
Structural Properties and Tractability Results for Linear Synteny∗

David Liben-Nowell

Department of Computer Science

Carleton College

Northfield, MN 55057 USA

dlibenno@carleton.edu

Jon Kleinberg

Department of Computer Science

Cornell University

Ithaca, NY 14853 USA

kleinber@cs.cornell.edu

Abstract

The syntenic dista nce between two species is the minimum number of fusions, fissions, and
translocations required to transform one genome into the other. The linear syntenic distance, a
restricted form of this model, has been shown to be close to the syntenic distance. Both models
are computationally difficult to compute and have resisted efficient approximation algorithms
with non-trivial performance guarantees. In this paper, we prove that many useful properties
of syntenic distance carry over to linear syntenic distance. We also give a reduction from
the general linear synteny problem to the question of whether a given instance can be solved
using the maximum possible number of translocations. Our main contribution is an algorithm
exactly computing linear syntenic distance in nested instances of the problem. This is the first
polynomial time algorithm exactly solving linear synteny for a non-trivial class of instances. It
is based on a novel connection between the syntenic distance and a scheduling problem that has
been studied in the operations research literature.

1 Introduction

Computational models of the evolutionary distance between species have recently captured the
attention of the theoretical computer science community. These models are often based on genome-
level mutations that displace large pieces of genetic material, affecting the order of genes within
chromosomes. The distance between two genomes G1 and G2 is then defined as the minimum number
of these mutations required to transform G1 into G2. Examples of such models include the reversal
distance [2, 4, 5, 6, 7, 8, 16, 17], where the transformation of interest is the inversion of a segment
of a chromosome; the transposition distance [3, 12], in which a segment of a chromosome can be
extracted and reinserted at some other location in the chromosome; and the combined reversal and
transposition distance [11, 15].

Ferretti, Nadeau, and Sankoff [13] propose a somewhat different sort of measure of genetic
distance, known as the syntenic distance. This model abstracts away from the order of the genes
within chromosomes, and considers each chromosome as an unordered set of genes. The relevant
transformations are fusions, in which two chromosomes join into one, fissions, in which one chromo-
some splits into two, and translocations, in which two chromosomes exchange subsets of their genes.

∗Appears in Journal of Discrete Algorithms, Volume 2, Number 2, June 2004, pp. 207–228. A preliminary version
of this paper appears in Proceedings of the 11th Annual Conference on Combinatorial Pattern Matching (CPM ’00).
Minor changes have been made in this document; the last update was on 4 August 2005. Comments are welcome.

1

In practice, the order of genes within chromosomes is often unknown, and this model allows the
computation of the distance between species regardless. Additional justification follows from the
observation that interchromosomal evolutionary events may occur with relative rarity with respect
to intrachromosomal events. (For some discussion of this and related models, see [10, 20].)

Work on the syntenic distance was initiated by Ferretti et al. [13], who give a heuristic for
approximating this quantity, as well as empirical evidence of its success. Subsequent research has
yielded a simple 2-approximation and a proof of NP-completeness [9], and has established a number
of structural properties of the model [18].

The linear synteny problem is a restricted form of the general synteny problem that was defined
by DasGupta et al. [9]. In attempting to determine the distance from genome G1 to genome G2, we
consider only transformation sequences that take on the following form:

• First, the chromosomes of G1 are ordered and merged together in succession, as follows. The
ith transformation is a fusion unless all of the genes contained in some chromosome C of G2

have already been merged; in this case, transformation i is a translocation that produces C
and a chromosome containing all the other remaining merged genes.

• Then, after all the chromosomes of G1 have been merged, each succeeding transformation is a
fission producing some chromosome C of G2, where all of the genes of C remain in the giant
merged chromosome.

While linear syntenic distance is unmotivated biologically, its relation to the syntenic distance
makes it worthy of study. DasGupta et al. prove that the linear distance between two species is not
much larger than the unconstrained distance: if d is the syntenic distance for any instance, then
the linear syntenic distance is at most d + log4/3(d).

Our Results: Structural Properties of Linear Synteny. Although the additional constraints
on the linear version of the problem seem to make it simpler to reason about, little work has made
use of this model—possibly because many of the useful properties known for the unconstrained
model were not known to carry over to the linear case.

In this paper, we prove a number of structural results for linear syntenic distance. Most are
previously proven properties of the general model [9, 18] that we now extend to the linear case.
We prove a monotonicity property for instances of the linear synteny problem, showing a natural
ordering on problem instances. We give a method of canonicalization for linear move sequences:
given an arbitrary move sequence σ solving an instance, we produce another sequence σ ′ such
that (1) σ′ is no longer than σ, (2) σ′ solves the instance, and (3) in σ′, all fusions precede
all translocations. We also prove that duality holds in the linear model, i.e., that the measure is
indeed symmetric. These properties, coupled with the additional structure imposed by the problem
definition itself, make the linear problem much easier to consider.

Our Results: Solving Nested Linear Synteny. One of the most prominent features that
the various measures of genomic distance share is that no efficient algorithms are known for any
of them, and most have been shown to be NP-complete; see the hardness results for sorting by
reversals in [6, 7] and for the syntenic distance in [9]. (A notable exception to this hardness is the
version of the reversal distance when genes are oriented, in which the distance can be computed
efficiently [16].) Much of the previous work on these distances has focused on approximation

2

algorithms with good performance guarantees: this approach has yielded performance guarantees
of 11/8 for the reversal distance [5], 3/2 for the transposition distance [3], and 2 for the syntenic
distance [9, 13, 18].

In this paper, we present the first polynomial-time algorithm to solve a non-trivial class of
instances of the linear syntenic distance problem. For two chromosomes Ci and Cj in G1, let Si

and Sj be the set of chromosomes in G2 from which Ci and Cj draw their genes. Call an instance
nested if, for all chromosomes Ci and Cj in G1, either (1) Si and Sj are disjoint, (2) Si ⊆ Sj , or (3)
Sj ⊆ Si.

We give a polynomial-time algorithm that solves nested instances of the linear synteny problem,
by developing a connection between the linear syntenic distance and a scheduling problem that
has been studied in the operations research literature. Specifically, the scheduling problem to
which we relate syntenic distance is the following. (Precise definitions will be given in Section 6.)
Imagine a company that must undertake a sequence of tasks, each with an associated profit or loss.
Moreover, there is a partial order specifying dependencies among the tasks. The company’s goal
is to perform the tasks in the order that minimizes its maximum cumulative “debt” at any point
in time. When these dependencies have a series-parallel structure, polynomial-time solutions were
given independently by Abdel-Wahab and Kameda [1] and Monma and Sidney [19].

It is intuitively natural that genome rearrangement problems should have a connection to
scheduling; in seeking an optimal rearrangement sequence, one rapidly encounters the combina-
torial problem of “sequencing” certain rearrangement events as parsimoniously as possible. Our
polynomial-time result provides one of the first true formalizations of this intuition, and we hope
that it suggests other applications in this area for the voluminous body of work on scheduling.

2 Notational Preliminaries

Under the syntenic distance model, a chromosome is a subset of a set of genes, and a genome is
an unordered collection of chromosomes.1 A genome can be transformed by any of the following
operations, for S, T , U , and V non-empty sets of genes:

• a fusion (S, T) −→ U , where U = S ∪ T ;

• a fission S −→ (T, U), where T ∪ U = S; and

• a translocation (S, T) −→ (U, V), where U ∪ V = S ∪ T .

We sometimes refer to these operations as transformations or moves.
The syntenic distance D(G1,G2) between genomes G1 and G2 is the minimum number of fusions,

fissions, and translocations required to transform G1 into G2, disregarding any genes that appear in
only one of the two genomes.

The compact representation of the syntenic distance problem [9, 13] makes the goal of each
instance uniform and thus eases reasoning about move sequences. Consider an instance in which
we are attempting to transform genome A = A1, A2, . . . , Ak into genome B = B1, B2, . . . , Bn. In
the compact representation, we relabel each gene ` contained in a chromosome of A by the indices
of the chromosomes of B in which ` appears. Formally, we replace each chromosome Ai in A with

1We limit the genomes that we consider to those with disjoint chromosomes—i.e., without gene dupliation. For
economy of notation, however, we allow non-disjoint chromosomes in the definition. (The compact representation
defined below requires non-disjointness.)

3

⋃
`∈Ai

{j : ` ∈ Bj}, and attempt to transform these sets into the collection Gn = {1}, {2}, . . . , {n}.
As an example of the compact representation (given in [13]), consider the instance

A = {x, y}, (Chromosome 1)
{p, q, r}, (Chromosome 2)
{a, b, c} (Chromosome 3)

B = {p, q, x}, (Chromosome 1)
{a, b, r, y, z} (Chromosome 2).

The compact representation of A with respect to B is {1, 2}, {1, 2}, {2} and the compact represen-
tation of B with respect to A is {1, 2}, {1, 2, 3}.

Consider an instance S given in this compact representation, where S = S1, S2, . . . , Sk and⋃
i Si = {1, 2, . . . , n}. We refer to k as the number of sets in S, and n as the number of elements;

the syntenic distance of S is given by D(S) = D(S,Gn). If S is the compact representation of A
with respect to B, then D(S) = D(A,B) [9, 13]. In the remainder of this paper, we will consider
only instances in the compact representation.

We will say that two sets Si and Sj are connected if Si ∩ Sj 6= ∅, and that the sets are in the
same component.

The dual of an instance S = S1, S2, . . . , Sk is the instance dual(S) = S ′
1, S

′
2, . . . , S

′
n, where j ∈ S ′

i

if and only if i ∈ Sj . (For an instance S that is the compact representation of a genome A with
respect to a genome B, the instance dual(S) is the compact representation of B with respect to A.)
DasGupta et al. [9] prove that D(S) = D(dual(S)).

Let A = A1, A2, . . . , Ak and B = B1, B2, . . . , Bk be two collections of sets. If, for all i, we have
Ai ⊇ Bi, then we say that A dominates B.

Linear synteny. Consider an instance S = S1, S2, . . . , Sk. Formally, the linear syntenic distance
problem is the restricted form of the synteny problem in which we consider only move sequences of
the following form:

• Select one of the input sets Sπ1 , and set the initial merging set ∆1 := Sπ1 .

• The first k − 1 moves are fusions or translocations, restricted as follows:

– The ith of these moves takes the current merging set ∆i as input, along with one unused
input set Sπi+1 , and produces a new merging set ∆i+1 as output.

– If there is an element b that does not appear in any remaining unused input set—
i.e., the element b appears only in Sπi+1 and ∆i—then the move is the translocation
(∆i, Sπi+1) −→ (∆i+1, {b}), where ∆i+1 := (∆i ∪ Sπi+1) − {b}. We say that b has been
emitted or produced by this translocation.

– If there is no such element b, then the ith move simply fuses the two sets: (∆i, Sπi+1) −→
∆i+1, where ∆i+1 := ∆i ∪ Sπi+1 .

If a set Sj = {b} is the only set in a component (i.e., the element b appears only in Sj), then
we do not merge it, and instead simply ignore this set. Call such an Sj a lonely singleton.

• Let ∆k be the merging set after these k − 1 fusions and translocations have been completed.
Each of the next |∆k| − 1 moves are simple fissions.

For the ith move, where k ≤ i ≤ k + |∆k| − 2, let b be any element of ∆i and let the move be
the fission ∆i −→ ({b}, ∆i+1), where ∆i+1 := ∆i − {b}.

4

{1, 2, 5, 6}, {3} −→ {1, 2, 3, 5, 6}

{1, 2, 3, 5, 6}, {1, 2, 3, 4, 5} −→ {3}, {1, 2, 4, 5, 6}

{1, 2, 4, 5, 6}, {1, 2, 6} −→ {5}, {1, 2, 4, 6}

{1, 2, 4, 6}, {1, 2, 4} −→ {1}, {2, 4, 6}

{2, 4, 6} −→ {2}, {4, 6}

{4, 6} −→ {4}, {6}

Figure 1: The linear move sequence σι,S for the instance S = {1, 2, 5, 6}, {3}, {1, 2, 3, 4, 5}, {1, 2, 6},
{1, 2, 4}, where each merging set is underlined.

A linear move sequence can be completely determined by a permutation π = (π1, π2, . . . , πk) of the
input sets: the sets are merged in the order given by π, and the lexicographically smallest element
is emitted whenever more than one element can be selected. (Which element is emitted in any
translocation or fission does not affect the length of the move sequence.) Let σπ,S denote the move
sequence that results from using permutation π to order the input sets, and produces elements in
this lexicographic order. We will use ι to denote the identity permutation (1, 2, . . . , k).

In Figure 1, we give an example of a linear move sequence σι,S for the instance S = {1, 2, 5, 6},
{3}, {1, 2, 3, 4, 5}, {1, 2, 6}, {1, 2, 4}. The first move is a fusion, because all elements appear at least
one of the last three sets. The next three moves are translocations since some element does not
appear in the remaining unused input sets when the move occurs. The last two moves are fissions.

The linear syntenic distance of an instance S is D̃(S) := minπ |σ
π,S |, the number of moves in

the shortest linear move sequence for S.
Note that if a linear move sequence performs α fusions in the first k − 1 moves, then the move

sequence contains k−α−1 translocations. After the k−1 fusions and translocations are complete,
there are n−k+α+1 elements left in the merging set, since exactly one element is eliminated by each
translocation. Therefore, n−k+α fissions must be performed to eliminate the remaining elements.
Thus the length of the linear move sequence is n + α − 1 moves. (Every move either is a fusion or
removes one element, and all but the last element must be removed.) We can therefore view the
linear syntenic distance problem as the problem of maximizing the number of translocations in the
sequence.

Computing the linear syntenic distance between two genomes is also known to be NP-hard [9].
The crucial theorem about linear syntenic distance is that it is not much larger than the general
syntenic distance:

Theorem 2.1 (DasGupta et al. [9]) D(S) ≤ D̃(S) ≤ D(S) + log4/3(D(S)). 2

We will say that an instance S with n elements and k sets is linear exact if D̃(S) = max(n, k)−1.
An instance is linear exact if and only if it can be solved using translocations whenever possible,
i.e., fusions and fissions are only used to make up for differences in the number of elements and the
number of sets.

5

3 Properties of Linear Synteny

In this section, we prove a number of structural properties for the linear syntenic distance. The
majority of these are properties of the general model previously proven in [9, 18] which we now
extend to the linear distance.

3.1 Monotonicity

We prove a monotonicity property for instances of the linear synteny problem: if an instance S
dominates an instance T , then D̃(S) ≥ D̃(T). The same property was shown for D(·) in [18].
We actually prove a slightly stronger claim: for any permutation π, we have |σπ,T | ≤ |σπ,S |. This
stronger property will sometimes be useful in recovering an optimal move sequence for T .

Lemma 3.1 Let S = S1, S2, . . . , Sk and T = T1, T2, . . . , Tk be two instances such that S dominates
T , and let π be any permutation of (1, 2, . . . , k). Then |σπ,T | ≤ |σπ,S |.

Proof. If T contains more empty sets or lonely singletons than S, then the length of the sequence
σπ,T is not affected by their presence since they do not need to be merged at all. In our analysis,
we will count the merging of these sets against the length of σπ,T anyway; this only increases our
estimate of its length.

Let n and n′ be the number of elements in S and T , respectively. We assume that the elements
are ordered such that, whenever possible, if move σπ,S

i emits an element `, then σπ,T
i also emits

element `, and vice versa; any such reordering does not affect |σπ,S | or |σπ,T |. To prove the lemma,
it suffices to show the following:

(∗) For any translocation σπ,S
i that emits an element b, either (i) the element b is emitted in some

move in σπ,T
1 , σπ,T

2 , . . . , σπ,T
i or (ii) the instance T does not contain b.

If σπ,S and σπ,T contain α and α′ fusions, respectively, then (∗) implies that α′ − α ≤ n − n′

since each extra fusion in σπ,T can be charged to an element that does not appear in T . Then
|σπ,S | = n + α − 1 ≥ n′ + α′ − 1 = |σπ,T |, which proves the lemma.

To prove (∗), suppose to the contrary that it does not hold, and let ` be the minimum index such
that all of the following hold: (1) σπ,S

` is a translocation emitting some element b; (2) the element
b is not emitted in any of σπ,T

1 , σπ,T
2 , . . . , σπ,T

` ; and (3) the element b does appear somewhere in the
genome T .

Let χ` be the set of elements emitted during σπ,S
1 , σπ,S

2 , . . . , σπ,S
`−1, and let χ′

` be the set of elements
emitted by σπ,T

1 , σπ,T
2 , . . . , σπ,T

`−1. The current merging sets just before move ` are thus

∆ = [Sπ1 ∪ Sπ2 ∪ · · · ∪ Sπ`
] − χ` Γ = [Tπ1 ∪ Tπ2 ∪ · · · ∪ Tπ`

] − χ′
`.

The elements in the remaining unused input sets are

∆ = Sπ`+2
∪ Sπ`+3

∪ · · · ∪ Sπk
Γ = Tπ`+2

∪ Tπ`+3
∪ · · · ∪ Tπk

.

Note that ∆ ⊇ Γ since S dominates T .
Since σπ,S

` is a translocation emitting the element b, we know b ∈ ∆ ∪ Sπ`+1
and b /∈ ∆. From

this and ∆ ⊇ Γ, we have that b /∈ Γ. So if b ∈ Γ ∪ Tπ`+1
, the move σπ,T

` could emit b, but, by
assumption, it does not. Then b /∈ Γ, b /∈ Tπ`+1

, and b /∈ Γ.

6

The elements of T are all contained in χ′
`, Γ, Tπ`+1

, and Γ. Thus either b ∈ χ′
` was emitted

earlier in the sequence σπ,T , or b does not appear anywhere in the genome T . This contradicts our
assumption. 2

Corollary 3.2 (Linear Monotonicity) If S dominates T , then D̃(S) ≥ D̃(T).

Proof. Suppose S has k sets, and let π be a permutation of (1, 2, . . . , k) so that σπ,S is optimal.
Then we have D̃(S) = |σπ,S | ≥ |σπ,T | ≥ D̃(T) by Lemma 3.1. 2

3.2 Merging Set Expansion

In this section, we show the merging set expansion property for linear syntenic distance: for an
instance S in which some set ∆ is designated as the current merging set, if we add to ∆ any of the
elements that appear in S, then the linear syntenic distance does not change.

We will subsequently consider instances S = ∆, S1, S2, . . . , Sk in which the set ∆ is already
designated as the merging set; we can consider such an instance by limiting our attention to
permutations π where π1 = 1.

Lemma 3.3 Let S = ∆, S1, S2, . . . , Sk and T = ∆ ∪ T, S1, S2, . . . , Sk be two instances, for any set
T ⊆ S1∪S2∪· · ·∪Sk. For any permutation π of (1, 2, . . . , k+1) with π1 = 1, we have |σπ,S | = |σπ,T |.

Proof. Note that T dominates S, so by Lemma 3.1, we have |σπ,S | ≤ |σπ,T |.
For the other direction, assume that the elements are ordered such that, whenever possible,

σπ,S
i and σπ,T

i emit the same element. Suppose that |σπ,S | < |σπ,T |. Then σπ,S must do more
translocations than σπ,T . Let ` be the index of the first move in which σπ,S

` produces some element
b by translocation, and σπ,T

` cannot produce b. The element b cannot have been emitted earlier
in σπ,T

` , because of our assumption that, whenever possible, the two move sequences produce the
same element, and the fact that we have chosen ` to be the first time this cannot be done.

Therefore (i) σπ,S
` emits b, but (ii) σπ,T

1 , σπ,T
2 , . . . , σπ,T

` cannot emit b. From (i), we know
that b appears in ∆ ∪ Sπ1 ∪ · · · ∪ Sπ`

but not in Sπ`+1
∪ · · · ∪ Sπk

. But clearly b also appears in
∆ ∪ T ∪ Sπ1 ∪ · · · ∪ Sπ`

, and still does not appear in Sπ`+1
∪ · · · ∪ Sπk

. Thus σπ,T
` can produce b if

it has not been emitted by a previous move, violating (ii). 2

Corollary 3.4 (Merging Set Expansion) Let S = ∆, S1, S2, . . . , Sk be an instance in which ∆
is the current merging set. Let the instance T = ∆∪T, S1, S2, . . . , Sk in which ∆∪T is the merging
set, for any set T ⊆ S1 ∪ S2 ∪ · · · ∪ Sk. Then D̃(S) = D̃(T).

Proof. By linear monotonicity, D̃(S) ≤ D̃(T).
Let π be a permutation of (1, 2, . . . , k+1) where π1 = 1, i.e., in which ∆ (or ∆∪T) is the initial

merging set, so that σπ,S is optimal. Then D̃(S) = |σπ,S | = |σπ,T | ≥ D̃(T). 2

7

3.3 Linear Canonicalization

We now prove the existence of canonical optimal linear move sequences, in which all fusions occur
before all translocations, for every instance S. DasGupta et al. [9] proved the analogous result for
the general syntenic distance.

Theorem 3.5 (Linear Canonicalization) For any instance S = S1, S2, . . . , Sk, there exists a
permutation π of (1, 2, . . . , k) such that σπ,S is optimal and has all fusions preceding all transloca-
tions.

Proof. Let π be a permutation of (1, 2, . . . , k) such that σπ,S is optimal and has as many initial
fusions as possible. Suppose that move σπ,S

i is the last initial fusion and σπ,S
j is the first non-initial

fusion, for j ≥ i + 2. (If there is no non-initial fusion, we are done.)
Let π′ = (π1, . . . , πi+1, πj+1, πi+2, . . . , πj , πj+2, . . . , πk) be π modified so that πj+1 is immediately

after πi+1. We claim that σπ′,S is also optimal, and has one more initial fusion than σπ,S . This
violates our choice of π and proves the theorem. Again we assume that the elements are ordered
so that, whenever possible, the moves σπ,S

i and σπ′,S
i emit the same element.

First we claim that σπ′,S has i+1 initial fusions. Clearly, the first i moves of the two sequences
are identical, since they merge exactly the same sets (and exactly the same sets remain unmerged).
Thus we need only prove that σπ′,S

i+1 is a fusion. Suppose that it were a translocation, i.e., there
is some element ` that appears only in the sets Sπ1 , Sπ2 , . . . , Sπi+1 , Sπj+1 . If ` ∈ Sπj+1 , then the
move σπ,S

j would be a translocation, since the last occurrence of the element ` is in the set Sπj+1 .
If ` /∈ Sπj+1 , and instead ` ∈ Sπ1 ∪ Sπ2 ∪ · · · ∪ Sπi+1 , there would be a translocation somewhere in
σπ,S

1 , σπ,S
2 , . . . , σπ,S

i , since ` does not appear outside the first i + 1 sets. Neither of these occur, so
there is no such `, and σπ′,S

i+1 is a fusion.
For optimality, we claim that every element emitted by translocation in σπ,S is emitted in σπ′,S .

Note that, for all j + 2 ≤ r ≤ k, we have πr = π′
r, which implies that any element b emitted by

a move in σπ,S
j+1, σ

π,S
j+2, . . . , σ

π,S
k−1 is also emitted by some move in σπ′,S

j+1 , σπ′,S
j+2 , . . . , σπ′,S

k−1 unless b were
previously emitted in the sequence σπ′,S . For earlier moves, suppose that σπ,S

r produces an element
b by translocation, for some 1 ≤ r ≤ j. That is, the element b appears in Sπ1 , Sπ2 , . . . , Sπr+1 and
not in Sπr+2 , Sπr+3 , . . . , Sπk

. Obviously having already merged Sπj+1 changes neither the presence
of b in the current merging set nor the absence of b in the unused input sets. Thus σπ′,S

r+1 is a
translocation emitting b, unless the element b were previously emitted in σπ′,S . 2

3.4 Duality

Finally, we show the duality property D̃(S) = D̃(dual(S)) for the linear syntenic distance; this
property was proven for the unconstrained syntenic distance by DasGupta et al. [9].

Proposition 3.6 Let S = S1, S2, . . . , Sk and T = T1, T2, . . . , Tk be two instances. If S dominates
T , then dual(S) dominates dual(T).

Proof. Suppose not. Let dual(S) = S ′
1, S

′
2, . . . , S

′
n1

and dual(T) = T ′
1, T

′
2, . . . , T

′
n2

, where n2 ≤ n1.
Since dual(S) does not dominate dual(T), there is some set i such that S ′

i 6⊇ T ′
i . That is, there

is some element ` ∈ T ′
i but ` /∈ S′

i. By the definition of the dual, this means that the element i ∈ T`

but i /∈ S`. This violates the assumption that S dominates T . 2

In our proof of linear duality, we will consider the following special class of instances:

8

Definition 3.7 For α ≤ min(n, k) − 1, the instance Kα,n,k consists of the k sets S1, S2, . . . , Sk:

— For 1 ≤ i ≤ k − α, we have Si = {1, 2, . . . , n}.

— For k − α + 1 ≤ i ≤ k, we have Si = {1, 2, . . . , n − i + k − α}.

Note the following facts:

• D̃(Kα,n,k) = n + k − α − 3. Merging the sets in the stated order requires k − α − 2 fusions,
α + 1 translocations, and n − α − 2 fissions, or n + k − α − 3 moves total.

In the first m − 1 moves of any linear move sequence, only elements that appear in at most
m sets can be emitted [18]. Here, there are only α elements that appear in at most k − 1
sets, so the first k − 2 moves can emit at most α elements. Thus there are at least k − 2 − α
fusions in any linear move sequence for Kα,n,k, and D̃(Kα,n,k) ≥ n + k − α − 3.

• dual(Kα,k,n) = Kα,n,k. We can verify this straightforwardly: the first n − α elements appear
in all sets, the element n − α + 1 appears in all but Sk, etc.

Theorem 3.8 (Linear Duality) For all S, D̃(S) = D̃(dual(S)).

Proof. Suppose not, i.e., suppose that D̃(S) < D̃(dual(S)). Let n and k be the number of elements
and sets in S, respectively.

Relabel the sets and elements of S such that the move sequence σι,S is optimal, canonical, and
produces elements in the order n, n−1, . . . , 1. Note that this relabeling does not change D̃(S). Let
D̃(S) = n + k − α − 3.

Notice that the element n− i does not appear outside the first k−α+ i sets, since otherwise the
(k −α + i− 1)th move could not produce element n− i. Therefore, we have that Kα,n,k dominates
S. Thus dual(Kα,n,k) dominates dual(S) by Proposition 3.6. Linear monotonicity, along with the
fact that dual(Kα,k,n) = Kα,n,k, then gives us

D̃(S) = D̃(Kα,n,k) = D̃(dual(Kα,k,n)) ≥ D̃(dual(S)).

This contradicts the assumption and proves the theorem. 2

4 From General Linear to Exact Linear Synteny

In this section, we give a reduction from the general linear to the exact linear synteny problem, a
conceptually simpler problem. We first define an augmentation to instances:

Definition 4.1 For an instance S = S1, S2, . . . , Sk, and for any 1 ≤ i ≤ k, let

Si↑δ := S1, S2, . . . , Ŝi, . . . , Sk,

where Ŝi = Si ∪ {a1, a2, . . . , aδ}, and, for all 1 ≤ ` ≤ δ and 1 ≤ j ≤ k, we have a` 6∈ Sj.

The intuition behind this instance is that we have augmented Si with extra elements that will be
emitted during would-be fusions. This new instance can be thought of as the original with δ fusion
“coupons” that can be used to turn fusions into translocations. For some choices of i and δ, this
increases the number of elements and translocations without a corresponding increase in distance.

9

Theorem 4.2 Let S be an instance with n elements. Suppose σπ,S is a move sequence solving S
such that |σπ,S | = n + α − 1. Then |σπ,Sπ1↑δ

| = n + max(α, δ) − 1.

Proof. There are α fusions in σπ,S . When the jth of these fusions occurs, σπ,Sπ1↑δ
could emit the

element aj (since aj does not appear in any of the unused input sets, and is in the merging set as
of the first move). Every translocation in the original move sequence remains a translocation in
the new sequence since we have the same remaining unused input sets at every point.

Thus we can eliminate fusions from the move sequence using a-elements, until we run out of
fusions or a-elements with which to eliminate them. Thus we have α − δ fusions left if there are
too many fusions, and therefore |σπ,Sπ1↑δ

| = n + δ + max(α − δ, 0) − 1 = n + max(α, δ) − 1. 2

Consider an instance S = S1, S2, . . . , Sk for which we somehow know that there is an optimal
linear move sequence σπ,S where π1 ∈ Γ, for some set Γ ⊆ {1, 2, . . . , k}. For any instance S with k
sets, of course, we can take Γ = {1, 2, . . . , k}, but for certain classes of instances we can prove that
there is an optimal move sequence with π1 ∈ Γ for a much smaller set Γ. The algorithm that we
will develop in Section 7.3 loops over each possible value of π1 ∈ Γ, so a smaller set Γ will yield a
better running time.

Proposition 4.3 Let S be an instance with n elements and k sets, and let Γ be some subset of
{1, 2, . . . , k}. If there exists an optimal move sequence σπ,S solving S such that π1 ∈ Γ, then

[
∃i ∈ Γ D̃(Si↑δ) = n + δ − 1

]
⇐⇒ D̃(S) ≤ n + δ − 1.

Proof. Immediate from monotonicity and Theorem 4.2. 2

5 Nested Synteny

In this section, we consider the special class of instances in which all non-disjoint sets are totally
ordered by the subset relation:

Definition 5.1 (Nested Synteny) An instance S = S1, S2, . . . , Sk is nested if, for all 1 ≤ i ≤ k
and 1 ≤ j ≤ k, either (1) Si ∩ Sj = ∅, (2) Si ⊆ Sj, or (3) Sj ⊆ Si.

In each component of a nested instance of synteny, call the set containing all elements in the
component the root of the component. If there are multiple copies of this set in some component,
we will identify the root as the copy with the smallest index.

Lemma 5.2 If S = S1, S2, . . . , Sk and, for some 1 ≤ i ≤ k and 1 ≤ j ≤ k, we have Si ⊆ Sj, then
there exists an optimal linear move sequence solving S in which Sj is merged before Si.

Proof. Suppose π is a permutation of (1, 2, . . . , k) such that σπ,S is optimal and i appears before j
in π. (If there is no such π, then we are done.) Let πx = i.

If we have x ≥ 3, then let T = T1, T2, . . . , Tk′−3, Si, Sj , ∆ be the instance resulting after the
completion of the first x−2 moves σπ,S

1 , σπ,S
2 , . . . , σπ,S

x−2, where ∆ is the merging set after these x−2
moves. (For ease of reference, we have named the sets of T in this particular order, but of course
Si, Sj , and ∆ may be at a different point in the sequence of sets of the instance.) The next move
σπ,S

x−1 would merge Si. We have two cases for this move:

10

• σπ,S
x−1 is a fusion, (∆, Si) −→ ∆ ∪ Si.

We define the following instances, where the last set is designated as the current merging set:

U1 := T1, T2, . . . , Tk′−3, Sj , ∆ ∪ Si

U2 := T1, T2, . . . , Tk′−3, Sj , ∆ ∪ Sj

U3 := T1, T2, . . . , Tk′−3, Si, ∆ ∪ Sj .

By Corollary 3.4, since ∆∪Sj ⊇ ∆∪Si and obviously Sj ⊆ T1 ∪T2 ∪ · · · ∪Tk′−3 ∪Sj , we have

D̃(U1) = D̃(U2). By linear monotonicity, we have D̃(U2) ≥ D̃(U3), since Si ⊆ Sj . Therefore

D̃(U1) ≥ D̃(U3).

The fusion σπ,S
x−1 = (∆, Si) −→ ∆ ∪ Si produces the instance U1. If we instead complete the

fusion (∆, Sj) −→ ∆ ∪ Sj , then the resulting instance is U3. Therefore, fusing Sj instead of
fusing Si yields an instance that is no harder, and making this move instead cannot increase
the distance.

• σπ,S
x−1 is a translocation, (∆, Si) −→ (∆ ∪ Si − {b}, {b}) for some b ∈ ∆∪ Si and b /∈ T1 ∪ T2 ∪

. . . ∪ Tk′−3 ∪ Sj .

Consider the following instances, where the last set is again designated as the merging set:

V1 := T1, T2, . . . , Tk′−3, Sj , ∆ ∪ Si − {b}

V2 := T1, T2, . . . , Tk′−3, Sj , ∆ ∪ Sj − {b}

V3 := T1, T2, . . . , Tk′−3, Si, ∆ ∪ Sj − {b}.

The move σπ,S
x−1 = (∆, Si) −→ (∆ ∪ Si − {b}, {b}) produces V1. By successively applying

Corollaries 3.4 and 3.2, as in the fusion case, we have that D̃(V1) = D̃(V2) ≥ D̃(V3).

If instead of doing σπ,S
x−1, we merge Sj instead, we can still complete a translocation: we have

b ∈ ∆ ∪ Sj ⊇ ∆ ∪ Si, and b /∈ Si ⊆ Sj , so this move is (∆, Sj) −→ (∆ ∪ Sj − {b}, {b}). The
result of this move is V3, so by the above, making this move instead can only decrease the
length of the sequence.

In either case, we have shown how to merge Sj before Si without increasing the length of the move
sequence, for any x ≥ 3. The proof for x ∈ {1, 2} is strictly analogous (by considering the previous
merging set ∆ to be Sπ(2−x)

, the other set merged in the first move of σπ,S). 2

Corollary 5.3 For any instance S = S1, S2, . . . , Sk, there exists an optimal move sequence σπ,S

solving the instance such that for all 1 ≤ i < j ≤ k, we have Sπi
6⊂ Sπj

.

Proof. The transformation described in Lemma 5.2 can be applied to the lexicographically mini-
mum violating pair 〈i, j〉, and does not create any new lexicographically smaller violations. Thus
repeatedly fixing the first violation in an arbitrary optimal linear move sequence eventually leads
to an optimal sequence with no violations. 2

Corollary 5.4 If S is a nested instance with roots R1, R2, . . . , Rp, then there exists an optimal
move sequence σπ,S solving S such that π1 ∈ {R1, R2, . . . , Rp}. 2

Note that if S is nested, then so is SRq↑δ since we are only adding extra elements to the root of
some component.

11

6 The Minimum Loan Problem

We now formally define the Min Loan problem and review previous results.

Definition 6.1 Let T = {T1, T2, . . . , Tn} be a set of tasks. Let v : T −→ Z be a function giving
the profit of each task. Then, for π a permutation of (1, 2, . . . , n), the quantity

Vπ(i) :=
i∑

j=1

v(Tπj
)

is the cumulative profit of the first i tasks under π.

Note that if tasks have negative profits (i.e., costs), then the cumulative profit can also be negative.
We will say that a permutation π respects a partial order ≺ on T if, for all i < j, we have Tπj

6≺ Tπi
.

This gives rise to the following scheduling problem:

Definition 6.2 (Min Loan) Let T = {T1, T2, . . . , Tn} be a set of tasks. Let ≺ be a partial order
on T defining a precedence relation among the tasks. Let v : T −→ Z be a function giving the
profit of each task. Then 〈T,≺, v〉 is an instance of the minimum loan problem: find

max
π

min
0≤i≤n

Vπ(i)

for π respecting ≺.

(Abdel-Wahab and Kameda [1] define this problem in terms of the cumulative cost of the tasks
rather than the cumulative profit.) Notice that for any permutation π, we have Vπ(0) = 0, so the
optimum value for any instance of the Min Loan problem is always non-positive.

The intuition for this problem is the following: suppose that there is a company with a set of
jobs that it has chosen to undertake. Each job will result in either a profit or a loss. The jobs
must respect some precedence constraints, e.g., the engines must be built before the cars can be
assembled. The minimum loan is the minimum amount of initial funding necessary to be able
complete all of the jobs without ever running out of money. (Alternatively, this is the maximum
amount of debt for the company at the worst financial moment.)

The Min Loan problem is NP-complete in general [14, p. 238], but Abdel-Wahab and Kameda [1]
give an O(n2) algorithm when ≺ is series-parallel. Monma and Sidney [19] independently give a
polynomial-time algorithm for this case as well. A partial order is series-parallel when its associated
DAG is a series-parallel graph, according to the following rules:

• a graph with two nodes with an edge from one to the other is series-parallel;

• if G is series-parallel, then so is the graph that results from adding a node to the middle of
any edge in G; and

• if G is series-parallel, then so is the graph that results from duplicating any edge in G.

We will not go into the details of the algorithms of Abdel-Wahab and Kameda or Monma and
Sidney here; rather, we will use them in a black box fashion in our approach to the nested linear
synteny problem in the following section.

12

7 Minimum Loans and Exact Linear Synteny

In this section, we establish a connection between a given nested instance of the linear syntenic
distance problem and a class of series-parallel instances of the Min Loan problem. Throughout
this section, we will consider a nested instance S = S1, S2, . . . , Sk with n ≥ k elements and p
components. Let the roots of the components be SR1 , SR2 , . . . , SRp .

Our p Min Loan instances will have different profit functions, but will all consider the same
set of tasks and the same precedence constraints.

Definition 7.1 Define T = {T1, T2, . . . , Tk, Tfirst , Tlast} to be a set of tasks.

Intuitively, for each 1 ≤ j ≤ k, the completion of the task Tj denotes the merging of the set Sj

with the current merging set. The tasks Tfirst and Tlast are dummy tasks required to make our
precedence relation series-parallel, and have no meaning in terms of a linear move sequence solving
S. (In each of our Min Loan instances, the profit associated with Tfirst and Tlast will be zero; thus
their presence does not in any way affect the optimal minimum loan.)

Definition 7.2 Let ≺ be the smallest relation such that, for all 1 ≤ j ≤ k and 1 ≤ ` ≤ k, we have

1. Tfirst ≺ Tlast , Tfirst ≺ Tj, and Tj ≺ Tlast ;

2. Tj ≺ T` if Sj ⊃ S`; and

3. Tj ≺ T` if Sj = S` and j ≤ `.

Lemma 7.3 The precedence relation ≺ is series-parallel.

Proof. For a nested instance S, we have a forest of inclusion constraints, with the roots of the trees
corresponding to the roots of the components in S. With the inclusion of Tfirst , this becomes a
tree; with Tlast included, every leaf of the tree points to Tlast .

We outline the method for constructing ≺ using the rules of series-parallel relations. Start with
a single edge from Tfirst to Tlast . Now if any node Ti in the graph has γ ≥ 1 children in the inclusion
tree, duplicate γ − 1 times the edge from Ti to Tlast and add a node to each such edge, and label
the nodes as the children of Ti. Iterating this process yields the relation ≺. 2

Note that, regardless of the profit function, the only feasible solutions to any Min Loan problem
with ≺ as the precedence constraints must complete Tfirst and Tlast as the first and last tasks in the
sequence, respectively. Throughout the remainder of this section, we will only consider sequences
that respect ≺, and we will henceforth omit reference to Tfirst and Tlast . (The presence of these
tasks is solely to make ≺ series-parallel.) From now on, all references to permutations π of the
tasks will be permutations of the tasks T1, T2, . . . , Tk.

We will consider p different instances of Min Loan, using the following p profit functions:

Definition 7.4 For any 1 ≤ i ≤ k and 1 ≤ q ≤ p, the q-profit of task Ti is the following:

vq(Ti) :=

∣∣∣Si −
⋃

j:Ti≺Tj
Sj

∣∣∣ − 1 if i 6= Rq

∣∣∣Si −
⋃

j:Ti≺Tj
Sj

∣∣∣ if i = Rq.

Let vq(Tfirst) := 0 and vq(Tlast) := 0.

13

Let V q
π (i) :=

∑i
j=1 vq(Tπj

) be the cumulative q-profit of the first i steps under permutation π.
Intuitively, the profit of a task Tj is one less than the number of elements that can be emitted

via translocation once set Sj is merged; we must decrease the profit of each task Tj by one to
account for the element that is emitted during the merging of set Sj . We consider p different profit
functions v1, v2, . . . , vp since the merging of the first two sets only requires a single element to
be emitted, and one of the roots R1, R2, . . . , Rp will be the first task completed. If the tasks are
ordered so that cumulative profit is always non-negative, then merging the sets in that order means
that there is always an element in the merging set that can be emitted at every stage of the linear
move sequence. Then each set can be merged via a translocation, and the instance is linear exact.

We write opt(T,≺, vq) to denote the optimum value for the Min Loan instance 〈T,≺, vq〉. In
this section, we will prove the following result, and then apply it to give an efficient algorithm for
nested instances of the linear syntenic distance problem:

Theorem 7.5 Let S be a nested instance with n elements, k ≤ n sets, and p components with roots
R1, R2, . . . , Rp. Then S is linear exact if and only if, for some 1 ≤ q ≤ p, we have opt(T,≺, vq) = 0.

Proof. Immediate from Lemma 7.11, which establishes the forward implication, and Lemma 7.14,
which proves the reverse implication. 2

7.1 From Linear Synteny to Minimum Loans

First we prove that, given a linear exact nested instance S of the linear syntenic distance problem,
there is some 1 ≤ q ≤ p so that the optimum value opt(T,≺, vq) is zero.

Definition 7.6 For a permutation π of (1, 2, . . . , k):

1. Define xS
π (i) := 1 if σπ,S

i is a translocation, and xS
π (i) := 0 otherwise.

2. Let χS
π (i) be the set of elements emitted by translocation during σπ,S

1 , σπ,S
2 , . . . , σπ,S

i .

Proposition 7.7 For all instances S with k sets, for every π a permutation of (1, 2, . . . , k), and
for all 0 ≤ i ≤ k − 1, we have |χS

π (i)| ≤ i.

Proof. At most one element can be emitted per move. 2

Proposition 7.8 For all instances S = S1, S2, . . . , Sk, for every π a permutation of (1, 2, . . . , k)
that respects ≺, and for all 1 ≤ i ≤ k, we have

Sπi
−

⋃

j:Tπi
≺Tπj

Sπj
= Sπi

−
⋃

j>i

Sπj
.

Proof. If Tπi
≺ Tπj

, then j > i since π respects ≺. Thus
⋃

j:Tπi
≺Tπj

Sπj
⊆

⋃
j>i Sπj

, and we have
Sπi

−
⋃

j:Tπi
≺Tπj

Sπj
⊇ Sπi

−
⋃

j>i Sπj
.

For the other direction, consider an arbitrary element b ∈ Sπi
−

⋃
j:Tπi

≺Tπj
Sπj

, so that b ∈ Sπi

and b /∈
⋃

j:Tπi
≺Tπj

Sπj
. We claim that b /∈

⋃
j>i Sπj

, either: for every j > i, either Tπi
≺ Tπj

or
Sπi

∩ Sπj
= ∅, since S is nested and π respects ≺. 2

14

Proposition 7.9 For all nested instances S = S1, S2, . . . , Sk containing p components with roots
R1, R2, . . . , Rp, and for some 1 ≤ q ≤ p, there exists an optimal linear move sequence σπ,S so that
π1 = Rq and π respects ≺.

Proof. Let σπ′,S be an optimal move sequence respecting the subset precedence relation (by Corol-
lary 5.3), and let Rq be the root of the component containing Sπ′

1
. Then Sπ′

1
= SRq since all other

sets in that component are subsets of SRq . We can make this sequence respect ≺ trivially by using
identical sets in increasing order of index. 2

Lemma 7.10 Consider any nested linear exact instance S = S1, S2, . . . , Sk with n ≥ k elements
and p components with roots R1, R2, . . . , Rp, and any permutation π of (1, 2, . . . , k) such that σπ,S

is optimal, π1 = Rq for some 1 ≤ q ≤ p, and π respects ≺. Then for all 0 ≤ i ≤ k, we have

V q
π (i) =

∣∣∣
⋃

j≤i
Sπj

−
⋃

j>i
Sπj

∣∣∣ −
∣∣χS

π (i − 1)
∣∣ .

Proof. We proceed by induction on i.

• [i = 0]. Then we have V q
π (i) =

∑0
j=1 vq(Tπj

) = 0 and
⋃

j≤0 Sπj
= ∅ = χS

π (−1).

• [i = 1]. Then, by Proposition 7.8 and the fact that χS
π (0) = ∅, we have

V q
π (1) =

∑1

j=1
vq(Tπj

)

= vq(Tπ1)

=

∣∣∣∣SRq −
⋃

j:Tπ1≺Tj

Sj

∣∣∣∣

=
∣∣∣
⋃

j≤1
Sπj

−
⋃

j>1
Sπj

∣∣∣

=
∣∣∣
⋃

j≤1
Sπj

−
⋃

j>1
Sπj

∣∣∣ − |χS
π (0)|.

• [i ≥ 2]. Then we have

V q
π (i) =

i∑

j=1

vq(Tπj
) = vq(Tπi

) +
i−1∑

j=1

vq(Tπj
) = vq(Tπi

) + V q
π (i − 1) (1)

by the definition of V q. Applying the induction hypothesis and the definition of vq (since
πi 6= Rq), we have

V q
π (i) =

∣∣∣∣Sπi
−

⋃
j:Tπi

≺Tπj

Sπj

∣∣∣∣ − 1 +
∣∣∣
⋃

j≤i−1
Sπj

−
⋃

j>i−1
Sπj

∣∣∣ −
∣∣χS

π (i − 2)
∣∣ . (2)

Since σπ,S is optimal, and S is linear exact, and n ≥ k, the move σπ,S
i−1 must be a translocation

emitting a new element, so |χS
π (i − 1)| = 1 + |χS

π (i − 2)|. Therefore,

V q
π (i) =

∣∣∣∣Sπi
−

⋃
j:Tπi

≺Tπj

Sπj

∣∣∣∣ +
∣∣∣
⋃

j≤i−1
Sπj

−
⋃

j>i−1
Sπj

∣∣∣ −
∣∣χS

π (i − 1)
∣∣ . (3)

15

By Proposition 7.8,

V q
π (i) =

∣∣∣Sπi
−

⋃
j>i

Sπj

∣∣∣ +
∣∣∣
⋃

j≤i−1
Sπj

−
⋃

j>i−1
Sπj

∣∣∣ −
∣∣χS

π (i − 1)
∣∣ . (4)

The first term of this expression is simply the number of elements that appear in Sπi

and never in Sπi+1 , Sπi+2 , . . . , Sπk
. The second is the number of elements that appear in

Sπ1 , Sπ2 , . . . , Sπi−1 and never in Sπi
, Sπi+1 , . . . , Sπk

. We can simply combine these terms since
these two sets are disjoint:

V q
π (i) =

∣∣∣
⋃

j≤i
Sπj

−
⋃

j>i
Sπj

∣∣∣ −
∣∣χS

π (i − 1)
∣∣ . (5)

This proves the lemma. 2

Lemma 7.11 For all nested linear exact instances S with n elements, k ≤ n sets, and p compo-
nents, there exists some q ∈ {1, 2, . . . , p} such that opt(T,≺, vq) = 0.

Proof. Let σπ,S be an optimal move sequence solving S = S1, S2, . . . , Sk such that π1 = Rq and π
respects ≺, for some q ∈ {1, 2, . . . p}. (One exists by Proposition 7.9.) For all 1 ≤ i ≤ k − 1, we
have that χS

π (i − 1) is a subset of
⋃

j≤i Sπj
−

⋃
j>i Sπj

, since only elements that do not appear in

the remainder of the genome can be emitted. Thus V q
π (i) = |

⋃
j≤i Sπj

−
⋃

j>i Sπj
| − |χS

π (i− 1)| ≥ 0
for all 0 ≤ i ≤ k − 1, and V q

π (0) = 0. Therefore opt(T,≺, vq) = 0, which is optimal. 2

7.2 From Minimum Loans to Linear Synteny

We now establish the converse: if one of our Min Loan instances has opt(T,≺, vq) = 0, then our
nested synteny instance S is linear exact.

Proposition 7.12 Consider any permutation π of (1, 2, . . . , k) where πx = Rq, and let π′ =
(Rq, π1, π2, . . . , πx−1, πx+1, . . . , πk) be π with Rq moved to the front. If mini V

q
π (i) = 0 and π respects

≺, then mini V
q
π′(i) = 0 and π′ respects ≺.

Proof. From the fact that vq(TRq) ≥ 0, the modification of π′ can only increase mini V
q
π′(i) with

respect to mini V
q
π (i). Furthermore, we have not violated any constraints, since Tj 6≺ TRq for all j,

so π′ also respects ≺. 2

Proposition 7.13 For any instance S = S1, S2, . . . , Sk, for every π a permutation of (1, 2, . . . , k),
and for all 1 ≤ i ≤ k − 1, we have

xS
π (i) = 1 ⇐⇒

∣∣∣
⋃

j≤i+1
Sπj

−
⋃

j>i+1
Sπj

∣∣∣ −
∣∣χS

π (i − 1)
∣∣ ≥ 1.

16

Proof. Notice that move σπ,S
i takes as input the set Sπi+1 and the previous merging set

⋃
j<i+1 Sπj

−
χS

π (i − 1), all previously merged elements less those that have already been emitted by translocation.
By definition, we have

xS
π (i) = 1 ⇐⇒ ∃b

[
b ∈ Sπi+1 ∪

(⋃
j≤i

Sπj
− χS

π (i − 1)
)

and b /∈
⋃

j>i+1
Sπj

]

⇐⇒ ∃b
[
b ∈

(⋃
j≤i+1

Sπj
− χS

π (i − 1)
)
−

⋃
j>i+1

Sπj

]

⇐⇒
∣∣∣
⋃

j≤i+1
Sπj

− χS
π (i − 1) −

⋃
j>i+1

Sπj

∣∣∣ ≥ 1

⇐⇒
∣∣∣
⋃

j≤i+1
Sπj

−
⋃

j>i+1
Sπj

∣∣∣ − |χS
π (i − 1)| ≥ 1

since χS
π (i − 1) and

⋃
j>i+1 Sπj

are disjoint and χS
π (i − 1) ⊆

⋃
j≤i+1 Sπj

. 2

Lemma 7.14 For all nested instances S with n elements, k ≤ n sets, and p components with
roots R1, R2, . . . , Rp, and for any q ∈ {1, 2, . . . , p}, if opt(T,≺, vq) = 0 then S is linear exact.
Furthermore, if π is a permutation of the tasks that achieves opt(T,≺, vq) = 0 then |σπ,S | = n− 1.

Proof. Let S = S1, S2, . . . , Sk, and let π be a permutation of (1, 2, . . . , k) with π1 = Rq that respects
≺ such that mini V

q
π (i) = 0. (One exists by Proposition 7.12.) We will show that xS

π (i) = 1 for
arbitrary 1 ≤ i ≤ k − 1, which proves the theorem.

By the optimality of π, we know that 0 ≤ V q
π (i + 1) =

∑i+1
`=1 vq(Tπ`

). By the definition of vq

and the fact that π1 = Rq, we know that

P q
π(i + 1) =

∣∣∣∣SRq −
⋃

j:TRq≺Tπj

Sπj

∣∣∣∣ +
i+1∑

`=2

(∣∣∣∣Sπ`
−

⋃
j:Tπ`

≺Tπj

Sπj

∣∣∣∣ − 1

)
≥ 0. (6)

Rearranging, we have

−i +
i+1∑

`=1

∣∣∣∣Sπ`
−

⋃
j:Tπ`

≺Tπj

Sπj

∣∣∣∣ ≥ 0. (7)

By Proposition 7.7, we have |χS
π (i − 1)| ≤ i − 1. Applying Proposition 7.8 and this fact, we have

−1 − |χS
π (i − 1)| +

i+1∑

`=1

∣∣∣Sπ`
−

⋃
j>`

Sπj

∣∣∣ ≥ 0. (8)

The sets in the sum are simply the sets of all elements that appear for the last time in Sπ`
. These

sets are disjoint, and can be rewritten as simply

∣∣∣
⋃

j≤i+1
Sπj

−
⋃

j>i+1
Sπj

∣∣∣ − |χS
π (i − 1)| − 1 ≥ 0 (9)

which by Lemma 7.13 gives us that xS
π (i) = 1. 2

17

nested-linear-syntenic-distance(S)
// compute D̃(S) for any nested instance S.

1. Remove any lonely singletons Si from S, and let S be the resulting instance.

Let n, k, and p be the number of elements, sets, and components, respectively, in S, and let
the roots of the components be R1, R2, . . . , Rp.

2. Let T = {T1, T2, . . . , Tk, Tfirst , Tlast} be a set of tasks.

3. Let ≺ be the relation so that Tfirst ≺ Tlast , and, for all 1 ≤ j ≤ k and 1 ≤ ` ≤ k:

• Tj ≺ Tlast ;

• Tfirst ≺ Tj ; and

• Tj ≺ T` if and only if Sj ⊃ S`, or Sj = S` and j ≤ `.

4. For each 1 ≤ i ≤ k, let v(Ti) :=
∣∣∣
⋃

j:Tj≺Ti
Sj −

⋃
j:Ti≺Tj

Sj

∣∣∣.

5. Let δ = max(k − n, 0).

For each 1 ≤ q ≤ p:

Binary search for the minimum xq such that the instance SRq↑(δ+xq) is linear
exact, using the following decision procedure:

(a) Let vq
δ+xq

(Tj) := v(Tj)− 1 for j 6= Rq, and let vq
δ+xq

(TRq) := v(TRq) + δ + xq.

Let vq
δ+xq

(Tfirst) := 0 and vq
δ+xq

(Tlast) := 0.

(b) Return true if opt(T,≺, vq
δ+xq

) = 0, computed using the series-parallel algo-

rithm of either Abdel-Wahab and Kameda [1] or Monma and Sidney [19].

6. Return n + δ + minq(xq) − 1.

Figure 2: An algorithm for computing the linear syntenic distance of a nested instance.

18

7.3 An Algorithm for Nested Linear Synteny

We will make use of the Min Loan algorithms of Abdel-Wahab and Kameda [1] and Monma and
Sidney [19] to determine D̃(S). Our algorithm is shown in Figure 2.

Theorem 7.15 For all nested instances S, we have nested-linear-syntenic-distance(S) = D̃(S).

Proof. By definition, the deletion of lonely singletons does not affect the linear syntenic distance.
Note that for all 1 ≤ q ≤ p and for all xq, the instance SRq↑(δ+xq) is nested since we are adding

completely fresh elements to the root of a component. Also observe that the precedence relation ≺
and the profit function vq

δ+xq
meet the conditions of Definitions 7.2 and 7.4 for SRq↑(δ+xq) as well

as for S. Note further that, by our choice of δ, the number of elements in SRq↑(δ+xq) is no smaller
than the number of sets.

Therefore, by Theorem 7.5, we have that the instance SRq↑(δ+xq) is linear exact if and only
if opt(T,≺, vq

δ+xq
) = 0. Since the precedence relation is series-parallel by Lemma 7.3, the series-

parallel Min Loan algorithm correctly computes this value.
Thus, in Step 5, we find the smallest xq so that SRq↑(δ+xq) is linear exact for each 1 ≤ q ≤ p.

Let x∗ = δ + minq xq. We know that

∃q ∈ {1, 2, . . . , p} D̃(SRq↑x∗

) = n + x∗ − 1 ∀q ∈ {1, 2, . . . , p} D̃(SRq↑x∗

) 6= n + x∗ − 2 (10)

By Proposition 4.3 and Corollary 5.4, then, we have D̃(S) = n + x∗ − 1 = n + δ + minq xq − 1 =
nested-linear-syntenic-distance(S). 2

Theorem 7.16 On a nested instance S with n elements, k sets, and p components, the algorithm
nested-linear-syntenic-distance(S) requires O(pk2 log k + nk2) time.

Proof. Removing any lonely singletons and computing ≺ and v(Tj) in Steps 3 and 4 requires O(nk2)
time since we must compute k2 pairwise intersections of up to n elements.

In Step 5, the binary search requires at most log k iterations because we know that xq ≤ k for
all 1 ≤ q ≤ p; the Min Loan calls require O(k2) time each since there are O(k) events in question,
and we must run this search for each of the p components of the instance. 2

By linear duality, we can also use the above algorithm to compute the linear syntenic distance of
an instance whose dual is nested.

It is straightforward to modify nested-linear-syntenic-distance(S) to produce an optimal linear
move sequence for S, instead of just D̃(S). Using the Abdel-Waheb and Kameda [1] algorithm for
Min Loan, we can acquire a permutation π of the tasks so that the optimum opt(T,≺, vq

δ+xq
) is

achieved by completing the tasks in the order π. By Proposition 7.12, this optimum is also achieved
by a permutation π′—computable from π in O(k) time—in which π′

1 = Rq for some root Rq. By
Lemma 7.14, the instance SRq↑x∗

is linear exact, and we have

D̃(SRq↑x∗

) = |σπ′,SRq↑x∗

| = n + x∗ − 1 = D̃(S).

By Lemma 3.1 and the fact that SRq↑x∗

dominates S, we have D̃(S) = |σπ′,SRq↑x∗

| ≥ |σπ′,S |. Thus
σπ′,S is optimal.

19

8 Acknowledgements

We would like to thank Anne Bergeron, Matt Lepinski, Chris Peikert, and Grant Wang for com-
ments on previous drafts of this paper, and the anonymous referee for helpful comments and
suggestions.

The first author was supported in part by a Churchill Scholarship from the Winston Churchill
Foundation, an NSF Graduate Research Fellowship, and the ONR Young Investigator Award of
the second author. The majority of this work was performed while at Cornell University and the
University of Cambridge.

The second author was supported in part by a David and Lucile Packard Foundation Fellowship,
an Alfred P. Sloan Research Fellowship, an ONR Young Investigator Award, and NSF Faculty Early
Career Development Award CCR-9701399.

References

[1] H. M. Abdel-Wahab and T. Kameda. Scheduling to minimize maximum cumulative costs
subject to series-parallel precedence constraints. Operations Research, 26(1):141–158, Jan-
uary/February 1978.

[2] Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by reversals. SIAM
J. Comput., 25(2):272–289, April 1996.

[3] Vineet Bafna and Pavel A. Pevzner. Sorting by transpositions. SIAM J. Discrete Math.,
11(2):224–240, May 1998.

[4] Piotr Berman and Sridhar Hannenhalli. Fast sorting by reversals. In 7th Annual Conference
on Combinatorial Pattern Matching, pages 168–185, 1996.

[5] Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-approximation algorithm
for sorting by reversals. Electronic Colloquium on Computational Complexity (ECCC), 8(47),
2001.

[6] Piotr Berman and Marek Karpinski. On some tighter inapproximability results. Electronic
Colloquium on Computational Complexity, Report No. 29, 1998.

[7] Alberto Caprara. Sorting permutations by reversals and Eulerian cycle decompositions. SIAM
J. Discrete Math., 12(1):91–110, February 1999.

[8] D. A. Christie. A 3/2-approximation algorithm for sorting by reversals. In 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 244–252, January 1998.

[9] Bhaskar DasGupta, Tao Jiang, Sampath Kannan, Ming Li, and Elizabeth Sweedyk. On the
complexity and approximation of syntenic distance. Discrete Appl. Math., 88(1–3):59–82,
November 1998.

[10] Jason Ehrlich, David Sankoff, and Joseph H. Nadeau. Synteny conservation and chromosome
rearrangements during mammalian evolution. Genetics, 147(1):289–296, September 1997.

20

[11] Niklas Erikson. (1+ε)-approximation of sorting by reversals and transpositions. In 1st Annual
Workshop on Algorithms in Bioinformatics, pages 227–237, August 2001.

[12] Henrik Eriksson, Kimmo Eriksson, Johan Karlander, Lars Svensson, and Johan Wästlund.
Sorting a bridge hand. Discrete Math., 241(1–3):289–300, October 2001.

[13] Vincent Ferretti, Joseph H. Nadeau, and David Sankoff. Original synteny. In 7th Annual
Symposium on Combinatorial Pattern Matching, pages 159–167, June 1996.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[15] Qian-Ping Gu, Shietung Peng, and Ivan Hal Sudborough. A 2-approximation algorithm for
genome rearrangements by reversals and transpositions. Theoret. Comp. Sci., 210(2):327–339,
January 1999.

[16] Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM, 46(1):1–27,
January 1999.

[17] J. D. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangment. Algorithmica, 13(1/2):180–210, January/February
1995.

[18] David Liben-Nowell. On the structure of syntenic distance. J. Comp. Bio., 8(1):53–67, Febru-
ary 2001.

[19] C. L. Monma and J. B. Sidney. A general algorithm for optimal job sequencing with series-
parallel precedence constraints. Technical Report 347, School of Operations Research, Cornell
University, 1977.

[20] David Sankoff and Joseph H. Nadeau. Conserved synteny as a measure of genomic distance.
Discrete Appl. Math., 71(1–3):247–257, December 1996.

21

