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Abstract— The design of access networks for proper support
of multimedia applications requires an understanding of how the
conditions of the underlying network (packet loss and delays, for
instance) affect the performance of a media stream. In particular,
network congestion can affect the user-perceived quality of a
media stream. By choosing metrics that indicate and/or predict
the quality ranking that a user would assign to a media stream,
we can deduce the performance of a media stream without polling
users directly. We describe a measurement mechanism utilizing
objective measurements taken from a media player application
that strongly correlate with user rankings of stream quality.
Experimental results demonstrate the viability of the chosen
metrics as predictors or indicators of user quality rankings, and
suggest a new mechanism for evaluating the present and future
quality of a media stream.

I. INTRODUCTION AND MOTIVATION

The design of access networks to accommodate streaming
media applications requires an understanding of the perfor-
mance of streaming media applications. In particular, un-
derstanding how network congestion affects the performance
of multimedia applications is important in guiding future
development of protocols and future deployment of network
and server resources to best serve the multimedia application
clients.

From an application perspective, we are most interested in
the quality level of a received media stream. In this context,
we consider quality in terms of the user-perceived quality
of a media stream: i.e., how a user would rank the stream
relative to other media streams that he or she has seen in the
past. For the purposes of this study, we are most interested
in coarse-grained levels of quality: whether a user would
classify a media stream’s quality as “good” (the user has few
complaints about the stream’s quality), “acceptable” (the user
wishes the quality were better, but will continue to watch the
stream anyway), or “poor” (the user considers the stream to
be unwatchable, and may terminate the session prematurely as
a result).

The most unambiguous way to discern what a user thinks
about the quality of a media stream is to ask the user directly.
The five-point scale, or Mean Opinion Score (MOS) [1], was
developed for this purpose: to allow users to provide feedback
on the subjective quality of a media stream through a ranking
mechanism, with a score of 1 indicating poor quality and a
score of 5 indicating exceptional quality. The use of the MOS

has several drawbacks in practice. It does not scale well to
a large number of users. More importantly, the MOS gives
us limited information about the reasons behind the quality
ranking of a stream. For instance, a ranking of “3” may mean
that the user did not care for the encoding of the stream, or it
may mean that there was a period of network congestion that
affected the timely delivery of the stream to the user.

A more tractable solution involves collecting measurements
from the underlying network and/or the media player applica-
tion, and discerning the user’s quality rankings based on these
measurements. Identifying the proper metrics is a challenge:
of the different types of data we could collect—packet loss,
throughput, frame rate—which of these tells us the most about
a stream’s quality? More importantly, what analysis can we
apply to this data to provide a picture of stream quality?

By taking measurements as close to the user as possible—
at the application layer—and by judiciously choosing our
metrics, we can develop a picture of streaming media quality
in a more scalable and accurate fashion than by polling the
user. In addition, we can combine these application-layer
measurements with network-level measurements to form a
complete picture of the rationale behind a quality ranking: we
can deduce that the quality of a stream was “poor” because
the network packet loss rate was 20% on average during the
stream. In turn, by understanding the relationship between user
quality ranking and network congestion levels, we can make
better-informed decisions about the design of the underlying
networks and the design of the application-layer streaming
protocols.

Recent work by others has also attempted to address the
issue of using objective metrics as a substitute for subjective
metrics of stream quality. Commercial tools, such as [2]–[5],
rely on synthetic test streams, synthetic applications, and/or
arbitrary test points in the network to discern the quality of
a media stream from objective measurements. These tools,
however, can fail to detect application sensitivities to service
quality, such as stream start-up delay or player stall, that are
of relevance to actual media clients. Media player applications
such as Windows Media Player [6] and RealPlayer [7] provide
some limited feedback mechanisms, but only to the origin
server. A more mathematical approach, in which measure-
ments of a stream on both the sender and receiver sides are
correlated, is presented in [8] and [9].



Our proposed measurement mechanism involves the use
of an instrumented media player application, similar to the
approaches presented in [10]–[12]. Our goal is to demonstrate
not only the feasibility of using application-layer measure-
ments to discern user-perceived quality of an on-demand
stream, but also to demonstrate that certain metrics may
serve as predictors of future periods of degraded stream
quality. Thus it is possible to utilize this information to design
strategies to mitigate the actual reduction in stream quality (for
instance, by selecting a different media server with a better
quality profile). We discuss this idea more fully in Section II.

Following our derivation of the proper subset of metrics
to use, we describe, in Section III a series of experiments
designed to validate our selection of metrics. The results of
these experiments are presented in Section IV. Finally, we
conclude in Section V with some thoughts about future work
in this area.

II. OBJECTIVE METRICS FOR MEASURING SUBJECTIVE

STREAM QUALITY

Identifying metrics for discerning the subjective quality of
a media stream is a challenging problem. Collecting mea-
surements at the network level gives us a clear picture of
the current congestion conditions, either on a global scale
or on a particular network segment. Examples of network-
level metrics include the percentage of lost packets, packet
delays, and throughput. However, network-level metrics may
not clearly indicate the user’s perception of or experience with
a media stream. In particular, streaming media applications
often employ mechanisms, such as aggressive retransmissions
or temporarily increasing the transmission rate to several times
higher than the normal transmission rate ( [13]), to mitigate
the effects of network congestion. Another alternative, then,
is to take measurements from the media player application by
periodically polling this application. Measurements that can
be pulled from the media player include statistics about the
application-layer packets (number of application packets re-
ceived correctly, lost, or retransmitted), information about the
current application-layer throughput, and information about
the frequency and duration of start-up and mid-stream buffer-
ing.

In [14], we describe a process by which to identify a good
set of application-level metrics. Based on this process, we have
identified four key metrics that characterize the user-perceived
quality of a media stream.

The first metric is the number of “lost” application-layer
packets. In this context, an application-layer packet is lost if
it does not arrive before its scheduled play-out time.

The second metric of interest is the number of packets
that the player reports as being “retransmitted”. These are
the application-layer packets that did not arrive successfully
within a specified time window, but which did arrive before
the scheduled play-out time. Retransmitted packets serve as
a good first-order approximation of the degree of network
congestion: the number of retransmission requests increases

with increasing packet loss and packet delays at the network
layer.

The third metric is the amount of time over which no
new application-layer packets arrive: in other words, when the
application has not received any new data from the network
layer. We refer to this metric as “packet reception pauses”.

Finally, we consider the “buffering behavior” of the media
player. Specifically, we are interested in how often the player
enters a buffer starvation period mid-stream, where it has no
reserve data to render and must wait for new data to arrive, and
the duration of each of these events. We are also interested,
although to a lesser extent, in the duration of the startup
buffering period, or the length of time at the start of the stream
between the arrival of the first stream data packet and the first
frame rendered by the player.

Of these four metrics, two are what we term lagging
indicators of stream quality, and two are leading indicators of
stream quality. The lagging indicators are so termed because
they indicate the exact moment at which the quality of a media
stream decreases. The two lagging indicators in this study are
lost packets and buffer starvation. Lost packets often manifest
themselves as uneven transitions between frames or other
video artifacts. More rarely, they may manifest themselves
as audio glitches, but this is only in cases of severe loss
since video data tends to be dropped before audio data. Buffer
starvation periods correspond to either a partial or complete
stoppage of the stream.

Packet reception pause periods and packet retransmissions,
on the other hand, are leading indicators of reduced stream
quality because their appearance typically portends the future
occurrence of either lost packets or a buffer starvation period.
The longer the packet reception pause period (or the more fre-
quently the packet reception pauses occur in succession), the
greater the likelihood of the occurrence of a buffer starvation
period or a packet loss period. Similarly, an increase in packet
retransmissions may indicate that packet loss is imminent.

III. EXPERIMENTAL TESTBED AND PROCEDURE

Evaluating the viability of these metrics as replacements
for subjective quality measurements requires us to compare
these metrics head-to-head with user rankings of the same
streams under the same network congestion conditions. To
do so, we need a mechanism for collecting application-layer
measurements and a mechanism for collecting user quality
rankings of media streams. We describe both mechanisms in
this section.

A. Data collection infrastructure

Collecting data at the application layer requires us to poll
the application for current information about a stream. We
have developed a measurement tool ( [15]) that leverages the
existing installed media player software on a user’s machine,
without requiring the modification of the media player. Our
tool consists of a plug-in that interfaces directly to the installed
media player on the client—in this case, Windows Media
Player. The plug-in uses ActiveX hooks to query the media



player at uniform intervals about the current state of a stream.
This data is logged for later off-line analysis.

B. Network testbed infrastructure

The experimental network consists of a set of 25 client
machines on a subnet of a small campus network, and a
media server on a separate, isolated subnet. The media server
is separated from the rest of the campus network by two
routers. The router closest to the media server runs NIST
Net ( [16]), software which allows one to introduce a known
amount of network congestion (packet loss, packet delays, or
bandwidth throttling) onto a network. By introducing a known
amount of congestion, we can observe how the media players
react to perturbations in the network, and how these network
disturbances are reflected in the measurements we collect from
the media players.

The media server is a 2.4 GHz Pentium processor machine
with 512 MB of RAM, running Windows Server 2003 and
Windows Media Server 2003 software. The NIST Net router is
a 700 MHz processor machine with 512 MB of RAM, running
Linux kernel 2.4.21-27, and NIST Net version 2.0.12. The
client machines have 2.4 GHz Pentium processors and 512
MB of RAM and run Windows XP SP1 and Windows Media
Player version 9.

Before and during the experiment, we took periodic mea-
surements on the campus network of network packet loss
rates, network packet delays, and throughput. Based on these
measurements, we found negligible levels of packet loss and
delay on the campus network. Thus, it was not necessary to
isolate the client machines in addition to isolating the media
server.

C. The media streams

Table I lists the audio/video streams used in this study and
the network congestion levels used in the experiments. The
streams were selected to provide some variety in their length,
style, and amount of action. Selecting the loss rates to achieve
the desired level of degraded stream quality proved difficult,
due in large part to the mechanisms that Windows Media
Player utilizes to mitigate the effects of network congestion.
We in some cases had to increase the loss rate beyond the
parameters of what would be considered “acceptable” network
loss rates to overcome Windows Media Player’s mechanisms
and achieve the desired loss of quality in the streams. Table
II describes the categories of loss that were used in the exper-
iments, by qualifying what “mild”, “moderate”, and “severe”
loss “looked” like to the user. Network congestion manifested
itself in each stream differently, but the table shows some
similarities in terms of the stream behavior and the number of
“poor quality” characteristics in each stream within the loss
categories.

D. Experimental design

To verify the utility of our metrics in predicting user-
perceived quality of a stream, we conducted a series of ex-
periments in which users ranked the quality of media streams

under no loss and under the various loss levels described in
Section III-C. In the first part of the experiment, we showed
a “training clip”: a one-minute, thirty-second stream of a
news story. The training clip introduced the participants to
the baseline level of quality that they could expect from
the subsequent streams, under “perfect” conditions (i.e., no
network loss or delays).

We then showed the users a series of six streams, selected
from the streams listed in Table I. Each user viewed each
stream twice: once with no loss and once with either mild,
moderate, or severe levels of loss. In total, each user saw three
clips with no loss and one clip each at mild, moderate, and
severe loss levels. The loss patterns were randomized, so that
not all users saw the same level of loss at any given time.
The users were not aware of the loss levels shown to them for
a particular stream; they also were not told which version of
the stream had no loss introduced. The participants then filled
out a brief survey in which they ranked the audio, video, and
the overall quality of the stream on a seven-point scale, with
one being the worst possible quality and seven being the best
possible quality. The users were also asked to elaborate on
their rankings in each category: why they gave the score that
they did. While this part of the survey was optional, we found
that all of the participants did in fact provide comments for
most or all of their rankings.

The participants viewed the streams using Windows Media
Player and our measurement tool. The plug-in collected state
information from each stream as the users watched the streams.

We ran these experiments on two separate occasions: one
day each in August and October, 2004. From these experi-
ments, we obtained a total of seventeen sets of user rankings.
We randomized the network congestion patterns introduced to
each user such that at least two users saw each combination of
loss patterns: i.e., at least two users saw the exact same loss
levels for the exact same streams.

IV. RESULTS AND ANALYSIS

In this section, we examine the relationships between the
metrics described in Section II and the user quality rankings.
We determine how closely our selected metrics align with the
users’ evaluation of the quality of a media stream. Strong
correlations between the metrics and the rankings indicate that
the metric is a good indicator of user-perceived stream quality,
and that the metric in fact can substitute for the user’s quality
ranking.

Figure 1 illustrates the distribution of the audio, video,
and overall quality rankings given for all streams within a
loss category (mild, moderate, severe, none). Quality rank-
ings generally decrease as the level of network congestion
increases. It is interesting to note that the difference between
quality rankings for streams with “moderate” and “severe” loss
levels is low. We suspect that in our sample, users thought
that the stream with moderate loss was already “poor”. Given
that the scores skew toward the lower end of the scale, users
classify stream quality as “poor” when network-level packet
loss reaches 15%.



TABLE I

DESCRIPTION OF TEST STREAMS AND CONGESTION PATTERNS

Stream information Network congestion level
Name Duration (min:sec) Description Mild Moderate Severe
Commercial 0:30 Commercial 50 ms delay 80 ms delay 175 ms delay

Moderate action 4% loss 16% loss 25% loss
News 4:09 News story 50 ms delay 60 ms delay 80 ms delay

Low-Moderate action 4% loss 11% loss 25% loss
Trailer 2:22 Animated move trailer 100 ms delay 200 ms delay 200 ms delay

High action 8% loss 10% loss 19% loss

TABLE II

SUBJECTIVE QUALITY DESCRIPTION FOR EACH TEST STREAM

Stream Mild Loss Moderate Loss Severe Loss
Commercial 1-2 sec periods Loss of video motion at “Slide show” effect.

of video “stuttering” start and near end; more Playback ends before
at end of stream. pronounced during scene all data is rendered.

changes. Buffer starvation
near end of stream.

News Few 2-6 sec periods 4-10 sec periods of More time not playing video
of loss of video motion. video motion loss. Possible than playing video.

buffer starvation mid-stream
Trailer 1-2 sec (isolated) Frequent periods of “Slide show” effect. Long

periods of video 1-2 sec video stuttering, periods of buffer starvation.
“stuttering”. some loss of video motion.

Fig. 1. Histograms of user quality rankings for all viewed streams

To determine the extent to which each of the metrics corre-
sponds to users’ quality rankings, we calculate the correlations
between the rankings and each of the metrics of interest. Table
III lists the degree of correlation between the user rankings
and each of the metrics of interest. By separating the data for
each clip, we can isolate the loss rate as the primary factor
affecting both our metrics and the user-reported scores. The
negative correlations indicate that the users’ quality rankings
decrease as these metrics increase.

Except for the movie trailer clip, the highest correlations

between user ranking and quality metrics occur for the video
rankings, and the lowest correlations occur for the audio rank-
ings. This indicates two things. First, that a user’s perception of
stream quality depends more highly on the video quality than
on the audio quality. Second, that the video quality of a stream
is more highly affected by network congestion than the audio
quality is. This intuitively makes sense: a larger portion of a
stream is devoted to video than to audio packets, so network-
level congestion will affect a larger number of video packets
than audio packets. Also, video packets are the first to be
“pruned” by the server under periods of congestion.

We can also see from Table III that the degree to which
network congestion affects the quality of the clip depends both
on the level of congestion and on the nature of the clip. In
longer streams, the effect of packet loss and packet reception
pauses may be amortized over the length of the stream: a two-
second period of loss in a three-minute stream will not be quite
as noticeable as a two-second period of loss in a 30- second
stream. Also, the same percentage of lost packets spread over
a three-minute stream will not be quite as noticeable as in a
30-second stream: users tend to “forget” loss periods if they
happened early on in the stream, or if most of the stream was
of acceptable quality.

It is interesting to note that the correlations for retransmitted
packets are actually higher than those for packets reported
by the player as lost, in all cases. In only two cases is
the correlation coefficient less than -0.5. This indicates that
“recovered packets” are a stronger indicator of user-perceived
stream quality (and possibly of network-layer packet loss, or
“actual packet loss”) than the percentage of packets lost at the
application layer.



TABLE III

CORRELATION COEFFICIENTS BETWEEN USER QUALITY SCORES AND QUALITY-CONTROL METRICS

Commercial News Trailer
Audio Video Overall Audio Video Overall Audio Video Overall

Packet reception pause duration -0.4864 -0.7019 -0.6493 -0.2223 -0.4135 -0.3259 -0.3836 -0.3573 -0.4216
Lost packets -0.4373 -0.7044 -0.6817 -0.3011 -0.5540 -0.4928 -0.5655 -0.4660 -0.5241
Retransmissions -0.5886 -0.7452 -0.6998 -0.3855 -0.6002 -0.5614 -0.6035 -0.4958 -0.5295
Startup buffering -0.4437 -0.5705 -0.5037 -0.2611 -0.4616 -0.4461 -0.4863 -0.4506 -0.4508

While our original intent was to examine mid-stream buffer
starvation periods, we found that there were too few of these
events in our datasets to analyze. We instead analyze the
correlation between the duration of the startup, or initial,
buffering period of a stream and the user’s quality ranking
of that stream. The data shows that the duration of the startup
buffering period is for the most part strongly correlated with
user quality rankings. The correlation between video quality
rankings and startup buffering duration is higher than the cor-
relation between audio quality rankings and startup buffering
duration, as it is with the other metrics. Thus, even though
originally we were not apt to consider startup buffering as an
indicator of degraded stream quality, we plan on including this
metric in our future studies due to its strong showing here.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that objectively-
measured metrics can be used as approximations of the quality
score that a user would give a media stream under network
congestion conditions. In particular, the degree of application-
layer packet loss, the number of packet retransmission requests
at the application level, the amount of time in which no new
application-layer packets are received, and the duration of the
startup buffering period, are all strong indicators of the user-
perceived quality of a media stream, if we consider coarsely-
quantified quality levels.

Because we can approximate user rankings with carefully-
chosen metrics, we can discern the quality of a media stream
merely by taking measurements from the media player appli-
cation. It is not necessary to poll the users directly. Taking
measurements rather than polling is a much more scalable
solution, and is potentially much less ambiguous than user
rankings can be.

Several metrics have previously been identified as “leading”
indicators of stream quality: observing these metrics and then
observing the stream demonstrates that the metrics provide
clues as to future quality levels of the stream, by indicating
warning signs of increasing network congestion levels. By
exploiting these leading indicators, we can potentially predict
future quality levels of a stream, without having to measure
what is happening at the network layer. Such predictions may
lead to new models for allocation of network and server re-
sources for streaming applications: distributing media servers
and/or media content closer to the users, for instance, or
developing mechanisms to allow for smooth transitions from
one media server to another in mid-stream.
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