
3D Scanning On the Cheap

A Senior Comprehensive Paper

presented to
the Faculty of Carleton College

Department of Computer Science
Jadrian Miles, Advisor

by
Alex Calamaro Yawen Chen Karen Halls Jonathan Liou Sam Watson

March, 2015

1. Introduction

3D scanning is an important emerging technology, but there are not many affordable or practical choices on
the market yet. The technical goal of this project is to examine a variety of theories related to 3D object
reconstruction and implement 3D scanning using affordable hardware under the guidance of related theory.
We present a framework for 3D object reconstruction in which the user moves a hand-held scanner around the
object of interest, obtaining color and depth "snapshots" from various perspectives. The rigid transformations
needed to align these snapshots into a single, cohesive underlying model are calculated and the transformed
images are combined to reconstruct the object.

In this work, we present three separate approaches to 3D object reconstruction. First, we present a simplistic
naïve approach where different perspectives of an object are aligned according to a known rotation. We also
present two other more sophisticated implementations where the rigid transformations needed for alignment
are unknown. We go on to explore the factors that contribute to the overall accuracy of alignment.

Through this project, we realize that 3D alignment remains a challenging technical issue despite the fact that
the field of computer vision has advanced tremendously in recent years. Therefore, we also propose some
potential work that might help improve the alignment accuracy through combining information obtained
through various technologies.

1

2. Theory and Background

2.1 Motivation

Three-dimensional scanning has conceptually existed for quite some time (many of the algorithms we reference
were developed in the 1990s.) However, it has largely remained in theory since then, with the exception of a
few notable industry examples such as rapid prototyping. The consumer space, on the other hand, has been
nearly void of 3D-scanning tools, and those which do exist can be prohibitively expensive for a hobbyist or
casual user. This is in sharp contrast with the recent increase in availability and affordability of virtual-reality
and augmented-reality related hardware. These concepts are all intertwined in that they provide new ways of
interfacing the physical and virtual worlds, and as they proliferate the consumer space and become staples of
modern computing, it will be increasingly important that individuals are able to represent their environments
in digital space. Thus, we chose to examine some of the cheapest available 3D-scanning hardware to explore
how powerful the low-end market offerings can be.

2.2 Point Clouds

For the purpose of three-dimensional scanning, a point cloud is a set of x, y, z coordinate points in three-
dimensional space that represents the external surface of an object. Most three-dimensional scanners use a
depth sensor to capture data as point clouds by emitting an array of infrared beams which intersect and
reflect off encountered surfaces at varying points; these points are then assigned the appropriate width, height,
and depth coordinates at the point of contact. Given the numerous infrared beams emitted by the depth
sensor, a cohesive topological representation of the space can be represented by these points, forming a point
cloud. A surface represented by a point cloud can be colored by assigning each point an RGB value captured
by the color camera; each point is represented by a six-dimensional vector < x, y, z, r, g, b >.[9]

2.3 Rigid Transformation

One of the challenges of generating a 3D model from multiple perspectives of the same object is to determine
how positions of pairs of points transform from one perspective to another. The type of transformation
involved in the above process is able to map each point (x1.x2, x3) to its corresponding position in another
space (y1, y2, y3) without violating the distance and angel between pairs of points.

This operation is called a Rigid transformation, which preserves distances between pairs of points and angles
between triplets of points. In section 2.2, we introduce the system of representing a point p in any given
point cloud with six coordinates: x, y, z, r, g, b. Specifically, x, y, z refers to the three coordinates in terms
of position and r, g, b corresponds to color coordinates. While color information might assist calculating
rigid transformation between pairs of points by providing valuable information on colors,it is not taken into
consideration in our approach.

Rigid body transformation consist of only rotations and translations,which can be expressed using the
following formula:

T (v) = Rv + t (2.1)

where v is a vector representing a point, the 3× 3 rotation matrix R determines the rotation, and a three
dimensional vector t determines the translation. Given a series of point clouds representing the same
object, the 3D reconstruction of the object requires aligning pairs of points appropriately, which is to find
transformation - both rotation and translation - between pairs of points that correspond to each other. Here
we will illustrate how to apply translation and rotation on a point separately. To translate a point p by t

2

CHAPTER 2. THEORY AND BACKGROUND 3

units, we denote the position of p after the translation as q, from equation (2.1) we have:

q = p+ t (2.2)

which is alternatively: qx

qy

qz

 =

 px

py

pz

 +

 t1
t2
t3

 =

 px + t1
py + t2
pz + t3

 (2.3)

Understanding how rotations work in three dimensional space is slightly more complicated, as an object can
rotate in three orthogonal planes along the axes. Let’s denote the three axes as x−axis, y−axis and z−axis.
The rotation matrix Rx representing the rotation of θ radians counterclockwise for a point about x−axis is:1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (2.4)

Similarly, the rotation matrix Ry representing the rotation of α radians counterclockwise for a point about
y−axis is: cos(α) 0 sin(α)

0 1 0
−sin(α) 0 cos(α)

 (2.5)

Similarly, the rotation matrix Rz representing the rotation of β radians counterclockwise for a point about
z−axis is: cos(β) −sin(β) 0

sin(β) cos(β) 0
0 0 1

 (2.6)

The rotation matrix R in equation (2.1) combines rotations of a point in both three axes, and thus can be
computed by multiplying the three matrices in the appropriate order which is further determined by the
specific order of rotations.

Based on the discussion above, we can apply the equation for rigid transformation to any point P in a given
point cloud A and get its corresponding x, y, z position in another point cloud B if the rotation matrix and
translation vector are both known. This is exactly how we are able to align neighboring point clouds in our
naïve Approach, which will be discussed in detail section 3.2

2.4 Singular Value Decomposition

While it is relatively straightforward to perform rigid transformation to a given point, finding a consistent
pair-wise rotation matrix and translation vector from any point in a set of points to it corresponding point in
another set of points is challenging and complicated. Specifically, it is not easy to tell which points should
be pairs. As a result, we aim to find pair-wise transformation that minimize the sum of Euclidean square
distance between all pairs under such transformation. We denote the sum of pair-wise Euclidean square
distance as the Least Square Error E2, and from definition we know that:

E2 =
n∑

i=1
||(Rqi + t)− pi||2 (2.7)

where Rqi + t is the position of point Q after the pair-wise rigid transformation from point in point cloud Q to
its paired point in point cloud P . Since pi and qi are the pairs under such transformation, meaning that they
are regarded as the same point in two coordinate systems, the Euclidean Square distance between the position

CHAPTER 2. THEORY AND BACKGROUND 4

of P after applying the rigid transformation and Q should ideally be zero, but in practice may be small.
That is why we want the sum of all such Euclidean Squared distance difference: (Rqi+t)−pi)2 to be minimized.

To find such rotation matrix R and and translation vector t that produce pair-wise transformation between
two sets of points P and Q with Least Square Error, Arun et al. (1987) proposed a method that computes
the rotation matrix through finding the singular value decomposition (SVD) of a covariance matrix derived
from the standard representation of rigid transformation.[8] We will briefly examine the concept of SVD
before introducing this method in detail.

Any matrix has a SVD. The SVD of a m× n matrix A is:

Am×n = Um×rΣr×rV
T

r×n (2.8)

=

 u0 ... ur−1

 σ0
...

σr−1

v0T

.

.

.
vT

r−1

 (2.9)

where r is the rank of A, which is equal or smaller than min(m,n), depending on if some of the columns in
matrix A are linearly independent. The SVD of a matrix is deterministic, and the matrices U and V are
orthonormal, meaning that UTU = I and that VTV = I. The matrix Σ is a diagonal matrix with singular
values σi as its entry for each row. These singular values are all non-negative and are ordered in increasing
order in the SVD:

σ0 ≤ σ1 ≤ σ2 ≤ ... ≤ σr−1 (2.10)

The increasing order of singular values ensures the uniqueness of decomposition and determines the order of
ui and vi in the matrices U and V T .

To compute a rotation matrix with SVD, we first identify the centroids of the two set of points as a
corresponding pair for rigid transformation. Such choice is based on the assumption that the centroids of two
sets of points representing the same object and scene should approximately correspond to each other in the
two coordinates.The centroid of P and Q, each containing n points, are defined to be p and q respectively in
the following way:

p = 1
n

n∑
i=1

pi

q = 1
n

n∑
i=1

qi

Each point pi in P can then be translated to p′i = pi − p, and similarly each point qi in Q can be translated
to q′i = qi − q. Applying the above translations eliminates the effect of pair-wise translation between the two
sets of points. If we denote the 3× n matrix consists of all vectors p′i as P prime and the 3× n matrix consists
of all q′i as Qprime, we can compute the covariance matrix H Arun et al. (1987) proposed as:

H = Q′P ′T (2.11)

Since Q′ and P ′ are both 3 × n matrix, H is a 3 × 3 matrix. Arun et al. (1987) found that the singular
decomposition the covariance matrix H: USV T can be used to compute the rotation matrix R that minimize
the Euclidean Square Errors described in equation (2.7). Specifically:

R = Udiag(1, 1, det(UV T))V T (2.12)

[11]

CHAPTER 2. THEORY AND BACKGROUND 5

2.5 Iterative Closest Point

Iterative Closest Point (ICP) is a commonly used algorithm for point cloud alignment. The classic implemen-
tation of ICP works by iteratively finding corresponding points between two point clouds and estimating the
rigid transformation necessary to minimize the overall distance between these point pairs [4]. Specifically, in
order to align two point clouds A and B, ICP works in the following way:

1. For each point Ai in A, find the point Bj in B which has the nearest Euclidean distance to Ai. Associate
these points as a pair.

2. Estimate the rigid transformation T which minimizes the overall distance between point pairs.

3. Apply T to A.

4. Repeat steps 1-3 until T is sufficiently small.

Since the original proposal of ICP there have been numerous extensions and variations to the algorithm.
One such improvement is to incorporate the concept of surface normals in order to more accurately align
corresponding regions in clouds. This approach, which we will refer to as Iterative Closest Point with
Normals (ICPN) (see section 3.4), differs from the traditional implementation in the following way: given
two corresponding points p ∈ A and q ∈ B, compute the distance from a surface normal at point p to its
corresponding tangent plane at q, and attempt to iteratively minimize the sum of these distances [5] [3]. In
practice this tends to provide better alignment, because surface normals can describe surface geometry in
richer detail than points alone. It also removes a degree of freedom from the barebones ICP algorithm, which
accelerates its convergence.

2.6 Downsampling

Downsampling is used to decrease the number of points in a data set while still preserving the object and
scene it represents. Three major motivations contribute to applying downsampling method in our project:

1. To decrease the influence of noise: depth sensor are subject to noise, which leads to errors in regards to
depth, boundaries and surface representations and increases pixel mismatch.

2. To reduce computation time: it is computationally expensive to find optimal pair-wise rigid transfor-
mation if there exist too many points to pair.The point clouds we acquired through the camera easily
contain hundreds of thousands of points.

3. To create a uniform density on the point cloud: the alignment should not be dominated completely by
dense part of the cloud, and downsampling can decrease the number of points in each area the point
cloud represents to a similar one.

Conceptually, we achieve the goal of downsampling by dividing the 3D point cloud into small 3D cubes of the
same size and replace the points within each cube with their centroid. This method is named Voxel Grid
filter[7],and the length of each voxel is called leaf size and is usually relatively small in comparison to the size
of the object we scan, in order to preserve the integrity. Since all points within a voxel is replaced by their
centroid, and the voxel is uniformly distributed across the point cloud, we are able to obtain a relatively
uniform point cloud containing less points but represents the same object.

2.7 Pipeline Approach

One possible approach for aligning point clouds is what we refer to as the Pipeline Approach.[1] Each step that
is needed in order to calculate a rigid transformation is done by a different algorithm. While our attention
was ultimately focused on ICP and its variants, this approach also holds promise for cloud-pair alignment.

1. Keypoints: Keypoints are unique points within a point cloud. Keypoints should be sparse, since every
point within a point cloud should not be a keypoint.[6] A good key point will be:

CHAPTER 2. THEORY AND BACKGROUND 6

• Distinctive: A keypoint that is distinctive is a point that is significantly different from other points
in its own point cloud. More specifically, good distinctive keypoints are corners or tips of an object,
but edges in general are acceptable.[6]
• Repeatable: A keypoint that is repeatable is a point that can be seen in multiple point clouds.[6]
In other words, it is a point in a scene that can be seen from multiple perspectives

These keypoints are then fed into the algorithm that calculates feature descriptors.

2. Feature Descriptors: Once we have the keypoints, we need to figure out their feature descriptors.
Feature descriptors are extra information that can be collected about the point, most notabl. Surface
curvature information is calculated by looking at the point’s neighboring points.[10]

3. RANSAC: To align separate point clouds with one another, a set of inlying (as opposed to outlying)
features in both clouds must be found before they are transformed and overlayed. The Random Sample
Consensus algorithm (or RANSAC) is used to eliminate outlying features by first randomly selecting a
subset of features from one cloud, creating a hypothetical model from this subset (the consensus), then
testing random samples of features of the other cloud against this consensus. This process is performed
repeatedly until a set of inlying features is converged upon.[2]

3. Methods

3.1 Materials

For data collection, we used the Asus Xtion PRO LIVE. The Xtion PRO contains two sensors, a 1280 x
1024 resolution color camera and a separate 640 x 480 resolution depth camera. These data can be used to
model real-world objects as point clouds. The relatively low resolution and noisiness of the depth camera
make it difficult to gather fine-grained surface detail, particularly at ranges closer than one meter or further
than 3 meters due to non-adjustable focal depth. Therefore, our implementation is geared towards scanning
larger objects or environments, with less precision than most commercially available 3D laser scanners. In
order to interface with the Xtion PRO and process point clouds, we used the Point Cloud Library (PCL).
PCL is an open source library containing tools for point cloud collection, manipulation, and visualization.
PCL is designed specifically to work in conjunction with devices similar to the Xtion PRO. We used PCL
version 1.7.2 installed on a Macintosh computer running Windows 7. All our code was written in C++ with
Microsoft Visual Studio 2010 as our development environment.

3.2 Naïve Approach

A naïve approach was taken as a proof of concept - naïve in the sense that no algorithms specific to point cloud
manipulation or otherwise related to computer vision were utilized - at this stage. Instead, a rather elementary
method was devised to reconstruct a three-dimensional surface, in which we had complete quantitative control
over all variables in our setup. To do so, we required the object in question to be placed on a turntable, and
to have each successive scan be performed at rotations of equally defined increments. As such, aligning each
captured point cloud of the object simply required rotating subsequent point clouds by a known degree to fit
the orientation of the first point cloud, and this known degree is the increment of rotation multiplied by the
number of scans subsequent to the first scan.

3.3 Dynamic Alignment

The ultimate goal for our implementation is to combine multiple views of an object or scene into a single
underlying 3D model accurately describing the surface geometry and coloration. This is accomplished by
having the user move the camera around the object of interest and taking a series of point cloud “snapshots”
in rapid succession. Next, the rigid transformations needed to align these snapshots are estimated, and the
transformed clouds are combined into a single model representing the scanned object. Specifically, we take a
pairwise alignment approach as follows:

1. For each point cloud Pi in a sequence of clouds P1. . . Pn, estimate the rigid transformation Ti needed
to align Pi to Pi−1

2. Add Ti to a cumulative transformation matrix T , which contains the combined rigid transformations
T2. . . i−1

3. Apply Ti to Pi

4. Concatenate Pi to a point cloud representing the cumulative model M , which already contains each
transformed point cloud P1. . . Pi−1

A more intuitive approach would be to simply align each point cloud directly into the cumulative model.
That is, align each Pi directly into M , which already contains the previously aligned clouds P1. . . i−1. The
pairwise approach poses several advantages over this framework. First, it is algorithmically easier to align
two clouds in similar poses than two clouds in disparate poses. As i grows larger, the difference in poses

7

CHAPTER 3. METHODS 8

between Pi and Pi−1 is much less than the difference between Pi and P1. Since each point cloud is ultimately
aligned to match the starting pose of P1, it becomes increasingly difficult to align Pi to this starting point.
Second, it is easier for most algorithms to align clouds of similar sizes. Since M is the accumulation of all
point clouds in the sequence, M contains approximately i times more points than Pi. This creates a greater
opportunity for alignment error. Thus, it is more effective to align clouds in a pairwise fashion and build a
model by applying accumulated transformations to each cloud.

3.4 Revised Approach with ICPN

We decided to pursue an approach using ICPN instead of the Pipeline Approach. We thought focusing on one
algorithm would make our project more successful. We were inspired by the Pipeline Approach to incorporate
downsampling and normals.

1. Apply Cropping Box: Once we have all of the point clouds, we apply a cropping box to them. This
removes all of the points outside of a certain distance from the camera, and keeps the points within the
specified distance. This reduces noise and keeps the focus on the object(s) of importance.

2. Downsample Point Clouds: Once the point clouds have a cropping box applied to them, we
downsample the first two point clouds (see section 2.7).

3. Calculate Normals: Calculate the normals of each downsampled point within the point clouds. Once
these are calculated, we can run ICPN on the pair of point clouds.

4. ICPN: ICPN runs on these two point clouds and approximates the rigid transformation between the
two point clouds.

We apply the rigid transformation that ICPN gives us to the point cloud that was getting aligned. Then, the
cumulative transformation gets applied to the point cloud as well, so it is oriented in the same way as the rest
of the 3D model we are building up. Therefore, the pose of the point cloud is updated. This point cloud then
gets added to the 3D model we are accumulating, and the cumulative transformation gets updated. Steps 2
through 4 are repeated until we have gone through all of the point clouds.

4. Results

Figure 4.1 is an image of our successful scan of a boot, which came from our naïve approach. Figures 4.2 and
4.3 show scans from our revised approach. In the next section we will evaluate why these scans were or were
not successful.

Figure 4.1: Scan from naïve Approach

9

CHAPTER 4. RESULTS 10

Figure 4.2: Scan from Revised Approach

Figure 4.3: Scan from Revised Approach

5. Evaluation

5.1 Determining the Quality of a Scan

In developing our process, we depended largely on subjective analysis of the quality of our scans to make
decisions about what variables were well calibrated. While ICP, as implemented by PCL, does have a fitness
metric, it is based on the sum of euclidean distances between estimated point pairs and is therefore unreliable.
Ostensibly, should a perfect evaluation metric exist, it would be used in the actual alignment process to find
a globally optimal solution, so without such an algorithm, we are left to use our best judgment. To illustrate
our conclusions about parameter choice, we have included several comparison-scans of which demonstrate the
impact of key variables.

11

6. Analysis

6.1 Scan Overlap

Since the conception of ICP, it has been understood that it fares poorly with highly disparate scans [5]. In
general terms, this can be distilled to the difference in angle between each scan. For example, our "cluttered
desk" scan uses 13 scans over a 180◦range. Thus, each scan differs by approximately 14◦. In our testing, we
found that approximately 15◦intervals were optimal. Greater angles quickly caused a deterioration of scan
quality, while lesser angles provided no discernible improvement
Figures 6.1 and 6.2 illustrate the deterioration in alignment quality when the angle between each capture
point cloud is higher. Notice the second handle on the mug–a highly undesirable artifact.

6.2 Tuning Parameters

Simply by changing some parameters, we are able to significantly improve our results.

• Apply cropping box: By applying a cropping box were able to improve alignment. The cropping
box gets rid of extraneous points, which in turn gets rid of noise. Figure 6.3 shows a poor alignment
between two point clouds when there is no cropping box applied to the point clouds. Figure 6.4 shows
a much more successful alignment between the same two point clouds - the only difference is that there
is a cropping box applied to them. Again, the alignment on the point clouds with the cropping box is
successful because we have gotten rid of more noise.

• Adjust amount of downsampling: By adjusting the leaf size, we can change the amount of
downsampling that occurs on the point clouds. If there is not enough downsampling, then there is too
much noise, and it is harder to align the point clouds, which leads to a poor alignment (Figure 6.5). So,
by increasing the leaf size, which increases the amount of downsampling, we are able to get a much
more accurate alignment, as shown in Figure 6.6.

• Change what is scanned: We also found that by simply changing what we scanned, we could improve
our results. A scene or object with more faces facing multiple directions is more likely to have a good
alignment than a scene or object that does not. This can be shown in Figures 6.7, 6.8 and 6.9. Figures
6.7 and 6.8 are scans of a cart with a floor and some counter. There are not many faces pointing
different directions, so it is harder to distinguish the different points from each other. This leads to a
very poor alignment. Figure 6.7 has the same cropping box and leaf size as Figure 6.9. And Figure 6.8
has about the same number of points in its clouds after they have been downsampled as Figure 6.9. In
Figure 6.9, there are many more unique points, so it is easier to distinguish points from each other.
This leads to a much better alignment. This conclusion can be made because we know that we want the
normals to be different for the different downsampled points. In Figures 6.7 and 6.8, the normals are
all facing the same direction, so it is hard to distinguish them from each other. Whereas with Figure
6.9, the normals will be pointing in all different directions, so it is easier to match them up.

A notable aspect of ICP in general is that there is no "magic formula" for a good alignment. Variable selection
depends on the object you wish to scan as well as the environment which surrounds it. Our scans were
all taken in the same environment with similar objects, thus we found that the same set of variables to be
optimal for most of our scenes.

12

CHAPTER 6. ANALYSIS 13

Figure 6.1: Scans at 14◦interval

Figure 6.2: Scans at 30◦interval

CHAPTER 6. ANALYSIS 14

Figure 6.3: Alignment of 2 Point Clouds without Cropping Box

Figure 6.4: Alignment of 2 Point Clouds with Cropping Box

CHAPTER 6. ANALYSIS 15

Figure 6.5: Alignment of 2 Point Clouds with Leaf Size of .0015

Figure 6.6: Alignment of 2 Point Clouds with Leaf Size of .005

CHAPTER 6. ANALYSIS 16

Figure 6.7: Cart With Same Bounding Box and Leaf Size

Figure 6.8: Cart With Same Number of Points as Figure 6.9

CHAPTER 6. ANALYSIS 17

Figure 6.9: Successful Alignment

7. Conclusion

7.1 In Summary

Observing the improvement from our naïve implementation to our adaptation of the Iterative Closest Point
algorithm, we can conclude that estimating the transformation of a scene based on the initial position is
quite powerful if well constructed, and can be fine-tuned with the tools provided by the Point Cloud Library.
Transformation estimation greatly reduced poor alignments in our implementation of ICP, and as such, we
can consider improving more complex pipelines by performing this estimation as preprocessing, especially in
the case of aligning using RANSAC, which was unsuccessful in our first attempts without initial estimation.

7.2 Future Work

From this conclusion, we can make our current implementation more robust by using another algorithm to
find an initial pose estimation and then refining the result with ICP. To further refine our 3D reconstruction,
we can incorporate additional algorithms, such as general iterative closest point with color, considering
color information when aligning with ICP as well, effectively assessing six dimensions of data, x, y, z, r, g, b
for a tighter alignment. We can also revisit using RANSAC as mentioned above, first using estimation to
improve our results. Alternatively on the hardware side, we could consider integrating accelerometer and
gyroscope information to apply even more accurate transformations to subsequently capture point clouds
during alignment. This has the potential to improve the speed and precision of our method as fewer iterations
of alignment are needed, and makes environment scanning more palatable.

18

Bibliography

[1] The pcl registration api. http://pointclouds.org/documentation/tutorials/registration_api.
php#registration-api.

[2] Random sample consensus. http://pointclouds.org/documentation/tutorials/random_sample_
consensus.php.

[3] Dirk Haehnel Aleksandr Segal and Sebastian Thrun. Generalized-icp. 2009. http://www.robots.ox.
ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf.

[4] McKay Neil D. Besl, Paul J. Method for registration of 3-d shapes. 1992. http://www.cvip.uofl.edu/
wwwcvip/education/BMEECE643/download/PAMI1992.pdf.

[5] Yang Chen and Gerard Medioni. Object modeling by registration of multiple range images. 1991. http://
www.math.zju.edu.cn/cagd/seminar/2007_autumnwinter/2007_autumn_master_liuyu_ref_2.pdf.

[6] Jeff Delmerico. Pcl tutorial: The point cloud library by example, 2013. http://www.cse.buffalo.edu/
~jryde/cse673/files/pcl_tutorial.pdf.

[7] Wanliang Wang Xianping Huang Fengjun Hu, Yanwei Zhao. Discrete point cloud filtering and searching
based on vgso algorithm.

[8] S.D. Blostein K.S. Arun, T.S. Huang. Least-squares fitting of two 3-d point sets, 1987.

[9] RenderMan. Point clouds. http://renderman.pixar.com/view/point-clouds.

[10] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments.
PhD thesis, Computer Science department, Technische Universitaet Muenchen, Germany, October 2009.
http://files.rbrusu.com/publications/RusuPhDThesis.pdf.

[11] Inge Soderkvist. Using svd for some fitting problems.

19

http://pointclouds.org/documentation/tutorials/registration_api.php#registration-api
http://pointclouds.org/documentation/tutorials/registration_api.php#registration-api
http://pointclouds.org/documentation/tutorials/random_sample_consensus.php
http://pointclouds.org/documentation/tutorials/random_sample_consensus.php
http://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf
http://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf
http://www.cvip.uofl.edu/wwwcvip/education/BMEECE643/download/PAMI1992.pdf
http://www.cvip.uofl.edu/wwwcvip/education/BMEECE643/download/PAMI1992.pdf
http://www.math.zju.edu.cn/cagd/seminar/2007_autumnwinter/2007_autumn_master_liuyu_ref_2.pdf
http://www.math.zju.edu.cn/cagd/seminar/2007_autumnwinter/2007_autumn_master_liuyu_ref_2.pdf
http://www.cse.buffalo.edu/~jryde/cse673/files/pcl_tutorial.pdf
http://www.cse.buffalo.edu/~jryde/cse673/files/pcl_tutorial.pdf
http://renderman.pixar.com/view/point-clouds
http://files.rbrusu.com/publications/RusuPhDThesis.pdf

	Introduction
	Theory and Background
	Motivation
	Point Clouds
	Rigid Transformation
	Singular Value Decomposition
	Iterative Closest Point
	Downsampling
	Pipeline Approach

	Methods
	Materials
	Naïve Approach
	Dynamic Alignment
	Revised Approach with ICPN

	Results
	Evaluation
	Determining the Quality of a Scan

	Analysis
	Scan Overlap
	Tuning Parameters

	Conclusion
	In Summary
	Future Work

	Bibliography

