
Computing Shapley Value in Supermodular
Coalitional Games?

David Liben-Nowell??, Alexa Sharp? ? ?, Tom Wexler†, and Kevin Woods‡

Abstract. Coalitional games allow subsets (“coalitions”) of players to
cooperate to receive a collective payoff. This payoff is then distributed
“fairly” among the members of that coalition according to some divi-
sion scheme. Various solution concepts have been proposed as reason-
able schemes for generating fair allocations. The Shapley value is one
classic solution concept: player i’s share is precisely equal to i’s expected
marginal contribution if the players join the coalition one at a time, in
a uniformly random order. In this paper, we consider the class of super-
modular games (sometimes called “convex” games), define and survey
computational results on other standard solution concepts, and contrast
these results with new results regarding the Shapley value. In particu-
lar, we give a fully polynomial-time randomized approximation scheme
(FPRAS) to compute the Shapley value to within a (1 ± ε) factor in
monotone supermodular games. We show that this result is tight in sev-
eral senses: no deterministic algorithm can approximate Shapley value
as well, no randomized algorithm can do better, and both monotonic-
ity and supermodularity are required for the existence of an efficient
(1 ± ε)-approximation algorithm. We also argue that, relative to super-
modularity, monotonicity is a mild assumption, and we discuss how to
transform supermodular games to be monotonic.

? This work was supported in part by NSF grant CCF-0728779 and by grants from
Oberlin College and Carleton College. Thanks to Josh Davis for helpful discussions.

?? Department of Computer Science, Carleton College. dlibenno@carleton.edu
? ? ? Department of Computer Science, Oberlin College. asharp@oberlin.edu

† Department of Computer Science, Oberlin College. twexler@oberlin.edu
‡ Department of Mathematics, Oberlin College. kwoods@oberlin.edu

1 Introduction

Game theory is broadly defined as the study of self-interested players. These
players may be restricted to make independent decisions, leading to competitive
games; alternatively, players may be allowed to cooperate in order to achieve
their goals, leading to coalitional, or cooperative, games. Both models provide
rich computational and theoretical challenges, as demonstrated by a long history
of research across the fields of economics, politics, and computer science.

In any game, we are interested in the outcomes that might reasonably be
achieved as a result of players’ self-interested behavior. For competitive games,
the standard solution concept is the Nash equilibrium; for coalitional games,
a number of reasonable solution concepts exist, each with its own merits. One
class of solution concepts focuses on “fair” divisions of wealth. Assume that all
players work together, to form the so-called “grand coalition” of all players. How
can the total utility generated by the grand coalition be divided so that each
player’s portion is proportional to his or her influence or power? The Shapley
value [37] is one such “fair allocation” scheme. A second class of solution concept
focuses on “stable” divisions of wealth. Suppose again that all players cooperate
to form the grand coalition. How can their total utility be divided so that no
deviating coalition—a subset of deviating players who benefit in some way—can
form? The core and the kernel are two such “stable allocation” schemes that
differ in the character of the stability that they provide.

Generally, under these solution concepts for coalitional games, solutions are
hard to compute. In some restricted domains, however, it may be possible to
find exact or approximate solutions efficiently. In this paper, we consider super-
modular games (also known as “convex” games in the economics literature [38]),
a class of coalitional games in which incentives for joining a coalition increase
as the coalition grows. We first survey some known efficient algorithms to test
core membership and compute the kernel in supermodular games. The remain-
der of the paper is devoted to the efficient computation of Shapley value in
supermodular games.

1.1 Related Work: Solution Concepts for Coalitional Games

The Shapley value is an established mechanism for “fair” wealth distribution
in coalitional games, just as the core and kernel are established mechanisms
for “stable” wealth distribution. Lloyd Shapley first introduced his eventually
eponymic solution concept in 1953 [37]. Gillies first introduced the core as a
tool to study “stable sets” [17], although Shapley and Shubik were the ones to
develop it as a solution concept [39]. Davis and Maschler first introduced the
kernel in [8]. These solution concepts have all been studied extensively, and they
are described and surveyed in, e.g., [2, 4, 9, 10,16,26].

Finding the allocations described by these solution concepts is in general
computationally intractable. Hence, much of the research in this area focuses on
a variety of restricted domains in which one can hope to find either a reasonably
efficient or reasonably approximate solution.

One such domain is “weighted majority” games, in which a coalition receives
a payoff of 1 if its members constitute a majority of all players’ weights, and 0
otherwise. Mann–Shapley [27] motivate this class of coalitional games and pro-
pose a Monte Carlo sampling algorithm to approximate the Shapley value. They
apply their algorithm to the U.S. electoral college data, but they do not provide
formal analysis. Deng–Papadimitriou [11] and Matsui–Matsui [31] show that it
is NP-hard to determine whether a given player has nonzero Shapley value, and
#P-hard to calculate it exactly. Matsui–Matsui [30] make the exact computa-
tion with a pseudo-polynomial dynamic programming algorithm, and find that
Mann–Shapley’s algorithm has error that goes to zero like 1/

√
#samples. Testing

membership in the core for weighted voting games is coNP-complete [11]; Elkind
et al. [12, 13] give a pseudo-polynomial algorithm to test core membership. In
contrast, testing membership in the kernel can be done in polynomial time [2].

Another domain to receive attention is that of simple coalitional games, a
generalization of weighted majority games in which every coalition has a payoff
of 0 or 1. Bachrach et al. [3] apply the Mann–Shapley algorithm in this more
general setting, and give an oracle-based sampling algorithm to approximate
Shapley value in polynomial time, also with 1/

√
#samples error. They also show

that no approximation algorithm can do much better by giving lower bounds for
both deterministic and randomized algorithms for these calculations.

A third domain with interesting results is that of submodular games [35,36],
in which incentives for joining a coalition decrease as the coalition grows. These
games have an empty core, and one can instead examine the least core. Schulz
and Uhan show that the least-core value is inapproximable to within a factor
of 17/16 if P 6= NP [36], though there is a (3 + ε)-approximation [35]. They
further show that for scheduling games, a special class of submodular games,
the least-core value can be well-approximated [35].

1.2 Related Work: Supermodular Games

Supermodular coalitional games are another restricted class of coalitional games,
and the class upon which we focus in this paper. These games, first introduced
by Shapley [38], who called them convex games, capture the intuitive notion that
incentives for joining a coalition increase as the coalition grows. In addition to
many natural applications that result in supermodular coalitional games, these
games also have pleasing theoretical properties: the core is nonempty [38], the
Shapley value is in the core and is the center of mass of the core’s vertices [38], the
kernel is a single point corresponding to the nucleolus [29], and the stable set and
bargaining set for the grand coalition coincide with the core [28]. Many specific
and natural examples of supermodular games are studied in the literature; a
sampling of these games are described in the remainder of this section.

The multicast tree game [1,15,19,22] is used to model distribution networks
such as waterways and telecommunication networks. Players receive a payoff for
being connected to the source but must cover the cost of building the underlying
(and fixed) tree. As more players join the network, the cost to a previously
connected player cannot increase, and thus the game is supermodular.

The edge synergy game [11] takes place on an undirected graph, with the
nodes as players. Each edge of a graph has an associated nonnegative benefit,
and the value of a coalition is the sum of the benefits in its induced subgraph.
This game possesses increasing returns of scale, as a player who joins a coalition
adds value for each neighbor already in that coalition.

The bankruptcy game, first studied by O’Neill [33], is another natural super-
modular game. In this setting, there is an estate to which each player has some
claim, but not all claims can be satisfied. The value of a coalition S is what
remains of the estate after satisfying the claims of the players not in S. Curiel
et al. [7] show that bankruptcy games are supermodular.

These examples are meant to sample just some of the supermodular games in
the literature; other specific examples have been recently studied algorithmically
by, e.g., Jain–Vazirani [22] and Ieong–Shoham [20].

1.3 Our Results

In many of the specific games described in Section 1.2, computing the exact
Shapley value is fairly easy; however, to the best of our knowledge, efficient
computation of Shapley value for general supermodular games has not been
addressed. (The core and kernel, however, are known to be computable in poly-
nomial time [14,18,25,41], as discussed in Section 3.) NOTE:

There was a bug in our
proof of Theorem 4,
which has (to the best of
our knowledge) been
resolved in subsequent
work by Sasan Maleki.
Please see p. 7.

Our main result (Theorem 4) resolves the open question regarding the compu-
tation of Shapley value in supermodular games: we give an efficient randomized
algorithm to approximate arbitrarily well the Shapley value of any monotone
supermodular coalitional game. Specifically, we show that the Mann–Shapley
Monte Carlo sampling algorithm [27] is a fully polynomial-time randomized ap-
proximation scheme (FPRAS) for the Shapley value of a monotone supermodular
game, assuming access to an oracle that returns the value of any given coalition.
Furthermore, we show that this result is tight in the following senses: no fully
polynomial deterministic algorithm can approximate Shapley value as well; no
randomized algorithm can do better; and both monotonicity and supermodular-
ity are required to approximate Shapley value within any multiplicative factor.
Note that our definition of polynomial running time is slightly atypical, as we
do not have the entire game as input, but rather only have oracle access to it.
Also note that our negative results hold regardless of whether P 6= NP.

The remainder of this paper is structured as follows. Section 2 formally de-
fines coalitional games and relevant solution concepts. Section 3 surveys efficient
algorithms to test core membership and compute the kernel in supermodular
games. We then turn to Shapley value: Section 4 presents and analyzes the
FPRAS for Shapley value in monotone supermodular games, and Section 5 shows
that this FPRAS is essentially the best result that one can hope to achieve.

Finally, Section 6 gives some reason to believe that the additional assump-
tion of monotonicity in a supermodular game is reasonably natural. Specifically,
we examine two ways to convert any supermodular game v into a monotone
supermodular game. The zero-normalization transform, vZ , translates the util-
ity function so that vZ({i}) = 0 for each player i. This shift does not change

the strategies of the players, and, hence for any supermodular v we can ap-
proximate player i’s gain over v({i}) under the Shapley allocation. The opt-out
transform, vO, allows any players who contribute negative value to a coalition
not to participate, thereby receiving zero utility. While vO is a more substantive
transform of v, in many settings it is a natural operation. For both transforms,
we prove that if the original game is supermodular, then the transformed game is
both supermodular and monotone, and furthermore we can compute the value of
any coalition efficiently. Thus our results from Sections 4 and 5 apply to both vO
and vZ .

2 Model and Definitions

A coalitional game v is defined by a set N of n players, and a function v :
P(N) → R, where v(S) denotes the value generated by a coalition S ⊆ N .
Without loss of generality, we assume throughout that v(∅) = 0. We further
assume that a game is represented by an oracle that, given S ⊆ N , returns v(S).

A game is monotone if, for all S ⊆ T ⊆ N , we have v(S) ≤ v(T).
A game is supermodular if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) for any two

sets S, T ⊆ N . Equivalently, a game is supermodular if v(S ∪ {i}) − v(S) ≤
v(T ∪ {i})− v(T) whenever S ⊆ T and i /∈ T ; that is, the marginal value that a
player i adds to a coalition S is no greater than the marginal value i adds to a
coalition T ⊇ S.

A weaker notion than supermodularity is superadditivity : a game is super-
additive if for all disjoint sets S, T ⊆ N , we have v(S ∪ T) ≥ v(S) + v(T). In a
superadditive game, cooperation is always beneficial, and the “grand coalition”
of all players will form. We will assume, at minimum, that a game is super-
additive. The question, then, is how the players will divvy up v(N), the value
of the grand coalition. An allocation x = 〈x1, . . . , xn〉 should certainly be (eco-
nomically) efficient (no money is left on the table) and individually rational
(no player makes less than he could make by acting alone): formally, we require∑

i xi = v(N) and xi ≥ v({i}) for all i. Solution concepts for coalitional games
further refine these requirements.

Some solution concepts are based on the notion that the allocation for player
i should be proportional to i’s “power” in the game—that is, how much value i
creates. The Shapley value [37] is one such solution concept:

Definition 1. The Shapley value is the allocation where

xi =
∑

S⊆N\{i}
|S|! (n−|S|−1)!

n!

[
v(S ∪ {i})− v(S))

]
.

Given a permutation π ordering the arrival of the players, the marginal contribu-
tion of πj is v({π1, . . . , πj})− v({π1, . . . , πj−1}); the Shapley value for player i
is the average, over all permutations, of the marginal contribution of i to the set
of players who arrive before i.

Another type of solution concept for coalitional games is based on the notion
that the allocation for player i should be such that i has no incentive to deviate

(by leaving the grand coalition with some subset of other players). The following
solution concepts attempt to capture the “stability value” of each player:

Definition 2. The core is the set of allocations x such that v(S) ≤
∑

i∈S xi for
every S ⊆ N : no coalition is allocated less than the value it generates on its own.

Definition 3. The best threat of player i against player j is bti,j = maxS:i∈S,j /∈S{v(S)−∑
k∈S xk}. The kernel is the set of allocations x such that, for any two players

i and j, either bti,j ≥ btj,i or xi = v({i}). (See Section 3 for some intuition.)

For supermodular games, the core is nonempty, and coincides with the stable
set [38] and the bargaining set [29]. Furthermore, the kernel in a supermodular
game is in fact a single point in the core, and the kernel coincides with the
prekernel and nucleolus [29].

3 Testing Core Membership and Computing the Kernel

The results in this section are not new, but for completeness (and for contrast
with the results of Sections 4 and 5), we briefly describe algorithmic results on
the core and the kernel in supermodular games.

The core. Consider an allocation x, and suppose that we wish to determine
whether x is in the core of the game. How might we do this? Define the function
τx(S) := v(S) −

∑
i∈S xi. By definition, the allocation x is in the core of the

game if and only if v(S) ≤
∑

i∈S xi for every S ⊆ N—in other words, if and
only if maxS⊆N τx(S) ≤ 0. Thus, to test whether x is in the core, it suffices to
compute the maximum value of τx over all subsets of N .

It is easy to verify that if v(S) is supermodular, then so too is τx(S). We can
therefore use the efficient combinatorial algorithms for supermodular function
maximization (equivalently, submodular function minimization) of Schrijver or
Iwata–Fleischer–Fujishige [21, 34] to decide whether an allocation x is in the
core of a supermodular game in polynomial time. (This result is not new—see
[18,41]—but it is pleasing that this computation can be done combinatorially.)

The kernel. Consider a pair of players i and j, and a set S with i ∈ S, j /∈ S.
One can think of S as a “threat” that i can make against j: player i could choose
to abandon the grand coalition, and play with just S instead, generating v(S)
value for the deviating coalition S. To convince a player k ∈ S—who used to
be getting xk according to the allocation x from the grand coalition—to join
this new coalition, player i would need to continue to pay him xk. This threat’s
value to player i is exactly τx(S) = v(S) −

∑
k∈S xk—the generated value less

the costs to pay the members of S their x-values. This value is the gain (or loss,
if this quantity is negative) that i would experience when going with coalition S
instead of sticking with her original allocation value xi.

The best threat that i can make against j is bti,j = maxS:i∈S,j /∈S τx(S).
We say that i is susceptible to threats if xi > v({i}) (otherwise, i can easily

make v({i}) by “going it alone”). For an allocation x to be in the kernel, all
threats must be in equilibrium: if i is susceptible to threats, then no player can
“out-threaten” him. Formally, the allocation x is in the kernel if the following
condition holds: for any two players i and j, if xi > v({i}), then bti,j ≥ btj,i.

We can use the above observations to describe an efficient ellipsoid-based
algorithm to compute the kernel (a single point in supermodular games), based
on the results of Faigle, Kern, and Kuipers [14]. (The original polynomial-time
algorithm is due to Kuipers [25].) Intuitively, given an allocation x that is not
in the kernel, we can find two players i and j such that xi > v({i}) and such
that j’s best threat exceeds that of i; just as in the case of the core, we can find
i’s best threat against j by maximizing the supermodular function τx efficiently.
This capability is enough to compute a separating hyperplane that allows us to
narrow in on the kernel, using the ellipsoid algorithm.

4 Algorithms to Approximate the Shapley Value

One intuitive explanation of why the kernel of a supermodular game is efficiently
computable is that the kernel is fundamentally a robust solution concept. If we
take a supermodular game and make an ε change to a single coalition’s value,
this change would be unlikely to affect the kernel, in that the kernel would
change only if that altered coalition were a best threat for some player against
another. (And there are only Θ(n2) best threat coalitions among all 2n possible
subsets.) In contrast, the Shapley value is less robust: a small change in the value
of any single coalition necessarily alters the Shapley value of every player. This
difference in robustness suggests that exact computation of the Shapley value
may be more difficult, and that we may not be able to hope for more than an
approximation to the Shapley value.

We will say that a vector s is a (multiplicative) ε-approximation to the vec-
tor s if |si − si| ≤ εsi for all indices i. In this section, we show that there is an
oracle-based fully polynomial-time randomized approximation scheme (FPRAS)
for the Shapley value, as long as the game is both supermodular and monotone.
That is, we give a poly(n, 1/ε)-time randomized algorithm to ε-approximate the
Shapley value in monotone supermodular games with high probability. In Sec-
tion 5, we show that this result is essentially the best possible. Our approach is
based on sampling: we compute the marginal value of each player in a random
permutation, and average over many permutations. (This type of sampling is also
used by Mann–Shapley [27] and Bachrach et al. [3]; however, Mann–Shapley pro-
vides no theoretical analysis, and Bachrach et al.’s analysis does not apply to
non-simple coalitional games. The comparative difficulty here is that our game
may have payoffs besides 0 and 1, and so there is not an immediate bound on
the variance of the sampling.)

Algorithm SV-Sample [27]. Given an n-player game v and ε > 0:
Generate m = 4n(n− 1)/ε2 random permutations of the players {1, . . . , n}.
For each player, define si to be the average marginal contribution of player i
over these m permutations. Return the vector s.

Theorem 4. There is an FPRAS for the Shapley value of any game v that
is both supermodular and monotone. In particular, Algorithm SV-Sample(v, ε)
produces an ε-approximation to the Shapley value with probability at least 3/4.

NOTE:
It is our understanding
that the theorem as we
originally stated it is
essentially correct, but a
step that we claimed in
the original proof of our
theorem was erroneous,
and our claimed proof
was therefore incorrect. A
correct proof of a version
of this theorem appears
in Sasan Maleki’s 2015
Ph.D. thesis. We
apologize for the error.

Maleki, Sasan (2015)
“Addressing The
Computational Issues of
the Shapley Value With
Applications in The
Smart Grid,” University
of Southampton, Faculty
of Physical Sciences and
Engineering Electronics
and Computer Science,
PhD Thesis.

Proof. Let Xi denote the marginal contribution of player i in a random per-
mutation. Because v is both supermodular and monotone, we have Xi ≥ 0. By
definition, the Shapley value for player i is si := E[Xi]. By supermodularity, the
maximum possible value achieved by Xi occurs when i is the last player in the
permutation, which happens in a 1/n fraction of permutations. Thus Xi achieves
its maximum value with probability at least 1/n, and so Xi is at most n · si.

To upper bound the variance of Xi, we first define a new random variable Yi
that is n · si with probability 1/n and 0 otherwise. Note that the variances of Xi

and Yi satisfy σ2
Xi
≤ σ2

Yi
, because Xi and Yi have the same expectation, and we

have simply pushed individual values to the extremes as much as possible in Yi.
Therefore we have

σ2
Xi
≤ σ2

Yi
= E[Y 2

i]− E[Yi]
2 =

1

n
(n · si)2 − s2i = (n− 1) · s2i .

Compute the sample mean si = 1
m

∑m
j=1X

(j)
i , where each X

(j)
i is an independent

trial as above. Now

σ2
si = σ2

Xi
/m ≤ (n− 1)s2i /m and E[si] = si.

Using Chebyshev’s inequality [32], we have

Pr[|si − si| ≥ ε · si] ≤
σ2
si

s2i ε
2
≤ (n− 1)s2i /m

s2i ε
2

=
n− 1

m · ε2
.

Taking a union bound, we have that

Pr[∃i : |si − si| ≥ ε · si] ≤ n(n− 1)

mε2
.

Because we defined m = 4n(n−1)/ε2, this upper bound on the failure probability
is 1/4. Thus s is an ε-approximation to s with probability at least 3/4. ut

The choice of 3/4 as the success probability in Theorem 4 was arbitrary.
By rerunning Algorithm SV-Sample Θ(log(1/δ)) times, taking the coordinate-
wise median value for each player, and rescaling the resulting vector to preserve
economic efficiency (i.e., ensuring that

∑n
i=1 si and v(N) are equal), we get an

ε-approximation to s with failure probability at most δ.

5 Lower Bounds for Approximating Shapley Value

In this section, we prove that the randomized approximation scheme from Sec-
tion 4 is the best possible, in several senses: no deterministic algorithm can do

as well, a randomized algorithm can do no better, and both the monotonicity
and supermodularity conditions are required to achieve this approximation.

We will use the following class of n-player supermodular games for several
of the lower bounds, for an even number n. Let C be a collection of subsets of
{1, . . . , n}, each of cardinality n/2. Define the game vC as follows:

vC(A) =

2|A| − n if |A| > n/2
1 if |A| = n/2 and A ∈ C
0 otherwise.

In other words, no coalition of fewer than half the players can receive any value,
only some coalitions of size exactly n/2 (those in C) receive some value, and
larger coalitions receive linearly increasing value as the size grows (regardless of
membership).

By examining each player’s marginal contributions, we can see that vC is
supermodular. The Shapley value of each player in the game v∅ is 1, and the
games v∅ and vC differ only on the sets in C. Thus, writing Ai = {A : |A| =
n/2 and i ∈ A} and Ai = {A : |A| = n/2 and i /∈ A}, we have

the Shapley value for player i in vC = 1 +
|C ∩ Ai|(
n−1

n/2−1
)
· n
− |C ∩ Ai|(

n−1
n/2

)
· n
.

A fully polynomial-time deterministic approximation scheme (FPTAS) is the
deterministic analog to an FPRAS. Our next result says that the randomiza-
tion used in Theorem 4 is in fact necessary: there is no FPTAS for Shapley
value in monotone supermodular games. (That is, there is no poly(n, 1/ε)-time
deterministic algorithm to ε-approximate Shapley value in n-player monotone
supermodular games.)

Theorem 5. There is no FPTAS for the Shapley value, even for games that are
both supermodular and monotone.

Proof. Assume that such an algorithm exists. For any n, we take ε = 1/2n.
The algorithm must ε-approximate a player i’s Shapley value with only poly(n)
oracle calls. Define Ai = {A : |A| = n/2 and i ∈ A}. Assume that the oracle
responds to all queries as if the game is v∅, and let Qi ⊆ Ai be the collection of
sets among Ai queried by the algorithm. Then these queries cannot distinguish
between the games v∅ and vAi\Qi

. The Shapley values for player i in these two
games are

1 and 1 +
1

n
− |Qi|(

n−1
n/2−1

)
n
,

respectively. Because |Qi| is polynomial in n, and
(

n−1
n/2−1

)
grows faster than any

polynomial, we may take n large enough so that |Qi|/
(

n−1
n/2−1

)
< 1/2. In this case,

the purported algorithm cannot distinguish between two games whose Shapley
values differ by a multiplicative factor of ε = 1/2n, as was required. Therefore,
such an algorithm cannot exist. ut

The randomized sampling algorithm from Section 4 requires poly(n, 1/ε)
time to ε-approximate Shapley values. In other words, for any polynomial q(m),
we can get a 1/q(m) approximation in poly(n,m) time. One might hope for a
better algorithm—for example, a 1/2m approximation in poly(n,m) steps. We
now show that no such algorithm exists.

Theorem 6. Suppose ε(m) is a function that converges to zero faster than
1/q(m) for any polynomial q(m). Then no randomized algorithm can ε(m)-
approximate the Shapley value of an n-player monotone supermodular game in
poly(n,m) time.

Proof. Yao’s Minimax Principle [42] states that it suffices to prove that no de-
terministic polynomial-time algorithm can give an ε(m) approximation on any
particular probability distribution of games. We define the distribution as fol-
lows. Let i be a particular player, let Ai = {A : |A| = n/2 and i ∈ A}, and
let k = ε(n)

(
n−1

n/2−1
)
n. (Assume that n is large enough that ε(n) < 1/n.) With

probability 1/2, we choose the game v∅, and with probability 1/2 we choose
uniformly at random a subcollection Qi of Ai of exactly k sets. The respective
Shapley values for player i in v∅ and vQi

are

1 and 1 +
k(

n−1
n/2−1

)
n

= 1 + ε(n).

Thus the algorithm must be able to distinguish v∅ and vQi
with probability 3/4.

But the only way to differentiate is to query a set that is in Qi. The probability
of querying a set in Qi in one query is k/

(
n−1

n/2−1
)

= nε(n), and the probability of
querying a set in Qi in p(n) queries is at most p(n) ·nε(n). As 1/ε(n) eventually
exceeds any polynomial and the number of queries p(n) is polynomial in n, this
probability approaches zero, contradicting the requirement that the algorithm
distinguish v∅ and vQi

with probability 3/4. ut

Finally, we prove that both the supermodularity and monotonicity condi-
tions are required, in a very strong sense: with only one of the two proper-
ties, no polynomial-time algorithm can distinguish a zero from a nonzero Shap-
ley value (either deterministically or probabilistically). Therefore, there is no
ε-approximation algorithm that runs in polynomial time, for any ε > 0.

Theorem 7. No polynomial-time (deterministic or randomized) algorithm can
determine whether the Shapley value of a supermodular game is nonzero.

Proof. First we prove the deterministic version. For a given collection C of subsets
of size n/2, define a new game v′C by v′C(A) = vC(A)−|A| for all subsets A. Each
player’s Shapley value is decreased by 1 under this transformation. Such a game
is still supermodular, but v′C is not monotone, because v′C(∅) = 0 > −1 = v′C({i})
for any player i. Suppose that the oracle answers queries as if the game is v′∅, in
which every player has Shapley value 0. Because the algorithm can make only
poly(n) oracle calls and there are

(
n

n/2

)
sets of size n/2, one of these sets, A, has

not been queried (for sufficiently large n). Then in the game v′{A} each player has
nonzero Shapley value—the players in A have positive Shapley value, those not
in A have negative Shapley value—but the algorithm cannot distinguish v′{A}
from v′∅ based on its oracle calls.

For the randomized version, we use Yao’s Minimax Principle, as in Theo-
rem 6. For the random distribution, with probability 1/2 we take v′∅, and other-
wise we take v′{A} for a set A of size n/2 chosen uniformly at random. ut

Theorem 8. No polynomial-time (deterministic or randomized) algorithm can
determine whether the Shapley value of a monotone game is nonzero, even as-
suming superadditivity.

Proof. Fix a player i. Suppose the oracle answers queries as if we have the
following monotone, superadditive game: if |A| > n/2, or if |A| = n/2 and
i /∈ A, then v(A) = 1; otherwise v(A) = 0. Player i has Shapley value 0 in this
game. A polynomial number of oracle calls cannot differentiate this game from
a monotone, superadditive game v′ where one set B, of size n/2 and with i /∈ B,
is changed from value 1 to value 0 (which gives player i nonzero Shapley value
in v′). The randomized version follows as before. ut

Note that, while Theorem 5 shows that there is no FPTAS for computing
the Shapley value of a supermodular game, it is an open question whether there
is a PTAS—i.e., a deterministic ε-approximation algorithm that runs in time
poly(n) for any fixed ε > 0.

6 Ensuring Monotonicity in Supermodular Games

Section 5 shows that computing the Shapley value of a supermodular game, even
approximately, is difficult when the game is not monotone. There are, however,
two natural transforms that add monotonicity to any supermodular game, while
maintaining supermodularity.

Zero-Normalization Transform. Given a coalitional game v, define a new
game vZ where

vZ(A) = v(A)−
∑
i∈A

v({i}).

The zero-normalization transform offsets the value of any coalition A by the
value that each member of A would gather alone, be that amount positive or
negative. Thus the value of any singleton coalition is normalized to 0. This change
does not affect the strategic character of the game, as only the relative utility
of a player’s options are important. Note that player i’s Shapley values in v and
in vZ differ by exactly v({i}); that is, the value in vZ is the share of the gains
due to cooperation that are allocated to a player. If v is supermodular, then we
will show shortly that vZ is both supermodular and monotone, meaning these
Shapley values can be approximated efficiently, using Theorem 4.

Opt-Out Transform. Given a coalitional game v, define a new game vO where

vO(A) = max
S⊆A

v(S).

The opt-out transform essentially allows players to “opt out” of any coalition
and receive zero utility. Thus, whenever v({i}) is negative, we can think of v({i})
as the cost for player i to participate in the game, and he will do so only if this
cost is offset by the benefits of cooperating.

If v is supermodular, then the following lemma shows that the game vO (like
the game vZ) is both supermodular and monotone, and vO(A) can be efficiently
computed. Thus Shapley values can be efficiently approximated here as well.

Lemma 9. If v is supermodular, then both vZ and vO are supermodular and
monotone. Furthermore, we can compute vZ(A) and vO(A) in polynomial time.

Proof. Supermodularity of vZ follows from the definition. Because the marginal
contribution of a player to the empty set is now zero, his marginal contribu-
tion to any set is nonnegative (by supermodularity), so vZ must be monotone.
Computation of vZ(A) is straightforward.

Monotonicity of vO is immediate by definition. For supermodularity, we use
a simpler version of a result of Topkis [40]. For all sets B1 and B2 and all subsets
A1 ⊆ B1 and A2 ⊆ B2, we have

vO(B1 ∪B2) + vO(B1 ∩B2) ≥ v(A1 ∪A2) + v(A1 ∩A2) (by definition of vO)

≥ v(A1) + v(A2) (by supermodularity of v)

Maximizing the right-hand side over all A1 ⊆ B1 and A2 ⊆ B2 gives us

vO(B1 ∪B2) + vO(B1 ∩B2) ≥ vO(B1) + vO(B2)

as desired. The ability to compute vO(A) in polynomial time follows from our
ability to maximize the supermodular function v [21, 34]. ut

To illustrate these two transforms, consider the following coalitional game v.
Let G be an undirected graph. The players of v are the vertices of G, and the
value of a coalition A is as follows. Every vertex in A pays an activation cost c,
and gains a benefit b ≥ 0 for each neighbor in A. That is,

v(A) = 2b · |EA| − c · |A|,

where EA is the set of edges induced by the vertex set A. One can verify that the
game v is supermodular, even when generalized to weighted costs and benefits.

Notice that vZ is equivalent to v but with c = 0; thus, vZ is precisely the
edge synergy game studied by Deng and Papadimitriou [11], who show that the
Shapley value of player i is exactly deg(i) · b. Thus, in v, the Shapley value for
player i is deg(i) · b− c.

The game vO provides another interesting variant of v. In particular, we can
think of vO as a version of v in which we allow players to opt out of a given

coalition A if their participation would incur a net loss. This game appears to
be markedly different from vZ . We can efficiently compute the exact Shapley
value of each player when b ≥ 3c/4. In this case, player i’s value is a function
of both deg(i) and the degrees of the nodes within a small radius of i in G. For
smaller b, we can approximate Shapley values using the algorithm SV-Sample.
Broadly speaking, a player’s Shapley value in vO increases as her degree increases,
and it also increases when nodes near her in the network become more valuable.
One potentially intriguing way of interpreting Shapley value in vO is as a new
measure of influence of nodes in a network—as in [5, 6, 23,24], among others.

References

1. A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47:36–71, 2004.

2. H. Aziz. Algorithmic and complexity aspects of simple coalitional games. PhD
thesis, University of Warwick, 2009.

3. Y. Bachrach, E. Markakis, E. Resnick, A. D. Procaccia, J. S. Rosenschein, and
A. Saberi. Approximating power indices: theoretical and empirical analysis. Au-
tonomous Agents and Multi-Agent Systems, 20:105–122, 2010.

4. R. Barua, S. R. Chakravarty, and S. Roy. Measuring power in weighted majority
games. Technical report, Department of Economics, Iowa State University, 2007.

5. P. Bonacich. Power and centrality: A family of measures. American J. of Sociology,
1987.

6. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

7. I. J. Curiel, M. Maschler, and S. Tijs. Bankruptcy games. Zeitschrift für Operations
Research, 31:143 – 159, 1987.

8. M. Davis and M. Maschler. The kernel of a cooperative game. Naval Research
Logistics Quarterly, 12:223–259, 1965.

9. J. Deegan and E. W. Packel. A new index of power for simple n-person games.
International Journal of Game Theory, 7(2):113–123, 1978.

10. X. Deng and Q. Fang. Algorithmic cooperative game theory. Pareto Optimality,
Game Theory and Equilibria, 17(1):159–185, 2008.

11. X. Deng and C. Papadimitriou. On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 19(2):257–266, 1994.

12. E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. On the computa-
tional complexity of weighted voting games. Annals of Mathematics and Artificial
Intelligence, 56(2):109–131, 2009.

13. E. Elkind and D. Pasechnik. Computing the nucleolus of weighted voting games.
In Proc. 20th Symposium on Discrete Algorithms, pages 327–335, 2009.

14. U. Faigle, W. Kern, and J. Kuipers. On the computation of the nucleolus of a
cooperative game. International J. of Game Theory, 30(1):79–98, 2001.

15. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. J. Comput. Syst. Sci., 63:21–41, August 2001.

16. D. Felsenthal and M. Machover. The measurement of voting power: Theory and
practice, problems and paradoxes. Public Choice, 102(3-4):373–376, 2000.

17. D. B. Gillies. Solutions to general non-zero-sum games. Contributions to the Theory
of Games, 4:47–85, 1959.

18. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

19. S. Herzog, S. Shenker, and D. Estrin. Sharing the “cost” of multicast trees: an
axiomatic analysis. IEEE/ACM Trans. Netw., 5:847–860, December 1997.

20. S. Ieong and Y. Shoham. Marginal contribution nets: a compact representation
scheme for coalitional games. In Proc. 6th ACM Conference on Electronic Com-
merce, 2005.

21. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial, strongly polynomial-
time algorithm for minimizing submodular functions. In Proc. 32nd Symposium
on Theory of Computing, pages 97–106, 2000.

22. K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative
games. In Proc. 33rd ACM Symposium on Theory of Computing, 2001.

23. L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, March 1953.

24. J. Kleinberg and E. Tardos. Balanced outcomes in social exchange networks. In
Proc. 40th Symposium on Theory of Computing, 2008.

25. J. Kuipers. A polynomial time algorithm for computing the nucleolus of convex
games. Technical Report M 96-12, Maastricht University, 1996.

26. D. Leech. An empirical comparison of the performance of classical power indices.
Political Studies, 50(1):1–22, 2002.

27. I. Mann and L. S. Shapley. Values of large games, IV: Evaluating the electoral
college by Monte-Carlo techniques. Technical report, The Rand Corporation, Santa
Monica, CA, 1960.

28. M. Maschler, B. Peleg, and L. S. Shapley. The kernel and bargaining set for convex
games. International Journal of Game Theory, 1:73–93, 1971.

29. M. Maschler, B. Peleg, and L. S. Shapley. Geometric properties of the kernel,
nucleolus, and related solution concepts. Mathematics of Operations Research,
4(4):303–338, November 1979.

30. Y. Matsui and T. Matsui. A survey of algorithms for calculating power indices of
weighted majority games. Journal of the Operations Research Society of Japan,
43(1):71–86, 2000.

31. Y. Matsui and T. Matsui. NP-completeness for calculating power indices of
weighted majority games. Theoretical Computer Science, 263(1-2):305–310, 2001.

32. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, 1995.
33. B. O’Neill. A problem of rights arbitration from the Talmud. Mathematical Social

Sciences, 2(4):345 – 371, 1982.
34. A. Schrijver. A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. Journal of Combinatorial Theory B, 80:346–355, 2000.
35. A. S. Schulz and N. A. Uhan. Approximating the least core value and least core

of cooperative games with supermodular costs. Working paper, 2010.
36. A. S. Schulz and N. A. Uhan. Sharing supermodular costs. Operations Research,

58(4):1051–1056, 2010.
37. L. S. Shapley. A value for n-person games. In H. Kuhn and A. W. Tucker, editors,

Contributions to the Theory of Games II, pages 307–317. Princeton University
Press, 1953.

38. L. S. Shapley. Cores of convex games. International J. of Game Theory, 1:11–26,
1971.

39. L. S. Shapley and M. Shubik. On the core of an economic system with externalities.
American Economic Review, 59:678–684, 1969.

40. D. M. Topkis. Minimizing a submodular function on a lattice. Operations Research,
26(2):305–321, March–April 1978.

41. D. M. Topkis. Supermodularity and Complementarity. Princeton University Press,
1998.

42. A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In
Proc. 18th Symposium on Foundations of Computer Science, pages 222–227, 1977.

