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Abstract

A number of distance measures have recently been proposed for the purpose of determining
evolutionary similarity among genomes of different species. For each of these measures, a natu-
ral but often difficult problem is to determine the diameter of the space it defines: What is the
maximum distance between any pair of genomes? In this work we study the syntenic distance
between genomes, introduced by Ferretti, Nadeau, and Sankoff as a way to approximate evolu-
tionary distance between species for which the gene order within chromosomes is not necessarily
known. We show that the diameter of the space of n-chromosome genomes, with respect to the
syntenic distance, is exactly 2n — 4. The proof of this result is based on a surprising connection
between genome rearrangements and the study of gossip problems in communication networks.

1 Introduction

Distances between Genomes. The availability of large volumes of genomic data, across many
species, has given rise to a class of computational problems centered around genome comparison.
Such problems are motivated by a number of issues. Studying relationships among species at
the chromosomal level can provide a highly effective way to infer evolutionary history; and the
detailed chromosome-level information being collected for certain “model” species can be used, in
conjunction with accurate methods for genome comparison, to gain further insight into genetic
properties of related species.

Much of this type of comparison work is based on defining an appropriate distance function
on pairs of genomes; genomes at smaller distances can then be presumed to have diverged more
recently in evolutionary history. A number of distance functions have been proposed, according to
the following “transformation-based” paradigm. One considers the space of all possible genomes,
and a collection of basic transformations that act on this space; each such transformation models a
single mutational step that changes one genome into another. The distance between two genomes
G and G’ is then the minimum length of a sequence of basic transformations that converts G into
G’. Such a minimum-length sequence can be used to derive a hypothesized sequence of events in
evolutionary history relating G to G'.
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This notion can be seen in the formulation of biological sequence alignment (see e.g. [13, 27]);
here, the similarity between two strings is defined based on their edit distance, the minimum
(weighted) number of insertions, deletions, and substitutions needed to convert one string into
the other. However, evolution at the full genome level involves not just insertions and deletions
of material; the rearrangement of genes in the linear order of a chromosome is a crucial type of
mutation, as is the exchange of genes between different chromosomes through mechanisms such as
reciprocal translocation. These large-scale chromosomal events are rare, but they play a significant
role in our reconstruction of evolutionary history among distantly related species [21, 28].

Consequently, beginning with research of Sankoff and his co-workers [23, 24], a number of
genome distance functions have been studied in which the basic transformations involve global
rearrangements of genes. (See also the survey by Pevzner and Waterman [22].) These functions
have provided good approximations to the extent of evolutionary divergence between species, but
they have also proved much harder to compute than the basic edit distance—indeed, many have
been shown to be NP-complete. As a result, research on this subject has focused on heuristics and
approximation algorithms with provable guarantees, as well as combinatorial investigations aimed
at gaining more insight into the properties and structure of these distance functions.

Diameter Problems. One of the most basic structural questions associated with any of these
distance functions is the diameter problem: what is the maximum distance between any pair of
genomes? A recurring phenomenon—connected closely with the computational intractability of
these functions—is that the associated diameter problems have turned out to be very difficult to
resolve, and opened connections with extremal graph theory and combinatorial group theory.

Diameter problems were investigated first for transformation-based distance functions defined
on single-chromosome genomes. The most common abstract model here is to consider species with a
fixed set of genes labeled 1,2,3,..., N; thus, the genome of a species in this model can be described
by the order, or permutation, of these genes on the chromosome. Basic transformations then act
by rearranging one permutation into another. We briefly mention three distance functions based
on this paradigm—each motivated by a common type of genome rearrangement mechanism—and
indicate what is known about their respective diameter problems.

e One obtains the reversal distance between permutations by considering the set of all trans-
formations that reverse a contiguous block of genes [1, 5, 6, 19]. Gollan conjectured that the
diameter of the space of N-element permutations under this distance function is N — 1, and
this was proved by Bafna and Pevzner [1].

e One obtains the prefiz reversal distance by considering the (smaller) set of all transformations
that reverse a prefix of the permutation. The diameter of the space of N-element permutations
under this distance function remains an open question; however, Gates and Papadimitriou
showed that it lies between %N and SN + O(1) [12].

e Finally, one obtains the transposition distance by considering the set of all transformations
that “splice out” a contiguous block of genes and “re-insert” it (in the same order) elsewhere
in the sequence. The diameter problem for this distance function is also an open question;
Bafna and Pevzner showed that the diameter of the space of N-element permutations under
this distance lies between 3N and 3N [2].



The Syntenic Distance. The problems above are expressed in terms of genes in a single lin-
ear order—in other words, belonging to a single chromosome. When we consider rearrangement
scenarios for genomes consisting of multiple chromosomes, we must take into account basic trans-
formations that operate in this more complex setting: fissions, in which a single chromosome splits
into two pieces; fusions, in which two chromosomes merge into a single one; and translocations, in
which two chromosomes exchange contiguous blocks (generally, prefixes or suffixes) of their genes.
Distance functions arising from this type of model were studied by Kececioglu and Ravi [18] and
Hannenhalli and Pevzner [15, 16].

This type of analysis can only be performed on the genomes of species for which relatively de-
tailed maps are available; for a larger number of species, we may only have information about which
genes belong to which chromosomes, but not about their actual order on the chromosomes. Also, it
does not necessarily make sense to treat all of the basic transformations (reversals, transpositions,
translocations, fissions, and fusions) as equally “costly” in computing a distance function [10, 25].

Motivated by these types of considerations, Ferretti, Nadeau, and Sankoff proposed a more
abstract measure of genomic distance, known as syntenic distance [11]. This model assumes no
knowledge of the order of the genes within chromosomes, treating each chromosome as an un-
ordered set of genes. Thus a genome becomes simply a collection of n sets—the synteny sets of
the chromosomes—each a subset of an underlying set {1,2,..., N} of genes. We allow a genome
to contain multiple copies of the same set and, for convenience of notation, we allow a gene to
appear in more than one set. (Syntenic distance is sensible only for genomes without duplicated
genes, but the compact representation—defined in Section 2—requires duplication. For economy
of notation, we permit it in the definition here.) We define the support of a genome to be the
collection of genes it contains; in other words, the support is the union of all its synteny sets. The
basic transformations underpinning the model are

e fissions, in which one set A splits into two sets B and C so that BUC = A;
e fusions, in which two sets B and C' merge into a single set A = BU C}; and

e translocations, in which two sets A and B exchange arbitrary subsets of their genes, yielding
new sets A’ and B’ with the property that A’ U B’ = AU B. In a translocation, we require
that A’ and B’ both be non-empty; otherwise, the operation is simply a fusion.

In the style of previous models, the syntenic distance between two genomes with the same
support is then the minimum number of these basic transformations needed to convert one into
the other. We will denote this quantity by d(G,G’), for a pair of genomes G, G’. This definition can
easily be extended to pairs of genomes with unequal supports, by simply focusing on the genes that
are common to the two: if G has support U, and G’ has support U’, we first remove all genes other
than those in U N U’, and then compute the syntenic distance on the resulting pair of genomes.

The Present Work. In this paper, we settle the diameter problem for the syntenic distance over
n-chromosome genomes. Note that because we allow for an arbitrary number N of genes, the space
of all possible n-chromosome genomes is in fact infinite; so it is not immediately apparent that
the diameter of this space should be finite. However, it is not difficult to show that the diameter
can be bounded by a function of n, as we will see in the next section. Indeed, in previous work,
the second author [20] established an upper bound on the diameter, showing that the maximum
distance between two n-chromosome genomes is at most 2n — 3. It is not difficult to show that this



bound is tight for n = 2,3. Subsequently, however, Cormode and Paterson [8] observed that for
n > 4, this upper bound could be reduced by 1, to 2n — 4.
Here we show that this latter bound is tight.

(1.1.) The diameter of the set of n-chromosome genomes, under the syntenic distance, is 2n—4
for each n > 4.

We prove this result by showing that there exists a pair of n-chromosome genomes for which it
requires 2n — 4 basic transformations to convert one into the other. In the process, we obtain a
new proof that 2n — 4 is an upper bound as well.

Our proof of (1.1) is based on a surprising connection between the syntenic distance and the
study of gossip problems in communication networks. Gossip problems are concerned with the flow
of information among individuals communicating in a network, and their investigation has grown
into a sub-field of combinatorics [17]. We find that the flow of discrete pieces of information in this
setting can be related, in a precise sense, to the passage of genes through synteny sets. We are
thus able to exploit certain non-trivial lower bound results for gossip problems in order to provide
a lower bound for the syntenic diameter.

The remainder of the paper is organized as follows. We review some technical background on
the syntenic distance in Sections 2 and 3, and indicate how to obtain an upper bound of 2n — 4
for the syntenic diameter. In Section 4, we develop a connection between the diameter and certain
move sequences that consist entirely of translocations. This allows us to develop connections to a
particular gossip problem that we introduce in Section 5, and this in turn leads to a proof of (1.1)
in Section 6. Finally, we survey some further directions in Section 7.

2 Preliminaries

We begin by reviewing an equivalent form of the syntenic distance problem that is easier to work
with. Suppose we have an instance of the problem specified by genomes G; = {Si,..., Sk} and
Go = {T1,...,T,}. (We note that G; and Go may be multisets, in that we may have S; = S;
or T; = Tj for certain pairs of indices i, j.) As above, we may assume that G; and Gy have the
same support. Now, the compact representation of the instance, as defined in [9, 11], is obtained as
follows: for each synteny set S; € G, and each gene g € 5;, we replace g by the indices of the synteny
sets of Go in which it appears. That is, the i*! synteny set of G; becomes S/ = Uges; {7 : 9 € T}

Thus, in the compact representation, G; has been replaced by the genome G = {S7,...,5}.}.
Now, if we define G to be the collection of singleton synteny sets {{1},{2},...,{n}}, it is not
difficult to show the following [9, 11].

(2.1.) [9, 11] d(G1,G2) = d(G1,G3)

Hence the compact representation is truly an equivalent instance for purposes of computing the
syntenic distance.

The advantage of working with the compact representation is that it allows us to consider a
more “uniform” target genome G}; and, crucially, it says we may assume without loss of generality
that the underlying set of genes is {1,2,...,n}, the same as the number of chromosomes in the
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Figure 1: Transforming {1, 2}, {1,2},{2},{2,3} into {1}, {2}, {3}.

second genome. As an example of the compact representation, consider the following instance:

Gi = {a,b}, (Chromosome 1) Go = {a,cd}, (Chromosome 1)
{¢,d,e}, (Chromosome 2) {b,e, f,g9,h}, (Chromosome 2).
{f,g},  (Chromosome 3) {i} (Chromosome 3).
{h,i} (Chromosome 4)

In the compact representation, we are trying to transform the collection of sets {1, 2}, {1, 2}, {2}, {2, 3}
into the collection of sets {1}, {2}, {3}. One possible solution to this instance is depicted in Figure 1.
Here are two additional properties of the syntenic distance; the first is due to Dasgupta et al. [9].

(2.2.) [9] For any pair of genomes Gy and Go, there is a minimum-length sequence of trans-
formations converting G1 into Go that has the following special form: it consists of a sequence of
fusions, followed by a sequence of translocations, followed by a sequence of fissions.

The second fact is from [20] and establishes a monotonicity property of the distance function
— enlarging the synteny sets in a genome cannot reduce the syntenic distance.

(2.3.) [20] Consider two genomes Gy = {S1,..., Sk} and Gy = {S1,...,S.} with the property
that S; C S} for each i. Define Gy = {{1},{2},...,{n}}. Then d(G:i,G}) < d(G},G5}.

3 An Extremal Pair of Genomes

We have now seen that in order to study the syntenic diameter of the space of n-chromosome
genomes, we can restrict our attention to instances in the compact representation; and this imme-
diately shows that the diameter is finite. We will use A(n) to denote this quantity.

Now, as observed by the second author in [20], the monotonicity theorem (2.3)tells us a specific
pair of genomes on which the diameter is actually attained. Let us define g;,n to be the genome
consisting of k copies of the set {1,2,...,n}, and define G,, = {{1},{2},...,{n}}. Then by (2.3),
d(G}: ,Gn) > d(G,G) for every n-chromosome genome G, and so we have

(3.1.) [20] A(n)=d(G; . Gn)-

To obtain an upper bound on this quantity, we need only describe a short sequence of transfor-
mations converting g;;n into G,,. Let us review what can be said about such upper bounds. One



transformation sequence is to apply n — 2 fusions, obtaining the genome Gj ,,; a single translocation

then produces {{1},{2,3,4,...,n}}; and then n — 2 fissions produce G,,. This is a total of 2n — 3
transformations.

However, it is possible to convert Gj 4 to G4 using only four transformations, as described by
Christie [7]: with two translocations we obtain the genome {{1,2},{1,2},{3,4},{3,4}}, and with
two more we obtain G4. Cormode and Paterson observed that for any n > 4, one can use this
to improve the upper bound on d( ;;’n,?n) to 2n — 4 [8]. Specifically, one first applies n — 4
fusions, obtaining Gj ,; with four translocations, one can then obtain {{1}, {2}, {3},{4,5,...,n}}
and finally completing n — 4 fissions yields G,,. Thus we have

(3.2.) [8 d(G; ., Gn) <20 —4 forn > 4.

We now find ourselves in a situation that is common across many diameter problems: one has a
natural upper bound on the diameter, and a pair of genomes believed (in this case, known) to achieve
the diameter. What remains is the combinatorially non-trivial task of producing a lower bound on
the distance between this pair of genomes—proving that a conjectured number of transformations
is indeed required to convert one into the other. We turn to this matter now.

4 A Reduction to the Case of Translocations

The crucial issue in proving the lower bound is dealing with the effect of translocations, and to
study this we define the following quantity. Let x(n) denote the minimum number of translocations
needed to convert Q;*L,n into G,,; that is, we restrict our attention to sequences in which fissions and
fusions are disallowed.

We begin by observing that such a sequence need not be longer than the bound of (3.2). Note
that this provides an alternate proof of (3.2) by a different sequence of transformations.

(4.1.) x(n) <2n—4 forn>4.

Proof. We prove this by induction on n, constructing recursively a sequence of 2n—4 translocations.

The case n = 4 has been considered above. For a larger value of n, we write G, ,, = {51,52,...,5n},
with each S; = {1,2,...,n}. We first perform a translocation on S; and Sa, transforming .S;
to {1} and leaving Sy unchanged. Now we recursively perform a sequence of translocations on
{S2,853,...,S,} in which we treat elements 1 and 2 as “glued” together; in this way, we can view
{S9,Ss,...,S,} as a copy of Gp—1n—1 and apply our inductive solution for this case. Thus we
obtain the sets {{1,2},{3},{4},...,{n}} in 2(n — 1) — 4 = 2n — 6 translocations. Finally, we
perform a translocation of S; = {1} with the copy of the set {1,2}, arriving at G,,. O

The following technical lemma will be useful in the proof of(4.3) it identifies a family of instances
that behave essentially identically to the instance (QZ s Gk)-

(4.2.) Let S1,S5,...,S form a partition of the set {1,2,...,n}, and let G = {S1,...,Sk}.

Then the minimum length of a sequence of translocations converting Gy, ,, into G is equal to x(k).

Proof. The proof is based on the observation that the pair of genomes (G} k,ak) is the compact
representation of (G;,,G). We cannot directly invoke (2.1), however, since we are considering



optimal sequences with the added constraint that only translocations are allowed. Nevertheless,
the proof is a straightforward application of the idea that underlies (2.1)

Given a sequence of translocations converting G, , into G, we can produce a sequence of
translocations of the same length converting G/, into G by treating the elements of each set S; as
“glued” together throughout the process. Convérsely, given a sequence of translocations converting
G, into G, we can modify it if necessary to maintain the invariant that at any point in the
pr(’)cess, any set containing an element g € .S; contains all the elements of S;. From a sequence of
translocations that obey this invariant, we can directly obtain a sequence of translocations of the
same length converting (]Z’ i, into Gr. O

We can now establish a first relationship between the quantities A(-) and x(+).

(4.3.) A(n)= min [2(n — k) + x(k)].
Proof. By (3.1), A(n) is the length of an optimal sequence converting G , to Gp; and by (2.2), we
may assume it has the following form. For a number k, it begins with a sequence of n — k fusions,
resulting in the genome G; . It then performs a sequence of translocations. Since each translocation
takes two non-empty sets and produces two non-empty sets; the end result of these translocations
is a genome with k sets, G’ = {51, 52, ..., Sk} Finally, the optimal sequence performs a number of
fissions.

Since each fission increases the number of sets by one, and since we end with G,,, we know the
following: G’ must in fact be a partition of {1,2,...,n}; and the optimal sequence concludes with
n — k fissions. By (4.2), the portion of the sequence that converts G; , to G involves at least x(k)
transformations, and thus we have A(n) > min [2(n — k) + x(k)].

1<k<n
For any k, we can convert G, , to G, by performing n — k fusions, x(k) translocations, and
n — k fissions; hence A(n) < 1222 2(n — k) + x(k)]. O
SRSN

Via(4.3) we can reduce the problem of finding a lower bound on A(n) to that of finding a lower
bound on x(n).

5 A Gossip Problem

We will see that converting G, to G, via translocations is closely connected to the following
combinatorial gossip problem. Suppose there are n people, each of whom initially knows a distinct
piece of gossip. They then proceed to call each other on the telephone; each time two people talk
on the phone, they exchange all the gossip they know at that point in time. The question is: what
is the minimum total number of phone calls needed in order for everyone to learn all the pieces of
gossip? Let us denote this number by I'(n).

As an example, consider the case of n = 4 people, named P, P, P3, and Ps. Here is a
sequence of four phone calls (written as ordered pairs) by which everyone learns all the gossip:
(P1, Py), (Ps, Py),(Py, P3), (P2, Py). Moreover, one can show that four calls are necessary. If only
three calls are made, then some person P; is involved in at most one phone call, to P;. For P; to
end up knowing all the gossip, P; must have learned the rest of gossip before this call, which means
that two calls must have preceded (P;, Pj). But this means that (P;, P;) is the last call, hence no
one but P; and P; learn P;’s gossip. Thus I'(4) = 4.

7



The function I'(n) was studied by a number of researchers in combinatorics, and several distinct
proofs were found for the following fundamental result [3, 4, 14, 26].

(5.1.) /3, 4, 14, 26] T'(n) =2n—4 for each n > 4; that is, a total of 2n —4 calls are necessary
and sufficient for everyone to learn all pieces of gossip.

The form of the bound in (5.1) is clearly suggestive of some connection between gossip and
synteny. In the following section, we make this connection precise, and complete the analysis of
the syntenic diameter.

6 The Syntenic Diameter

The relationship between gossip and synteny has the following intuitive motivation. When we
convert Gy, ,, to G, by a sequence of translocations, we begin with n copies of the set {1,2,...,n}
and try to “reduce” them to copies of the n singleton sets. In each step, we can pick two sets,
merge them together, and then partition this merged set into two smaller sets — this is simply the
definition of a translocation.

On the other hand, consider n people exchanging gossip through phone calls. In the beginning,
person ¢ knows only the piece of gossip i; the goal is to reach a state in which each person knows
all the pieces of gossip {1,2,...,n}. In each step, we pick two people, take the sets representing
what they currently know, and replace each with the union of these two sets. Viewed this way, we
see that an optimal sequence of phone calls looks much like an optimal sequence of translocations
run in reverse.

We use this idea to prove the following.

(6.1.) x(n)=2n—4 for each n > 4.

Proof. Let b < 2n —5. We suppose that there exists a sequence of b translocations converting G, ,,
into G,, and construct a way for n people to fully exchange all their pieces of gossip in b phone
calls— contradicting (5.1)

We introduce the following notation to describe the hypothesized sequence of b translocations.
We begin with sets S) = S = ... = S0 = {1,2,...,n}. After the first ¢ translocations in the
sequence (for some ¢ > 0), we have a genome consisting of sets St 5%, ... S . The (¢t + 1)%
translocation involves sets S! and S! = (for some indices w411 and y;41), and it produces two

Tt+1 Yi+1
non-empty sets A and B for which AUB = S!  US! We define SLTL = A, S;:rll = B, and

Tt+1 Yi41° Tt41
Sf“ = S! for each ¢ & {z441,yi+1}. Note that the sequence of translocations ends with the genome
Gp; thus, by labeling the sets appropriately, we can write S? = {i}.
A sequence of phone calls by which individuals exchange gossip can be described as follows. Let
K! denote the set of all pieces of gossip that person i knows after ¢ steps; thus, we have K io = {i}
for each ¢ € {1,2,...,n}. In step t+ 1, suppose that people p;+1 and ¢;+1 speak on the phone,
exchanging all the gossip they know. We define K/F! = Kifl = KI U K], and KT = K!
for each i & {pi+1,q+1}. Note the difference between this construction and the previous one: in
the gossip problem we know exactly how two sets will be merged, while in the syntenic distance
problem with translocations, two sets can be split in an arbitrary way.
We now construct a sequence of phone calls from our sequence of translocations, in the process

defining the sets K f In our construction, we will maintain the following property:



(%) For each i € {1,2,...,n} and t € {0,1,...,b}, we have Kf_t D Sk

We will prove this property holds by induction on b—t, together with our construction of the phone
calls. We begin with the basis ¢ = b: in this case, we have K? = {i} = S?.

For the inductive step, suppose that we have defined b — ¢ phone calls, and (%) holds for all 4
and all ' > ¢t. Now, the ¢ translocation in our sequence involves the sets S. ! and Si-t; we define
the (b — ¢ + 1)%* phone call to take place between people x; and ;. Let us verify that with this
additional phone call, () now holds for t—1. For i & {x, 4}, we have K'~'tt = K™t O 8t = §i~1,
We also have

Kyttt =KV UK D 8L usl oS!

Tt ?

with a completely symmetric argument holding for ;.

This completes the inductive argument. As a consequence, we have Kf’ B SZQ ={1,2,...,n}
for each i, establishing that the sequence of b phone calls we have constructed fully exchanges the
pieces of gossip among all the individuals. O

Finally, we have

Proof of (1.1). By(3.1)and (3.2) we know that A(n) < 2n — 4. Thus we need only show the lower
bound.

One can work out directly that x(1) =0, x(2) = 1, and x(3) = 3. Thus, for all n > 1, we have
x(n) > 2n — 4.

Now, applying(4.3) we have

A() = min 20— k) + x(b)
> 12@1271 [2(n — k) + 2k — 4]
= -4 m

7 Further Directions

Given an arbitrary genome G, determining d(G,G,) is known to be NP-complete [9]. However, in
the spirit of the analysis in this paper, it would be interesting to consider the extreme end of the
distance scale and try characterizing those n-chromosome genomes G for which d(G, ?n) = 2n — 4.
As a related question, we can ask: Given genomes G; and Go, each with n chromosomes, what is
the computational complexity of determining whether d(Gy,Go) = 2n — 47

Approximation algorithms for the syntenic distance problem — in particular, for determining
d(G,Gy) in the case of an arbitrary n-chromosome genome G — have been studied in [9, 11, 20].
Finding a polynomial-time algorithm that can approximate d(G,G,,) to within a factor better than
2 appears to be a difficult problem.

Determining d(G, G,,) for an arbitrary n-chromosome genome G is closely related to the following
general gossip problem. There are n people, each of whom initially knows a distinct piece of gossip.
Each person ¢ is seeking to learn only a subset S; of all the pieces of gossip. What is the minimum
number of phone calls needed for each person i to learn all the items in the associated set S;7 It
would be interesting to see if considering this formulation of the problem might suggest new types
of approximation algorithms for the syntenic distance, or for close variants.



More generally, we believe it would be fruitful to look for further relationships between these
two areas; any connections that can be developed may be valuable for resolving problems both in
the analysis of information flow and in the study of genome rearrangements.
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