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Abstract

We study a general framework for decentralized search in random graphs. Our main focus
is on deterministic memoryless search algorithms that use only local information to reach their
destination in a bounded number of steps in expectation. This class includes (with small mod-
ifications) the search algorithms used in Kleinberg’s pioneering work on long-range percolation
graphs and hierarchical network models. We give a characterization of searchable graphs in this
model, and use this characterization to prove a monotonicity property for searchability.

1 Introduction

Since Milgram’s famous “small world” experiment [14], it has generally been understood that social
networks have the property that a typical node can reach any other node through a short path
(the so-called “six degrees of separation”). An implication of this fact is that social networks have
small diameter. Many random graph models have been proposed to explain this phenomenon,
often by showing that adding a small number of random edges causes a highly structured graph to
have a small diameter (e.g., [3,16]). A stronger implication of Milgram’s experiment, as Kleinberg
observed [8], is that for most social networks there are decentralized search algorithms that can find
a short path from a source to a destination without a global knowledge of the graph. As Kleinberg
proved, even many of the random graph models with small diameter do not have this property (i.e.,
any decentralized search algorithm in such graphs can take many steps to reach the destination),
while in certain graph models with a delicate balance of parameters, decentralized search is possible.
Since Kleinberg’s work, there have been many other models that provably exhibit the searchability
property [5, 7, 9, 10, 12, 15]; however, we still lack a good understanding of what contributes to this
property in graphs.

∗A preliminary version of this paper appears in Proceedings of the 5th Workshop on Algorithms and Models for
the Web Graph (WAW’07), December 2007, pages 187–194.

†Work performed in part while visiting Yahoo! Research.
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In this paper, we look at a general framework for searchability in random graphs. We consider
a general random graph model in which the set of edges leaving a node u is independent of that
of any other node v 6= u. This framework includes models such as the directed variant of the
classical Erdős–Rényi graphs [6], random graphs with a given expected degree sequence (e.g., [4]),
long-range percolation graphs [8], hierarchical network models [9], and graphs based on Kronecker
products [11, 13], but not models such as preferential attachment [2] in which the distribution of
edges leaving a node is dependent on the other edges of the graph. It is worth noting that, in a
random graph model where edges can have arbitrary dependencies, the search problem includes
arbitrarily difficult learning problems as special cases, and therefore one cannot expect to have a
complete characterization of searchable graphs in such a model.

Throughout most of this paper, we restrict the class of decentralized search algorithms that we
consider to deterministic memoryless algorithms that succeed in finding a path to the destination
with probability 1. This is an important class of search algorithms, and includes the decentralized
search algorithms used in Kleinberg’s work on long-range percolation graphs and hierarchical net-
work models. For this class, we give a simple characterization of graphs that are searchable in terms
of a node ordering property. We will use this characterization to show a monotonicity property for
searchability: if a graph is searchable in our model, it stays searchable if the probabilities of edges
are increased.

The rest of this paper is organized as follows: Section 2 contains the description of the model.
Section 3 presents a characterization of searchable random graphs. The monotonicity theorem is
presented in Section 4.

2 The Model

Given a positive integer n and an n × n matrix P with entries pi,j ∈ [0, 1], we define a directed
random graph G(n,P) with the node set V = {1, . . . , n} and with a directed edge connecting node
i to node j with probability pij, independently of all other edges. As we will see later (Remark 3.5),
our results hold for a more general random graph model where the edges originating from a node
i can be dependent on each other but are independent of the edges leaving other nodes. However,
for the sake of simplicity, we state and prove our results in the G(n,P) model.

We fix two nodes s, t ∈ V of G(n,P) as the source and the destination. For v ∈ V , let Γ(v)
denote the set of out-neighbors of u in G. We investigate the existence of a decentralized search
algorithm that finds a path from s to t of at most a given length d in expectation.1 We restrict
our attention to deterministic memoryless algorithms. A deterministic memoryless algorithm can
be defined as a partial function A : V × 2V → V . Such an algorithm A defines a path v0, v1, v2, . . .

on a given graph G as follows: v0 = s, and for every i ≥ 0, vi+1 = A(vi,Γ(vi)). The length of this
path is defined as the smallest integer i such that vi = t. If no such i exists, we define the length
of the path as infinity.

We are now ready to define the notion of searchability. For a given matrix P, source and
destination nodes s and t, and a number d, we say that G(n,P) is d-searchable using a deterministic
memoryless algorithm A if the expected length of the path defined by A on G(n,P) is at most d.

1Alternatively, we could ask for which graphs a decentralized search algorithm can find a path between every pair

of nodes s and t, or between a random pair of nodes s and t. Our techniques apply to these alternative formulations

of the problem as well. The only point that requires some care is that the orderings in the characterization theorem

can depend on s and t.
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Note that this definition requires that the algorithm find a path from s to t with probability 1.

3 A Characterization of Searchable Random Graphs

In this section, we provide a complete characterization of searchable random graphs. We begin by
defining a class of deterministic memoryless search algorithms parameterized by two orderings of
V , and then prove that if a graph is d-searchable, it is also d-searchable using an algorithm from
this narrow class.

Definition 3.1. Let σ, π be two orderings (i.e., permutations) of the node set V . We define a
deterministic memoryless algorithm Aσ,π corresponding to these orderings as follows: for every
u ∈ V , Aσ,π(u,Γ(u)) is defined as the maximum element according to π of the set {v ∈ Γ(u) :
σ(v) > σ(u)} ∪ {u}.

In other words, algorithm Aσ,π never goes backwards according to the ordering σ, and, subject
to this restriction, makes the maximum possible progress according to π.

We are now ready to state our main theorem.

Theorem 3.2. For a given probability matrix P, source and destination nodes s and t, and number
d, if G(n,P) is d-searchable using a deterministic memoryless algorithm A, then there exist two
orderings σ and π of V such that G(n,P) is d-searchable by using Aσ,π.

To prove this theorem, we will first construct the ordering σ using the structure of the search
algorithm A. Next, we define an ordering π using σ. Finally, we use induction with respect to the
ordering σ to show that the expected length of the path defined by Aσ,π on G(n,P) is not more
than the one defined by A.

We assume, without loss of generality, that for every set S ⊆ V , A(t, S) = t. In other words,
we assume that A never leaves t once it reaches this node.

Define a graph H with the node set V as follows: for every pair u, v ∈ V , the edge (u, v) is in H

if and only if this edge is on the path from s to t defined by A on some realization of G(n,P) (i.e.,
on some graph that has a non-zero probability in the distribution G(n,P)). We have the following
important lemma.

Lemma 3.3. The graph H is acyclic.

Proof. Assume, for contradiction, that H contains a simple cycle C. Note that by the definition of
H, if an edge (u, v) is in H, then u must be reachable from s in H. Therefore, every node of C must
be reachable from s in H. Let v∗ be a node in C that has the shortest distance from s in H, and
s = v0, v1, . . . , v` = v∗ be a shortest path from s to v∗ in H. Also, let v∗ = v`, v`+1, . . . , vk, vk+1 = v∗

denote the cycle C. Therefore, v0, v1, . . . , vk are all distinct nodes, and for every i ∈ {0, . . . , k},
there is an edge from vi to vi+1 in H.

By the definition of H, for every i ∈ {0, . . . , k}, there is a realization of G(n,P) in which A

traverses the edge (vi, vi+1). This means that there is a realization of G(n,P) in which the set Γ(vi)
of out-neighbors of vi is S∗

i , for some set S∗
i such that A(vi, S

∗
i ) = vi+1. Recall that in G(n,P), all

edges are present independently at random, and thus the random variables Γ(u) are independent.
Hence, since vi’s are all distinct and for each i, there is a realization satisfying Γ(vi) = S∗

i , there
must be a realization in which Γ(vi) = S∗

i for all i. In this realization, the algorithm A falls in the
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cycle C, and therefore will never reach t. Thus the path found by A in this realization is infinitely
long, and therefore the expected length of the path found by A is infinite. This is a contradiction.

By Lemma 3.3, we can find a topological ordering of the graph H. Furthermore, since by
assumption t has no outgoing edge in H, we can find a topological ordering that places t last. Let
σ be such an ordering, i.e., σ is an ordering of V such that (i) t is the maximum element of V

under σ; (ii) for every edge (u, v) in H, we have σ(v) > σ(u); and (iii) all nodes not in H precede
s and are ordered arbitrarily, i.e., σ(s) > σ(v) for any such node v. By the definition of H, these
conditions mean that the algorithm A (starting from the node s) never traverses an edge (u, v)
with σ(u) > σ(v).

Given the ordering σ, we define numbers ru for every u ∈ V recursively as follows: rt = 0, and
for every u 6= t,

ru =











1 +
∑

S⊆Tu,S 6=∅

qu,S · min
v∈S

{rv} if qu,∅ = 0

∞ if qu,∅ > 0,

(1)

where Tu := {v : σ(v) > σ(u)} and, for a set S ⊆ Tu, we write

qu,S :=

(

∏

v∈S

puv

)





∏

v∈Tu\S

(1 − puv)





to denote the probability that the subset of nodes of Tu that are out-neighbors of u is precisely S.
Note that the above formula defines ru in terms of rv for σ(v) > σ(u), and therefore the definition
is well founded.

We can now define the ordering π as follows: let π(u) > π(v) if ru < rv. Pairs u, v with ru = rv

are ordered arbitrarily by π.
The final step of the proof is the following lemma, which we will prove by induction using the

ordering σ. To state the lemma, we need a few pieces of notation. For a search algorithm B, let
d(B, u) denote the expected length of the path that the algorithm B, started at node u, finds to
t. Also, let V0 denote the set of non-isolated nodes of H—i.e., V0 is the set of nodes that the
algorithm A (started from s) has a non-zero chance of reaching.

Lemma 3.4. Let σ and π be the orderings defined as above. Then for every node u ∈ V0, we have
that d(A, u) ≥ d(Aσ,π, u) = ru.

sketch. We prove this statement by induction on u, according to the ordering σ. The statement is
trivial for u = t. We now show that for u ∈ V0 \ {t} if the statement holds for every node v ∈ V0

with σ(v) > σ(u), then it also holds for u. Observe that for any deterministic memoryless algorithm
B,

d(B, u) = 1 +
∑

S⊂V,S 6=∅

q′u,S · d(B,B(u, S)), (2)

where q′u,S := (
∏

v∈S puv)(
∏

v∈V \S(1 − puv)) is the probability that the set of out-neighbors of u in
G(n,P) is precisely S. This statement follows from the fact that the algorithm B is memoryless,
and the fact that q′

u,∅ = 0 since u ∈ V0. Applying Equation (??) to Aσ,π and using the fact that,
by definition, Aσ,π(u, S) only depends on u and S ∩ Tu, we obtain

d(Aσ,π , u) = 1 +
∑

S⊆Tu,S 6=∅

qu,S · d(Aσ,π, Aσ,π(u, S)). (3)
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We have that d(Aσ,π, Aσ,π(u, S)) = rAσ,π(u,S) by the induction hypothesis. Also, by the definition of
Aσ,π and π, we have that rAσ,π(u,S) = minv∈S{rv}. Combined with Equation (??) and the definition
of ru, this shows d(Aσ,π , u) = ru, as desired.

To prove d(A, u) ≥ ru, note that since A(u, S) ∈ S ∩ Tu ∩ V0, we have

d(A,A(u, S)) ≥ min
v∈S∩Tu∩V0

{d(A, v)}.

By the induction hypothesis, we have that d(A, v) ≥ rv for every v ∈ Tv ∩ V0. Therefore, we have
that d(A,A(u, S)) ≥ minv∈S∩Tu∩V0

{rv}. Substituting this in Equation (??), we obtain

d(A, u) ≥ 1 +
∑

S⊂V,S 6=∅

q′u,S · min
v∈S∩Tu∩V0

{rv}

= 1 +
∑

S⊆Tu,S 6=∅

qu,S · min
v∈S∩Tu∩V0

{rv}

≥ ru.

This completes the proof of the induction step.

of Theorem 3.2. Define the graph H, the ordering σ, the values ru, and the ordering π as above. By
Lemma 3.4, we have that d(Aσ,π, s) ≤ d(A, s). Since G(n,P) is d-searchable using A by assumption,
we have that d(A, s) ≤ d. Hence we have d(Aσ,π , s) ≤ d, as desired.

Remark 3.5. It is not hard to see that the only property of G(n,P) that was used in the above
proof was the fact that the random variables Γ(u) (the set of out-neighbors of u) are independent.
Therefore, the above proof (with minor modifications in the definitions of qu,S and q′u,S) also works
for a more general model of random graphs. This includes the directed ACL graphs [1] and the
long-range percolation graphs.

Note that in the above proof, the second ordering π was defined in terms of the first ordering
σ and P. Therefore, the condition for the searchability of G(n,P) can be stated in terms of only
one ordering σ as follows:

Corollary 3.6. G(n,P) is d-searchable if and only if there is an ordering σ on the nodes for which
rs ≤ d, where r is defined as in (??).

It is not hard to see that even though the expression on the right-hand side of (??) has expo-
nentially many terms, given σ, the value of ru can be computed in polynomial time for every u.
Therefore, the above corollary reduces the problem of d-searchability of G(n,P) to a node-ordering
property with a tractable objective function.

4 The Monotonicity Property

Armed with the characterization theorem of the previous section, we can now prove the following
natural monotonicity property for searchability.

Theorem 4.1. Let P, P′ be two n × n probability matrices such that for every i and j, we have
pij ≤ p′ij. Fix the source and destination nodes s and t. Then, if G(n,P) is d-searchable for some
d, so is G(n,P′).
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sketch. By Corollary 3.6, since G(n,P) is d-searchable, there is an ordering σ such that the value
rs defined using Equation (??) is at most d. To show d-searchability of G(n,P′), we apply the
same ordering σ. Let {r′u} denote the values computed using Equation (??), but with P replaced
by P′. All we need to do is to show that r′s ≤ d and then use Corollary 3.6. To do this, we prove by
induction that for every u ∈ V0, we have r′u ≤ ru. This statement is trivial for u = t. We assume
it is proved for every v ∈ V0 with σ(v) > σ(u), and prove it for u.

We have

r′u = 1 +
∑

S⊆Tu,S 6=∅

∏

v∈S

p′uv

∏

v∈Tu\S

(1 − p′uv) · min
v∈S

{r′v}

≤ 1 +
∑

S⊆Tu,S 6=∅

∏

v∈S

p′uv

∏

v∈Tu\S

(1 − p′uv) · min
v∈S

{rv}

Let 1, 2, . . . , k be the nodes of Tu, ordered in such a way that r1 ≥ r2 ≥ · · · ≥ rk. It is not hard to
see that the above expression can be written as follows.

r′u ≤ 1 + r1 −
k−1
∑

i=1

PrG(n,P′)[Γ(u) ∩ {i + 1, . . . , k} 6= ∅] · (ri − ri+1)

The coefficient of (ri − ri+1) in the above expression is the probability of the event that the set of
nodes that have an edge from u in G(n,P′) contains at least one of the nodes i + 1, . . . , k. This
event is monotone; therefore the probability of this event under G(n,P) is less than or equal to the
probability under G(n,P′). Therefore,

r′u ≤ 1 + r1 −
k−1
∑

i=1

PrG(n,P)[Γ(u) ∩ {i + 1, . . . , k} 6= ∅] · (ri − ri+1).

This completes the proof of the induction step, since the right-hand side of the above inequality is
precisely ru.

Note that, simple as the statement of Theorem 4.1 sounds, we do not know whether a sim-
ilar statement holds for randomized memoryless algorithms. On the other hand, we proved the
monotonicity property for randomized algorithms with memory; the proof can be found in [13].
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