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Abstract

The image inverse problem is the problem of reconstructing an image given its degraded or compressed
observation. Some previous solutions to this problem use generative adversarial networks (GANs) [3], but
the representation capabilities of such models cannot capture the full distribution of complex classes of
images (e.g., human faces), thus producing sub-optimal results. Our work examines the image-adaptive
generative model, proposed in Hussein et al (2020), that purports to mitigate the limited representation
capabilities of previous models in solving the image inverse problem [2]. To this end, we implement
the model proposed in Hussein et al (2020), which makes generators “image-adaptive” to a specific test
sample. This model consists of three successive optimization stages: the non-image-adaptive “compressed
sensing using generative models” (CSGM), the image-adaptive step (IA), and the post-processing “back-
projection” (BP). Our results demonstrate that the two image-adaptive approaches—IA and BP—can
effectively improve reconstructions. Further testing reveals slight biases existing in the model (e.g.,
skin tones), which we conjecture to be caused by the training dataset on which the model is trained.
Finally, to explore more efficient ways of running the model, we test out different numbers of iterations
used for CSGM. The results show that we can indeed decrease the number of CSGM iterations without
compromising reconstruction qualities.

1 Introduction

An inverse problem consists of inferring parameters or data distributions of a system
from its inadequate observations. Particularly, the goal of image inverse problems is to
recover an image given its degraded or compressed observation. This task has a variety of
applications, such as medical imaging and computer vision [8]. To address the problem,
much work has explored the way for exploiting Generative Adversarial Networks (GAN)
[3], which can be trained to produce desired data distributions (e.g., faces of humans) from
random vectors in a latent space, to solve image inverse problems.

In 2017, Bora and his colleagues proposed “compressed sensing using generative mod-
els’s” (CSGM) [2] in which they optimized the latent vectors by comparing observations and
GAN-produced images. However, the prior methods, including CSGM, can only estimate
images belonging to the class on which the model was trained; they suffered from the lim-
ited representation capabilities of GAN that could not capture the complexity of images,
resulting in significant mismatches. Building on the method proposed in Bora et al (2017),
Hussein proposed a new strategy in “Image-Adaptive GAN based Reconstruction” [4] to
mitigate the limited representation capabilities of generative models. Under this strategy,
known as Image Adaptation, they performed gradient-based optimization on the weights of a
GAN to make their GAN image-adaptive at the inference time. In a noise-less scenario, they
proposed further reconstructions that strictly enforce compliance of recoveries with their
corresponding observations via back-projection (BP).
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In this paper, we replicate “Image-Adaptive GANs” and evaluate the robustness of their
method [4]. To find more efficient ways of running the model, we explore their method under
potentially helpful usage adjustments—such as different numbers of iterations, changes in
parameters, and different implementations of image compression. This paper describes the
model architecture and the methods roughly sketched above in Section 2, presents the results
of our replication in Section 3, and discusses our findings and ideas for further advancement
in Section 4 and 5.

2 Image Reconstruction Approaches

The image inverse problem is defined more rigorously as such: given observation y € R™
and m X n measurement matrix A (usually, m < n) satisfying

y= Az +e, (1)

where z € R" is an unknown vector and e € R™ represents the noise, how can we reconstruct
Z € R™ that complies with 2 maximally? Hussein et al (2020) claim that such reconstruction
can be obtained by undergoing three stages of compliance: CSGM, the image-adaptive step
(IA), and BP. A key tool that will be used, as mentioned in the introduction, will be a
pre-trained GAN. We discuss GANs and each of these stages in detail below.

2.1 Generative Adversarial Networks (GANs)

In 2014, Goodfellow and his colleagues proposed a new framework for estimating gener-
ative models through Generative Adversarial Networks (GANSs) [3], in which they simultane-
ously train two “adversarial” deep-learning models: a generator GG that takes in an arbitrary
distribution from a latent space and produces desired data distributions, and a discriminator
D that estimates the probability that a sample came from the training data rather than G.
The two models compete with each other to get progressively better at their respective tasks.

The cost function for GANs uses the two-player minmax function C(G, D) given by

minmax V(G, D) = By (o) (108 D) + Eer (1~ D(G(2)), )

where x is a sample from a training set and z is a random vector from a latent space.
While the goal of D is to maximize V by making D(z) as close to one as possible, the
goal of G is to minimize V' by making G(z) as close to one as possible and in turn making
D(G(z)) as close to one as possible. In other words, we train the discriminator to be able to
accurately distinguish between the training data distribution and distributions produced by
the generator, and make the generator better at recovering the training data distribution.

GANSs can be trained to produce distributions of realistic images. The CSGM and TA
methods described below take advantage of GANs’ generative power and ensure realism in
the reconstruction by performing gradient-based optimization to fine-tune the weights of
pre-trained GANs.

2.2 Stage 1: CSGM

CSGM (compressed sensing using generative models) was originally proposed in Bora
et al (2017). Despite its name, the method is capable of image reconstruction other than
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compressed sensing and works as follows. Consider x € R", A and y € R™ as introduced
earlier. Let G : R* — R™ be a differentiable function representing a generative model (i.e. a
generator of a pre-trained GAN). We perform gradient-based optimization on z for the loss
function

loss(2) = [ AG(2) -y (3)

AG(z) represents the degraded version of the generated image, and we seek to find 2
that minimizes the difference between this degraded image and the observation y.

2.3 Stage 2: Image Adaptation (IA)

The image adaptive stage (IA), proposed in Hussein et al (2020), uses the Z initialized
by the CSGM stage to further improve the reconstruction. Particularly, instead of only
optimizing z by minimizing (3), we simultaneously optimize z and the weights of G—alfter
initializing z to Z—denoted by #. The new loss function is given by

loss(z,0) = ||AGy(z) — yHi (4)

CSGM uses a fixed generative model GG, whose representation capability is insufficient in
covering the entire class of a complex distribution (e.g. human faces), and thus has limited
performance when used to reconstruct a sample not belonging to its training samples. The
IA stage overcomes such limitation by optimizing 6 to make G “adapt” to the specific
observation y.

2.4 Stage 3: Back Projection (BP)

After obtaining a reconstructed image, z, from CSGM and/or IA, back projection (BP)
offers a way to further improve the reconstruction through post-processing. In this stage,
we enforce compliance of the restoration with our observation y by computing

21, = argmin [|Z — 2[5, (5)
X

such that AT = y. This problem has a closed formula given by
fy = Al(y — Az) + 2, (6)

where AT := AT(AAT)~! is the pseudo-inverse of A. Note that if y is noisy, this method is
not effective as it amplifies the noise, which we discuss in Section 3.

3 Replication Experiments

We implement the model described in the previous section and apply it to three different
types of image degradation. In our experiment, we use the official PyTorch implementation
of Progressive Growing GANs (PGGANSs) trained on the CelebA-HQ dataset to produce a
realistic image of human faces of size 1024 x 1024 [6]. PGGANs use a progressive training
method in which normalized convolutional layers are added throughout training to produce
realistic images. The design of PGGANs allows for faster and more stable training by
increasing complexity over time and is capable of producing higher-quality images, compared
to other types of GANs [6]. We optimize the loss function (3) and (4) using ADAM optimizer
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[7] with the learning rate of 0.1 for z optimization in CSGM and the learning rate of 0.0001
and 0.001 for z and 6 optimization respectively for TA, as proposed in Hussein et al (2020).

Instead of running the model and averaging over 100 images, as done in (Hussein et al,
2020), we run our experiments over 50 only, and ensure the generalizability of the results by
showing 95% confidence intervals. The three tasks and results of our model performance on
them are described and shown in the following subsections.

3.1 Measuring Reconstruction Quality

In addition to visual results, we evaluate the performance of different methods (CSGM,
CSGM followed by BP, TA| TA followed by BP) using two quantitative measures: PSNR
(Peak Signal-to-Noise Ratio) [5] and PS (Perceptual Similarity) [10], as described below.
The results are also compared against that of naive reconstruction obtained by Afy.

3.1.1 PSNR (Peak Signal-to-Noise Ratio)

The PSNR computes the peak signal-to-noise ratio by naively comparing reconstructed
pixels to the actual pixels and taking the absolute difference (MSE). The mathematical
representation of the PSNR is as follows:

PSNR(I, J) = 10log,, (%) , (7)

where max (/) is equal to 255 (i.e. the maximum difference between two pixel values per
channel). MSE(I, J)—Mean Squared Error—is the widely used perceptual metric, computed
by

MSE(I, J) ZZ 11i,5) — T, 5)13: (8)

where [ and J are images of size N x M. Notice that when the pixel values of [ and J
are more similar, MSE(7, J) is smaller, which in turn makes our PSNR value bigger. PSNR
is a means of measuring the performance of our methods. However, it is too simplistic for
capturing nuances of human perception and does not account for whether the differences are
perceptually salient to humans. There is thus a need for a more sophisticated quantitative
measure that can account for the semantic meanings of images.

3.1.2 PS (Perceptual Similarity)

The PS measures the similarity between two images in a way that better resembles hu-
man perception [10]. It is the output of a deep learning model trained using “perceptual loss”
functions that measure the similarity of two images. This PS metric is shown to outperform
all other metrics, such as PSNR, in the task of image differentiation. PS models can be
trained using both supervised and unsupervised learning. While Hussein et al (2020) do not
specify which PS model they use, models trained with supervised learning are advantageous.
Hence, we use one of the supervised models, AlexNet (supervised), in our experiments [10].
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3.2 Super Resolution: Bicubic Interpolation

The task of super-resolution is characterized by reconstructing images that have un-
dergone a down-sampling process that maps a sample area from the original image to each
pixel in the resulting images, lowering the resolution. We use Bicubic Interpolation (its offi-
cial implementation in PyTorch) to down-sample images before attempting super-resolution.
Bicubic Interpolation is a method that maps 4 x 4 pixel grids in the original image to a single
pixel in the image output, whose convolutional kernel is typically given by

L5|z* — 2.5|z]* + 1 for |x] < 1,
W(z) = ¢ 0.5|z)> — 2.5|z* + 4|z| — 2 for 1 < |z] < 2, (9)
0 otherwise.

For super-resolution using bicubic interpolation, our A" (i.e. naive reconstruction) is given
by bicubic up-sampling. The results are shown in Table 1 and 2.

Figure 1: Super-resolution with bicubic kernel. From top to bottom: scale factor 8 with noise level of 0/255,
scale factor 8 with noise level of 40/255, scale factor 16 with noise level of 10/255, scale factor 32 with noise
level of 0/255. From left to right: original image (z), degraded image (y), bicubic up-sampling, CSGM,
CSGM-BP, TA, and TA-BP. Note that CSGM and IAGAN use the pre-trained PGGAN.

Table 1: Results for super-resolution with bicubic interpolation. Reconstruction PSNR averaged over 50
images from CelebA-HQ-higher values are better than lower values of PSNR. Images are generated from
PGGAN with scale factors 8, 16, and 32, and noise levels 0%, 10%, and 40%. Errors reflect 95% confidence
interval of resulting values.
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Super Resolution (Bicubic Interpolation) with PSNR

Scale | Noise || Naive CSGM CSGM-BP IA [A-BP

8 0% 29.91 £ 0.84 | 21.24 £ 0.50 | 28.07 + 0.79 | 27.88 £ 0.76 | 29.39 4+ 0.85
8 10% 28.05 £ 0.56 | 21.05 £ 0.49 | 26.64 + 0.60 | 26.59 + 0.60 | 27.49 4+ 0.60
8 40% 20.54 + 0.12 | 18.76 £ 0.26 | 20.27 + 0.12 | 20.73 + 0.17 | 20.35 4+ 0.13
16 0% 26.93 £ 0.67 | 21.18 £ 0.49 | 25.25 + 0.62 | 25.58 +£ 0.74 | 25.89 4+ 0.76
16 10% 25.92 £ 0.37 | 20.99 £ 0.37 | 24.52 + 0.39 | 24.77 £ 0.46 | 24.91 4+ 0.46
32 0% 23.83 £0.52 | 20.77 £ 0.47 | 22.70 + 0.52 | 23.08 £ 0.61 | 23.13 4+ 0.62

Setting aside the fact that naive reconstruction (bicubic up-sampling) appears to yield
the best results, it is noticeable that as we progress through the stages of our GAN based
reconstruction, the PSNR evaluation generally improves. The results of CSGM are not
satisfying both in Figure 1 and Table 1. The PSNR values for CSGM are significantly lower
than those of other methods, and there are significant mismatches between the original image
and the CSGM reconstruction. The BP step appears very effective in reducing errors and
improving results from CSGM. Compared to CSGM, A yields much better result across
all scale factors and noise levels, showing the effectiveness of image adaptation. The post-
processing BP improves the TA results slightly when noise is relatively low (i.e. 0% and
10%), and does not when noise is higher (i.e. 40%), as predicted. 95% confidence intervals
ensure that CSGM performs reliably worse than naive reconstruction, while TA-BP is only
slightly worse. Naive reconstruction, interestingly, does not yield the most visually superior
results despite having high (at most times the highest) PSNR score. This motivates us to
view the more sophisticated PS ratings of the corresponding results.

Table 2: Results for super-resolution with bicubic interpolation. Reconstruction PS (AlexNet) averaged over
50 images from CelebA-HQ-lower values are better than higher values of PS. Images are generated from
PGGAN with scale factors 8, 16, and 32, and noise levels 0%, 10%, and 40%. Errors reflect 95% confidence
interval of resulting values.

Super Resolution (Bicubic Interpolation) with PS (AlexNet)

Scale | Noise || Naive CSGM CSGM-BP IA IA-BP

8 0% 0.331 £ 0.03 | 0.349 + 0.03 | 0.282 £ 0.02 | 0.266 & 0.02 | 0.242 + 0.02
8 10% 0.352 £+ 0.03 | 0.341 £+ 0.03 | 0.299 £ 0.026 | 0.262 £ 0.02 | 0.264 £+ 0.02
8 40% 0.526 &= 0.02 | 0.359 £ 0.03 | 0.496 £ 0.02 | 0.279 £ 0.02 | 0.467 & 0.016
16 0% 0.410 = 0.03 | 0.353 £0.03 | 0.318 £ 0.02 | 0.286 + 0.02 | 0.281 + 0.02
16 10% 0.439 4+ 0.02 | 0.353 £ 0.02 | 0.339 £ 0.02 | 0.290 £ 0.02 | 0.305 & 0.02
32 0% 0.447 £ 0.03 | 0.345 £ 0.02 | 0.328 £+ 0.02 | 0.310 &= 0.02 | 0.308 =+ 0.02

As shown in Table 2, TA and TA-BP outperform both CSGM and naive reconstructions
when measured by perceptual similarity, and for larger scales, CSGM also outperforms naive

reconstruction under this measurement.

In particular, naive reconstruction is no longer

superior to the rest, which matches our visual evaluation, reaffirming the idea that PS is a
more accurate (i.e., closer to human perception) measurement than PSNR.

It should be noted that we have smaller (i.e. better) PS results than Hussein et al
(2020), possibly due to differences in implementations of PS: our implementation uses the
supervised Alex-NET, discussed in Section 3.1.2, while Hussein et al (2020) do not specify
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their implementation. Despite the difference, the trends in the two tables above match
results collected in Hussein et al (2020), showing the robustness of their method in the task
of super-resolution.

3.3 Compressed Sensing: Fast Fourier Transformation (FFT)

Compressed Sensing is a signal process of reconstructing a signal from its compressed
form in the frequency domain. Compression, on the other hand, is about making a given
signal less expensive to store—lessening the amount of information stored. Our experiment
uses a compression algorithm that involves the fast Fourier transform (FFT) described as
follows.

Given the original signal (i.e. image) z in the time domain, we apply the fast Fourier
transform on it, obtaining x’ that lives in the frequency domain. We then apply a random
mask on z’ that randomly zeroes out a certain percentage (i.e. 1—compression rate) of its
elements to obtain compression y. As hinted, y is a vector in the frequency domain consisting
of complex numbers. When minimizing the loss function (3), we store y and AG(z) as multi-
variable real vectors. Having y in the frequency domain also provides us with a convenient
pseudo-inverse A': the inverse fast Fourier transform (IFFT), which projects a vector in the
frequency domain back to its counterpart in the time domain.

Figure 2: Compressed Sensing with FFT. From top to bottom: compression rate 0.3 with noise level of
0/255, compression rate 0.5 with noise level of 0/255, compression rate 0.5 with noise level of 10/255. From
left to right: original image (x), IFFT image, CSGM, CSGM-BP, IA, and IA-BP. Note that CSGM and
TAGAN use the pre-trained PGGAN.

Table 3: Results for compressed sensing with the FFT compression. Reconstruction PSNR averaged over 50
images from CelebA-HQ. Images are generated from PGGAN with compression ratios 30% and 50%, and
noise levels 0% and 10%. Errors reflect 95% confidence interval of resulting values.
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Compressed Sensing (FFT) with PSNR
Ratio | Noise || IFFT CSGM CSGM-BP IA IA-BP
0.3 0% 14.35 £ 0.55 | 18.608 £0.76 | 19.73 & 0.87 | 21.85 £ 1.10 | 22.30 £ 1.17
0.3 10% || 14.58 £ 0.48 | 18.97 £ 0.59 | 20.09 £ 0.65 | 22.46 £+ 0.99 | 22.76 + 1.00
0.5 0% 16.92 & 0.54 | 20.45 £ 0.56 | 23.54 £ 0.68 | 26.02 £ 0.92 | 27.83 + 1.10
0.5 10% || 16.59 £ 0.58 | 20.14 £ 0.58 | 22.82 £ 0.70 | 25.83 £ 0.98 | 26.73 £+ 0.95

Table 4: Results for compressed sensing with the FFT compression. Reconstruction PS averaged over 50
images from CelebA-HQ. Images are generated from PGGAN with compression ratios 30% and 50%, and
noise levels 0% and 10%. Errors reflect 95% confidence interval of resulting values.

Compressed Sensing (FFT) with PS (Alex)
Ratio| Noise|| IFF'T CSGM CSGM-BP IA [A-BP
0.3 | 0% 0.355 £ 0.017 | 0.375 £ 0.028 | 0.321 £ 0.022 | 0.317 £ 0.030 | 0.238 £ 0.024
0.3 10% || 0.436 &+ 0.012 | 0.365 + 0.024 | 0.377 +0.016 | 0.307 £ 0.026 | 0.310 4+ 0.018
0.5 | 0% 0.260 £ 0.014 | 0.346 £0.025 | 0.233 £0.017 | 0.277 £ 0.026 | 0.145 £+ 0.018
0.5 10% || 0.358 £ 0.010 | 0.350 4+ 0.025 | 0.318 +0.012 | 0.280 £ 0.027 | 0.238 £+ 0.012

The numerical results collected for compressed sensing in Table 3 and 4 match Hussein
et al (2020) in patterns and trends, and also match our expectations. The effect of noise
on the back projection step is also clear. From results in the first two rows—compressed
sensing with a compression ratio of 0.3, we notice that BP worsens the reconstruction when
noise is present (for both CSGM and TA). This is not exactly the case for the latter two rows
(with a compression ratio of 0.5), but the extent to which BP improves the reconstruction
differs depending on the presence of noise: without noise, the PS rating from IA to IA-BP
is decreased from 0.277 to 0.145, while with 10% noise, the change is from 0.280 to 0.238.

3.4 Deblurring: Gaussian Blur

Deblurring is the process that recovers a sharp image from its blurred state. The original
image x is convoluted with a blur kernel of a specific size to generate our observation y. We
examine the scenario in which we applied the blurring operator A of Gaussian kernel of
size 9 x 9 (its official implementation in PyTorch). In this case, there is no efficient way to
implement the pseudo-inverse Af. Hence, we do not examine the BP post-processing. The
results are shown below in Figure 3 and Table 5 and 6.
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Figure 3: Deblurring with Gaussian Blur with 9 x 9 kernel. From top to bottom: noise level of 0/255 and
noise level of 10/255. From left to right: original image (z), CSGM, and IA. Note that CSGM and IAGAN
use the pre-trained PGGAN.

Table 5: Results for Deblurring with Gaussian Kernel. Reconstruction PSNR, averaged over 50 images from
CelebA-HQ. Images are generated from PGGAN with kernels of size 9 and noise levels 0% and 10%. Errors
reflect 95% confidence interval of resulting values.

Deblurring (Gaussian Kernel) with PSNR
Kernel| Noise || CSGM IA
9 0% 21.55 £ 0.48 | 28.78 £ (.74
9 10% 21.37 £ 0.45 | 27.63 = 0.59

Table 6: Results for Deblurring with Gaussian Kernel. Reconstruction PS (AlexNet) averaged over 50 images
from CelebA-HQ. Images are generated from PGGAN with kernels of size 9 and noise levels 0% and 10%.
Errors reflect 95% confidence interval of resulting values.

Deblurring (Gaussian Kernel) with PS
Kernell Noise || CSGM IA
9 0% 0.348 £+ 0.02 | 0.282 + 0.03
9 10% 0.342 £ 0.03 | 0.281 + 0.03

We see that the IA method unmistakably outperforms CSGM. Note that, interestingly,
the average perceptual similarity of reconstructed images with higher noise levels is bet-
ter than that with 0% noise, suggesting that the GAN-based optimization stages are not
necessarily negatively affected by low noise levels in the task of deblurring.

4 Robustness

In addition to testing and verifying the method proposed in Hussein et al (2020) through
replication, we further examine the method’s robustness by assessing its performance on
different facial features, and with an adjusted number of iterations for CSGM. By running
our model on different facial features, we uncover potential biases residing within the model.
By testing different numbers of CSGM iterations, we seek to strike a balance between time
efficiency and reconstruction quality.
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4.1 Evaluating Performance on Different Facial Features

We divide the images from CelebA-HQ into subsets (each containing 10 images) based
on six preselected features: the presence of objects such as glasses and ornaments, dark and
light hair colors, the absence of hair, and dark and light skin colors. This allows us to measure
the effect of the innate biases residing within the training dataset, CelebA-HQ, on which
PGGAN is trained. We focus on the task of super-resolution with bicubic interpolation with
scale factor 16 with no noise and the PS results of the reconstructions. We compare the
result of these features against that of the general test samples. The result is shown below
in Table 7 and Figure 4.

Table 7: Results for super-resolution with bicubic interpolation. Reconstruction PS (AlexNet) averaged over
10 images with particular characteristics (General, Objects, Dark Hair, Light Hair, No Hair, Dark Skin, and
Light Skin) from CelebA-HQ. Images are generated from PGGAN with scale factors 16 and noise levels 0%.
Errors reflect 95% confidence interval of resulting values.

Super Resolution (Bicubic Interpolation) with PS (AlexNet)
Group CSGM CSGM-BP IA IA-BP
General 0.353 £ 0.03 | 0.318 £ 0.02 | 0.286 £ 0.02 | 0.281 £ 0.02
Object 0.327 £ 0.03 | 0.290 £ 0.03 | 0.260 = 0.03 | 0.254 £ 0.03
Dark Hair 0.333 £ 0.05 | 0.304 £ 0.05 | 0.266 £ 0.04 | 0.262 £ 0.04
Light Hair 0.329 £ 0.06 | 0.288 £ 0.06 | 0.273 £ 0.05 | 0.267 £ 0.05
No Hair 0.324 £ 0.08 | 0.284 £ 0.08 | 0.268 £ 0.08 | 0.262 £ 0.08
Dark Skin 0.374 £ 0.08 | 0.347 £ 0.08 | 0.312 &£ 0.07 | 0.309 £ 0.07
Light Skin 0.343 £ 0.07 | 0.307 £ 0.07 | 0.282 £ 0.06 | 0.276 £ 0.06
SR 16-0 PS Values on Different Facial Features
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

CSGM CSGM-BP IA-BP

m General mObject mDark Hair wLight Hair mNo Hair mDark Skin mLight Skin

Figure 4: Graph representing the results for super-resolution with bicubic interpolation. Reconstruction
PS (AlexNet) averaged over 10 images with particular characteristics (General, Objects, Dark Hair, Light
Hair, No Hair, Dark Skin, and Light Skin) from CelebA-HQ. Images are generated from PGGAN with scale
factors 16 and noise levels 0%. Errors reflect 95% confidence interval of resulting values.
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There are noticeable, albeit slight biases present in our model, particularly between dark
and light skin colors. We conjecture, however, that such bias can be removed by updating the
dataset on which the PGGAN is trained. Although the presence of hair appears to introduce
more complexity to the reconstruction and therefore should yield worse reconstructions, our
data shows that there is no evidence supporting this hypothesis.

4.2 Finding “Optimal” Ratio of CSGM in TA

As ensured in previous sections, reconstruction can be obtained by undergoing three
stages of compliance: CSGM, IA, and BP. While Hussein et al (2020) do clearly state the
number of iterations used for CSGM and TA in the various tasks in their experiments, it
offers no direct discussion of what ratio, or numerical interval, is “optimal” for the number of
iterations of the CSGM and TA stage, taking into account both efficiency in time and quality
of reconstruction. In other words, we question how much z initialization (i.e., CSGM) is
necessary in the presence of the joint optimization on z and the weight of PGGAN (i.e., TA).
To this end, we observe the final performance of our model (reconstructions after the three
stages of compliance) under varying numbers of iterations of CSGM relative to TA.

Table 8: Results for super-resolution with bicubic interpolation. 95% confidence intervals for PSNR and PS
(AlexNet) of reconstruction averaged over 50 images from CelebA-HQ. Images are generated from PGGAN
with scale factor 8 and noise level 0%.

Super Resolution (Bicubic Interpolation)

CSGM iteration

IA iteration

PSNR (after IA)

PS (after IA)

0
900
1800

300
300
300

29.03 £ 0.68
29.31 £ 0.81
29.41 £ 0.81

0.276 £ 0.02
0.237+ 0.02
0.242 + 0.02

Our results show that the 1800-300 combination outperforms 0-300, suggesting that z ini-
tialization (CSGM) is necessary to some extent. However, the 1800-300 result is comparable
to that of 900-300, which implies that considering time efficiency, the number of iterations
for CSGM could perhaps be reduced without compromising the quality of reconstructions.
After running pairwise permutation tests comparing the mean difference in PS between the
900-300 and 1800-300 combinations, we are 95% confident that the PS for the 1800-300 is be-
tween —0.0195 to 0.00988 greater than that of the 900-300 combination for any given image
on average. This suggests any difference between the two is quite small. Likewise, assuming
there is no difference in performance between the 900-300 and 1800-300 combinations, there
is roughly a 52.2% chance of measuring a mean difference in performance between the models
as extreme or more than what we observed. This suggests that in some cases, we do not have
evidence that adding more iterations of CSGM will achieve performance that is practically
discernible from models with fewer iterations of CSGM.

5 Discussion

Our work examines the image-adaptive generative model, proposed in Hussein et al
(2020), that purports to mitigate problems caused by the limited representation capabilities
of previous models in solving the image inverse problem. To this end, we implement the
model proposed in Hussein et al (2020) and evaluate the robustness of their methodologies.

11
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Our results in Section 3 show that the two approaches, IA and BP, can effectively improve
reconstructions. Particularly, the image adaptation technique (i.e., IA) is very effective in
enhancing the generator’s capability to estimate the specific test sample. Discussion in
Section 4.1 reveals slight biases in the model (e.g. reconstruction of faces with darker skin
tone is worse) that cannot be adjusted by the IA step. We conjecture that the biases are
caused by the training dataset for the PGGAN and thus able to be ameliorated by updating
the dataset. Finally, to explore more efficient ways of running the model, we tested out
our conjecture that the number of iterations used for CSGM can be lowered, and find that
it indeed can be lowered to an extent without sacrificing model performance. However,
future work can further explore the optimal number of iterations for IA. We conjecture that
performing too many IA iterations will produce worse reconstructions, due to “overfitting”
of the model, and hence hinder its ability to generate a realistic image of human faces.

Questions remain regarding how to further generalize the reconstruction model. In
our work, the reconstruction focuses on a particular class of image data: human faces,
but the method can reasonably be applied to the reconstruction of new classes of image
data, and, by extension, the reconstruction of other types of signal, such as degraded audio
signals. Exploring in such directions may yield valuable insights into the generality of this
optimization strategy. Further insights could also be gained by utilizing CSGM, TA, and BP
on different types of generative models such as boundary equilibrium GANs (BEGANSs) [1]
and recurrent GANs (RGANs) [9].

Moreover, although images generated through these techniques are visually appealing,
individual images still require a timescale of minutes—roughly 55 seconds per image on
Google Colab’s High Access RAM Persistence-M GPUs—to be produced. If real-time image
reconstruction is to be performed on video data, much work remains at improving the speed
at inference time.

Furthermore, understanding the harmful ways this technology might be used could
mitigate its potential negative impact. For instance, image reconstruction GANs that use
this technique to enhance security camera footage and identify criminals might show bias,
incorrectly reconstruct faces, and lead to false imprisonment. Conversely, if this technology
continues to improve in accuracy, oppressive governments might be able to accurately target
and harass peaceful protesters caught on video. Knowing this, researchers could respond by
clearly stating the limitations of the models they release to the public as well as employers
and restricting access to powerful models via APIs that can refuse to perform potentially
harmful reconstructions. Thus, conducting future studies on generalizing to new data and
models, improving speed and performance, and potential drawbacks of these optimization
techniques could improve our overall understanding.
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