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Abstract

Social networks are the substrate upon which we make and evaluate many of our daily
decisions: our costs and benefits depend on whether—or how many of, or which of—our friends
are willing to go to that restaurant, choose that cellular provider, already own that gaming
platform. Much of the research on the “diffusion of innovation,” for example, takes a game-
theoretic perspective on strategic decisions made by people embedded in a social context. Indeed,
multiplayer games played on social networks, where the network’s nodes correspond to the
game’s players, have proven to be fruitful models of many natural scenarios involving strategic
interaction.

In this paper, we embark on a mathematical and general exploration of the relationship
between two-person strategic interactions (a “base game”) and a “networked” version of that
same game. We formulate a generic mechanism for superimposing a symmetric two-player
base game M on a social network G: each node of G chooses a single strategy from M and
simultaneously plays that strategy against each of its neighbors in G, receiving as its payoff the
sum of the payoffs from playing M against each neighbor. We denote the networked game that
results by M ⊕ G. We are broadly interested in the relationship between properties of M and
of M⊕G: how does the character of strategic interaction change when it is embedded in a social
network? We focus on two particular properties: the (pure) price of anarchy and the existence
of pure Nash equilibria. We show tight results on the relationship between the price of anarchy
in M and M ⊕ G in coordination games. We also show that, with some exceptions when G is
bipartite, the existence or absence of pure Nash equilibria (and even the guaranteed convergence
of best-response dynamics) in M and M⊕G are not entailed in either direction. Taken together,
these results suggest that the process of superimposing M on a graph is a nontrivial operation
that can have rich, but bounded, effects on the strategic environment.
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1 Introduction

In recent years there has been significant and growing interest in games played on networks, where
the game’s players are represented by the nodes of the network. Within this space, there has been
particular attention paid to social networks, in which edges connect pairs of people whose actions
can directly impact each other. This growing line of research can in part be attributed to a sense
that such games are indeed the “right” model for many natural scenarios: many human endeavors
can be viewed as games in which a person’s utility is determined by the behavior of those who are
in some sense close by—friends, associates, or trading partners, for example. The actions of other
players in the network are felt only indirectly; their decisions may or may not cause cascades of
local changes that eventually propagate to distant players.

A rich vein of research, and an illustrative example of this game-theoretic style of work on
social networks, has been carried out under the “diffusion of innovation” rubric in the literature
[6,17–20,30,33–35,37, e.g.]. Imagine, for example, a population of mobile phone users, each of whom
must choose whether to subscribe to an unlimited text-messaging plan with her cellular provider,
or to use a pay-per-message plan. If many of a person u’s friends adopt an unlimited-texting
plan, then u may receive many (perhaps unsolicited) text messages from her friends, incurring a
large number of high pay-per-message charges; conversely, if very few of u’s friends have adopted
the unlimited-message option, then u will likely receive few text messages, and thus the pay-per-
use price will likely be a better deal. This scenario—glibly, a strategic multi-agent version of the
ski-rental problem—requires people to think not only about the relative costs of “renting” and
“buying” but also about the structure of their social network, and the choices that their friends
make. In this example, one might expect to observe clusters of adopters in the social network that
are relatively isolated from corresponding clusters of nonadopters. In the real world, these clusters
will be highly correlated with age, and in part result from the significant correlation in age between
people connected by a social tie (see [29]). This “age homophily” illustrates the perhaps-obvious
point that in many network-type games the structure of the network matters critically. But, perhaps
also obviously, the structure of the game matters too. Sometimes a strategy—adopting a new piece
of communication technology, say—becomes more attractive as additional people, particularly one’s
friends, choose it; sometimes—ordering a dish at a restaurant where food will be shared, say—it
becomes less attractive [23,28, e.g.]. And more complex strategic landscapes are possible too.

In this paper, we are broadly concerned with the way in which local decision making—whether
to buy the unlimited text-messaging plan, whether to order the pad thai or the massaman curry,
whether to go to the opera or the baseball game—is affected when it is embedded into a social-
network context. We formulate a general framework for superimposing a symmetric two-player
game, which we call a base game, on a social network, creating a networked version of the base
game. The nodes of the network correspond to the players, each of whom must choose a single
strategy from the set of available strategies in the base game. Each player’s payoff is the sum
of its payoffs from playing the base game simultaneously with its neighbors. (In essence, each
player simultaneously plays the base game with each of its neighbors in the graph, restricted so
that players must act consistently across their multiple games.) Our particular line of inquiry is
directed towards exploring the relationship among a base game M , a graph G, and the resulting
networked game M ⊕G.
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Our results. We study the networked games resulting from superimposing arbitrary two-player
symmetric games on arbitrary undirected graphs. We are primarily interested in understanding
how properties of a base game carry over—or do not carry over—to the networked game. There
are many ways to ask about the relationship among M , G, and M ⊕G. We focus on two specific
instantiations of this question, as initial steps in this line of study: the (pure) price of anarchy and
the existence of (pure) Nash equilibria. See Section 3 for definitions. (Throughout, we consider
only pure strategies except where mixed strategies are explicitly mentioned; see Sections 5 and 7
for discussion of mixed strategies.)

• The price of anarchy. The (pure) price of anarchy of a game is the ratio of the social
welfare—the sum of the payoffs for all players—in the best outcome (“opt”) to the worst
Nash equilibrium (“wne”). We are interested in how the price of anarchy of the base game M
relates to the price of anarchy of the networked game M ⊕G. Here we focus on coordination
games (also known as matching games) as base games. In these games, players receive
identical positive payoffs if they choose the same strategy from the set of options, and payoffs
of zero if they choose different strategies. (The payoffs the players receive for matching can
depend on which strategy they choose.) Coordination games and variants are frequently
used to model diffusion of innovation: for example, strategies might represent choices of
communication technologies (whether to buy a fax machine, which computer operating system
to choose) where there is utility in making the same choice as one’s friends. Let Mcoord be
any coordination game of this type. In Section 5, we give tight bounds on the maximum
(taken over all graphs) of the price of anarchy for Mcoord ⊕G.

• The existence of pure Nash equilibria. One of the most basic game-theoretic questions
that one can ask is whether a pure Nash equilibrium exists in a given game. The analogous
question here is the connection between the existence of pure Nash equilibria in the base
game and the existence of pure Nash equilibria in the networked game. In Section 6, we show
largely negative results about this connection. If M has a pure Nash equilibrium and G is
bipartite, then M ⊕ G has a pure Nash equilibrium as well; in all other cases, though, we
show that the existence (or absence) of pure Nash equilibria in M does not imply anything
about the existence (or absence) of pure Nash equilibria in M ⊕G. We give examples of base
games M and (bipartite and nonbipartite) graphs G1 and G2 such that the properties of M
and M ⊕G1 match with respect to the existence of pure Nash equilibria, but M and M ⊕G2

mismatch. Furthermore, we give examples of base games M in which best-response dynamics
is guaranteed to converge in M but is not guaranteed to converge in M ⊕G, and vice versa.

Our work on the existence of pure Nash equilibria illustrates that the base game and the net-
worked game are qualitatively different. When a base game is “networkified,” pure Nash equilibria
can be created or destroyed; the guaranteed convergence of best-response dynamics can be intro-
duced or eliminated. This qualitative difference is largely unsurprising; indeed, networked games
are interesting only because they do not precisely replicate their base game. What is more sur-
prising is that there are still nontrivial quantitative similarities between the base game and the
networked game, for example in the price of anarchy, that can be proven independent of the size or
topology of the graph. We believe that further quantification of the effect of moving a base game
to a networked context is a fertile area for study.
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2 Related Work

As described in Section 1, there has been appreciable work on networked versions of partic-
ular games, usually on particular classes of networks, in modeling the diffusion of innovation
[6, 17–20, 30, 33–35, 37]. These models typically capture scenarios in which there is incentive to-
wards assortative behavior; other work has explored models where players have incentive towards
dissortative behavior, including cut games, and party affiliation games, which subsume both cut
games and coordination games [2,5,12]. (One can think of a cut game as a networked variant of the
El Farol Bar problem, in which a player wants to make a decision that is matched by a minority of
that player’s neighbors [1].)

A networked game M ⊕ G is a special form of a graphical game [4, 7, 9–11, 15, 22, 24, 26], an
n-player game in which the payoff to a player u is affected only by the strategies of the neighbors
of u in an underlying n-node graph. (Other formalisms for games on networks have also been
considered; see [14, 16, 21] for some examples.) Graphical games allow u’s payoff to depend arbi-
trarily on the strategies chosen by u’s neighbors; in our networked games u’s payoff is simply the
sum of a payoff on each edge incident to u. Graphical games are interesting when the underlying
graph is sparse, as social networks are; otherwise the graphical structure does not impose much
limitation. Our networked games, as well as these “sparse” graphical games, form a natural class of
compactly representable games—games that can be specified in space polynomial in the number of
players and strategies. Fully general games are typically of less interest, both practically and the-
oretically: practically, general games require exponential space to describe and thus are too large
to be tractable; and, theoretically, this huge game description trivializes various computational
problems—searching for a pure Nash equilibrium in a general game can be solved by brute force in
time linear in the input size.

One paper on graphical games is particularly close in spirit to our work here: Ben Zwi and
Ronen [4] study the relationship between the (“global”) price of anarchy of a graphical game and
what they call the “local price of anarchy.” The latter measures how well any subset S of players
in the network responds to choices made by the nodes outside of S (where “how well” is measured
in terms of the ratio of the worst Nash equilibrium wne to the social optimum opt within the
subgame induced by fixing the strategies of all non-S players).

A recent paper by Daskalakis and Papadimitriou [8] studies a special case of our problem:
networked games arising from zero-sum (or, more generally, strictly competitive) base games. They
demonstrate in this case that the mixed Nash equilibria of the networked game can be computed
efficiently, by reducing their computation to that of the mixed Nash equilibria of a particular
two-player zero-sum game.

At a more abstract level, one can see a parallel between our work here and recent work in
epidemiology. Work in that field can loosely be categorized as falling under the “fully mixed
model,” in which one models any two members of a large population as equally likely to interact,
or under the “network model,” in which an underlying social/contact network reflects the latent
structure in people’s interactions. Network-based models more realistically reflect the ways in
which diseases spread, but in most cases the fully mixed model is far more amenable to rigorous
mathematical analysis, particularly as the population grows large. In the game-theoretic context,
there is a significant body of work on “fully mixed”-type models in which randomly selected pairs of
agents from a large population play a particular two-player game, possibly repeatedly—for example,
see the classic text of Fudenberg and Levine [13] on learning in games. (Their motivations include
giving an account of how players might settle on a Nash equilibrium, and how players might select
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a particular equilibrium.) In our setting, we consider a fixed network of interactions; our interests
are in the ways that the networked game relates to the base game. This network-based perspective
on evolutionary game theory was introduced in the work of Kearns and Suri [25], who were largely
interested in extending classic results of evolutionary game theory to the network-based setting.

3 Background and Notation

Games

An n-player game M consists of a set of players {1, . . . , n}, a strategy set Si for each player i, and
a payoff function pi : (S1× · · · × Sn)→ Z for each player. Each player i chooses a strategy si ∈ Si;
the vector s = 〈s1, . . . , sn〉 is called a strategy profile. The payoff to player i under s is pi(s), and
the social welfare of s is

∑
i pi(s). The social optimum, denoted opt, is the strategy profile s that

achieves the maximum social welfare. A strategy profile s is a (pure) Nash equilibrium if no player
can unilaterally deviate from s to improve her payoff, i.e., if pi(s) ≥ pi(s1, . . . , si−1, s

′
i, si+1, . . . , sn)

for every i and every s′i ∈ Si. We denote the worst Nash equilibrium—that is, the pure Nash
equilibrium s with the lowest social welfare—by wne, and the best Nash equilibrium by bne. We
also write opt, wne, and bne to denote the social welfare of the corresponding strategy profile
opt, wne, and bne. The price of anarchy is given by poa := opt/wne, and the price of stability is
given by pos := opt/bne. Note again that all of these quantities refer only to pure Nash equilibria.

In this paper, we are interested in symmetric two-player games, where the two players have
the same set of strategies S1 = S2 = S, and p1(s, s′) = p2(s′, s) for any two strategies s, s′ ∈ S.
Whenever we refer to a “base game,” we implicitly mean it to be a symmetric two-player game.

Graphs

For the purposes of this paper, a graph G = 〈V,E〉 is an undirected graph with a set V of nodes
and a set E of edges that has no isolated nodes. For a node u in a graph G, we write ΓG(u) to
denote the set of u’s neighbors—that is, ΓG(u) := {v : {u, v} ∈ E}. We omit the subscript when G
is obvious from context. We write Kn to denote the n-node complete graph, and Kn,n to denote
the complete bipartite graph with n nodes in each “part” of the graph.

4 Playing Games on Graphs

Let M be an arbitrary symmetric two-player game where each player’s set of available strategies
is denoted by S, and when player 1 plays s1 and player 2 plays s2 then the payoff to player i is
given by pi(s1, s2). Let G = 〈V,E〉 be an arbitrary graph. We define the networked game M ⊕G
(“game M played on graph G”) as follows:

• The set of players in M ⊕G is V , the set of nodes in the graph G.

• The set of strategies available to player v ∈ V is S, the set of strategies for a player in M .

• For a strategy profile s in which player v plays the strategy sv ∈ S, the payoff to any player
w ∈ V is given by pw(s) :=

∑
x∈Γ(w) p1(sw, sx). That is, the payoff to player w when she

plays strategy sw is the sum of the payoffs that she would receive if she played strategy sw
in the base game with each of her neighbors.
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For example, if G is a two-node, one-edge graph (that is, the graph G is K2), then M ⊕ G is
isomorphic to the base game M .

We can see a less trivial example through the classic game of rock–paper–scissors. Define the
base game RPS with strategies {rock, paper, scissors} such that

p1(rock, scissors) = p1(scissors, paper) = p1(paper, rock) = 1

and all other payoffs are zero. This game has no pure Nash equilibria. But in RPS ⊕ K3, when
this game is played on the triangle, we have a three-player game that does have a pure Nash
equilibrium—namely, one where each of the three strategies is played by exactly one player.

5 Coordination Games

We begin by analyzing the networked version of coordination games. By way of reminder, our
focus in this section (and indeed throughout the paper) is on the mathematical properties of these
network games—particularly as those properties relate to their analogues in the base coordination
game. In this section, we focus on price-of-anarchy and price-of-stability results.

A two-player coordination game (or matching game, or consensus game) is one in which both
players choose from the same set of strategies, and receive positive payoffs only if they make the
same selection. As usual, we are interested in symmetric coordination games, which we define as
follows:

• Players share a strategy set S = {s1, . . . , sk}.

• The two players both receive identical payoffs of vi if both choose si for any index i ∈
{1, . . . , k}, and both receive identical payoffs of 0 if they choose strategies si and sj 6=i.

We refer to this game as the k-strategy coordination game with payoffs {v1, . . . , vk}. Without loss
of generality, we always canonically order the strategies so that v1 ≤ v2 ≤ · · · ≤ vk−1 ≤ vk.
Throughout, we assume that the vi’s are integer-valued.

Lemma 1. Let M be an arbitrary k-strategy coordination game with payoffs {v1, . . . , vk}, and let G
be an arbitrary graph. Then pos(M) = pos(M ⊕G) = 1.

Proof. The social optimum for the base game M is when both players choose strategy sk, yielding
a payoff of vk for each. This strategy profile is optimal because vk is the largest entry anywhere in
the payoff matrix for M , and it is a Nash equilibrium for the same reason. Similarly, in M ⊕ G,
the strategy profile in which all players play sk is again a Nash equilibrium and socially optimal.
Thus the socially optimal strategy profile is a Nash equilibrium in both M and M ⊕ G, and
pos(M) = pos(M ⊕G) = 1.

Lemma 2. Let M be an arbitrary k-strategy coordination game with payoffs {v1, . . . , vk}. Then
there exists a graph G such that poa(M ⊕G) ≥ vk ·

∑k
i=1

1
vi

.

Proof. To begin, we define a few quantities:

p :=

k∏
i=1

vi ni :=
p

vi
n :=

k∑
i=1

ni.
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Note that ni can also be written as ni =
∏

j 6=i vj ; therefore the ni’s are integral, and thus n is too.
To prove the lemma, we show that M played on the complete bipartite graph Kn,n has the

desired price of anarchy; that is, poa(M ⊕Kn,n) ≥ vk ·
∑k

i=1
1
vi

. We prove two claims:

there is a strategy profile of M ⊕Kn,n that has social welfare 2n2vk. (1)

there is a Nash equilibrium of M ⊕Kn,n that has social welfare 2pn. (2)

This establishes the desired result, because

poa =
opt

wne
≥ 2n2vk

2pn
=
nvk
p

=
vk
∑k

i=1
p
vi

p
= vk

k∑
i=1

1

vi

by (1), (2), and the definitions of n and ni, respectively.
To prove (1), suppose each player chooses strategy sk, just as in Lemma 1. Each node in Kn,n

thus matches the strategy chosen by all n of its neighbors, and therefore receives a payoff of nvk.
There are 2n nodes in the graph, and thus the social welfare under this strategy profile is 2n · nvk,
as claimed.

To prove (2), consider the strategy profile p in which precisely ni of the n nodes in each part
of Kn,n play strategy si. Note that the payoff to a node u playing si is then vini, because u has
precisely ni neighbors matching u, namely the ni nodes in the other part of the graph who are also
playing si. Thus

social welfare under p

=
∑
i

2ni · vini (there are 2ni nodes playing si; each receives vini as above)

=
∑
i

2ni · vi
p

vi
=
∑
i

2nip = 2pn. (definition of ni and n)

We further claim that p is a Nash equilibrium. Indeed, consider any node u. The payoff to u for
playing si is vini = vi · (p/vi) = p, which is a constant independent of i. Thus every node u is
indifferent among its strategies, and thus p is a Nash equilibrium.

Lemma 3. Let M be an arbitrary k-strategy coordination game with payoffs {v1, . . . , vk}, and let G
be an arbitrary graph. Then poa(M ⊕G) ≤ vk ·

∑k
i=1

1
vi

.

Proof. Fix an arbitrary Nash equilibrium strategy profile p in M ⊕ G, and write p(w) to denote
the strategy played by a node w under p. We write

δ(u) := |Γ(u)| (u’s degree in G)

δi(u) := |{w ∈ Γ(u) : p(w) = si}| (the number of u’s neighbors playing si under p)

m :=
∑
u

δ(u)/2. (the total number of edges in the graph G)

Write pu to denote u’s payoff under p. Note that u’s payoff from playing strategy si is precisely
viδ

i(u). For any node u and any i ∈ {1, . . . , k},

pu ≥ viδi(u) (3)
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because p is a Nash equilibrium. Dividing both sides of (3) by vi and summing the resulting
constraints over all strategies i, we have∑

i

pu
vi
≥
∑
i

δi(u) ⇐⇒ pu ·
∑
i

1

vi
≥ δ(u) ⇐⇒ pu ≥

δ(u)∑
i

1
vi

. (4)

Therefore

social welfare of p =
∑
u

pu ≥
∑
u

δ(u)∑
i

1
vi

= 2m · 1∑
i

1
vi

, (5)

where the inequality follows by (4). Note that the social optimum is achieved when all players
choose strategy sk, so we have that the socially optimal outcome achieves the social welfare

opt = 2m · vk. (6)

Thus

opt

social welfare of p
≤ 2m · vk

2m · 1∑
i

1
vi

= vk
∑
i

1

vi

by (5) and (6). Because p was an arbitrary Nash equilibrium, we have that opt/wne ≤ vk ·
∑

i
1
vi

for the worst Nash equilibrium wne, and thus the price of anarchy of M ⊕G has the same upper
bound.

These lemmas establish the following. Let M be an arbitrary k-strategy coordination game
with payoffs {v1, . . . , vk}. For any graph G, we have pos(M⊕G) = 1 and poa(M⊕G) ≤ vk ·

∑
i

1
vi

;
furthermore, there exists a graph G∗ for which poa(M ⊕G∗) = vk ·

∑
i

1
vi

.

Theorem 4 (Price of anarchy in coordination games). Let M be any k-strategy coordina-
tion game with payoffs {v1, . . . , vk}, for any k ≥ 2. Then

poa(M) + k − 1 ≤ max
G

poa(M ⊕G) ≤ k · poa(M).

Furthermore, for any k, there are k-strategy coordination games in which both bounds are tight.

Proof. Note that by Lemma 2 and Lemma 3, we have that maxG poa(M ⊕G) = vk ·
∑

i
1
vi

. Let G∗

denote the graph achieving this maximum price of anarchy. Also notice that poa(M) = vk/v1:
in the base game, the only Nash equilibria are when the two players are indeed playing the same
strategy, and the worst such equilibrium is when both players play s1.

For the lower bound, poa(M⊕G∗) = vk ·
∑

i
1
vi
≥ vk · (k−1

vk
+ 1

v1
) = k−1+ vk

v1
= k−1+poa(M),

because 1/vk ≤ 1/vi for all i. This bound is tight in the k-strategy coordination game with payoffs
{1, v, v, . . . , v}, where poa(M) = v/1 = v and poa(M ⊕G∗) = k − 1 + v.

For the upper bound, poa(M ⊕G∗) = vk ·
∑

i
1
vi
≤ vk · kv1 = k ·poa(M), because 1/vi ≤ 1/v1 for

all i. This bound is tight in the k-strategy coordination game M with payoffs {1, 1, . . . , 1}, where
we have poa(M) = 1 while poa(M ⊕G∗) = k.
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As we stated in Section 1, in this paper we restrict our attention to pure Nash equilibria. In
many of the scenarios that motivate our work, the choices participants make (e.g., which operating
system to buy, or which cell phone provider to use) are costly to alter, and it is hard to imagine
these decisions literally being made by coin tosses by every member of a large population.

That said, it is worth noting that the constructed pure Nash equilibrium on M ⊕ Kn,n of
Lemma 2 is closely related to a mixed Nash equilibrium in the base game M . In particular, we can
associate Player 1 in M with all players on the left side of Kn,n in M ⊕Kn,n, and Player 2 with all
players on the right side. Given any pure Nash equilibrium in M ⊕Kn,n, the corresponding mixed
strategy for a player in M is a weighted average of her associated players’ strategies. Similarly,
any mixed Nash equilibrium on M can be converted into a pure Nash equilibrum in a networked
game on a sufficiently large complete bipartite graph (assuming probabilities in the mixed Nash
equilibrium are rational). See Lemma 11 for the general, formal version of this statement.

This correspondence implies the following surprising fact: Lemma 2 and Lemma 3 also relate
the pure and mixed prices of anarchy in (two-player) coordination games. Of course, Lemma 3 is a
more general result, in that it bounds the effect of playing matching games on arbitrary networks,
not just complete bipartite graphs, and pure Nash equilibria in M ⊕G for general networks G do
not correspond (at least not obviously) to mixed Nash equilibria in M . Nevertheless, as part of our
future work we intend to further explore the relationship between mixed Nash equilibria in base
games and pure Nash equilibria in their networked counterparts.

6 Existence of Pure Nash Equilibria

In this section, we explore the relationship between the existence of pure Nash equilibria in an
arbitrary base game M and the existence of pure Nash equilibria in the networked game M ⊕ G
played on a graph G. Broadly speaking, we show negative results: one cannot infer anything, in
either direction, about the existence of pure Nash equilibria in M and the existence of pure Nash
equilibria in M ⊕G. The limited exception is in the case of a bipartite graph G.

We will highlight our main results first, and then devote the rest of the section to more detailed
statements of the results and proofs.

Theorem 5 (bipartite results). Let G be an arbitrary bipartite graph. Then:

1. for a base game M with a pure Nash equilibrium, M ⊕G has a pure Nash equilibrium.

2. for a base game M with no pure Nash equilibrium, M ⊕G may or may not have a pure Nash
equilibrium. (In particular, for every base game M , there exists a bipartite graph GM such
that M ⊕GM does have a pure Nash equilibrium.)

Theorem 6 (nonbipartite results). Let G be an arbitrary nonbipartite graph. Then, regardless
of whether the base game M has a pure Nash equilibrium, M ⊕ G may or may not have a pure
Nash equilibrium. In particular:

1. for any nonbipartite graph G, there is a base game MG (we can choose whether or not MG

has a pure Nash equilibrium) such that MG ⊕G does not have a pure Nash equilibrium.

2. as in Theorem 5.2, for every base game M (with or without a pure Nash equilibrium), there
exists a nonbipartite graph GM such that M ⊕GM does have a pure Nash equilibrium.
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Theorem 5.1 is the lone positive result, showing that a pure Nash equilibrium in a base game does
translate into a pure Nash equilibrium when that game is played on a bipartite network. The
other results are all negative, in that they show that conclusions about the existence of pure Nash
equilibria in M⊕G in terms of the existence of pure Nash equilibria in M are not generally possible.

Of these results, we will specifically highlight the result mentioned in Theorem 5.2 and Theo-
rem 6.2, which is proven in Lemma 11. This result draws an unexpected connection between mixed
Nash equilibria in a base game M and pure Nash equilibria in the networked version of M , played
on an appropriately chosen complete bipartite or tripartite graph.

Best-Response Dynamics

We also further explore the case when there are pure Nash equilibria in M , by subdividing this
case based on whether best-response dynamics (BRD) always converges. BRD is an algorithm that
produces a sequence of strategy profiles by repeatedly allowing a player i to update her strategy
to a best response, i.e., a strategy in Si maximizing i’s payoff, holding all other strategies constant.
Specifically, BRD is the following algorithm:

1. Start from an arbitrary strategy profile s.
2. While there is some player who is not playing a best response in s:

(a) Choose such a player i arbitrarily.
(b) Update s by changing si to be an arbitrary best response for player i.

If BRD terminates, then it terminates at a pure Nash equilibrium; however, BRD may not terminate
even if a pure Nash equilibrium exists. We say that BRD always converges if this process terminates
regardless of the arbitrary choices (the initial profile s, which player i updates in each iteration,
which best response si is chosen if there are more than one), subject to the liveness condition that
every player “gets a turn” infinitely often.

Theorem 7 (best-response dynamics results). For an arbitrary base game M and graph G:

1. if BRD always converges in M , then BRD may or may not always converge in M ⊕ G
(regardless of whether G is bipartite or nonbipartite).

2. conversely, if BRD always converges in M ⊕G, then

(a) if G is bipartite, then BRD always converges in M ; but
(b) if G is nonbipartite, then BRD may or may not always converge in M .

As before, the lone case in which one can infer anything is Theorem 7.2a: if BRD always converges
in the networked game on a bipartite graph, then BRD must always converge on the base game.
But all the other results are negative.

These results—and the ones from Theorem 5 and Theorem 6—are summarized in full detail,
including complete quantification of each result with respect to graphs and base games, in Figure 1.

Rock–Paper–Scissors

In several of our constructions, we make use of the following k-strategy “rock–paper–scissors” game,
which we denote RPSk. There are k ≥ 2 strategies {s0, . . . , sk−1}, where strategy si “beats” the
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no pure Nash
equilibrium exists in M

a pure Nash equilibrium exists in M

BRD does not converge
in M

BRD converges in M

bipartite
graph G

∀G ∃M :
M ⊕G has no pure NE
(Lemma 8)

∃G ∀M :
M ⊕G has no pure NE
(bipartite: Lemma 13)
(nonbipartite:

Lemma 14)

∀M ∃G :
M ⊕G has a pure NE
(Lemma 11)

∀G ∀M : M ⊕G has a pure NE (Lemma 9)

∀G ∀M :
BRD
does not
converge in M ⊕G
(Lemma 15)

∃M ∀G :
BRD converges in M ⊕G
(Lemma 12)

∃G ∀M :
BRD converges in M ⊕G
(Lemma 13)

∃G ∃M :
BRD does not converge
in M ⊕G
(Lemma 16)

nonbipartite
graph G

∀G ∃M : M ⊕G has no pure NE (Lemma 10)

∀M ∃G : M ⊕G has a pure NE (Lemma 11)

∀G ∃M :
BRD does not converge
on M ⊕G
(Lemma 10)

∃G ∀M :
BRD does not converge
on M ⊕G
(Lemma 14)

∃G ∃M :
BRD converges
on M ⊕G
(Lemma 17)

∀G ∃M :
BRD does not converge
on M ⊕G
(Lemma 10)

∃M ∀G :
BRD converges in M⊕G
(Lemma 12)

Figure 1: Summary of our results relating the existence of pure Nash equilibria and the convergence
of best-response dynamics in base games M and networked games M ⊕G. When we write “BRD
converges” we mean that best-response dynamics always converges, from any starting strategy
profile and following any sequence of best-response updates. Similarly, “BRD does not converge”
means that BRD sometimes fails to converge.
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strategy si+1. Formally, we define

payoff to player playing si against sj =

{
1 if j = (i+ 1) mod k
0 otherwise.

For example:

RPS5 =

s0 s1 s2 s3 s4

s0 0, 0 1, 0 0, 0 0, 0 0, 1

s1 0, 1 0, 0 1, 0 0, 0 0, 0

s2 0, 0 0, 1 0, 0 1, 0 0, 0

s3 0, 0 0, 0 0, 1 0, 0 1, 0

s4 1, 0 0, 0 0, 0 0, 1 0, 0

.

We will write α · RPSk, for a scalar α > 0, to denote the version of this game in which the payoff
for playing a strategy si against s(i+1) mod k is α rather than 1. All other payoffs remain zero.

Note that RPSk does not have a pure Nash equilibrium for any k ≥ 3: the only best response
to strategy si is strategy s(i−1) mod k, but the only best response to s(i−1) mod k is s(i−2) mod k. Thus
no two strategies are mutual best responses because i 6= (i− 2) mod k for any k ≥ 3, and thus no
pure Nash equilibrium exists in RPSk. (For k = 2, we have i = (i− 2) mod k, and the strategies s0

and s1 are mutual best responses. In fact, RPS2 is a simple “mismatching” game, with pure Nash
equilibria 〈s0, s1〉 and 〈s1, s0〉.)

Detailed Results and Proofs

Lemma 8. For every graph G, there exists a base game M with no pure Nash equilibria such that
the networked game M ⊕G also does not have a pure Nash equilibrium.

Proof. It suffices to choose M = RPSn+1, where n is the number of nodes in G.
Suppose for a contradiction that a strategy profile p is a pure Nash equilibrium for RPSn+1⊕G.

There are n + 1 strategies and only n nodes, so there is at least one strategy that is not being
played under p; consequently, there is an index i and node u such that strategy si is played by u
under p, but strategy s(i+1) mod (n+1) is not being played by any node under p.

The structure of RPSn+1 implies that the payoff pu to node u is precisely the number of u’s
neighbors in G that play strategy s(i+1) mod (n+1) under p; thus pu = 0. But the node u has at least
one neighbor playing some strategy sj , and thus u can deviate from si to s(j−1) mod (n+1) to receive
a strictly positive payoff. Thus p is not a Nash equilibrium, contradicting the assumption.

The proof of Lemma 8 uses a base game M with no pure Nash equilibria to show that the
networked game M ⊕G need not have a pure Nash equilibrium. If we restrict the base game M to
contain a pure Nash equilibrium, then will the same result hold? To answer this question, we have
to consider the structure of G. In particular, if G is nonbipartite, there still exists an M such that
M ⊕ G has no pure Nash equilibrium, even if M itself does; however, if G is bipartite, this is no
longer the case.

Lemma 9. For every bipartite graph G and for every base game M that has a pure Nash equilib-
rium, the game M ⊕G has a pure Nash equilibrium too.
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Proof. Let M be an arbitrary base game that has a pure Nash equilibrium, and let G = 〈L∪R,E〉
be an arbitrary bipartite graph. Let the strategy profile s = 〈a, b〉 be a pure Nash equilibrium in M .
Consider the strategy profile p in which p(u) = a for u ∈ L and p(u) = b for u ∈ R. We claim
that p is a pure Nash equilibrium in M ⊕G. Let pu(a) denote the payoff to a node u for playing
strategy a in M when the other player plays according to s, and let p̂u(a) denote the payoff to a
node u for playing strategy a in M ⊕G when the other nodes play according to p. Then, simply,
we have p̂u(a) = δ(u) · pu(a), where δ(u) denotes the degree of node u in G. Because no player
wants to deviate from s in M , no node wants to deviate from p in M ⊕G. Thus p is a pure Nash
equilibrium in M ⊕G.

Lemma 10. For every nonbipartite graph G, there exist base games M and M ′ with the following
properties: both M and M ′ have pure Nash equilibria, best-response dynamics always converges
in M but best-response dynamics does not always converge in M ′, and neither M ⊕G nor M ′ ⊕G
has a pure Nash equilibrium.

Proof. Our constructions for M and M ′ are similar; we will begin with the construction for M
and then augment it to define M ′. Let n be the number of nodes in G. Define the following
(2n+ 2)-strategy game Mn:

Mn :=

s0 s1 . . . sn b0 b1 . . . bn

a0 1, 1 1, 1 . . . 1, 1

a1 (1− ε) · RPSn+1 1, 1 1, 1 . . . 1, 1

...
...

...
. . .

...

an 1, 1 1, 1 . . . 1, 1

b0 1, 1 1, 1 . . . 1, 1

b1 1, 1 1, 1 . . . 1, 1 (1− ε) · RPSn+1

...
...

...
. . .

...

bn 1, 1 1, 1 . . . 1, 1

.

First we claim that best-response dynamics always converges in Mn. Any strategy profile 〈ai, bj〉
or 〈bi, aj〉 is a pure Nash equilibrium: both players are receiving a payoff of 1, the maximum possible
value anywhere in the matrix, so they are certainly playing mutual best responses. At a strategy
profile 〈ai, aj〉, either player’s best response causes her to switch to a b-type strategy (and thus to a
pure Nash equilibrium). Similarly one best-response update from a strategy profile 〈bi, bj〉 results
in one player switching to an a-type strategy and thus a Nash equilibrium. From an arbitrary
strategy profile, BRD terminates after at most one best-response update: if the players begin with
one a- and one b-strategy then the profile begins as a pure Nash equilibrium; if they have the same
strategy types then one update leads to a pure Nash equilibrium.

Now we will show that for the nonbipartite graph G, there is no pure Nash equilibrium in Mn⊕G
(and certainly BRD does not terminate). Suppose for a contradiction that a strategy profile p is a
pure Nash equilibrium for Mn ⊕G. For a node u, let pau denote the payoff that u receives under p
from its neighbors who are playing a-strategies (i.e., pau is 1− ε times the number of u’s neighbors
playing a(p(u)+1) mod (n+1) under p). Similarly, let pbu denote the payoff that u receives under p from
its neighbors playing b-strategies (i.e., pbu is exactly the number of u’s neighbors that are playing a
b-strategy under p). Let pu := pau + pbu denote the total payoff to u under p.
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Because G is nonbipartite, the graph is not 2-colorable. Interpreting the “strategy types” (a’s
and b’s) under p as two colors, we know that there must be two adjacent nodes x and y so that x
and y are both “colored” a or both “colored” b by the profile p. Without loss of generality, suppose
that x and y are both colored a. Let A denote the set of a-colored nodes that are connected
to x and y in G—that is, let A denote the connected component of the subgraph of G induced
by considering only a-colored nodes. Then every node in A plays an a-strategy under p, and is
adjacent to at least one other node in A playing an a-strategy under p. But |A| ≤ n; therefore, just
as in Lemma 8, by the pigeonhole principle, there must be some node u ∈ A playing strategy ai
where no node in A plays strategy a(i+1) mod (n+1). Therefore pau = 0. But that node u is adjacent
to some node in S playing a strategy aj . If u switches to play a(j−1) mod (n+1), then u’s payoff
increases: he still receives pbu payoff from his b-colored neighbors, and he receives at least 1−ε from
his aj neighbor. This deviation increases u’s payoff, and thus contradicts the assumption that p
was a Nash equilibrium.

We have now described a base game Mn such that best-response dynamics always converges
in Mn (and thus a pure Nash equilibrium exists in Mn), yet there is no pure Nash equilibrium in
Mn⊕G. To prove the second part of the lemma, we must again give a base game M ′n such that M ′n
has a pure Nash equilibrium but M ′n ⊕ G does not, but this time where BRD does not always
converge in M ′n. We construct M ′n by augmenting Mn to block BRD from always converging. We
add two strategies c0 and c1, where playing ci against any non-c strategy has a highly negative
payoff, and the c-versus-c sub matrix is a version of the classic Matching Pennies game (a two-player,
two-strategy game that has no pure Nash equilibria):

M ′n :=

s0 . . . bn c0 c1

a0 0,−n 0,−n

... Mn

...
...

bn 0,−n 0,−n

c0 −n, 0 . . . −n, 0 1,−n −n, 1

c1 −n, 0 . . . −n, 0 −n, 1 1,−n

.

First observe that, like Mn, the base game M ′n contains a pure Nash equilibrium, namely any
strategy profile 〈ai, bj〉 or 〈bi, aj〉. However, BRD does not always converge in M ′n: if the two players
begin at the strategy profile 〈c0, c0〉, then after four best-response updates (player 2 updates to c1;
player 1 updates to c1; player 2 updates to c0; player 1 updates to c0) we have looped back to the
original strategy profile.

Now we argue that for the nonbipartite graph G, there is no pure Nash equilibrium in M ′n⊕G.
There can be no pure Nash equilibrium in M ′n ⊕ G in which any node uses a c-strategy: some
c-playing node must receive a payoff of −n along some edge, which means his total payoff must be
negative (because he gains at most a payoff of one from every other neighbor), and switching to
strategy a0, say, guarantees a nonnegative payoff. And there is no pure Nash equilibrium involving
only a- and b-strategies, as above. Thus there is no pure Nash equilibrium in M ′n ⊕G.

In Lemmas 9 and 10 we see how base games with pure Nash equilibria can lead to net-
worked games with and without pure Nash equilibria, depending on the underlying graph structure.
Lemma 8 shows a specific base game with no pure Nash equilibria that leads to a networked game
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with no pure Nash equilibria. But in Lemma 8, the base game M was chosen with respect to a
particular graph G. Here we show that this dependence was crucial: for every base game M , there
exists a graph G so that the networked game M ⊕G has a pure Nash equilibrium. Our proof again
highlights some of the connections between pure Nash equilibria in networked games and mixed
Nash equilibria in base games:

Lemma 11. For every base game M (independent of whether pure Nash equilibria exist in M
or whether best-response dynamics always converges in M), there exist a bipartite graph G and a
nonbipartite graph G′ such that pure Nash equilibria exist in both M ⊕G and M ⊕G′.

Proof. Let S denote the strategy set of M , and let p denote the payoff function to a player in M .
A classic result of Nash [31] says that the symmetric two-player game M must have a symmetric
mixed Nash equilibrium—that is, a probability distribution σ over S that is a best response to
itself. More formally, the expected payoff to a player for playing any strategy in the support of σ
against σ must be maximum:

σ(s) > 0 =⇒ ∀s′ ∈ S :
∑
t∈S

σ(t) · p(s, t) ≥
∑
t∈S

σ(t) · p(s′, t). (7)

Furthermore, because we have a two-player base game, the probability vector σ contains only ratio-
nal probabilities, so that σ(s) = qs/n, where

∑
s qs = n, for a common denominator n ∈ Z≥1 and

coefficients qs ∈ Z≥1. (For a more detailed derivation of the above results, see Papadimitriou [32].)
We can now define the graphs G and G′ as the complete bipartite graph G := Kn,n and the

complete tripartite graph G′ := Kn,n,n with n nodes in each part of each graph. We claim that the
following p is a pure Nash equilibrium in M ⊕ Kn,n: precisely qs nodes in each part of the graph
play strategy s. Specifically, every node u is playing a best response:

u’s payoff from playing s

=
∑

w∈Γ(u)

p(s,p(w))

=
∑
t∈S

n · σ(t) · p(s, t) (u has precisely n neighbors, of which qt = n · σ(t) are playing strategy t)

≥ n ·
∑
t∈S

σ(t) · p(s′, t) by (7)

=
∑

w∈Γ(u)

p(s′,p(w))

= u’s payoff from deviating to s′

where we can apply (7) because u playing s implies that σ(s) > 0. Thus p is a pure Nash equilibrium
in M ⊕Kn,n. The proof that there is a pure Nash equilibrium in M ⊕Kn,n,n is strictly analogous,
where now every node has 2n · σ(t) neighbors playing strategy t instead of just n · σ(t).

With these statements about mismatches between base games and networked games proven, we
turn to a few simple examples of graphs and base games in which properties of the base game do
align with properties of the corresponding networked games.
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Lemma 12. There exists a base game M in which best-response dynamics always converges (and
thus M has a pure Nash equilibrium) such that, for every graph G, best-response dynamics always
converges in the networked game M ⊕G (which thus also has a pure Nash equilibrium).

Proof. Let M be a trivial game in which all payoffs are zero. Then every strategy profile is a pure
Nash equilibrium in M and in M ⊕G, and thus BRD always converges in both.

Lemma 13. There exists a bipartite graph G such that, for every base game M , the existence of
pure Nash equilibria and the convergence of best-response dynamics are identical in the games M
and M ⊕G.

Proof. Let G = K2 be the trivial 2-node, 1-edge graph. Then the games M and M ⊕ G are in
fact identical, and the claim follows immediately. (The same result holds when G is an arbitrary
matching, where multiple independent parallel copies of M are played.)

Lemma 14. There exists a nonbipartite graph G such that, for every base game M , a pure Nash
equilibrium exists in M ⊕ G only if a pure Nash equilibrium exists in M and, furthermore, BRD
always converges in M ⊕G only if BRD always converges in M .

Proof. Let G be a 5-node, 2-component graph containing K2 and K3 as its two connected com-
ponents; the graph is not bipartite because of the K3 component. If there were a pure Nash
equilibrium in M ⊕ G then the two nodes in the K2 component would have to be playing mutual
best responses, and thus their two strategies would form a pure Nash equilibrium in M . Similarly,
if there is a sequence σ of best-response updates in M that does not terminate, then BRD does not
converge in M ⊕G when σ is the sequence of best-response updates in the K2 component.

Finally, we conclude this section with three results abouts best-response dynamics. We show
that in bipartite graphs, if BRD does not always converge in M , then BRD does not always converge
in M ⊕ G. (This result is analogous to Lemma 9, where we showed the existence of pure Nash
equilibria in a base game carried over to networked games on bipartite graphs.) We also give two
more examples of mismatches in properties between base games and networked games: a base game
in which BRD always converges but for which BRD does not always converge in the networked
game on a bipartite graph; and a base game in which BRD does not always converge but for which
BRD does always converge in the networked game on a nonbipartite graph.

Lemma 15. For every bipartite graph G and every base game M in which BRD does not always
converge, BRD also does not always converge in the networked game M ⊕ G (even if the players’
best-response updates are done in round-robin order).

Proof. Suppose there is a non-converging sequence of best-response strategy choices for the base
game M . Denote the sequence of best responses chosen as 〈s1, s2, s3, . . .〉, where player 1’s updates
are denoted by odd subscripts and player 2’s with even subscripts, where each of these strategies
is a best response to the previous strategy.

Fix an arbitrary bipartite graph G = 〈L ∪ R,E〉, and consider the following run of BRD on
the networked game M ⊕G. We start from the strategy profile p in which every node in L plays
strategy s1 and every node in R plays strategy s2. Players update their strategies in a round-robin
order such that all players in L update before all players in R.
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Because G is bipartite, when a node ` ∈ L updates his strategy, any updates made by other
nodes in L do not affect `’s best response. Because strategy si+1 is a best response to strategy si
in M , by the definition BRD on M , it must also be a best response when playing against many
opponents, all of whom are playing si. Starting from p, where L and R nodes are playing s1 and s2,
respectively, it is thus a best response for each node ` ∈ L to update to s3. Now each node in R
is adjacent only to nodes playing s3, and thus, similarly, it is a best response for each node r ∈ R
to update to s4, and so forth. Because there is a non-converging sequence of best responses in M
(namely 〈s1, s2, s3, . . .〉), then there is also a non-converging sequence of best responses in M ⊕ G
(also 〈s1, s2, s3, . . .〉), so BRD does not always converge in the networked game.

Lemma 16. There exist a bipartite graph G and a base game M such that best-response dynamics
always converges in M but best-response dynamics does not always converge in M ⊕G (even if the
players’ best-response updates are done in round-robin order).

Proof. Let the graph G = K2,2 be the complete bipartite graph with nodes L = {w, x} and
R = {y, z} and edges L×R. Define the base game M as follows:

s1 s2 s3 s4 s5 s6

s1 3, 3 0, 0 0, 2 0, 2 2, 0 2, 0

s2 0, 0 3, 3 0, 2 0, 2 2, 0 2, 0

s3 2, 0 2, 0 3, 3 0, 0 0, 2 0, 2

s4 2, 0 2, 0 0, 0 3, 3 0, 2 0, 2

s5 0, 2 0, 2 2, 0 2, 0 3, 3 0, 0

s6 0, 2 0, 2 2, 0 2, 0 0, 0 3, 3

.

Intuitively, M is a version of 2 · RPS3 in which there are two strategies of each type (s1 and s2

are both “rock”; s3 and s4 are both “paper”; s5 and s6 are both “scissors”), and players receive
a payoff of 3 if they choose the same strategy. The key for BRD not always converging in K2,2 is
the following. Suppose that both nodes of each “side” of the graph always play the same of rock,
paper, or scissors, but always differ in which of the strategies within that category they play. Then
each “losing” node has two neighbors and can gain 2+2 from winning the two “RPS-type” games
against the other side of the graph, which outweighs the 3 from matching one of the other side’s
strategies; both nodes will switch to “winning” and the process will continue for the other pair.
However, in the non-networked version of M , BRD will always converge, because when there is
only one other player then it is better to match that player (for a payoff of 3) than to beat him in
RPS (for a payoff of 2).

More formally, we claim that BRD always converges—in zero or one best-response updates,
in fact—in the base game M . This is easy to see because in any strategy profile 〈si, sj 6=i〉, either
player’s best response is to match the strategy played by the other, yielding a payoff of 3 for both
players. Any strategy profile 〈si, si〉 is a pure Nash equilibrium, and thus BRD terminates after
this step.

Now we claim that BRD does not always converge in M ⊕G. Suppose that we start with the
strategy profile 〈s1, s2, s3, s4〉 for nodes 〈w, x, y, z〉, respectively, and updates proceed alphabetically,
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in round-robin fashion. Then the strategy profiles after each step of BRD are as follows:

explanation of updating node u’s update current strategy
payoff to u for ...

u Γ(u)’s strategies s1 s2 s3 s4 s5 s6 u’s best response w x y z

initial strategy profile s1 s2 s3 s4

w s3, s4 0 0 3 3 4 4 s5 s5 s2 s3 s4
x s3, s4 0 0 3 3 4 4 s6 s5 s6 s3 s4
y s5, s6 4 4 0 0 3 3 s1 s5 s6 s1 s4
z s5, s6 4 4 0 0 3 3 s2 s5 s6 s1 s2

w s1, s2 3 3 4 4 0 0 s3 s3 s6 s1 s2
x s1, s2 3 3 4 4 0 0 s4 s3 s4 s1 s2
y s3, s4 0 0 3 3 4 4 s5 s3 s4 s5 s2
z s3, s4 0 0 3 3 4 4 s6 s3 s4 s5 s6

w s5, s6 4 4 0 0 3 3 s1 s1 s4 s5 s6
x s5, s6 4 4 0 0 3 3 s2 s1 s2 s5 s6
y s1, s2 3 3 4 4 0 0 s3 s1 s2 s3 s6
z s1, s2 3 3 4 4 0 0 s4 s1 s2 s3 s4

Thus we have returned to the same strategy profile as the initial configuration, and BRD is stuck
in a loop. Therefore BRD does not always converge in M ⊕G.

Lemma 17. There exist a nonbipartite graph G and a base game M with a pure Nash equilib-
rium but for which best-response dynamics does not always converge in M such that best-response
dynamics does always converge on M ⊕G.

Proof. The graph G = K3 is the triangle, and the base game M is an augmented form of rock–
paper–scissors altered with a major tie deterrent and an additional matching-type strategy:

R P S X

R −4,−4 0, 1 1, 0 0, 0

P 1, 0 −4,−4 0, 1 0, 0

S 0, 1 1, 0 −4,−4 0, 0

X 0, 0 0, 0 0, 0 4, 4

.

Note that a pure Nash equilibrium does exist in M , namely the profile 〈X,X〉. However, best-
response dynamics does not always converge in M : if we begin in the strategy profile 〈R,P 〉, then
BRD ends up in a cycle (specifically, RP → SP → SR→ PR→ PS → RS → RP ). Now we must
argue that BRD always converges in M ⊕G, which we will do by examining players’ best responses
depending on the number of the three nodes in the graph who are playing strategy X.

BRD terminates immediately if we start it from the profile 〈X,X,X〉.
If we start BRD from any profile in which exactly two players have chosen X, then those two

players are already playing a best response. As soon as the non-X player has a chance to make an
update, her best response is to switch to X as well. BRD then terminates as above.

If we start BRD from any profile in which exactly zero players have chosen X, then the best
response for any player is to choose an RPS strategy that does not duplicate any other player’s
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choice. Therefore, as soon as all three players have gotten a chance to update, BRD will have as
its current strategy profile some permutation of 〈R,P, S〉. This profile is a pure Nash equilibrium,
and thus BRD terminates.

Finally, if we start BRD from any profile in which exactly one player has chosen X, then one
of two cases holds. One possibility is that the X-player makes the first update: in this case, just
as above, his best response is to choose an RPS strategy that does not duplicate any other player’s
choice. BRD then terminates as in the zero-X-player case. The other possibility is that a RPS-
player makes the first update: in this case, her best response is to play X. This update leads to a
profile with two players who have chosen X, and, again as above, BRD will always terminate from
such a profile.

7 Future Directions

Our work points to a substantial number of interesting open questions. We are currently pursuing
a number of these directions, which we briefly highlight here.

First, we would like to extend our price-of-anarchy analysis of coordination games to other or
more general base games. What properties must a base game possess for similar bounds to hold?

Second, we hope to develop stronger results based on particular structural aspects of the under-
lying network. A number of our results in this paper distinguish between graphs that are bipartite
and those that are not. Could stronger results be found if we restrict ourselves to other classes
of graphs, such as regular graphs, trees, or grids? Or, more ambitiously, could we perhaps begin
to understand games played on networks that are explicitly intended to represent social struc-
tures [3, 27,36, e.g.]?

Third, in Section 5 and in Lemma 11, we noted a correspondence between mixed Nash equilibria
in base games and pure Nash equilibria in their networked counterpart (for a complete k-partite
network). Can a more general correspondence be found for arbitrary networks? And could this
correspondence further our understanding of mixed Nash equilibria in general?

Fourth, what kind of general algorithmic results are possible in the context of networked games?
For example, can we give an efficient algorithm that, given a graph G as input, computes the
price of anarchy for a simple coordination game when it is played on the graph G? Under what
circumstances can one find pure Nash equilibria efficiently in networked games? The connection
to graphical games may be helpful here, though there are differences. (For example, even for a
complete graph G, the game M ⊕ G is still compactly representable; graphical games where the
underlying graph of direct influence is complete require an exponential-sized description.) Because
our M ⊕G networked games are more restrictive than graphical games, we might hope for efficient
algorithms in a broader context than what is known for graphical games. An encouraging sign
for this research direction is the recent work by Daskalakis and Papadimitriou [8] on reducing a
networked game Z ⊕G to a two-player zero-sum game when the base game Z is zero sum (or even
strictly competitive).

Finally, the framework we put forth in this work specifies how a large, complex game can be
generated via the composition of a simple base game and a network. To what extent might we
be able to perform the reverse operation: take a complex game and decompose it (even if only
approximately) into a network and one or more simple base games?
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