CS 117 (Dave Musicant) Winter 2005 Midterm Exam #2
Assigned on Friday, 3/4. Due before the beginning of class on Wednesday, 3/9.
Ground Rules

Time Limit: There is no time limit on this exam.
What you are allowed to do: You may refer to code that you and your assignment partners have written, your own class notes, and the textbook. You may use Java on the department Linux systems, or on your own computer. You may use the links from the class web site for documentation on Canvas, EasyBufferedImage, and Java itself. If you have any clarification questions on this, you may ask me in person or via email.

What you are not allowed to do: You may not discuss this exam or any material on it with anybody, except for me. You may not even discuss with other students that "Problem x is hard," or "Problem y is straightforward." You may not use the World Wide Web, the Internet at large, or any other external sources apart from those listed above.
Working in the lab: For the programming portions of this exam, you may (of course) work in the computer lab. You should not solicit any one's help when working on your problems, and you should ignore work that anyone else in the lab may be doing.
Turning in your exam: You should turn in your answers to all questions on paper in class, and you should also turn in your solution to question 6 via hsp. Do all of your question 6 work in a directory called exam2.
Good luck!

1. (12 points) Show on paper how selection sort would handle the following array of numbers:

12
6
3
9
10
4
15
11
18

Specifically, show what the array would look like after each iteration.

2. (17 points) The following method takes as input a two-dimensional array that holds scores for a bowling league. Each row (first subscript) corresponds to a bowler, and each column (second subscript) corresponds to a particular game. Write Java code for this method that prints to the screen the maximum value for each column (game). You may use a computer to play around with this if you wish, but your answer should be turned in on paper (can be a printout if you wish) and entirely constrained to the method below.
public void findMaxColumnValues(int[][] bowlingScores)

{

}

3. (17 points) The following method takes a String as input, and should return a new String that is the reverse of the input:

public String reverse(String word)

{

}

For example, if you called the method reverse with the String "hello" as a parameter, the method should return "olleh". You should write this method recursively. Your code should contain no for or while loops. You may find the String method charAt useful, which you can read about either in the textbook appendices or in the online Java documentation linked from the course webpage. You may use a computer to play around with this if you wish, but your answer should be turned in on paper (can be a printout if you wish) and entirely constrained to the method above.
4. (17 points) When we looked at sorting algorithms in class, a number of groups came up with an algorithm that I might call "Carleton insertion sort." The algorithm works as follows:
· Leave the first element in the array alone.
· Look at the second element in the array. If it is less than the first element, insert it before the first element.

· Look at the third element in the array. Do a binary search on the first two elements to find the place to insert this third item. Insert it in its proper location.

· Look at the fourth element in the array. Do a binary search on the first three elements to find the proper place to insert this fourth item. Insert it at its proper location.

· ... and so on.

In other words, this "Carleton insertion sort" is just like a regular insertion sort, except that you use a binary search to find the right place to put an element.

Here is an example of how the binary search insertion sort might work. We start with:
5
2
3
4
1

We then look at the 2 above, and observe that it goes before the 5. This produces:

2
5
3
4
1

We then look at the 3 above, and do a binary search on the 2 and 5. Observe that the 3 goes in the middle. This produces:
2
3
5
4
1

We then look at the 4 above, and do a binary search on the 2, 3, and 5. Observe that the 4 goes between the 3 and 5. This produces:
2
3
4
5
1

Finally, look at the 1 above, and do a binary search on the 2, 3, 4, and 5. Observe that the 1 goes at the front. This produces:
1
2
3
4
5

(a) Does "Carleton insertion sort" do more comparisons, fewer comparisons, or about the same number of comparisons as traditional insertion sort? Justify your answer. Specifically, explain how you come to an estimate of the number of comparisons that each algorithm requires.

(b) Another important factor to take into account in examining a sorting algorithm is how many variable assignments in the array it makes. For example, when Carleton insertion sort actually inserts an item, it can't just "squeeze it in"; it needs to shift a number of items to the right, which is done by assignments. Does Carleton insertion sort do more assignments, fewer assignments, or about the same number of assignments as traditional insertion sort? Justify your answer. Specifically, explain how you come to an estimate of the number of insertions that each algorithm requires.
5. (17 points) Suppose that I have an array a[] of integers, and I want to know the distance between the pair of these numbers that are furthest apart. Here is some code that does the job:

public int maxDistance(int[] a)

{

 int max = 0;
 for (int i=0; i < a.length; i++)

 for (int j=0; j < a.length; j++)

 if (a[i] - a[j] > max)

 max = a[i] - a[j];
 return max;

}

(a) When I used this code on an array of 2500 integers on my slow old computer at home, it took 5.0 seconds (I tried it several times--5.0 seconds every time). Approximately how long will this code take to run if N is 10000 (assuming I use the same computer)? Justify your answer. (It is not sufficient to tell me that you ran the code yourself and it took a certain amount of time. I want you to explain why it will take as long as you say it will.)

(b) The above approach is fairly silly. This problem can be solved much more efficiently. Describe an efficient algorithm to solve the same problem, and explain why it's faster.
6. (20 points) Write a program that asks the user for the name of a color image file (like jackets.jpg) and a tiling factor (this is an integer greater than or equal to 1). The program will then create and show a new image of the same size as the original, but tile the original image within it. The tiling factor indicates how many tiles are on a side. Here is an example of an original image, and two tiled images. The tiling factor for the lower left image is 2, and the tiling factor for the lower right image is 4. (These images should be in color, but it was a lot cheaper to copy them in black and white.)
[image: image4.png]

[image: image2]
[image: image3]
PAGE
1

[image: image1.png]

