A Novel Framework for Measuring and Assessing Streaming Media Quality

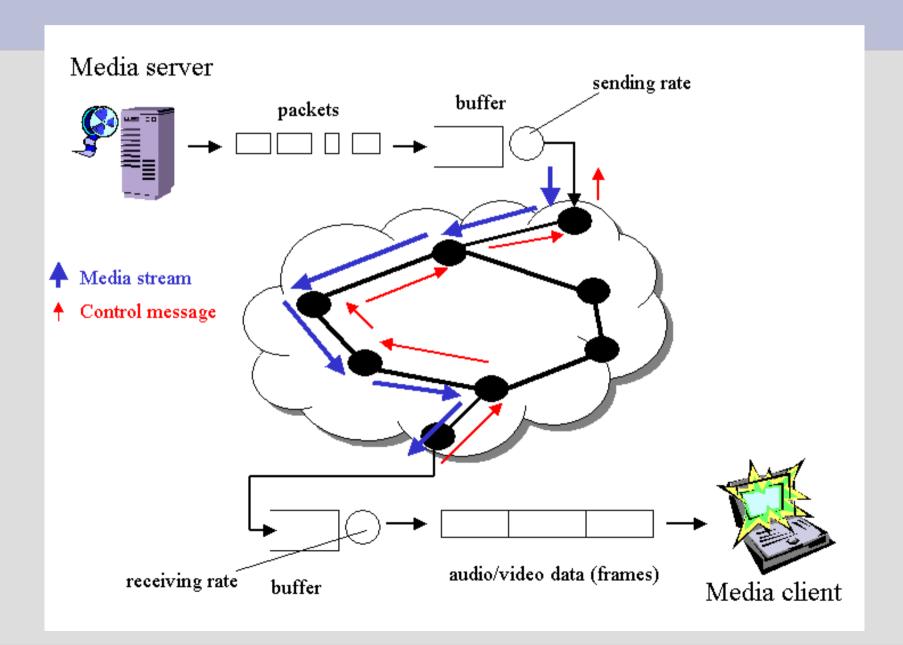
Amy Csizmar Dalal

Department of Mathematics and Computer Science Carleton College

April 22, 2005

Outline

- Reminder of the problem space
- Definition of "quality"
- Defining the data of interest
- Measurement methodology
- Experiments and results
- What next?


Something for everyone today

- For the computer scientists:
 - Design of the measurement tool
 - Network testbed details
 - Experimental design, execution
- For the mathematicians:
 - Statistical analysis of network, application measurements
 - Data! Numbers! Graphs!

The challenge

- We don't understand why streaming audio/video quality is bad
- We don't understand when streaming audio/video quality is bad
- We currently don't have a {good, fast, accurate, comprehensive} way to analyze the quality of audio and video streams

A typical audio/video stream

Challenges in streaming audio and video over the Internet

- Size of audio/video files
 - requires high-bandwidth links
- Duration of audio/video streams
 - longer streams are more susceptible to random loss events
- Delay intolerance
 - tight delivery deadlines = minimal error correction

Defining "quality"

What is "quality"?

 In this context, "quality" means the perception a user has of how good or bad an audio/video stream is

Quality categories (rankings)

- "Good": user has few or no complaints about the video or audio
- "Acceptable": user has some minor to moderate complaints about the video or audio, but will keep watching it anyway
- "Poor": user has significant complaints about the video or audio, and will cease watching

Our goals

- Figure out why and when the user-perceived quality of a media stream is "bad"
 - "bad" = bad enough so that the user will go away or stop watching the stream
 - do this without asking the user directly!
- Use this information to predict when the quality of a media stream will deteriorate

Our approach

- Use measurements that mimic the user's experience with the stream
 - take measurements directly from the media
 player
 - combine these with our knowledge of network conditions (loss, delay) during the stream

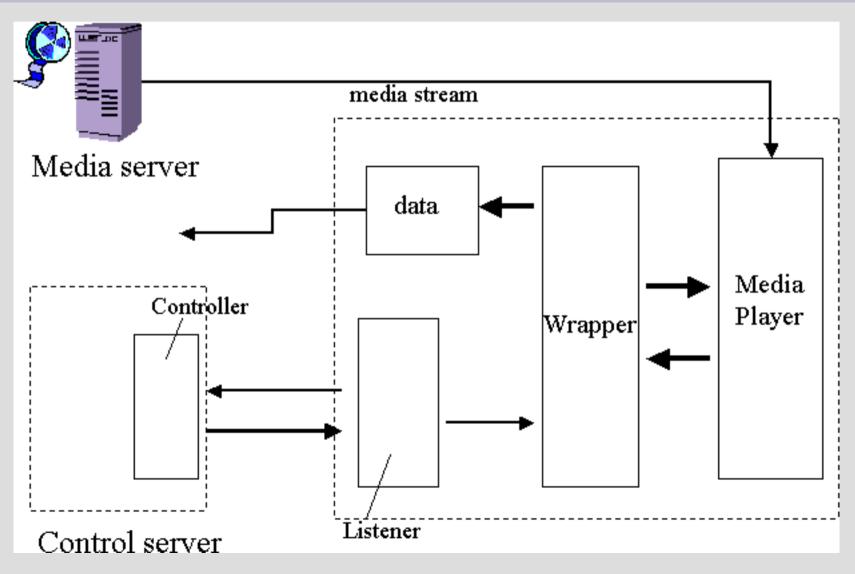
Q: What should we measure?

Methodology

- Identify what we'd like to measure objectively
- Identify what we can measure objectively
- Software prototype
- Measurement infrastructure
- Experimental validation
- Look at harder problems

What information can we get from a media player?

- Application-layer packet information
 - # received, # lost, # retransmitted
- Frame rate
- Bandwidth (throughput, actually)
 - number of bits arriving per second
- Is the player currently "buffering"?
- Buffering percentage
- "Quality" score (time-averaged ratio of lost packets to received packets)


Leading vs. lagging quality indicators

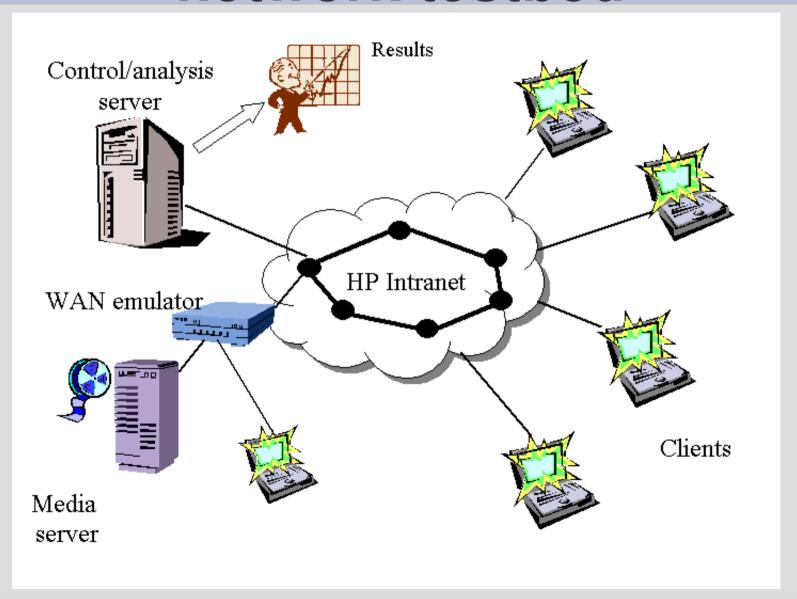
- "Leading indicators" = metrics whose values are the first to change in response to network congestion
- "Lagging indicators" = metrics whose values change in response to degraded stream quality
- "Instantaneous indicators" = metrics whose values change instantaneously with degraded stream quality

Metrics of interest

- Leading indicators
 - Transmission failures
 - Retransmitted packets
 - (Startup buffering period duration)
- Instantaneous indicators
 - Buffer starvation periods
 - Lost packets

Objective measurement framework

SQATool

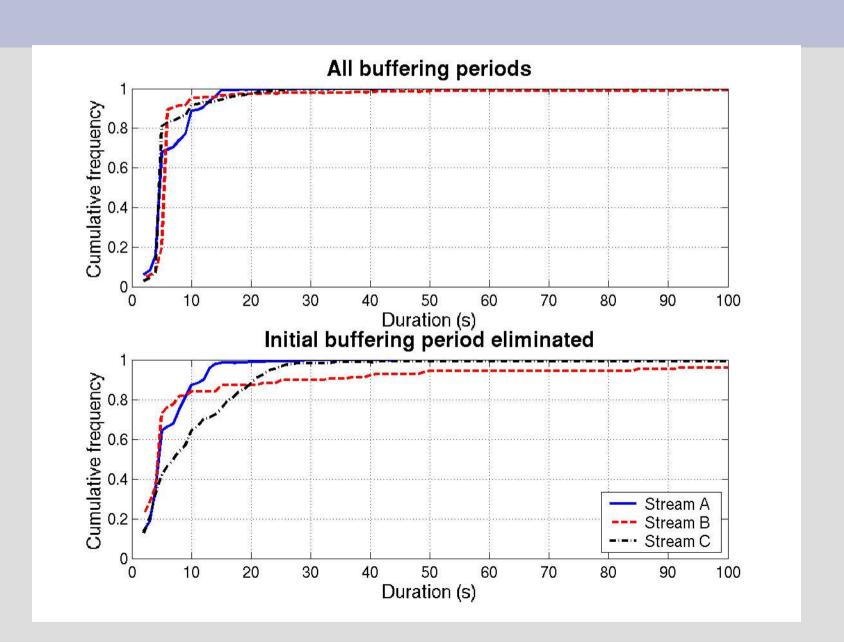


Some experiments and (interesting) results

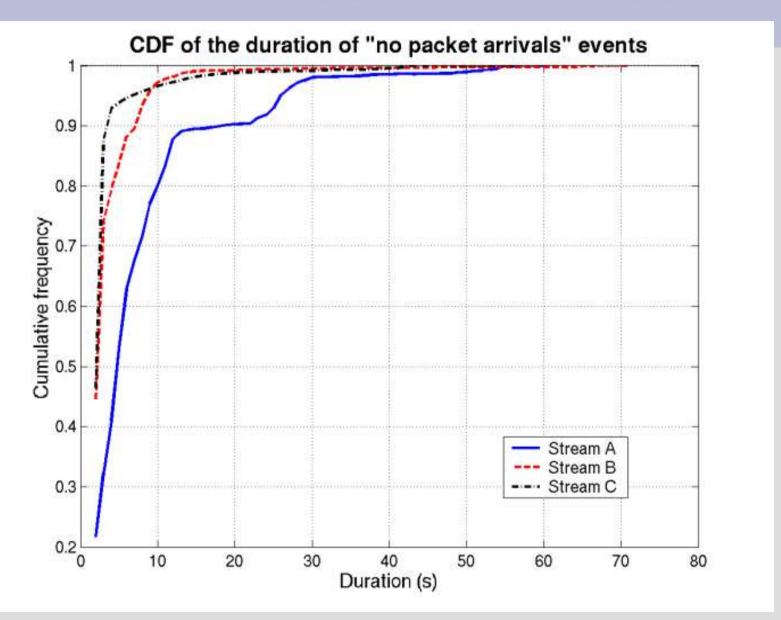
Validation

- First step: Analytical validation
 - send streams under controlled (known) network conditions
 - match trends in player-derived data with network "snapshots"
- Second step: Subjective validation
 - do these objective measurements accurately reflect the user's view of stream quality?

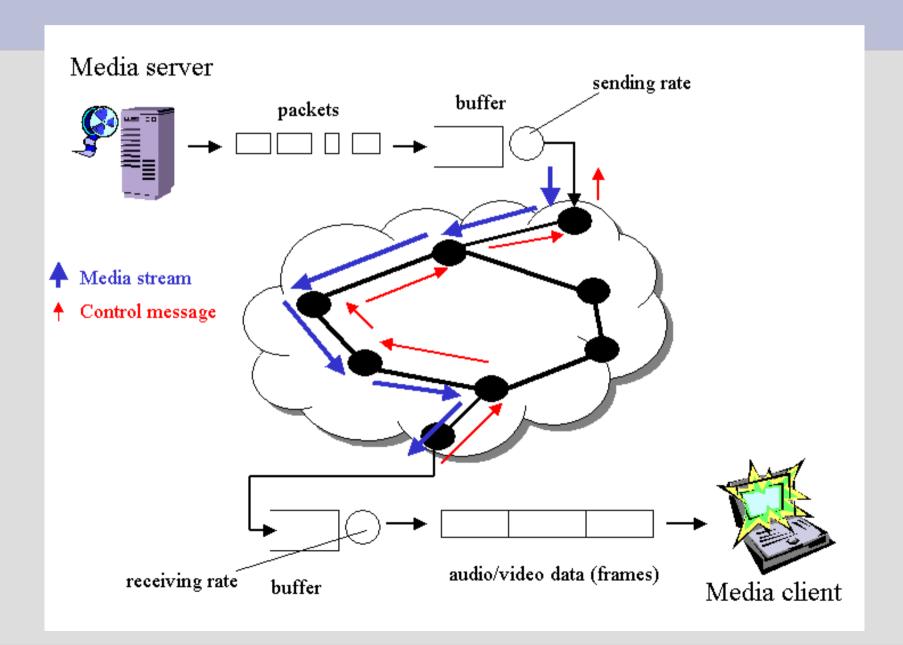
Analytical validation: network testbed



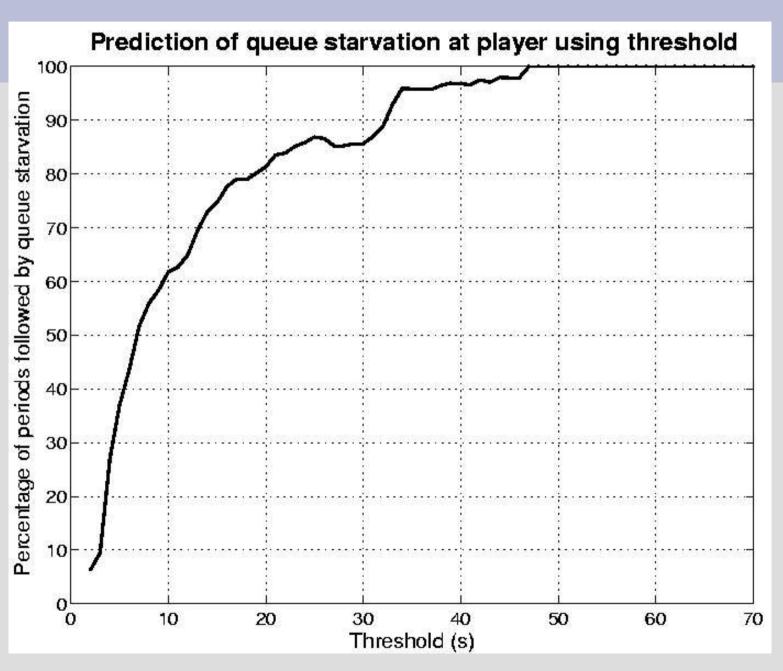
Analytical experiments (HPL)


- Introduced {1, 5, 10}% packet loss on testbed network (server --> clients)
- 12 clients, geographically distributed throughout US
- September-December, 2001

Stream	Duration	Bandwidth (kbps)	Description
Α	2:04	458	Animated movie trailer; high action
В	11:26	107	CEO address; low action
С	30:00	84	Technical talk; low-moderate action


Buffer starvation periods

Transmission failures


A typical audio/video stream

Prediction using purely objective metrics?

- Idea: Can we predict future periods of buffer starvation simply by observing the packet arrival process?
- Method:
 - Identify all periods of transmission failure in each stream
 - Identify all periods of buffer starvation in each stream
 - If t(starve) t(fail) < eps, then we say buffer starvation occurs as a result of the transmission failure event

Prediction of buffer starvation

Subjective quality validation

- Users watch streams under "perfect" and "lossy" conditions, rate them
- Ratings:
 - 7-point scale (1 = poor, 7 = exceptional)
 - Additional comments (optional)
- Take measurements from media player simultaneously

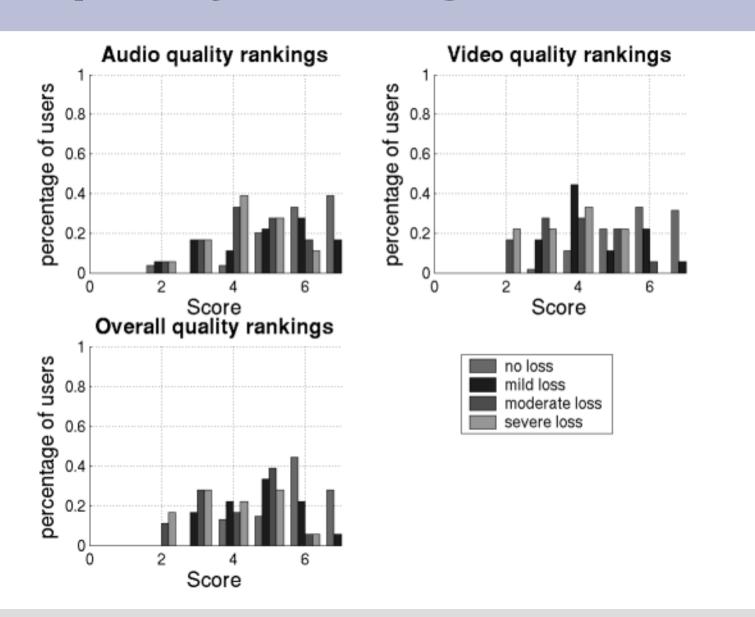
User survey

http://www.mathcs.carleton.edu/faculty/adalal/research/testing/survey0.html

Challenges in experiment design

- Picking the correct loss rate for a given quality level
 - Different streams react to network loss differently
 - Windows Media Server does some "goofy" things at startup
- Ensuring consistency in quality level
 - Scripts to start/stop packet loss, start/stop measurement tool
- Survey design
 - Help from the Psychology department

Experimental info


Stream information		Network congestion level (delay, loss)			
Name	Time	Description	Mild	Moderate	Severe
Ad	0:30	TV ad; moderate action	(50ms, 4%)	(80ms, 16%)	(175ms, 25%)
News	4:09	News clip; low-to- moderate action	(50ms, 4%)	(60ms, 11%)	(80ms, 25%)
Trailer	2:22	Animated movie trailer; high action	(100ms, 8%)	(200ms, 10%)	(200ms, 19%)

- {August, October} 2004
- 17 participants total
- All participants provided comments on each of the streams

What are we looking for?

- Relationship between MOS and % network packet loss
- Correlation between MOS and metrics of interest
 - > -0.40: "significant"

User quality rankings, all streams

Correlation coefficients, TV ad

Correlations with MOS:

Metric	Audio	Video	Overall
TX failure	-0.49	-0.70	-0.65
Lost packets	-0.44	-0.70	-0.68
Retransmissions	-0.59	-0.75	-0.70
Startup buffer period	-0.44	-0.57	-0.50

Correlation coefficients, news clip

Correlations with MOS:

Metric	Audio	Video	Overall
TX failure	-0.22	-0.41	-0.33
Lost packets	-0.30	-0.55	-0.49
Retransmissions	-0.39	-0.60	-0.56
Startup buffer period	-0.26	-0.46	-0.45

Correlation coefficients, trailer

Correlations with MOS:

Metric	Audio	Video	Overall
TX failure	-0.38	-0.36	-0.42
Lost packets	-0.57	-0.47	-0.52
Retransmissions	-0.60	-0.50	-0.53
Startup buffer period	-0.49	-0.45	-0.45

Summary What does the future hold?

Quality prediction

- Idea: Can we predict the future quality of a media stream based on past measurements?
- Examples:
 - predict future buffer starvation periods based on transmission failures
 - predict future "bad" ratings based on the number of retransmission requests
 - predict future packet loss based on the number of transmission requests

What could we do if we could predict degraded stream quality?

- Play out locally-stored content (ads, previews, trailers, etc.)
- Pre-cache content and play out locally when conditions are bad
- Route around the congestion
 - serve content from another server
 - find another network route
- If all else fails, tell the user to come back later

Ongoing/future work

- Quicktime port of SQATool
 - Spring 2005
- Apply data mining techniques to the collected measurements
 - Project with Dave Musicant and 2 students,
 Summer 2005
- Explore the prediction angle further

Summary

- Evaluating the quality of a media stream is difficult to do efficiently and effectively
- Our approach: identify metrics that "mimic" a user's responses, taken from the media player
- Analytical results: media player measurements correspond to periods of network packet loss
- Subjective results (preliminary): strong-ish correlations between user quality rankings and media player measurements

Thank you

- Ed Perry and Sujata Banerjee at HP Labs
- Keith Purrington and Ben Sowell for designing the user testing experiments and analyzing the data
- Mike Tie and his student workers
- The Carleton students and staff members who participated in the user testing
- Mija Van der Wege for assisting in the user survey design

Questions?