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Abstract

This paper examines some of the rich structure of the syntenic distance model of evolutionary
distance, introduced by Ferretti, Nadeau, and Sankoff. The syntenic distance between two
genomes is the minimum number of fissions, fusions, and translocations required to transform
one into the other, ignoring gene order within chromosomes. We prove that the previously
unanalyzed algorithm given by Ferretti et al. is a 2-approximation and no better, and that,
further, it always outperforms the algorithm presented by DasGupta, Jiang, Kannan, Li, and
Sweedyk. We also prove the same results for an improved version of the Ferretti et al. algorithm.

We then prove a number of properties which give insight into the structure of optimal move
sequences. We give instances in which any move sequence working solely within connected
components is nearly twice optimal, and a general lower bound based on the spread of genes
from each chromosome. We then prove a monotonicity property for the syntenic distance, and
bound the difficulty of the hardest instance of any size. We discuss the results of implementing
these algorithms and testing them on real and simulated synteny data.

1 Introduction

Numerous models for measuring the evolutionary distance between two species have been proposed
in the past. These models are often based upon high-level (non-point) mutations which rearrange
the order of genes within a chromosome. The distance between two genomes (or chromosomes)
is defined as the minimum number of moves of a certain type required to transform the first into
the second. A move for the reversal distance [1] is the replacement of a segment of a chromosome
by the same segment in reversed order. For the transposition distance [2], a legal move consists of
removing a segment of a chromosome and reinserting it at some other location in the chromosome.

Ferretti, Nadeau, and Sankoff [7] propose a somewhat different sort of measure of genetic dis-
tance, known as the syntenic distance. This model abstracts away from the order of the genes within
chromosomes, and handles each chromosome as an unordered set of genes. The transformations
are fustons, in which two chromosomes join into one, fissions, in which one chromosome splits into
two, and reciprocal translocations, in which two chromosomes exchange subsets of their genes. In
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biological practice, the order of genes within chromosomes is often unknown, and this model allows
the computation of the distance between species regardless. Additional justification follows from
the observation that interchromosomal evolutionary events may occur with far different frequency
than intrachromosomal events. (For some discussion of this and related models, see [6] and [13].)

Ferretti et al. [7] propose using synteny as a measure of the distance between genomes, and
present a heuristic to approximate this distance. Although they give some experimental data on
its performance, no formal analysis of this algorithm is given. Identifying a performance guarantee
for this algorithm has remained an open question since.

DasGupta, Jiang, Kannan, Li, and Sweedyk [5] show a number of results on the syntenic
distance problem. They prove that computing the syntenic distance between genomes is NP-hard,
and provide a simple polynomial-time 2-approximation. They also prove a number of other useful
structural results.

Our results. As with many NP-complete problems, reasoning about the syntenic distance is
difficult. We are able, however, to show some results on the structure of the problem and analyze
previously unanalyzed heuristics, including the original algorithm of Ferretti et al. These results
give interesting insight into the rich structure of optimal move sequences. The structural properties
aid in reasoning about the syntenic distance, and may lead to improved approximation algorithms.

Using results of [5], we prove a general lower bound for the syntenic distance between two
genomes. Intuitively, if for many chromosomes C' in one genome, genes from C' appear in many of
the chromosomes of the other genome, then the distance between the genomes is large. This lower
bound may be helpful in developing improved approximation algorithms, since it implies that for
the class of instances in which this scattering occurs, previously proposed algorithms are already
less than a factor of 2 away from optimal.

We prove a monotonicity theory for syntenic distance, showing a natural ordering on the diffi-
culty of problem instances. We define the syntenic diameter of n-chromosome species diameter(n)—
in the spirit of the reversal and transposition diameters (see [11])—as the maximum number of
moves required to solve an instance in which both genomes have at most n chromosomes. Mono-
tonicity identifies a worst instance of this size, and implies that diameter(n) is exactly the number
of moves required to solve this instance. In recent work [9], we have shown that this number is
2n — 4. (We have recently learned that Pisanti and Sagot [12] have given an independent proof of
this fact.) Here, we also consider the analogous question for the linear synteny problem, a restricted
version of the synteny problem defined by DasGupta et al. [5]. Using our lower bound, we prove
that the linear syntenic diameter diameter i, qqr(n) is exactly 2n — 3.

Instance-by-instance comparison of two heuristics is a valuable notion that is rarely explored.
This type of analysis leads to very strong results in comparing the performance of two approximation
algorithms, even those with the same approximation ratio. Using this technique, we analyze the
previously unanalyzed approximation algorithm given by Ferretti et al., settling the open question
of finding a performance guarantee for this heuristic. We prove that this algorithm is never worse
than the approximation algorithm presented by [5], immediately giving a performance guarantee
of 2. We further show that there are instances in which the algorithm performs 2 — ¢ away from
optimal.

We also consider the algorithm resulting from making the fixes necessary to handle these in-
stances in which the original algorithm performs nearly twice optimal. We prove the same results
about this modified heuristic: it is also a 2-approximation that always outperforms the algorithm



of DasGupta et al., and there are instances in which it performs a factor of 2 —¢ away from optimal.

Call the comnected components of an instance the connected components of the intersection
graph of the chromosomes. We prove the surprising result that there are instances in which the
optimal move sequence must connect two unconnected components, and any move sequence that
fails to do so is in fact 2 — ¢ away from optimal. This implies that any approximation algorithm
that works only with components (as all currently proposed algorithms do) is doomed to be no
better than a 2-approximation. This raises the new problem of connected synteny, in which move
sequences are constrained to work only within connected components. The above results indicate
that the algorithms of [5] and [7], and the modified version of the latter, are only 2-approximations
for connected synteny, as well.

We also discuss an implementation of the syntenic distance model and all of the algorithms
discussed above. We analyze the results of running all three algorithms on both randomly generated
data and seven sets of real synteny data from the Institut National de la Recherche Agronomique
(INRA) Comparative Homology Database.

2 Notational Preliminaries and Previous Heuristics

The syntenic distance model is as follows: a chromosome is a subset of a set of n genes, and a
genome is a collection of k chromosomes.! A genome can be transformed by any of the following
moves (for S, T, U, and V non-empty chromosomes): (1) a fusion (S,T) — U, where U = SUT};
(2) a fission S — (T,U), where TUU = S; or (3) a translocation (S,T) — (U,V), where
UUV =SUT. The syntenic distance D(G1,G2) between genomes G; and Gy is then given by the
minimum number of moves required to transform G into Gs. In computing this distance, we ignore
any genes that appear in only one of the two genomes.

The compact representation of an instance of synteny is described by Ferretti et al. [7] and
formalized by DasGupta et al. [5]. This representation makes the goal of each instance uniform and
thus eases reasoning about move sequences. For an instance (G1,G2) in which we are attempting to
transform genome G; into genome Go, we relabel each gene a contained in a chromosome of G; by
the indices of the chromosomes of Go in which a appears. Formally, we replace each of the k sets
S'in Gy with (J,cg{i | £ € Gi} (where Go = G1,Ga, ..., G,) and attempt to transform these sets

into the collection {1}, {2},...,{n}. As an example of the compact representation [7], consider the
instance
Gi = {z,y}, (Chromosome 1) G = {p,q,z}, (Chromosome 1)
{p,q,r}, (Chromosome 2) {a,b,r,y,z} (Chromosome 2).

{a,b,c} (Chromosome 3)

The compact representation of G; with respect to Go is {1,2},{1,2},{2} and the compact rep-
resentation of Gy with respect to Gy is {1,2},{1,2,3}. For an instance S in this compact no-
tation, let D(S) := D(S,{{1},...,{n}}) be the minimum number of moves required to solve
S. For an instance S in compact notation derived from a pair of genomes (Gi,Gs), the distance
D(G1,G2) = D(S) [5, 7]. We will write S(n, k) to denote a instance S = Si,..., S with n el-
ements (i.e., |J; 5 = {1,...,n}) and k sets. Throughout the rest of this paper, we will assume

'The only “real” genomes that we consider consist of disjoint chromosomes, but for economy of notation we allow
non-disjoint chromosomes in the definition. (The compact representation requires non-disjointness.)



Select an uneliminated gene ¢ to work on, under the following priorities:
Priority 1: Any ¢ for which count(¢) = 1.
Priority 2: Any ¢ for which count(¢) = 2.

Priority 3: If all count(¢) > 2, pick ¢ which minimizes count(¢) and, if there are several
such, which minimizes count(¢') for some ¢ in the chromosome remaining from the
last operation involving ¢. If there are several such, choose ¢ so that after it is
operated on, ), count({) is minimized.

For the ¢ selected above, do one of the following operations:

Operation 1: If count(¢) = 1 and some of the genes syntenic with ¢ appear in no other
chromosomes, effect a fission to create a separate chromosome {¢}.

Operation 2: If count(¢) = 1 and all genes ¢’ syntenic with ¢ appear in count(¢’) > cpin >
1 chromosomes, effect a translocation to obtain a separate chromosome {¢}. The
second chromosome involved in the translocation is one that contains some gene ¢’
syntenic with ¢, with count(¢’) = cmin, and, if there are several, with a maximal
number of genes syntenic with /.

Operation 3: If count(¢) > 1, effect count(¢) — 2 fusions followed by one translocation
(possibly a fusion if no other genes are present in the component), again to produce
a separate {(}.

Figure 1: The approximation algorithm F [7].

that all instances of the synteny problem are given in the compact representation unless otherwise
indicated.

We will occasionally make use of the characteristic matrixz representation of an instance of
synteny: an instance S(n,k) = S1,S52,..., 5 is stored as a k-by-n matrix M, where M;; = 1 iff
j€S;.

The dual of a synteny instance S(n, k) = S1, S, .., Sk is the synteny instance Dual(S(k,n)) =
S1,5%,...,5;, where j € S} iff i € S;. DasGupta et al. [5] prove a duality property: D(S(n,k)) =
D(Dual(S(k,n))).

If S1 NSy # ), we will say that the chromosomes S; and S are connected, and that both are in
the same (connected) component.

For a gene ¢, let count(¢) denote the number of chromosomes in which ¢ appears.

Ferretti et al. [7] present the approximation algorithm reproduced in Figure 1, which we denote
by F. (Two genes are syntenic iff they appear in the same chromosome.) Although they provide
some empirical evidence on the algorithm’s performance, they do not give any formal analysis.

Let ‘H denote the approximation algorithm defined by DasGupta et al. [5]: for each connected
component containing n; elements and k; sets, perform k; — 1 fusions to produce one set with
all n; elements, then n; — 1 fissions to produce the n; singletons. Thus in an instance with p
components, H requires n + k — 2p moves. DasGupta et al. show that this algorithm is a 2-



approximation, a tight bound (the algorithm performs a factor of 2 away from optimal on the
instance {1},{1,2},...,{1,2,...,n}). To derive the performance guarantee for H, DasGupta et
al. prove the following component bound: if an instance of synteny S(n, k) has p components, then
D(S(n,k)) > n—p.

3 An Analysis of F

In this section, we give an analysis of the heuristic F. We first show that F is never worse than H,
and is therefore a 2-approximation. We then show that the factor of 2 is tight by giving a class of
instances in which F performs a factor of 2 away from optimal. (In Section 4, we give a modification
of F that handles this class of instances optimally, and analyze the modified algorithm.)

Theorem 3.1 For any instance S(n, k) of synteny, |F(S(n,k))| < |H(S(n,k))|.

Proof. Suppose that on S(n, k) F generates a move sequence o containing m; fissions from Oper-
ation (1), meo translocations from Operations (2) and (3), and mg fusions from Operation (3).

Every translocation generated by Operation (2) is of the form (S U {¢},T) — (S UT,{¢})
where £ ¢ SUT and, for some gene ¢/, ' € SNT. Every translocation generated by Operation (3)
is of the form (SU{¢}, T U{l}) — (SUT,{l}) where £ ¢ SUT. Note that in either case, at the
time that {¢} is produced, it appears nowhere else in the genome (i.e., count(¢) = 1).

We create a new move sequence ¢’ which differs from o in that each translocation (S7 U Ss, 71 U
Ty) — (S1 UTy,S2UTy) is replaced by the two-move sequence (S7 U S2, 71 UTy) — S U Sa U
Thuly — (Sl U1y, Sy U Tg).

By the form of the translocations and this translation, we have the following facts:

e Each of the newly-created fusions is within a connected component (the input sets are con-
nected by ¢ for Operation (2) and ¢ for Operation (3)).

e Each of the newly-created fissions produces a singleton {¢} for a gene ¢ that appears nowhere
else in the genome.

Each original fusion (from Operation (3)) is also within a component (the two input sets are
connected by /), and each fission (in Operation (1)) produces a singleton of a gene that appears
nowhere else in the genome. Thus, every fusion in ¢’ fuses two sets in the same component, and
every fission in ¢’ produces a singleton set with an element that appears nowhere else in the genome.

Clearly we can rearrange o’ to completely solve each component before beginning the next,
since there are no intercomponent dependencies. Further, inside each component we can put all
the fusions before all the fissions, since the fissions merely remove the last instance of an element
from a larger set. In other words, after rearrangement, o’ does exactly what H does: within each
component, it fuses all the sets into one massive set, and then fissions off individual elements one at
a time. Note that |o'| = m1 +2-mg+m3 = ma + |0, and thus |o| = [¢'| —ma = |[H(S(n, k))| — ma.
In other words, F performs mo moves better than H on each input. O

Corollary 3.2 F is a 2-approximation.

Proof. Immediate from Theorem 3.1 and the fact that H is a 2-approximation. O

We now show the corresponding lower bound for F:



Lemma 3.3 For anye > 0, there exists an instance S(n, k) with |F(S(n,k))| > (2—e)-D(S(n, k)).

Proof. Select any n such that 1/(n — 1) < e. We give a synteny instance S(n,n) such that
D(S(n,n)) = n —1 and |F(S(n,n))| = 2n — 3. Then the ratio between the result of F and the
optimal is (2(n — 1) — 1)/(n — 1), i.e., only 1/(n — 1) better than two times optimal.

The instance S(n,n) consists of {1,2,...,n} and n — 1 copies of {n}. Here is an n — 1 move
sequence solving the instance:

[n — 1 moves] For i = 1 to n — 1, translocate the ith singleton {n} with the
remaining elements of the large set to produce the singleton
Each move removes one of the n — 1 genes appearing only in the large set while absorbing
another of the singleton {n} sets, so that after n — 1 of these moves all the ns have been joined.
This is optimal by the component bound.
Now, we examine what F does on this input. Genes 1,2,...,n — 1 are exactly symmetric in
this instance, so we assume without loss of generality that F selects them in ascending order.

[n — 2 moves] For i =1 to n — 2, count(i) = 1. The gene n — 1 is syntenic
with ¢ and appears in no other chromosome, so by Operation
(1) we fission off the singleton {i}. This leaves {n —1,n} and
n — 1 copies of {n}.

[1 move] count(n — 1) = 1, so select it. By Operation (2), translocate
{n —1,n} and {n} to produce {n — 1} and {n}. This leaves
n — 1 copies of {n}.

[n — 2 moves] Fuse the n — 1 copies of {n} by Operation (3).

Thus F requires n — 2 fissions, 1 translocation, and n — 2 fusions, or 2n — 3 moves total. O

F therefore has the same asymptotic behavior as H: it is always within a factor of 2 of optimal,
and there are instances in which it performs 2 — ¢ away from optimal.

4 A Possible Improvement to F

Note that the non-optimality of F on the instance in Lemma 3.3 is only as the result of applications
of Operation (1). When the applications of this operation have been completed, the resulting
genome is {n — 1,n} and n — 1 copies of {n}. F takes n — 1 more moves after this point, which is
optimal by the component bound. In other words, the non-optimality of Operation (1) is sufficient
to cause F to be a factor of 2 away from optimal.

The difficulty with F results from overzealous applications of Operation (1) when Operation
(2) could do some good. (Notice from Theorem 3.1 that the more translocations F does, the better
its performance.) Call F' the algorithm resulting from making the following fixes to F to deal with
this problem:

e Apply Operation (1) only if all of the genes syntenic with ¢ appear in no other chromosomes.



e Apply Operation (2) if any gene syntenic with £ appears in another chromosome. The second
chromosome involved in the translocation is selected as in F, but ignoring those genes ¢’
syntenic with ¢ such that count(¢’) = 1.

Note that F' performs optimally on the bad instance for F in Lemma 3.3: the genes are still
selected in the same order, but each of the first n — 1 fissions becomes a translocation, and the
instance is solved after these translocations.

Theorem 4.1 For any instance S(n, k) of synteny, |F'(S(n,k))| < |H(S(n,k))]|.

Proof. Analogous to the proof of Theorem 3.1. O

Corollary 4.2 F' is a 2-approximation. a
The following lemma shows, however, that F’ is also no better than a 2-approximation.
Lemma 4.3 For anye > 0, there exists an instance S(n, k) with | F'(S(n, k))| > (2—e)-D(S(n, k)).

Proof. We give an instance S(ai + 1,4 + i + 1) with D(S(oi + 1,04 + i+ 1)) = i + i and
|F'(S(ai + 1, i+ i+ 1)) =2ai — 1 for 3 < v < i. Selecting o and 7 so that € > (2i + 1)/(«i + 7)
then gives us an instance in which F’ performs (2 — ¢) away from optimal.

Consider the instance S(«i + 1, ai + i + 1) consisting of the following sets, for 3 < o < i:

o S={1,2,...,0i+1}
e jcopiesof Z={i+1,i+2,...,ai+ 1}
o Xjg={jhforl1<j<iand1<¢g<a.

See Figure 2 for a schematic view of the characteristic matrix of this instance.
Here is a move sequence solving S(ai + 1, i + ¢ + 1) in ai + i moves:

[i — 1 moves] Fuse the i copies of Z, leaving S, the X ;s, and a single copy
of Z.

[1 move] Translocate S and Z to produce {1,2,...,«i} and {ai + 1}.

[(av — 1)i moves] Translocate (o — 1) of the singletons for each of the genes

1,2,...,7 with the set {1,2,...,ai} to produce the single-
tons {¢ + 1}, {i + 2},...,{«i}. This leaves {1,2,...,7} and
{1},{2},...,{i}.

[i moves| For j = 1toi—1, translocate {j} with the large set to remove
j from it. This leaves two copies of {i}. Fuse these to solve
the instance.

This is optimal by duality and the component bound.



Elements

Sets

Figure 2: A bad example for F and F’. Fusing the Zs together allows every succeeding move to be
a translocation; greedily working on the singletons produces a move sequence nearly twice as long.



We now examine what F’ does on this instance. Notice that

count(¢) = a+1 for £ € {1,2,...,i}
ol i+1 forte{i+1,i+2,...,ai+1}.
Since 1,2,...,7 are completely symmetric in this instance, without loss of generality we assume
that the algorithm picks them in ascending order. Similarly, i + 1,7+ 2,..., @i + 1 are symmetric,

and we assume without loss of generality that they are selected in ascending order, as well.

[ moves] a < i, so we first select £ = 1. Applying Operation (3), we
fuse all singletons {1} and then translocate with S to produce
{1} and {2,3,...,ai + 1}.

[a moves] Select ¢ = 2. Apply Operation (3) as above to produce {2}
and {3,4 ..., ai+ 1}.

[ moves] Select ¢ = i. Apply Operation (3) as above to produce {i}
and {i +1,i+2,...,ai + 1} = Z. The only remaining sets
are ¢ + 1 copies of the set Z.

[i moves] Select ¢ =i + 1. Apply Operation (3) to fuse i copies of Z,
and then translocate the last two copies to produce {i + 1}
and {i +2,i+3,..., 00+ 1}.

[(a—1)i—1 moves|] Fission the remaining set {i+2,7+3,...,ai+ 1} into single-
tons, by Operation (1).

F' thus has to complete ai+ i + (. — 1)i — 1 = 2ai — 1 moves to solve this instance. O

Note that F does poorly on these instances, as well — bad choices of the genes by Priority (C)
are sufficient to cause the non-optimality, and F selects genes in the same way as F’.

5 Moves between Connected Components

It seems intuitive that when attacking an instance of synteny consisting of two distinct connected
components, the optimal move sequence would never fuse these components together. Both H and
F (and F') work within connected components, in fact. However, the following theorem shows that
this approach is doomed to be a factor of two away from optimal.

Theorem 5.1 For any algorithm A that works only within connected components, and for any
e > 0, there exists an instance S(n, k) where |A(S(n,k))| > (2 —¢) - D(S(n, k)).

Proof. We construct an instance of synteny S(n,n) solvable in n — 1 moves, but for which A will
require 2n — 4 moves. Selecting n so that € > 2/(n — 1) yields an instance where A is 2 — ¢ away
from optimal.



Consider the instance S(n,n) consisting of {1,2,...,n — 1} and n — 1 copies of {n}. First we
observe that there is a move sequence solving this instance in n — 1 moves:

[1 move] Translocate {1,2,...,n — 1} and {n} to produce {1} and
{2,3,...,n—1,n}.

[n — 2 moves] For i = 2 through n — 1, perform a translocation of the set
{i,i+1,...,n} and {n} to produce {i} and {i+1,i+2,...,n}.

For any algorithm .4 working only within components, however, the moves that .4 can make
are severely limited. Since {1,2,...,n — 1} is a component all by itself, there is no choice but to
complete n — 2 fissions. The n— 1 copies of {n} also form an entire component by themselves. Thus
the only possible moves are to complete n — 2 fusions to create a unique singleton. Therefore, A
completes 2n — 4 moves on this instance. 0O

It is now natural to define the connected synteny problem, to find the minimum number of
moves required to transform one genome into another with all moves constrained to work only
within a single component. (This is equivalent to limiting consideration to instances with a single
connected component — an optimal move sequence for an instance with multiple components is
just the concatenation of optimal move sequences solving each of its components.)

Obviously, the optimal move sequence that works within components is no shorter than the
optimal unconstrained move sequence. Because H, F, and F’ all generate move sequences that
work within components, these algorithms are also 2-approximations for the connected synteny
problem. In each of the examples in which these algorithms are 2 — ¢ away from optimal, the
optimal move sequence works only within components. (In fact, there is only one component in
each example.) Thus H, F, and F’ are all 2-approximations for this problem, and no better.
Whether it is easier to approximate connected synteny, however, remains an open question.

6 Non-Redundancy and Monotonicity

In this section, we show that, for any instance, there is an optimal move sequence containing no
moves that produce two sets with non-empty intersection. We also prove a monotonicity property
for syntenic distance.

We first need to introduce an extension to our notation to handle the case of empty sets as input.
If Si,...,Sk is a collection of sets and, for some i, S; = (), we understand the synteny instance
S(n,k) = S1,..., Sk to represent the synteny instance 7 (n,k — 1) = S1,...,Si—1, Si+1,.- -, Sk-

Lemma 6.1 If there is a move sequence o = (01,09, ...,0m) solving S, ...,S;U{a},..., Sk where
a ¢ S; (with S; possibly empty), then there is a move sequence o’ solving S1,...,S;, ..., Sk in at

most m steps.

Proof. We proceed by induction on m.
For the base case (m = 1), o1 must solve the instance. We have two cases (a cannot appear in
more than one additional set, since otherwise no single move could solve the instance):

e The element a also appears in some set S;;.

10



o1 must take S; U {a} and S; as input, and produce the singleton {a} as output. Otherwise,
two copies of the gene a remain, or the copy of a is bundled up with some other element(s).
This first restriction implies that o1 cannot be a fission.

If oy is the fusion (S}, .5; U{a}) — {a}, it must be the case that S; = {a} and S; = 0. Thus
S1,...,Sk is already in the target form, and in the new instance we are done without making
any move.

If o1 is a translocation, ¢ must occur in only one of the output sets, for otherwise it appears
twice and the instance is not solved. Thus o1 = (S; U {a}, S;) — (S; U[S; — {a}], {a}). We
can replace this by ¢} = (5;,5;) — (S; U [S; — {a}], {a}) to solve the instance Sy, ..., Sk.

e ¢ does not appear elsewhere in the genome.

Then the last move need not involve the singleton {a}. If it does not, then it must be the case
that S; = (0. (Otherwise after the last move of the sequence a is in a non-singleton and the
instance has not been solved.) In this case, simply doing the last move will solve Sy, ..., Sk.

If the last move does involve S; U {a}, it is not a fusion since any fusing would couple a with
some other element. (Since a does not appear elsewhere in the genome, a would have to be
coupled with some element b # a.)

If 0y is a fission, then it must produce a singleton set {a} and some other set not containing
a in order to solve the instance. Since a ¢ S;, this means that oy = S; U {a} — ({a}, S;). If
we replace S; U {a} by S; in the instance, the instance is already in the target form and we
can skip this move.

If 0y is a translocation, it must be (S, S; U {a}) — (U, {a}) for some set U, or else (as with
the fusion case) the instance would not be solved. If @ € U then the instance is not solved,
since a appears twice. Therefore it must be the case that U = S; U S;. To solve the new
instance, we can simply do the fusion (5;, S;) — S; U S; and we are done.

For the inductive case (m > 2), first we handle the cases when o; is any move that does not
involve the set S; U{a}. For ¢ and j distinct from i:

o 01 =(S5¢,5;) — SUS;. Then oo solves S, (1 <1 < k,r # L, r # j,r #1i),5U{a}, SeUS;.
By the inductive hypothesis, we have a move sequence ¢’ solving S,.(1 < r < k,r # {,r #
J,m #1),5;,S¢US; in at most m — 1 moves.

e 01 =S5y — (U, V). Then og_,, solves S,(1 < r < k,r # £,r #1i),5;U{a},U, V. By the
inductive hypothesis, we have a move sequence o’ solving S,.(1 <r < k,r #{,r #1),S;, U,V
in at most m — 1 moves.

e 01 = (5,,5;) — (U,V). Then o3, solves S, (1 <r < k,r #{,r# j,r #1),5; U{a},U,V.
By the inductive hypothesis, we have a move sequence ¢’ solving S,.(1 < r < k,r # {,r #
J,r #1),5;, U,V in at most m — 1 moves.

In each case, doing o1 and o’ solves Si,..., Sy in at most m moves. We now consider the cases in
which o; takes S; U {a} as input.

e Suppose 07 is a fission, and that S; = .5;, U S;,.

11



If o9 = SiU{a} — (S, U{a},Si,), then o2 ., solves the instance S,(1 < r < k,r #
i),S;, U{a}, Si,. By the inductive hypothesis, there is a ¢’ solving S, (1 < r < k,r # 1), S;,, S,
in at most m — 1 steps. Then doing S; — (Si,,S;,) followed by o’ solves Si,..., Sk in at
most m steps.

If o9 = S;U{a} — (S;; U{a}, Si, U{a}), then o2, solves the instance S,(1 < r < k,r #
i),S;, U{a}, Si, U{a} in m — 1 moves. By the inductive hypothesis applied to o2, and
Siy U{a}, there is a o’ solving S,(1 < r < k,r # i), Si,,Si, U{a} in at most m — 1 steps.
Applying the inductive hypothesis again, this time to ¢’ and S;, U {a}, we have that there is
a o’ solving S, (1 <r < k,r #1),S;,,Si, in at most m — 1 steps. Then doing S; — (S;,,Si,)
followed by ¢” solves Si,..., Sy in at most m steps.

Suppose that oy is the fusion (S; U{a}, Sy) — S;U{a} U Sy. Then oy, solves the instance
Sp(1<r<m,r#Lr+#1i),S;U{a}USyin m — 1 steps.

If a € Sy, then S; U{a}USy = S;USy. Thus oy, solves S, (1 <r <m,r #{,r#1),5;USy,
and doing (S;, S¢) — S; U Sy and o9, solves Si, ..., Sk in m steps.

If a ¢ Sy, then by the inductive hypothesis, there is a ¢’ solving S,.(1 < r < m,r # {,r #
i),S; U Sp in m — 1 steps. To solve Sy, ..., Sk, we do the fusion (S;,S;) — S; U Sy and run
o', which requires at most m steps.

Suppose o7 is a translocation using the set S; U {a} and Sy, where S; = S;; U S;, and
Sy =S¢, USy,. Then o1 must look like one of the following:

(1) (va SZ U {a’}) - (841 U Siu 842 U Siz U {CL})
(2) (va Sl U {a’}) - (551 U Sil U {a}v sz U Siz U {a})

In either case we replace this move by the translocation 0§ = (S, S;) — (S¢, USiy, Se, USi,).

In case (1), if a € Sy,, then o2, solves S, (1 <r < k,r # €,r #1),S¢,, USi,,Se, US;, inm—1
steps, since Sy, U S;, U{a} = Sp, U S;,. Then we can do of and o2, to solve Sq,..., Sk in
m steps.

If a ¢ Sy,, then o9, solves S,(1 < r < k,r # €,r # 1), Sp, USi,, S, US;, U{a} inm—1
steps. By the inductive hypothesis, there is a move sequence o’ solving S,(1 < r < k,r #
lyr #14),Sp, US;,, S, US;, in at most m — 1 steps. Gluing this together with ¢} yields a
sequence solving S1,..., S, in at most m moves.

In case (2), if a € Sy, then Sy, US;, U{a} = Sy, US;, and this move is actually (S¢, S;U{a}) —
(Se, USiy, Se, USi, U{a}), which is exactly case (1). Otherwise, a ¢ Sy,. If a € Sy,, for exactly
the same reason as above (with the roles of Sy, and Sy, reversed), we are again in case (1).
Thus the only interesting case is when a ¢ Sy, and a ¢ Sy,.

In this case, o2, solves S, (1 <r < k,r #{,r #1i),S¢, US;, U{a},Se, US;, U{a} inm—1
moves. By the inductive hypothesis applied to o2, and Sy, U S;; U {a}, we have a move
sequence o’ solving S,(1 < r < k,r # {,r # i),Sp, US;,,Se, USi, U{a} in at most m — 1
moves. Applying the inductive hypothesis again, to ¢’ and Sy, U S;, U {a}, we have a move
sequence o” solving S,(1 < r < k,r # {,r #1),S¢, U Si,,Se, US;, in at most m — 1 moves.
This is exactly the result of doing the translocation ¢/, so doing o} and ¢” solves S,..., Sk
in at most m moves.

12
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Define a redundant move as any move creating two sets S and T such that SN T # (). (Note
that only fissions and translocations can be redundant, because fusions do not create two sets.)

We need the following result on reordering from [5] to prove a theorem on redundancy: for
S(n, k) an instance of synteny and o = (01, ..., 0,,) any move solving the instance with m; fusions,
mo translocations, and mg fissions, there exists a move sequence ¢’ solving the instance in m’ < m
moves in which every fusion precedes every translocation precedes every fission, using m} < my
fusions, mf < mg translocations, and m4 < mg fissions. (DasGupta et al. actually state this lemma
for the case where o is optimal, but the proof extends to a general o straightforwardly.) We refer to
a move sequence in which the fusions precede the translocations precede the fissions as in canonical
order.

Theorem 6.2 For any synteny instance S(n, k), there exists an optimal move sequence making no
redundant moves.

Proof. Let 0 = (01, ...,0m,) be a canonically-ordered optimal move sequence solving S(n, k). There
are no redundant fusions at all (by the definition of a redundant move). Any redundant fission
must yield two copies of at least one gene a, say S1 U Sy U {a} — (S1 U {a},S2 U{a}). But then
there are two copies of the gene a, and since all succeeding moves are also fissions, the number of
as can only increase, and therefore the instance will not be solved.

Then the only possible redundant moves are translocations of the form (77 UT, U V,U; UUy U
W) — (THUU; UVUW, T,UU, UV UW) for some non-empty overlap VUW | with VN (T UT,) =0
and W N (U; UUz) = 0. Then by repeatedly applying the transformation described in Lemma 6.1
to o for every element of VU W we can solve the instance resulting from replacing this redundant
move by the translocation (T3 UTo UV, U UUUW) — (T3 UU; UV UW,T5 U Us) in at most as
many moves. Repeating this sequentially for every redundant move in o yields a move sequence of
length at most m with no redundant moves. O

The canonicalizing process does not create redundancies: with a non-redundant move sequence
as input, it produces a non-redundant canonical move sequence as output. Thus we can convert
any move sequence o into a non-redundant canonical move sequence by consecutively applying
canonicalization, redundancy elimination, and canonicalization again.

Theorem 6.3 (Monotonicity) Let Sy,...,St and Ty, ..., Ty be two collections of sets where, for
alll < i <k, T; CS;. Lt n =|;Si| and n' = |, Ti|. Let S(n,k) = S1,...,Sk and let
T(n',k)=Ti,...,Ty. Then D(S(n,k)) > D(T (n',k)).

Proof. We proceed by induction on § =), [S; — Tjl:

Base case (6 =0). Then 7 (n', k) = S(n, k), so the distances are trivially equal.

Inductive case (§ > 1). Let 0 = (01,09,...,0.,) be an optimal move sequence solving S(n, k).
Let j be the minimum index such that S; D T} and let a be any element in S; —T}. By applying the
transformation described in Lemma 6.1, we can convert o into o’ solving Si, Sa,...,S;—{a},..., Sk
in at most m steps. This instance is one element “closer” to 7 (n/, k), so, by the inductive hypothesis,
we can solve 7 (n/, k) in at most m steps. a
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7 A Lower Bound on Synteny

In this section, we give a lower bound on syntenic distance when many elements appear in many
sets. The intuition for the bound is the following: consider an instance such that many elements
appear in many sets in the compact representation. This occurs exactly when, in the non-compact
representation, for many chromosomes C' in genome Gy, genes from C appear in many of the
chromosomes in genome Gs. This can only occur if many evolutionary events “scattered” C' from
G1 to Go. If this occurs for many chromosomes C, then many events must have occurred for many
chromosomes, and thus the distance between the genomes must be large.

To formalize and prove this lower bound, we will make use of the following restricted form of
the synteny problem, defined by DasGupta et al. [5]. Define the linear synteny problem as the
synteny problem in which all move sequences are constrained as follows:

e The first £ — 1 moves must be fusions or severely restricted translocations. One of the input
sets is initially designated as the merging set. Each of the first kK — 1 moves takes the current
merging set A as input, along with one unused input set S, and produces a new merging set
A’ as output. If there is some element a that appears nowhere in the genome except in A
and S, then the move is the translocation (A, S) — (A’,{a}), where A’ = (AU S) — {a}.
If there is no such element a, then the move simply fuses the two sets: (A, S) — A’, where
A'=AUS.

e If A is the merging set after the k— 1 fusions and translocations, then each of the next |A| -1
moves simply fissions off a singleton {a} and produces the new merging set A’ = A — {a}.

Let D(S(n,k)) be the length of the optimal linear move sequence. Notice that, unlike F and
F’, H does produce linear move sequences. Note that if a linear move sequence performs m; fusions
in the first kK — 1 moves, then the move sequence contains k —my — 1 translocations. After the k—1
fusions and translocations are complete, there are n — k +mq + 1 elements left in the merging set,
since exactly one element is eliminated by each translocation. Therefore, n — k + m fissions must
be performed to eliminate the remaining elements. Thus the length of the linear move sequence
is n +my — 1 moves. (Every move either is a fusion or removes one element, and all but the last
element must be removed.)

Theorem 7.1 For any instance of synteny S(n, k),

D(S(n,k)) > n—1+ | Jnax {c - ‘{K | count(f) < c—+ 1}”
Proof. Consider an arbitrary ¢ between 1 and k£ — 1, and consider any linear move sequence solving
S(n,k). In the first ¢ moves, only genes ¢ such that count(¢) < ¢+ 1 can be eliminated. (Any ¢
with count(f) > ¢+ 1 remains present in at least one unused input set, since the first ¢ moves can
only merge ¢ + 1 sets.)

Thus, in the first ¢ moves we have at most ‘{E | count(?) < c+ 1}‘ translocations, and there-
fore at least ¢ — |{¢ | count(¢) < ¢+ 1}| fusions. Thus the instance requires at least n — 1 + ¢ —
‘{E | count(?) < c+ 1}‘ moves to solve. O

DasGupta et al. prove a very useful fact relating linear synteny to the unconstrained synteny

problem: for any instance S(n, k) of synteny, D(S(n, k)) < D(S(n, k)) + logy/3(D(S(n, k))). This
gives us the following bound on the general synteny problem:

14



Corollary 7.2 For any instance of synteny S(n, k),
D(S(n, k) +loga/s(D(S(n.k)) = n—1+ max [c - ‘{z | count(¢) < ¢+ 1}‘].

a

We refer to this lower bound as the size bound on synteny. This bound may help in the
development of improved approximation algorithms for the (linear) synteny problem. In particular,
for a significant class of instances, H is better than a factor of 2 away from the optimal linear
solution:

Corollary 7.3 For any instance S(n,k) of synteny in which n > k, if there exists some ¢ such
that ¢ — ‘{E | count(¢) < c+ 1}‘ > fBn+1 for0 < B <1, then

HSm) 2

D(S(n, k)) 1+

Proof. Suppose that S(n, k) has p components. Then

|H(S(n, k))| < n+k—2p < 2n — 2p 2n 2

DSmk) — n—148n+1 = (0480 = (0+fn 148

8 Syntenic Diameter

In this section, we consider the difficulty of the hardest instance of a given size. This corresponds to
an important question about the syntenic distance model: how different can two genomes possibly
be? This gives a more meaningful interpretation to distances between species, since they can be
compared to this maximum distance.

Formally, let the syntenic diameter and linear syntenic diameter of n-chromosome species,
respectively, be

diameter(n) := ;I(1aX)D(S(n, n)) diameterjneqr(n) 1= gr(lax)f)(S(n,n)),

i.e., the length of the longest optimal move sequence over all instances of up to n elements and n
sets. We also define the complete instance K(n,n) of synteny, which consists of n copies of the set

{1,2,...,n}.

Proposition 8.1 diameter(n) = D(K(n,n)).

Proposition 8.2 diameterjneqr(n) = D(K(n,n)).

Proof. Immediate from monotonicity and linear monotonicity [10]. a

We now turn to the difficulty of solving K(n,n):
Lemma 8.3 D(K(n,n)) =2n — 3.
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Proof. All genes appear n times, so
n—2—|{f]|count(f) <n—1} =n-—2.

By Theorem 7.1, then, D(K(n,n)) > 2n — 3. We easily have that D(K(n,n)) < 2n — 3: complete

any n — 2 fusions to leave two copies of {1,2,...,n}, complete one translocation to eliminate n,
say, leaving {1,2,...,n — 1}. The instance is then solved by n — 2 fissions. This is a linear move
sequence of length 2n — 3 solving K(n,n). O
Corollary 8.4 diameterjj,eqr(n) = 2n — 3. O

In a previous version of this paper, we conjectured that a linear move sequence of the form
described in the proof of Lemma 8.3 was optimal in the general case as well. However, Cormode
and Paterson have pointed out a four move sequence to solve (4, 4). This move sequence was also
independently given by Christie [3, p. 15] previously. The same idea as in this sequence yields a
sequence of length 2n — 4 solving K(n,n) for any n, by more efficiently “turning the corner” from
fusions to fissions. We can fuse down to 4 sets and then complete four translocations to emit 3
elements. Then we need only n — 4 fissions to solve the instance, or 2n — 4 moves total [4].

In recent work, we have shown that this move sequence is indeed optimal [9]. (We have recently
learned that Pisanti and Sagot [12] have independently proved the same result.) This improves the
lower bound of 2n — 3 — log4/3(2n — 3) proved in a previous version of this paper.

9 An Implementation

We have implemented all of the heuristics discussed above in Matlab.? The full implementation is
approximately 600 lines of code. We represent an instance by its characteristic matrix, which allows
us to use Matlab’s built-in matrix manipulation operations extensively in our code. In addition
to using this implementation to verify the bad examples contained in the proofs of Lemmas 3.3
and 4.3 and Theorem 5.1, we have also performed tests of the algorithms and lower bounds on real
and simulated data.

Let R(n,n) be a random instance where every element ¢ is chosen to be in every set S; inde-
pendently with probability 1/2. We have run the three algorithms and computed the two lower
bounds on such instances. The results are shown in Figure 3. Repeated runs of this experiment
yield extremely similar results. The results for ' are not shown, because they were almost always
identical to the results of F. Note that:

e When n reaches approximately 40 (a large but not unreasonable number of chromosomes),
the size bound becomes more informative than the component bound.

e While this is far from a performance guarantee, it is worth observing that the ratio of the
performance of F and the larger lower bound is consistently below 2 throughout this range.
(Although this number fluctuates somewhat, it never exceeds 1.75.)

2The code is available from the author.
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Number of moves

Random (n,n) instances of synteny (number of moves vs. n)
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Figure 3: Results on instances R(n,n).
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Algorithms Bounds
Species | H ‘ F dual | /' dual | comp dual | size dual

) 14711 11 |11 11 3 11 10 )
Drosophila melanogaster (fruit fly) || 60 | 43 43 | 41 41 41 19 | 11 30
Homo sapiens (human) || 47 | 28 27 | 28 27 20 2r |17 11
Mus musculus (mouse) || 49 | 31 32 | 31 32 21 28 | 18 19

)

)

)

Felis catus (cat

Sus scrofa (pig) |30 |19 19 |19 19 11 19 11 6
Rattus norvegicus (rat) || 47 | 28 28 | 28 28 19 28 18 12
Ovis aries (sheep) || 33 | 18 18 | 18 18 15 18 | 13 10

Table 1: Number of moves for algorithms and bounds: comparisons to Bos taurus (cow).

In addition, we have run these algorithms on seven sets of real synteny data, found in the
Institut National de la Recherche Agronomique (INRA) Comparative Homology Database. We
have compared the genomes of seven common species to entries in the BOVMAP database, which
contains known homologies with the cow, Bos taurus. The results are summarized in Table 1. We
make the following observations based upon the results of these tests:

e In all cases, F’ performed at least as well as F; in the case of D. melanogaster, F' outperformed
F by two moves.

e In all seven instances, the size bound introduced in this paper is less informative than the
component bound of [5].

e In most cases (five out of seven), the component bound was actually attained by both F and
F'. In the sixth case, F’ achieved the component bound and F was within two moves of it.

The last point may raise some question about the validity of the model (that it is too easy to solve
too many instances, and thus that the model fails to be informative about relative distances among
groups of species), or may indicate that there is simply insufficient synteny data presently available.

10 Conclusions and Future Work

We have proven a number of interesting structural results for syntenic distance, including mono-
tonicity and the fact that improving the approximation ratio for this problem will require an
algorithm that works among components. These results may help in solving the obvious remaining
open question:

e Is there an approximation algorithm for syntenic distance that achieves an approximation
ratio strictly better than 27

The lower bound from Theorem 7.1 may be useful in improving the approximation ratio. Limiting
consideration to connected synteny may also be fruitful.

An additional avenue of attack for this problem is further consideration of the algorithms that
have already been proposed. The results of running F and F’ on real synteny data (see Section 9)
indicate that they very often produce optimal move sequences. This motivates a more formal
exploration of when these algorithms do well:

18



e What are the characteristics of instances of synteny on which F and F’ perform optimally?

A more general related goal is the design of algorithms optimally solving special cases of the syntenic
distance problem. We have begun this investigation [10], but a great amount remains to be done.
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