository,	
 making	
 it	
 easy	
 for	

others	
 working	
 on	
 your	
 project	
 to	
 know	
 who	
 did	
 what	
 and	
 to	
 email	
 someone	
 if	
 they	
 have	
 a	

question	
 about	
 a	
 commit.	

g. Note	
 that	
 MacHG	
 may	
 ask	
 if	
 you	
 want	
 to	
 save	
 a	
 file	
 on	
 exit	
 or	
 other	
 times.	
 This	
 file	
 stores	

your	
 info	
 about	
 local	
 repositories	
 and	
 username/password/URL	
 for	
 server	
 repositories	
 so	

you	
 do	
 want	
 to	
 save	
 it,	
 preferably	
 with	
 a	
 better	
 name	
 than	
 “untitled”.	

Step	
 4	
 –	
 Create	
 a	
 local	
 copy	
 of	
 the	
 repository	
 	

Each	
 group	
 member	
 should	
 do	
 this:	

	

	

	

	

a. In	
 MacHG	
 choose	
 “Add	
 Server	
 Repository”	
 by	
 clicking	
 the	
 +	
 in	
 the	
 lower	
 left-­‐hand	
 corner	

(circled	
 above).	

b. Fill	
 out	
 the	
 form	
 that	
 pops	
 up	
 on	
 the	
 screen.	
 The	
 short	
 name	
 can	
 be	
 whatever	
 you	
 want.	
 	
 The	

server	
 name	
 you	
 can	
 get	
 from	
 bitbucket.	
 If	
 you	
 go	
 to	
 the	
 repository	
 page,	
 under	
 the	
 Overview	

tab,	
 you	
 should	
 see	
 a	
 label	
 that	
 says	
 “Clone	
 this	
 repository”	
 (see	
 the	
 picture	
 below).	
 Click	
 on	
 SSH.	

You	
 should	
 now	
 see	
 the	
 name	
 of	
 the	
 repository,	
 starting	
 with	
 ssh://.	
 Use	
 this	
 URL	
 (including	
 the	

ssh://	
 for	
 the	
 server	
 name.	
 	
 Leave	
 hg	
 as	
 the	
 username.	

	

	
 	

	

	

	

c.	
 At	
 this	
 point,	
 the	
 MacHG	
 window	
 should	
 show	
 a	
 “denied”	
 status,	
 indicated	
 by	
 the	
 world	
 icon	

with	
 the	
 red	
 X	
 in	
 the	
 picture	
 below.	
 	

	

	

Click	
 on	
 the	
 “Test	
 in	
 Terminal”	
 button,	
 and	
 enter	
 your	
 SSH	
 passphrase	
 when	
 prompted.	
 (You	
 can	

save	
 this	
 in	
 your	
 keychain	
 if	
 you’d	
 like.)	
 Assuming	
 your	
 password	
 is	
 accepted,	
 close	
 the	
 terminal	

window.	
 	
 Then	
 go	
 back	
 to	
 the	
 server	
 URL	
 box,	
 delete	
 part	
 of	
 the	
 name	
 (say,	
 “test”)	
 and	
 retype	
 it	

in	
 the	
 window.	
 You	
 should	
 now	
 see	
 a	
 green	
 check,	
 indicating	
 that	
 you’ve	
 set	
 up	
 the	
 server	

repository	
 correctly	
 and	
 that	
 you	
 are	
 authenticating	
 to	
 the	
 server	
 correctly	
 (as	
 in	
 the	
 image	

below).	

	

	

d.	
 In	
 MacHG	
 click	
 on	
 the	
 server	
 repository	
 you	
 just	
 created,	
 then	
 click	
 the	
 Clone	
 icon	
 (at	
 the	
 top	

of	
 the	
 MacHG	
 window,	
 not	
 the	
 Clone	
 A	
 Repository	
 button	
 in	
 the	
 middle)	
 to	
 create	
 your	
 local	
 copy.	

Save	
 the	
 directory	
 wherever	
 you	
 would	
 like	
 on	
 your	
 account.

Step	
 4	
 –	
 Using	
 mercurial	
 to	
 add,	
 modify,	
 update,	
 etc.	
 project	
 files	

	

a. To	
 add	
 files	
 to	
 your	
 project,	
 copy	
 them	
 to	
 your	
 local	
 working	
 directory	
 (the	
 one	
 you	
 chose	
 in	

the	
 previous	
 step	
 to	
 save	
 your	
 repository	
 to	
 on	
 your	
 own	
 account/computer).	
 	
 They	
 will	

show	
 up	
 in	
 MacHG	
 with	
 ?	
 icons	
 next	
 to	
 their	
 names.	
 	
 Select	
 the	
 files	
 to	
 be	
 added	
 and	
 click	
 the	

“AddRemove”	
 icon	
 in	
 the	
 toolbar	
 (or	
 right	
 click	
 and	
 choose	
 “AddRemove”).	
 	
 Click	
 on	
 the	

commit	
 icon	
 in	
 the	
 toolbar	
 (or	
 choose	
 “Actions-­‐>Commit”	
 from	
 the	
 menu	
 at	
 the	
 top	
 of	
 your	

screen).	
 	
 Click	
 on	
 the	
 “push”	
 icon	
 to	
 make	
 your	
 changes	
 on	
 the	
 central	
 copy	
 of	
 your	
 project	

on	
 bitbucket.	
 	
 Note	
 that	
 until	
 you	
 choose	
 “push”,	
 only	
 your	
 local	
 copy	
 has	
 changed-­‐-­‐-­‐no	

one	
 else	
 will	
 have	
 access	
 to	
 those	
 changes.	

b. To	
 get	
 changes	
 others	
 have	
 made	
 to	
 your	
 project:	

-­‐ Click	
 on	
 “pull”	

-­‐ Check	
 the	
 message	
 pull	
 produces	
 to	
 see	
 if	
 there	
 were	
 conflicts	
 or	
 not	
 with	
 the	
 changes	

others	
 made	
 and	
 the	
 changes	
 you’ve	
 made	
 in	
 your	
 local	
 copy	
 (good	
 design	
 will	
 avoid	
 this	

as	
 much	
 as	
 possible).	
 	
 If	
 the	
 last	
 line	
 of	
 the	
 pull	
 message	
 says	
 "run	
 hg	
 update	
 to	
 get	
 a	

working	
 copy"	
 that	
 means	
 there	
 were	
 no	
 conflicts.	
 	
 Otherwise	
 there	
 were	
 conflicts	
 and	

when	
 you	
 close	
 the	
 pull	
 message	
 you	
 should	
 notice	
 that	
 the	
 “merge”	
 icon	
 is	
 now	
 available	

instead	
 of	
 grayed	
 out.	

-­‐ If	
 there	
 were	
 NOT	
 conflicts,	
 click	
 the	
 update	
 icon.	
 	
 Select	
 the	
 most	
 recent	
 revision	
 in	
 the	

list	
 shown	
 and	
 click	
 “update”.	
 	
 This	
 will	
 actually	
 make	
 the	
 changes	
 to	
 your	
 local	
 copy.	
 	

Note	
 by	
 default	
 the	
 version	
 selected	
 when	
 you	
 click	
 the	
 update	
 icon	
 will	
 be	
 your	
 last	

commit,	
 not	
 the	
 most	
 recent	
 version	
 of	
 the	
 project,	
 so	
 don’t	
 forget	
 to	
 click	
 on	
 the	
 most	

recent	
 (top)	
 revision	
 in	
 the	
 list	
 before	
 clicking	
 the	
 “update”	
 button.	
 	
 	

-­‐ If	
 there	
 WERE	
 conflicts,	
 click	
 the	
 merge	
 icon.	
 Again	
 select	
 the	
 most	
 recent	
 revision	
 in	
 the	

list	
 and	
 click	
 “merge”.	
 	
 This	
 will	
 open	
 the	
 mergefile	
 program	
 that	
 will	
 show	
 you	
 the	
 2	

versions	
 of	
 the	
 conflicted	
 file	
 side-­‐by-­‐side	
 with	
 any	
 differences	
 marked.	
 	
 For	
 each	
 conflict,	

choose	
 what	
 you	
 want	
 to	
 happen	
 from	
 the	
 “actions”	
 pull-­‐down	
 menu	
 in	
 lower	
 right	

corner.	
 	
 SAVE	
 this	
 merging,	
 either	
 with	
 <ctrl>	
 -­‐	
 s	
 or	
 file-­‐>savemerge,	
 then	
 close	
 the	

mergefile	
 program.	
 	
 Click	
 the	
 “merge”	
 button	
 to	
 finalize	
 the	
 merge.	
 	
 You	
 should	
 still	
 then	

have	
 to	
 open	
 the	
 merged	
 file	
 and	
 check	
 that	
 it	
 looks	
 like	
 you	
 want	
 it	
 to.	

c. To	
 make	
 changes	
 available	
 to	
 the	
 rest	
 of	
 your	
 group:	

-­‐ IMPORTANT!	
 First	
 follow	
 the	
 steps	
 in	
 part	
 b	
 to	
 get	
 any	
 changes	
 others	
 in	
 your	
 group	

have	
 pushed	
 since	
 you	
 last	
 pulled.	
 	
 If	
 there	
 are	
 any	
 conflicts	
 you	
 MUST	
 merge	
 those	
 first	

or	
 Mercurial	
 will	
 not	
 let	
 you	
 push.	
 	
 If	
 there	
 were	
 no	
 conflicts	
 you	
 should	
 still	
 update	
 to	

the	
 most	
 recent	
 version,	
 then	
 submit	
 your	
 changes.	

-­‐ Choose	
 all	
 files	
 that	
 have	
 been	
 modified	
 (they'll	
 have	
 the	
 blue	
 modified	
 icon	
 by	
 them)	

-­‐ Click	
 on	
 the	
 commit	
 icon	
 in	
 the	
 toolbar	
 or	
 choose	
 Actions-­‐>Commit	

-­‐ Click	
 the	
 push	
 icon	

	

	

The	
 very	
 basics	
 of	
 the	
 above	
 steps	
 to	
 remember	
 are:	

1. To	
 get	
 changes:	
 make	
 sure	
 any	
 of	
 your	
 changes	
 are	
 committed	
 first,	
 then	
 pull,	
 then	
 update	

or	
 merge	
 depending	
 on	
 conflicts.	
 	
 Don’t	
 forget	
 to	
 click	
 on	
 most	
 recent	
 revision	
 in	
 list	
 in	
 either	

case!	

2. To	
 commit	
 changes:	
 commit	
 any	
 changed	
 files,	
 then	
 make	
 sure	
 you	
 have	
 gotten	
 any	

changes	
 per	
 step	
 1,	
 then	
 commit	
 any	
 merged	
 files	
 if	
 necessary,	
 then	
 push.	

	

PRACTICE	
 these	
 steps	
 with	
 your	
 group.	
 Have	
 one	
 member	
 add	
 some	
 files	
 to	
 the	
 project	
 (it	
 doesn’t	

matter	
 what	
 they	
 are).	
 	
 Make	
 sure	
 everyone	
 else	
 can	
 get	
 them	
 correctly.	
 	
 Have	
 one	
 member	
 make	

some	
 changes	
 to	
 a	
 file	
 and	
 make	
 sure	
 others	
 can	
 get	
 those	
 changes.	
 	
 Finally	
 figure	
 out	
 how	
 to	
 cause	

a	
 conflict	
 by	
 having	
 2	
 group	
 members	
 modify	
 the	
 same	
 line	
 of	
 a	
 file	
 each	
 in	
 their	
 local	
 copy	
 of	
 the	

project.	
 	
 Then	
 the	
 first	
 member	
 to	
 commit	
 and	
 push	
 shouldn’t	
 have	
 any	
 problems,	
 but	
 the	
 2nd	

member	
 will	
 have	
 conflicts	
 when	
 they	
 pull	
 the	
 first	
 member’s	
 committed	
 changes.	
 	
 Go	
 through	
 the	

merge	
 process	
 and	
 commit/push	
 the	
 merged	
 files.	
 	
 	

	

	

Advanced:	
 Using	
 Mercurial	
 from	
 the	
 command	
 line	

If	
 you	
 would	
 like	
 to	
 use	
 mercurial	
 from	
 the	
 command	
 line,	
 you	
 can	
 use	
 the	
 hg	
 command.	
 MacHG	

uses	
 its	
 own	
 internal	
 version	
 of	
 hg	
 named	
 mhg.	
 If	
 you’d	
 like	
 to	
 use	
 that	
 version,	
 you	
 can	
 either	
 click	

the	
 terminal	
 icon	
 in	
 MacHG	
 and	
 then	
 use	
 the	
 aliased	
 command	
 mhg	
 instead	
 of	
 hg,	
 or	
 you	
 can	
 set	

that	
 alias	
 yourself	
 in	
 your	
 .bash_profile	
 file	
 using	
 the	
 following	
 steps.	

a. Click	
 the	
 terminal	
 icon	
 in	
 MacHG	

b. Type	
 “alias	
 mhg”	
 and	
 copy	
 the	
 line	
 the	
 terminal	
 prints-­‐-­‐-­‐it	
 should	
 be	
 something	
 like	

“alias	
 mhg=...	
 ${mhgResources}...”	

Paste	
 this	
 line	
 into	
 some	
 other	
 text	
 document	

c. Type	
 “echo	
 $mhgResources”	

d. Copy	
 the	
 resulting	
 path	
 and	
 replace	
 the	
 ${mhgResources}	
 in	
 your	
 previous	
 alias	
 line	

with	
 this	
 entire	
 path.	
 	
 ONLY	
 replace	
 ${mhgResources},	
 the	
 rest	
 of	
 the	
 line	
 leave	

unchanged.	

e. Finally	
 open	
 your	
 .bash_profile	
 file	
 in	
 a	
 regular	
 terminal	
 window	
 (or	
 create	
 it	
 if	
 you	

don’t	
 already	
 have	
 one	
 in	
 your	
 home	
 directory)	
 and	
 copy	
 the	
 resulting	
 line	
 from	
 part	

d	
 into	
 it.	
 	
 Save	
 it	
 and	
 type	
 “source	
 .bash_profile”	
 in	
 the	
 regular	
 terminal	
 window.	
 	
 You	

should	
 now	
 be	
 able	
 to	
 use	
 the	
 command	
 mhg	
 from	
 any	
 terminal,	
 not	
 just	
 the	
 MacHG	

one.	

	

For	
 example,	
 to	
 add	
 the	
 file	
 bunnies.txt	
 to	
 your	
 bitbucket	
 repository	
 (assuming	
 the	
 file	
 bunnies.txt	

already	
 exists):	

hg add bunnies.txt
hg commit –m “Adding bunny file to the repository”
hg push	

	

To	
 update	
 your	
 local	
 repository	
 based	
 on	
 changes	
 your	
 teammates	
 have	
 made:	

hg pull
hg update
	

Refer	
 to	
 the	
 Mercurial	
 (HG)	
 Cheat	
 Sheet	
 for	
 some	
 common	
 mercurial	
 commands.	

