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Abstract. Mediators are third parties to whom the players in a game
can delegate the task of choosing a strategy; a mediator forms a medi-
ated equilibrium if delegating is a best response for all players. Mediated
equilibria have more power to achieve outcomes with high social welfare
than Nash or correlated equilibria, but less power than a fully centralized
authority. Here we begin the study of the power of mediation by using
the mediation analogue of the price of stability—the ratio of the social
cost of the best mediated equilibrium bme to that of the socially optimal
outcome opt. We focus on load-balancing games with social cost mea-
sured by weighted average latency. Even in this restricted class of games,
bme can range from as good as opt to no better than the best correlated
equilibrium. In unweighted games bme achieves opt; the weighted case is
more subtle. Our main results are (1) that the worst-case ratio bme/opt
is at least (1 +

√
2)/2 ≈ 1.2071 (and at most 1 + φ ≈ 2.618 [3]) for

linear-latency weighted load-balancing games, and that the lower bound
is tight when there are two players; and (2) tight bounds on the worst-
case bme/opt for general-latency weighted load-balancing games. We
also give similarly detailed results for other natural social-cost functions.

1 Introduction

The recent interest in algorithmic game theory by computer scientists is in large
part motivated by the recognition that the implicit assumptions of traditional
algorithm design are ill-suited to many real-world settings. Algorithms are typi-
cally designed to generate solutions that can be implemented by some centralized
authority. But often no such centralized authority exists; solutions arise through
the interactions of self-interested, independent agents. Thus researchers have
begun to use game theory to model these competitive, decentralized situations.

One classic example is the paper of Koutsoupias and Papadimitriou [16], who
consider the effect of decentralizing a standard load-balancing problem. In the
resulting game, each job is controlled by a distinct player who selects a machine
to serve her job so as to minimize delay. The authors compare the social cost
(expected maximum delay) of the Nash equilibria of this game to that of a
centrally designed optimal solution. The maximum of these ratios is the price of
anarchy of the game, quantifying the worst-case cost of decentralized behavior.
? All authors were supported in part by NSF grant CCF-0728779. This work was also

supported by grants from Carleton College, Oberlin College, and Denison University.
Thanks to Bobby Kleinberg for suggesting this line of inquiry to us.



2 Joshua R. Davis, David Liben-Nowell, Alexa Sharp, and Tom Wexler

One can imagine a continuum indexing the amount of power that a cen-
tralized authority has in implementing solutions to a given problem, from utter
impotence (leading to a potentially inefficient Nash equilibrium) to dictatorial
control (leading to the socially optimal outcome). For example, consider a weak
authority who can propose a solution simultaneously to all players, but who has
no power to enforce it. The players would agree to such a proposal only if it were
a Nash equilibrium—but the authority could propose the best Nash equilibrium.
The ratio of the cost of the best Nash equilibrium to the global optimum is the
price of stability, which may be much better than the price of anarchy.

A correlator is a more powerful authority, in that it is not required to broad-
cast the entire proposed solution; it signals each player individually with a sug-
gested action, chosen from some known joint probability distribution. The result-
ing stable outcomes are called correlated equilibria [2]. Any Nash equilibrium is a
correlated equilibrium, but often a correlator can induce much better outcomes.

A mediator [1, 19, 21–24, 26] is an authority who offers to act on behalf of the
players; any player may delegate to the mediator the responsibility of choosing
a strategy. In a mediated equilibrium, all players prefer to delegate than to play
on their own behalf. The strategies that the mediator selects for the delegating
players may be correlated; moreover, the distribution from which the mediator
draws these strategies may depend on which players have opted to delegate.
A mediator can enforce an equilibrium by threatening to have the delegating
players “punish” any player departing from mediation. Any correlated equilib-
rium can be represented as a mediated equilibrium, but the converse is not true;
mediators are more powerful than correlators.

The present work: mediated load-balancing games. In this paper, we begin to
quantify the powers and limitations of mediators. We consider the mediation
analogue of the price of stability: how much less efficient than the globally opti-
mal outcome opt is the best mediated equilibrium bme? (While one could ask
questions analogous to the price of anarchy instead, the spirit here is that of
a well-intentioned central authority who would aim for the best, not the worst,
outcome within its power.) We initiate this study in the context of load-balancing
games. Each player i controls a job that must be assigned to a machine. Each ma-
chine j has a nonnegative, nondecreasing latency function fj(x), and each player
incurs a cost of fj(`j) for choosing machine j, where `j is the total load of jobs
on machine j. We split load-balancing games into classes along two dimensions:

– unweighted vs. weighted : in weighted games, job i has weight wi and expe-
riences cost fj(

∑
i′ uses j wi′) on machine j; in unweighted games all wi = 1.

– linear vs. general latencies: in linear games, fj(x) = aj · x for aj ≥ 0; for
general latencies fj can be an arbitrary nonnegative, nondecreasing function.

The social cost is measured by the weighted average latency experienced by the
jobs; see Section 6 for results using other social cost functions.

Load-balancing games are appealing for this work for two reasons. First, they
include cases in which mediators can achieve opt and cases in which they cannot
even better the best Nash equilibrium bne. Second, the prices of anarchy and
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unweighted jobs weighted jobs

linear
latencies

bme = opt [19]
bce ≤ 4/3 · bme [tight]

(Lemma 1 [4])

bme ≤ 2.618 · opt, bce ≤ 2.618 · bme [3]
n = 2: bme ≤ 1.2071 · opt (Thm. 2)

bce ≤ 4/3 · bme (Thm. 2)
[both tight for n = 2]

general
latencies

bme = opt [19]
bce ≤ n · bme [tight]

(Lemma 1)

bme ≤ ∆ · opt [tight] (Thm. 3)
bce ≤ ∆ · bme [tight] (Thm. 3)

Fig. 1. Summary of our results for weighted-average-latency social cost. Here opt is
the socially optimal outcome, bme (bce) the best mediated (correlated) equilibrium, n
the number of jobs, and ∆ the ratio of total job weight to smallest job weight.

stability, and corresponding measures of correlated equilibria, are well under-
stood for these games and many of their variants [3–6, 15–17, 25]. Most relevant
for what follows are an upper bound of 1 + φ ≈ 2.618 on the price of anarchy in
weighted linear games [3] and a tight upper bound of 4/3 on the price of stability
in unweighted linear games [4].

We extend this line of work to mediated equilibria with the following results.
(Figure 1 summarizes those for the weighted-average-latency social cost.)

– In the unweighted case, the bme is optimal, regardless of the latency func-
tions’ form. This result follows from a recent theorem of Monderer and Ten-
nenholtz [19], which in fact holds for any symmetric game. See Section 3.

– In weighted linear-latency games with two players, we give tight bounds on
the best solution a mediator can guarantee: a factor of (1 +

√
2)/2 ≈ 1.2071

worse than opt but 4/3 better than the best correlated equilibrium bce.
Thus mediators lie strictly between dictators and correlators. See Section 4.

– In weighted nonlinear-latency games, mediated equilibria provide no worst-
case improvement over correlated or even Nash equilibria. See Section 5.

– We also analyze mediation under two other social cost functions that have
been considered in the literature: (i) the maximum latency of the jobs; and
(ii) the average latency, unweighted by the jobs’ weights. See Section 6.

Related work. Koutsoupias and Papadimitriou initiated the study of the price of
anarchy in load-balancing games, considering weighted players, linear latencies,
and the maximum (rather than average) social cost function [16]. A substantial
body of follow-up work has improved and generalized their initial results [6, 7, 9,
18]. See [12] and [27] for surveys. A second line of work takes social cost to be
the sum of players’ costs. Lücking et al. [11, 17] measure the price of anarchy of
mixed equilibria in linear and convex routing games in this setting. Awerbuch et
al. [3] consider both the unweighted and weighted cases on general networks. Suri
et al. [15, 25] examine the effects of asymmetry in these games. Caragiannis et
al. [4] give improved bounds on the price of anarchy and stability. Christodoulou
and Koutsoupias [5, 6] bound the best- and worst-case correlated equilibria in
addition to improving existing price of anarchy and stability results.
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Other aspects of correlated equilibria have been explored recently, including
their existence [13] and computation [13, 14, 20]. Mediated equilibria have devel-
oped in the game theory literature over time; see Tennenholtz [26] for a summary.
Mediated equilibria have been studied for position auctions [1], for network rout-
ing games [23, 24], and in the context of social choice and voting [21, 22]. Strong
mediated equilibria have also been considered [19, 24].

2 Notation and Background

An n-player, m-machine load-balancing game is defined by a nondecreasing la-
tency function fj : [0,∞) → [0,∞] for each machine j ∈ {1, . . . ,m}; and a
weight wi > 0 for each player i ∈ {1, . . . , n}. We consider games in which every
job has access to every machine: a pure strategy profile s = 〈s1, . . . , sn〉 can
be any element of S := {1, . . . ,m}n. The load `j on a machine j under s is∑

i:si=j wi, and the latency of machine j is fj(`j). The cost ci(s) to player i
under s is fsi(`si). Pure Nash equilibria exist in all load-balancing games [8, 10].
A load-balancing game is linear if each fj is of the form fj(x) = aj · x for some
aj ≥ 0 and unweighted if each wi = 1. Machine j is dominated by machine j′ for
player i if, no matter what machines the other n− 1 players use, player i’s cost
is lower using machine j′ than using machine j.

A nonempty subset of the players is called a coalition. A mediator is a collec-
tion Ψ of probability distributions ψT for each coalition T , where the probability
distribution ψT is over pure strategy profiles for the players in T . The mediated
game MΨ

Γ is a new n-player game in which every player either participates in Γ
directly by choosing a machine in S := {1, . . . ,m} or participates by delegating.
That is, the set of pure strategies inMΨ

Γ is Z = S∪{smed}. If the set of delegating
players is T , then the mediator plays the correlated strategy ψT on behalf of the
members of T . In other words, for a strategy profile z = 〈z1, z2, . . . , zn〉 where
T := {i : zi = smed} and T := {i : zi 6= smed} = {i : zi ∈ S} = {1, . . . , n} − T ,
the mediator chooses a strategy profile sT according to the distribution ψT , and
plays si on behalf of every player i ∈ T ; meanwhile, each player i in T simply
plays zi. The expected cost to player i under the strategy profile z is then given
by ci(z) :=

∑
sT
ci(sT , zT ) · ψT (sT ). (The mediators described here are called

minimal mediators in [19], in contrast to a seemingly richer class that allow more
communication from players to the mediator.)

A mediated equilibrium for Γ is a mediator Ψ such that the strategy profile
〈smed, smed, . . . , smed〉 is a pure Nash equilibrium in MΨ

Γ . Every probability dis-
tribution ψ′ over the set of all pure strategy profiles for Γ naturally corresponds
to a mediator Ψ , where the probability distribution ψT for a coalition T is the
marginal distribution for T under ψ′—that is, ψT (sT ) =

∑
s′:s′

T =sT
ψ′(s′). If ψ′

is a correlated equilibrium then this Ψ is a mediated equilibrium.
The social cost of a strategy profile s is the total (or, equivalently, average)

cost of the jobs under s, weighted by their sizes—that is,
∑

i wi·ci(s). (We discuss
other social cost functions in Section 6.) We denote by opt the (cost of the)
profile s that minimizes the social cost. We denote the worst Nash equilibrium—
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the one that maximizes social cost—by wne, and the best Nash (correlated,
mediated) equilibrium by bne (bce, bme). Note that opt ≤ bme ≤ bce ≤
bne ≤ wne because every Nash equilibrium is a correlated equilibrium, etc.
The price of anarchy is wne/opt, and the price of stability is bne/opt.

3 Unweighted Load-Balancing Games

Although the unweighted case turns out to have less interesting texture than the
weighted version, we start with it because it is simpler and allows us to develop
some intuition. We begin with an illustrative example:

Example 1. There are n unweighted jobs and two machines L and R with latency
functions fL(x) = 1 + ε for any load, and fR(x) = 1 for load x > n − 1 and
fR(x) = 0 otherwise.

For each player, R dominates L, so 〈R,R, . . . , R〉 is the unique correlated
and Nash equilibrium, with social cost n. Consider the following mediator Ψ .
When all n players delegate, the mediator picks uniformly at random from the n
strategy profiles in which exactly one player is assigned to L. When any other
set of players delegates, those players are deterministically assigned to R. If
all players delegate under Ψ , each player’s expected cost is (1 + ε)/n; if any
player deviates, then that player will incur cost at least 1. Thus Ψ is a mediated
equilibrium. Its cost is only 1 + ε, which is optimal, while bne = bce = n.

In fact, this “randomize among social optima” technique generalizes to all
unweighted load-balancing games—in any such game, bme = opt. This is a spe-
cial case of a general theorem of Monderer and Tennenholtz [19] about mediated
equilibria robust to deviations by coalitions. (See also [24].)

Example 1 shows that with nonlinear latency functions bce may be much
worse than opt, even in the unweighted 2-machine case. But even linear un-
weighted load balancing has a gap between bce and opt, even in the 2-job,
2-machine case. The following example demonstrates the gap.

Example 2 (Caragiannis et al. [4]). There are two (unweighted) jobs and two
machines L and R with latency functions fL(x) = x and fR(x) = (2 + ε) · x.

Here bce = 4 and opt = 3 + ε. (Machine L dominates R; no player can be
induced to use R in any correlated equilibrium.) We can show that this example
is tight with respect to the gap between bme and bce, using a result on linear
unweighted load-balancing games of Caragiannis et al. [4] and the “randomize
among social optima” mediation technique. We can also show a tight bound for
unweighted nonlinear latency load-balancing games (details omitted for space).

Lemma 1. In n-player unweighted load-balancing games:

– for games with linear latency functions, bce ≤ 4/3·bme. This bound is tight.
– for not-necessarily-linear latency functions, bce ≤ n · bme. This is tight.

We now have a complete picture for unweighted load balancing: a tight bound
on the gap between bme and bce and the theorem that bme = opt.
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4 Weighted Linear Load-Balancing Games

We now turn to weighted load-balancing games, where we find a richer landscape
of results: among other things, cases in which bme falls strictly between bce and
opt. We begin with the linear-latency case. (All proofs are omitted due to space.)

Theorem 2. In any 2-machine, 2-job weighted game with linear latencies:

1. bce/bme ≤ 4/3. This bound is tight for an instance with weights {1, 1} and
with latency functions fL(x) = x and fR(x) = (2 + ε) · x.

2. bme/opt ≤ 1+
√

2
2 . This bound is tight for an instance with weights {1, 1 +√

2} and with latency functions fL(x) = x and fR(x) = (1 + 2
√

2) · x.

The worst case for bce/bme is actually unweighted—in fact, Example 2. This
result fully resolves the 2-player, 2-machine case with linear latency functions.
Included in this class of games are instances in which bce > bme > opt. One
concrete example is with weights {1, 1+

√
2}, fL(x) = x, and fR(x) = 3+3

√
2

2 ·x,
when bce/bme = 20+4

√
2

23 ≈ 1.1155 and bme/opt = 14
√

2−1
17 ≈ 1.1058.

Adding additional machines to a 2-player instance does not substantively
change the results (there is no point in either player using anything other than
the two “best” machines), but the setting with n ≥ 3 players requires further
analysis, and, it appears, new techniques. Recent results on the price of anarchy
in linear load-balancing games [3, 4, 6] imply an upper bound of 1+φ ≈ 2.618 on
bme/opt for any number of players n, where φ is the golden ratio. We believe
that the worst-case ratio of bme/opt does not decrease as n increases. (Consider
an n-player instance in which n − 2 players have jobs of negligible weight and
the remaining 2 players have jobs as in Theorem 2.) However, we do not have a
proof that bme/opt cannot worsen from 1+

√
2

2 ≈ 1.2071 as n grows; nor do we
have a 3-job example for which bme/opt is worse than 1+

√
2

2 . The major open
challenge emanating from our work is to close the gap between the upper bound
(bme/opt ≤ 2.618) and our bad example (bme/opt = 1.2071) for general n.

5 Weighted Nonlinear Load-Balancing Games

We now consider weighted load-balancing games with latency functions that are
not necessarily linear. We know from Lemma 1 that even in unweighted cases
the power of Nash and correlated equilibria is limited. The weighted setting is
even worse: the price of anarchy is unbounded, even if we restrict our attention
to pure equilibria. Consider two identical machines, with latencies f(x) = 0 for
x ≤ 5 and f(x) = 1 for x ≥ 6. There are four jobs, two of size 3 and two of
size 2. A solution with cost zero exists (each machine has one size-2 and one
size-3 job), but putting the two size-3 jobs on one machine and the two size-2
jobs on the other is a pure Nash equilibrium too. We can show that the price of
stability is better in this setting, but in general bme is no better than bne:

Theorem 3. In any n-player weighted load-balancing game with job weights
{w1, . . . , wn} (and not necessarily linear latency functions), bne ≤ ∆ · opt,
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where ∆ :=
∑

i wi/mini wi is the ratio of total job weight to smallest job weight.
Thus bme ≤ ∆ · opt and bce ≤ ∆ · bme. Both bounds are tight.

6 Other Social-Cost Functions

Thus far we have discussed the social cost function scwavg(s) :=
∑

i wi · ci(s)
exclusively. Two other social cost functions have received attention in the lit-
erature: the maximum latency scmax (s) := maxi ci(s) and the unweighted av-
erage latency scuavg(s) :=

∑
i ci(s). Under scmax , in any load-balancing game

bme = opt = bne: starting from opt, run best-response dynamics (BRD) until
it converges; no BRD step increases the maximum load, so the resulting Nash
equilibrium is still opt. Thus mediation is uninteresting under scmax .

The behavior of scuavg turns out to be similar to that of scwavg . For nonlinear
latencies, an analogue to Theorem 3 states that bce ≤ n·bme and bme ≤ n·opt
(opt is at least the maximum cost x experienced by a job in opt; running BRD
from opt yields a Nash equilibrium where each job experiences cost at most x);
the examples from Theorem 3 and Example 1 both remain tight. The 2-job linear
case is also qualitatively similar; however, in contrast to the scwavg setting (where
there is a bound of bme/opt ≤ 2.618 for n-player games), even mediators cannot
enforce outcomes that are close to opt under scuavg as the number of players
grows, even in linear-latency games. (Our construction also demonstrates that
none of bce, bne, and wne can provide constant approximations to opt.)

Theorem 4. Under scuavg , in linear-latency weighted load-balancing games:

– for 2 jobs and 2 machines, bce/bme ≤ 4
3 (this is tight for Example 2) and

bme/opt ≤ 2+4
√

2
7 ≈ 1.0938 (this is tight for Theorem 2.2’s example).

– for n jobs and 2 machines, bme/opt is not bounded by any constant.

7 Future Directions

In this paper we have begun to analyze the power of mediators in the spirit of
price of stability, focusing on load-balancing games under the weighted average
latency social cost function. We have a complete story for unweighted games and
for weighted games with general latency functions. The biggest open question
is the gap between bme and opt in n-player weighted linear games. We know
that for all such games bme/opt ≤ 2.618 [3], and that there exist examples in
which bme/opt = 1.2071. What is the worst-case bme/opt for n ≥ 3 players?
In particular, it may be helpful to understand better the connection between
scuavg and scwavg : it was unexpected that the same instance is the worst case for
both functions in the 2-player case (Theorem 2 and Theorem 4).

The broader direction for future research, of course, is to characterize the
power of mediators in games beyond load balancing. For example, the upper
bound of bme/opt ≤ 2.618 in weighted linear load-balancing games comes from
an upper bound on the price of anarchy in congestion games, a more general class
of games. It is an interesting question as to how much better mediated equilibria
are than correlated equilibria in, say, linear-latency weighted congestion games.
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