Getting Started with Mercurial, Bitbucket, and MacHG

This lab will help get your group set up using the Mercurial version control system. MacHG is a nice
free, open-source GUI for Mercurial. Bitbucket is a free (for small groups and academics) web-
based project hosting service that supports Mercurial. The following will walk you through the
steps to use these 3 services for your group’s project development. Make sure you follow these in
order, and ask questions along the way if any part does not make sense.

Step 1 - Set up a bitbucket account and repository
(This step will probably go fastest if 1 group member who will be setting up the actual repository
has his/her own computer and the other group members work on separate computers):

a. Every member of your group should make their own account on bitbucket.org. Make sure
you use your Carleton email address to sign up so that you can get the free, unlimited
academic license, which has no restrictions on the number of team members associated with
arepository. I also recommend using a new password just for this.

b. One member of your group should create a new repository on bitbucket. After creating an
account bitbucket should bring you to a page similar to the following:

(»d Atlassian Atlassian Home Documentation Support Blog orums
Xl hi
wr blthCket Explore Dashboard Repositories goingssh

Your account has an unconfirmed email address. If you haven't received a confirmation, visit your account page to manage your email addresses.

Newsfeed BB Repositori a

goingssh

To create a new repository click the + sign (circled above) next to “Repositories” towards the
upper right corner of the website. Then give your project a name, make sure the “Mercurial”
box is checked, and also check the “issue tracking” box. Select whatever language your
Comps group will be using in the “language” drop-down menu, enter a description for your
project, and leave the website box blank. Finally, click “Create Repository”.

Bitbucket should now take you to your new repository’s page, which will look something like
the following:

‘ cs257_sprites

Ui/ 8 jeffondich I Share

Get started Add some code

You can start a brand new project or push up an existing repo to Bitbucket. What are you doing?
Make changes and push

I'm starting from scratch

Ih st ject t h
Iy G ave an existing project to push up

Get to work

Invite your other group members to your repository by clicking the “Invite your friends”
button, circled above. Enter the emails each group member used for their bitbucket account,
and make sure to choose “admin” access for each group member invited.

The rest of the group members should accept invitations to the project they receive through
email.

Step 2 - Set up and install your public SSH key

To securely exchange files between the bitbucket repository and your local repository, we’ll be
using SSH. In order to use SSH, you’ll need to generate an SSH public key and add it to your
bitbucket account. Each person in your group should do the following:

a.
b.

Open a terminal window.

Type in the following command: ssh-keygen -b 4096 -t rsa Youwill be
prompted for a file name, which will be something like
/Accounts/username/.ssh/id rsa Go ahead and accept the default filename.
You'll then be asked to enter a passphrase. Do not use your Carleton password for this!
You can use the same password you used for bitbucket, but the two are not linked so it
doesn’t matter what password you use (as long as you can remember it).

Go back to your web browser. Log into bitbucket if you are not currently logged in.

Click on your your username on the upper left of your screen, then click on the Manage
Account button. The system should now display the account settings page.

Click SSH keys. The SSH key page should now be displayed. It shows a list of any existing
keys (this will be blank unless you’ve used SSH keys on other bitbucket projects).

Go back to your terminal window. Copy the contents of the public key file. On Linux, you can
typecat ~/.ssh/id rsa.pub.In Mac OSX the following command copies the key to
the clipboard: pbcopy < ~/.ssh/id rsa.pub

Go back to your browser, click on Add Key, and enter a label for your public key, such as
Default public key.

Paste the copied public key into the Key field:

Add a new key

Label

Default public key|

SSH Key

AAAAB3NzaClycZEAAAADAQABAAABAQCzYENYyM+kx1ftSoKUNy63PtqvwTWQ
1FKkUTSOvzVet jT69fEu3@+Br1ITQvTV7QLYd7sRO40RqHQEWrZ20I9wh8Cc
NnvZ2RZMhEVsKiBdks70zkh@1ijjgX/tuld6+9NzWwDHIxxZc+hdaIWsEmpZLY
EXXQjT7jily6mZx5LsCx0ZE jCKXM1ZuV5iggqpRYojiFGOVZrX7 jIKDPBRF8N
Z2eB4JaoSh@PUnriraiR7G03b6
/RstN8usy5D4wCTTUI641nSIcpl4YcLGkfs8tfYx1GSCi51igjsgos2yVYdbs
H+6ywbh]XBJIDV+TmsQuM48wFMZX7aiibjmDluL5kel1ZF9

Copy your key to your clipboard with: pbcopy < ~/.ssh/id_rsa.pub

Add key

i. Press Add key. The system adds the key to your account.

Step 3 - Set your MacHG preferences

Now that you have a bitbucket repository and SSH public key set up, you can use MacHG to access

that repository locally. At some point each group member is going to want to log on to their own

account (or own computer) to do the following:

a. Open MacHG from Carleton Apps (shortcut under Applications). (Or download it for your

Mag, if you have one, at http://jasonfharris.com/machg/downloads/.)

b. Ifabox pops up asking for some username info, put in your name and <email address> and
you can skip part f below. Ignore, for the time being, any other error messages that pop up.
Right click on the toolbar area and choose “customize toolbar”.

Drag the following buttons to the toolbar: Update, Commit, Diff, Reveal, & AddRemove.

e. (optional but likely what you want) - Choose MacHG->Preferences from the menu at the
very top of your screen. You should be on the “General” tab. Change “Double Click” to “Open’
and “Command Double Click” to “Diff”.

f. Still in Preferences, go to the “Advanced” tab. Click the “Edit” button next to '~/Application
Support/MacHg/hgrc'. In the file that opens, the very last line should say “username =".
Change whatever is there to your name and <email address>. For instance the last two lines
of Jeff’s file is

oo

)

[ui]

username = Jeff Ondich <jondich@carleton.edu>

This is what shows up every time you commit a change to the repository, making it easy for
others working on your project to know who did what and to email someone if they have a
question about a commit.

g. Note that MacHG may ask if you want to save a file on exit or other times. This file stores
your info about local repositories and username/password/URL for server repositories so
you do want to save it, preferably with a better name than “untitled”.

Step 4 - Create a local copy of the repository
Each group member should do this:

@ MacHG
m|[=]3 DO ® D & & MO = .
= & v N Y -] (=] J - k@
View Pull Push Clone Merge Incoming Outgoing Terminal Update Commit Diff Reveal AddRemove Search
¥ REPOSITORIES
(L] JavaShell

(L] JavaSheliClone

[1] JavaShellClone2
S Hg Welcome to MacHg

@ Test2 Please select a task:

(] Test2

(3 Test Create New Repository
@ testing

é testing Manage a Repository

Information =

a. In MacHG choose “Add Server Repository” by clicking the + in the lower left-hand corner
(circled above).

b. Fill out the form that pops up on the screen. The short name can be whatever you want. The
server name you can get from bitbucket. If you go to the repository page, under the Overview
tab, you should see a label that says “Clone this repository” (see the picture below). Click on SSH.
You should now see the name of the repository, starting with ssh://. Use this URL (including the
ssh:// for the server name. Leave hg as the username.

‘ ¥, Clone~ | I» Branch (1 Pullrequest = e o -

[SSH~ hg clone ssh://hg@bitbucket.org/jeffo
iSUe! —*—:

Need help cloning? Visit Bitbucket 101.

Clone in SourceTree

Atlassian SourceTree is a free Git

and Mercurial client for Mac.
I've to

1 reload the page.

c. At this point, the MacHG window should show a “denied” status, indicated by the world icon
with the red X in the picture below.

& Repositories

= y y iyt — o ' L
(wl=1s) B POD & & O x @ QO
View Pull Push Clone Merge Incoming Outgoing Terminal Commit Diff Reveal AddRemove Update Search

REPOSITORIES

Add Server Repository

Enter a URL of a Mercurial repository on a remote server, along with the short name you want to use to refer to this
repository. Optionally, enter a user name and password for the server if needed.

Short Name: compstest
Server URL: ssh://bitbucket.org/acdalal/test
Username: hg|

Advanced Options: p

Full Server URL: ssh://hg@bitbucket.org/acdalay/test (é Detai;

(?) | Testin Terminal | Cancel Add Server

View Shortcuts

Information

Click on the “Test in Terminal” button, and enter your SSH passphrase when prompted. (You can
save this in your keychain if you'd like.) Assuming your password is accepted, close the terminal
window. Then go back to the server URL box, delete part of the name (say, “test”) and retype it
in the window. You should now see a green check, indicating that you've set up the server
repository correctly and that you are authenticating to the server correctly (as in the image
below).

& Repositories

= y y iyt — o ' L
(wl=1s) B POD & & O x @ QO
View Pull Push Clone Merge Incoming Outgoing Terminal Commit Diff Reveal AddRemove Update Search

REPOSITORIES

Add Server Repository

Enter a URL of a Mercurial repository on a remote server, along with the short name you want to use to refer to this
repository. Optionally, enter a user name and password for the server if needed.

Short Name: compstest
Server URL: ' ssh://bitbucket.org/acdalal/test
Username: hg

Advanced Options: p

Full Server URL: ssh://hg@bitbucket.org/acdaldl/test (é Deta

(?) | Testin Terminal | Cancel Add Server

View Shortcuts

Information

d. In MacHG click on the server repository you just created, then click the Clone icon (at the top
of the MacHG window, not the Clone A Repository button in the middle) to create your local copy.
Save the directory wherever you would like on your account.

Step 4 - Using mercurial to add, modify, update, etc. project files

d.

To add files to your project, copy them to your local working directory (the one you chose in
the previous step to save your repository to on your own account/computer). They will
show up in MacHG with ? icons next to their names. Select the files to be added and click the
“AddRemove” icon in the toolbar (or right click and choose “AddRemove”). Click on the
commit icon in the toolbar (or choose “Actions->Commit” from the menu at the top of your
screen). Click on the “push” icon to make your changes on the central copy of your project
on bitbucket. Note that until you choose “push”, only your local copy has changed---no
one else will have access to those changes.

To get changes others have made to your project:

- Click on “pull”

- Check the message pull produces to see if there were conflicts or not with the changes
others made and the changes you’ve made in your local copy (good design will avoid this
as much as possible). If the last line of the pull message says "run hg update to get a
working copy" that means there were no conflicts. Otherwise there were conflicts and
when you close the pull message you should notice that the “merge” icon is now available
instead of grayed out.

- Ifthere were NOT conflicts, click the update icon. Select the most recent revision in the
list shown and click “update”. This will actually make the changes to your local copy.
Note by default the version selected when you click the update icon will be your last
commit, not the most recent version of the project, so don’t forget to click on the most
recent (top) revision in the list before clicking the “update” button.

- Ifthere WERE conflicts, click the merge icon. Again select the most recent revision in the
list and click “merge”. This will open the mergefile program that will show you the 2
versions of the conflicted file side-by-side with any differences marked. For each conflict,
choose what you want to happen from the “actions” pull-down menu in lower right
corner. SAVE this merging, either with <ctrl> - s or file->savemerge, then close the
mergefile program. Click the “merge” button to finalize the merge. You should still then
have to open the merged file and check that it looks like you want it to.

To make changes available to the rest of your group:

- IMPORTANT! First follow the steps in part b to get any changes others in your group
have pushed since you last pulled. If there are any conflicts you MUST merge those first
or Mercurial will not let you push. If there were no conflicts you should still update to
the most recent version, then submit your changes.

- Choose all files that have been modified (they'll have the blue modified icon by them)

- Click on the commit icon in the toolbar or choose Actions->Commit

- Click the push icon

The very basics of the above steps to remember are:

1.

2.

To get changes: make sure any of your changes are committed first, then pull, then update
or merge depending on conflicts. Don’t forget to click on most recent revision in list in either
case!

To commit changes: commit any changed files, then make sure you have gotten any
changes per step 1, then commit any merged files if necessary, then push.

PRACTICE these steps with your group. Have one member add some files to the project (it doesn’t
matter what they are). Make sure everyone else can get them correctly. Have one member make
some changes to a file and make sure others can get those changes. Finally figure out how to cause
a conflict by having 2 group members modify the same line of a file each in their local copy of the
project. Then the first member to commit and push shouldn’t have any problems, but the 2nd
member will have conflicts when they pull the first member’s committed changes. Go through the
merge process and commit/push the merged files.

Advanced: Using Mercurial from the command line

If you would like to use mercurial from the command line, you can use the hg command. MacHG
uses its own internal version of hg named mhg. If you'd like to use that version, you can either click
the terminal icon in MacHG and then use the aliased command mhg instead of hg, or you can set
that alias yourself in your .bash_profile file using the following steps.

a. Click the terminal icon in MacHG

b. Type “alias mhg” and copy the line the terminal prints---it should be something like
“alias mhg=... ${mhgResources}...”

Paste this line into some other text document

c. Type “echo $mhgResources”

d. Copy the resulting path and replace the ${mhgResources} in your previous alias line
with this entire path. ONLY replace ${mhgResources}, the rest of the line leave
unchanged.

e. Finally open your .bash_profile file in a regular terminal window (or create it if you
don’t already have one in your home directory) and copy the resulting line from part
d into it. Save it and type “source .bash_profile” in the regular terminal window. You
should now be able to use the command mhg from any terminal, not just the MacHG
one.

For example, to add the file bunnies.txt to your bitbucket repository (assuming the file bunnies.txt
already exists):

hg add bunnies.txt

hg commit —m “Adding bunny file to the repository”

hg push

To update your local repository based on changes your teammates have made
hg pull
hg update

Refer to the Mercurial (HG) Cheat Sheet for some common mercurial commands.

