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ABSTRACT
Molecular computing systems that are contained in well-
mixed volumes are often modeled using chemical reaction
networks. In these systems, concentrations of molecules are
treated as signals and used for both communication and
memory storage. A common design challenge for such a
system is to avoid memory corruption caused by noise in
the input signals. In this paper, we analyze two signal
restoration algorithms for molecular systems modeled with
chemical reaction networks. These algorithms are designed
to prevent a memory signal from degrading over time, and
we show that under modest conditions these algorithms will
maintain the memory indefinitely. We also present an exact
solution of the running time of the first algorithm which
demonstrates that it converges in logarithmic time.

CCS Concepts
•Theory of computation → Models of computation;
•Mathematics of computing → Differential equations;

Keywords
Molecular programming, chemical reaction networks, signal
restoration, robustness

1. INTRODUCTION
Molecular programming is a relatively new computing

paradigm aiming to manipulate the function and structure
of matter at the molecular level. By utilizing properties of
bio-molecules, researchers have developed computing systems
that naturally interface with biological systems. One such
system is a programmable nanodevice capable of precisely
delivering cargo into specific cells [6]. Although individual
nanodevices such as these are limited to relatively simple com-
putations, these systems can achieve more complex behavior
by networking many nanodevices together.
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Chemical reaction networks (CRNs) have recently become
a popular programming language for developing molecular
computing systems. A CRN is a mathematical model of
how well-mixed populations of molecules interact and have
been used for over a half century. CRNs also have multiple
semantics (i.e. operational meanings) to model particular
environments more accurately. The two most common seman-
tics are stochastic mass action and deterministic mass action,
and CRNs under such semantics are commonly referred to
as stochastic CRNs and deterministic CRNs, respectively.
Stochastic CRNs model molecular systems in small volumes
(e.g. a cell) by discretely modeling the number of molecules
in the system. In contrast, deterministic CRNs are suited for
relatively larger volumes and model the number of molecules
as continuous concentrations.

CRNs are a popular molecular programming language
for two reasons: (1) they are able to compute any algo-
rithm; and (2) they can be easily implemented with DNA
molecules. In 2008, Soloveichik, Cook, Winfree, and Bruck
showed that stochastic CRNs are Turing universal [12], and
in 2010, Soloveichik, Seelig, and Winfree showed that CRNs
can be compiled into DNA strands that simulate them [13].
These results demonstrate that even completely disorganized
molecules can collaborate via simple reactions to generate
complex behavior. They also make CRNs a promising design
tool for developing molecular computing systems.

When designing a molecular system, it is crucial to con-
sider its robustness. Since the CRN model only approximates
reality, CRNs that depend on precise initial conditions and
system parameters are not achievable in practice. Further-
more, many molecular programming applications are safety
critical and must be reliable even in adverse conditions. Con-
sequently, techniques for developing robust molecular pro-
grams and proving their correctness has become an important
research subject [10, 4, 11, 7].

One recurring design challenge is creating systems that
are robust with respect to communication signals. CRNs
use concentrations of molecules both for communication and
memory storage, and any noise present in communication
signals can cause memory to degrade over time. A bit of
memory is usually implemented in a CRN by contrasting high
and low concentrations of a particular molecule. Maintaining
the separation between“high”and“low”is essential to prevent
data loss.

Signal restoration is a memory refresh technique for deter-
ministic CRNs which utilizes bistability to prevent memory
from deteriorating over time. In this paper, we give a thor-
ough analysis of two signal restoration algorithms and show



that under modest conditions they can maintain memory
indefinitely even in the presence of adversarial reactions due
to noise. The first algorithm consists of two termolecular re-
actions (reactions with three reactants, i.e., input molecules)
and is the simpler of the two algorithms [10, 9]. The sim-
plicity of this algorithm makes it easy to use and relatively
easy to analyze. We also give an exact analytical solution
for the runtime of this algorithm that demonstrates that the
algorithm converges in logarithmic time.

The second signal restoration algorithm consists of four
bimolecular reactions and was developed in 2008 by Angluin,
Aspnes, and Eisenstat for population protocols. (Population
protocols were designed to model networks of finite state
sensors and are equivalent to stochastic CRNs [5, 1].) This
second algorithm is significantly harder to analyze, but it
has the advantage that bimolecular reactions are easier to
physically implement.

The CRN model is reviewed in section 2, and our results
are presented in sections 3 and 4. We conclude the paper
with a brief discussion of the results in section 5.

2. CHEMICAL REACTION NETWORKS
Let S be a finite set whose elements we call species. A

reaction over the set S is a triple

ρ = (r,p, k) ∈ NS × NS × (0,∞),

where XY denotes the set of all functions mapping Y into
X. We regard the elements of NS as finite vectors of natural
numbers indexed by the elements of S. We call r the reactant
vector, p the product vector, and k the rate constant of the
reaction ρ = (r,p, k). To avoid excessive use of subscripts,
we use the notation r(ρ) = r, p(ρ) = p, and k(ρ) = k to
access the individual components of a reaction ρ = (r,p, k).

We also borrow notation from chemistry to specify reac-
tions. If S = {X,Y, Z}, the notation

X + Y
k−−→ X + 2Z (1)

specifies the reaction ρ = (r,p, k) where r is the vector
defined by r(X) = 1, r(Y ) = 1, r(Z) = 0, and p is the vector
defined by p(X) = 1, p(Y ) = 0, and p(Z) = 2.

The net effect of a reaction ρ = (r,p, k) is the vector
∆ρ = p − r ∈ ZS . A species Y ∈ S is called a catalyst of
a reaction ρ = (r,p, k) if r(Y ) > 0 and ∆ρ(Y ) = 0. For
example, the species X from reaction (1) is a catalyst.

A chemical reaction network is an ordered pair N = (S,R)
where S is a finite set of species and R is a finite set of
reactions over S. This completes the specification of the
syntax of a CRN. The remainder of this section specifies the
deterministic mass action semantics of CRNs.

Under deterministic mass action semantics, a state of a
CRN N = (S,R) is a vector x ∈ [0,∞)S . For a state x ∈
[0,∞)S and species Y ∈ S, we call x(Y ) the concentration
of Y in the state x. If a state is obvious from context, we
denote the concentrations of species with their corresponding
lowercase letters. For example, we use x, y, and z to denote
the concentrations of the species X, Y , and Z in a state,
respectively.

For a state x ∈ [0,∞)S and a reaction ρ = (r,p, k), we
define the rate of ρ in x to be

ratex(ρ) = k(ρ)
∏
Y ∈S

x(Y )r(ρ)(Y ). (2)

For example, the rate of reaction (1) in the state x ∈ [0,∞)S

is k · x(X) · x(Y ). Intuitively, the rate of the reaction is
proportional to the frequency of X molecules colliding with
Y molecules, and the constant k encapsulates features of
the reaction that do not depend on the state (e.g. salinity,
temperature, etc.).

The deterministic mass action function of a species Y ∈ S
is the function FY : [0,∞)S → R defined by

FY (x) =
∑
ρ∈R

∆(ρ)(Y )ratex(ρ) (3)

for all x ∈ [0,∞)S . The real value FY (x) is the total rate of
change of the concentration of Y in the state x. Therefore,
if the CRN N = (S,R) is in state x(t) at time t, the species
Y ∈ S must obey the ordinary differential equation (ODE)

y′(t) = FY (x(t)). (4)

A state x ∈ [0,∞)S is called an equilibrium state (or equi-
librium point) of a CRN N = (S,R) if FY (x) = 0 for all
Y ∈ S.

If we let EY be the ODE shown above, the deterministic
mass action system of a CRN N = (S,R) is the coupled
system of ODEs

(EY | Y ∈ S). (5)

An initialized chemical reaction network (ICRN ) is an
ordered pair (N,x0) where N = (S,R) is a CRN and x0 ∈
[0,∞)S is an initial state of N . The ICRN (N,x0) then spec-
ifies an initial value problem consisting of the deterministic
mass action system (5) and the initial condition y(0) = x0(Y )
for all Y ∈ S. By the standard existence-uniqueness theory
for ODEs [3, 14], this initial value problem has a unique
solution x(t) defined for some interval [0, b) where b ∈ (0,∞].
In this paper, all CRNs are well-behaved and have solutions
defined for all t ∈ [0,∞).

Under deterministic mass action semantics, the solution
x(t) of an ICRN (N,x0) completely specifies the meaning of
the CRN N initialized with the state x0.

3. TERMOLECULAR RESTORATION
The termolecular signal restoration algorithm presented

here is used in [10, 9] and consists of the two reactions

2X + Y
1−−→ 3X (6)

2Y +X
1−−→ 3Y. (7)

Intuitively, both species X and Y are competing for total
majority by converting the opposing species to itself. The
algorithm is designed so that when the system is initialized
with some concentrations of X and Y , the species with the
initial majority will asymptotically annihilate the other.

The CRN N = (S,R) consisting of the reactions (6) and
(7) specifies a system of ODEs. Using (4) to derive these
ODEs, we see that the system consists of the equations

x′(t) = x(t)2y(t)− x(t)y(t)2 (8)

y′(t) = y(t)2x(t)− y(t)x(t)2. (9)

For clarity, we omit the references to t in the ODEs and use
Leibniz’s notation for differentiation. Therefore we rewrite



the coupled system as

dx

dt
= x2y − xy2 (10)

dy

dt
= y2x− yx2. (11)

Nonlinear systems of ODEs are usually difficult to solve
analytically. However, the simplicity of these equations makes
the system easily solvable. If N is the CRN consisting of the
reactions (6) and (7), and x0 is an initial state of N with
x0(X) + x0(Y ) = 1, it is easy to show that the mass action
IVP (N,x0) has solution

x(t) =


1
2

(1− u) , if x(0) < 1
2

1
2
, if x(0) = 1

2

1
2

(1 + u) , if x(0) > 1
2

(12)

y(t) = 1− x(t), (13)

where u = 1√
1+C·e−t

and C = 4x(0)y(0)

(x(0)−y(0))2 .

By inspection of (12) and (13), we can see that the CRN
has the behavior we expect. The species with the majority
initial concentration eliminates the minority at an exponen-
tial rate.

The drawback to this solution is that it depends on the
following assumptions.

1. The rate constants of the reactions are exactly equal.

2. The initial concentrations sum exactly to 1.

3. No other reactions interfere with the system.

In practice, we do not have infinitely precise control over rate
constants and initial conditions. Furthermore, the algorithm
is most useful in systems with other reactions affecting X
and Y .

We now specify a more general system that avoids these
dependencies.

Construction 3.1. Given the real valued constants a >
0, b > 0, and c > 0, let N = (S,R) be a CRN with S =
{X,Y } and R consisting of the reactions

2X + Y
a−−→ 3X (14)

2Y +X
b−−→ 3Y (15)

X
c−−→ Y. (16)

This CRN has unrelated rate constants and one additional
reaction (16) that models interference that biases the system
toward Y . Without this extra reaction, our analysis would
only be modeling the system in isolation. We do not include
a reaction Y → X because of the symmetry of the species
X and Y . Therefore this system captures the worst case
scenario for the species X.

Theorem 3.2. If a > 0, b > 0, and c > 0 are real valued
constants, N = (S,R) is constructed according to Construc-
tion 3.1, x0 is an initial state of N with p = x0(X) + x0(Y ),

and c < p2a2

4(a+b)
, then the mass action IVP (N,x0) has the

equilibrium points x̂0, x̂1, and x̂2 defined by

x̂0(X) = 0, x̂0(Y ) = p,

x̂1(X) = E1, x̂1(Y ) = p− E1,

x̂2(X) = E2, x̂2(Y ) = p− E2,

where E1 and E2 are real valued constants defined by

E1 = p

(
b

a+ b

)
+A, E2 = p−A,

and where A = p
2

(
a
a+b

) (
1−
√

1− c∗
)

and c∗ = c · 4(a+b)

p2a2
.

Moreover, x̂0 and x̂2 are exponentially stable, and x̂1 is
unstable.

Proof. Assume the hypothesis. Then the ODEs for the
species X and Y can be derived from the reactions (14)-(16)
and are

dx

dt
= ax2y − bxy2 − cx, (17)

dy

dt
= by2x− ayx2 + cx, (18)

respectively. Note that dx
dt

+ dy
dt

= 0, so the concentrations
x(t) and y(t) differ by a constant. Since p = x0(X) + x0(Y ),
it is easy to show that for all t ∈ [0,∞)

y(t) = p− x(t). (19)

It immediately follows from (17) that

dx

dt
= ax2(p− x)− bx(p− x)2 − cx. (20)

The equilibrium points of (N,x0) can now be derived from
the roots of the right-hand side of (20). It is routine to verify

that these roots are 0, E1, and E2, and since c < p2a2

4(a+b)

these roots are distinct and real. It follows from (19) that
x̂0, x̂1, and x̂2 are the equilibrium points of (N,x0).

We now examine the stability of the points. It is well
known that the stability of an equilibrium point can be deter-
mined by examining the eigenvalues of the Jacobian matrix
evaluated at that point [8, 14]. A point is exponentially
stable if each eigenvalue has a negative real part, and it is
unstable if each eigenvalue has a positive real part.

Since (20) is now 1-dimensional, there is only a single
eigenvalue for each equilibrium point. It is not difficult to
show that the eigenvalues for the points x̂0, x̂1, x̂2 are

λ0 = (a+ b)(−E1E2),

λ1 = (a+ b)E1(E2 − E1),

λ2 = (a+ b)E2(E1 − E2),

respectively. Since a > 0, b > 0, and E2 > E1 > 0, we see
that λ0 and λ2 are negative and λ1 is positive. It immediately
follows that x̂0 and x̂2 are exponentially stable and x̂1 is
unstable.

The above theorem shows that the CRN is indeed a bistable
switch if c is sufficiently small. It is also clear that E1 is the
deciding threshold. If x(0) > E1, then x(t) converges to E2,
and if x(0) < E1, then x(t) converges to 0.

Theorem 3.3. Under the assumptions of Theorem 3.2, if
x1, x2, and t are constants such that t ≥ 0 and E1 < x1 <
x2 < E2, with x(0) = x1 and x(t) = x2, then

t =
1

ap
√

1− c∗

(
1

E2
log u+

1

E1
log v

)
, (21)



where u = x2(E2−x1)
x1(E2−x2)

and v = x1(x2−E1)
x2(x1−E1)

.

Proof. Assume the hypothesis. It is not difficult to show
that the ODE (20) of x(t) can be rewritten

dx

dt
= (a+ b)x(x− E1)(E2 − x). (22)

By separation of variables and integration, we have

t∫
0

dt =
1

a+ b

x2∫
x1

1

x(x− E1)(E2 − x)
dx,

whence

t =
1

a+ b

(
1

E1E2(E2 − E1)

)
log
(
uE1vE2

)
.

The theorem immediately follows from the fact that E2−E1 =
ap
a+b

√
1− c∗.

The above theorem gives the exact time required to move
from an inital concentration x(0) > E1 to a concentration
closer to the equilibrium point E2. It is useful to note that
the only components in equation (21) that are not bounded
by a constant are 1

x1−E1
and 1

E2−x2
. Therefore it is clear that

the concentration of X converges to its stable equilibrium in
logarithmic time.

4. BIMOLECULAR RESTORATION
The bimolecular signal restoration algorithm we present

here was originally given by Angluin et al. in [2] as an approx-
imate majority algorithm for population protocols. In the
context of CRNs, the algorithm consists of the four reactions

X + Z
1−−→ 2X (23)

X + Y
1−−→ X + Z (24)

Y + Z
1−−→ 2Y (25)

X + Y
1−−→ Y + Z. (26)

Again, the species X and Y are opposed to one another and
are competing for total majority. The additional species Z is
intuitively a neutral species that acts as a buffer between X
and Y . Angluin et al. proved that this algorithm effeciently
computes approximate majority in the context of population
protocols, and here we prove that it can be effeciently used
for signal restoration in deterministic CRNs.

The CRN N = (S,R) consisting of the reactions (23)-(26)
specifies the system of ODEs

dx

dt
= xz − xy (27)

dy

dt
= yz − xy (28)

dz

dt
= 2xy − xz − xy. (29)

This system is already considerably more complex than the
termolecular system in section 3, and a solution cannot be
trivially found. The task becomes especially difficult with
arbitrary rate constants and interference. However, if the
rate constants meet a few constraints, the behavior of this
algorithm is extremely similar to that of the termolecular
algorithm from section 3. We leverage this relationship in
the fully general proof.

Construction 4.1. Given the strictly positive, real val-
ued constants k1, . . . , k6, let N = (S,R) be a CRN with
S = {X,Y } and R consisting of the reactions

X + Z
k1−−→ 2X (30)

X + Y
k2−−→ X + Z (31)

Y + Z
k3−−→ 2Y (32)

X + Y
k4−−→ Y + Z (33)

Z
k5−−→ Y (34)

X
k6−−→ Z. (35)

This fully generalized CRN contains the new reactions
(34) and (35). These reactions serve the same purpose of
representing outside interference from other reactions in the
system. The new reactions still bias the algorithm in favor
of Y , but do so in two steps instead of one. Rather than
X molecules being converted immediately into Y molecules,
they are converted to Z molecules first.

Before we analyze this CRN in its full generality, we assume
that the rate constants have the following relationships. For
a > 0, b > 0, and c > 0, the rate constants k1, . . . , k6 are
related by

a = k1 =
k2
2

(36)

b = k3 =
k4
2

(37)

c = k5 =
k6
2
. (38)

If these relationships are satisfied, the system of ODEs for
N = (S,R) from Construction 4.1 are

dx

dt
= axz − 2bxy − 2cx (39)

dy

dt
= byz − 2axy + cz (40)

dz

dt
= 2axy + 2bxy − axz − byz + 2cx− cz. (41)

Note that dx
dt

+ dy
dt

+ dz
dt

= 0, so the solutions to x(t), y(t),
and z(t) differ only by a constant. If p = x(0) + y(0) + z(0),
then it is easy to show that for all t ∈ [0,∞)

z(t) = p− x(t)− y(t). (42)

To help us analyze a system of this complexity, we intro-
duce several new variables. Let x̄(t), ȳ(t), v(t), and w(t) be
the functions defined by

x̄(t) =
√
x(t), (43)

ȳ(t) =
√
y(t), (44)

v(t) = 2x̄(t)ȳ(t)− z(t), (45)

w(t) = x̄(t) + ȳ(t). (46)



Lemma 4.2. The ODEs of x̄, ȳ, v, and w are

dx̄

dt
= x̄ȳ

(
ax̄− bȳ − c

ȳ

)
− v

2
ax̄ (47)

dȳ

dt
= −x̄ȳ

(
ax̄− bȳ − c

ȳ

)
− v

2

(
bȳ +

c

ȳ

)
(48)

dv

dt
= −v(x̄+ ȳ)

(
ax̄+ bȳ +

c

ȳ

)
(49)

dw

dt
= −v

2

(
ax̄+ bȳ +

c

ȳ

)
. (50)

Proof. Since x̄ =
√
x, its derivative is

dx̄

dt
=

1

2x̄
· dx
dt
,

and from (39) we obtain

dx̄

dt
=
a

2
x̄z − bx̄ȳ2 − cx̄.

Since v = 2x̄ȳ − z, it follows that

dx̄

dt
=
ax̄

2
(2x̄ȳ − v)− bx̄ȳ2 − cx̄,

and therefore (47) holds. By symmetry, (48) also holds.
Since v = 2x̄ȳ − z, its derivative is

dv

dt
= 2

(
ȳ
dx̄

dt
+ x̄

dȳ

dt

)
− dz

dt
.

By substituting (41), (47), (45), and (48) into the above
equation, we obtain (49).

Finally, since w = x̄+ ȳ, its derivative is

dw

dt
=
dx̄

dt
+
dȳ

dt
,

which clearly simplifies to (50) from (47) and (48).

Lemma 4.3. If α = min{a, b} and v̂ is the function

v̂(t) =
p · v(0)

(p+ v(0))eαpt − v(0)
, (51)

then for all t ∈ [0,∞),

v(t) ≥ v̂(t), if v(0) < 0 (52)

v(t) ≤ v̂(t), if v(0) > 0 (53)

v(t) = 0, if v(0) = 0. (54)

Proof. Assume the hypothesis. By (49), we see that if
v(t) = 0 then dv

dt
= 0. It follows that (54) holds.

If v(0) < 0, then

dv

dt
≥ −v(x̄+ ȳ)(ax̄+ bȳ)

≥ −vα(x̄+ ȳ)2.

Since p = x̄2 + ȳ2 + z and v = 2x̄ȳ − z,

(x̄+ ȳ)2 = x̄2 + ȳ2 + 2x̄ȳ

= p− z + 2x̄ȳ

= p+ v,

and therefore

dv

dt
≥ −vα(p+ v).

This ODE can be trivially solved with separation of variables
and has solution v̂(t). Therefore v(t) ≥ v̂(t) for all t ∈ [0,∞),
so (52) holds.

Similarly, if v(t) > 0, then

dv

dt
≤ −vα(p+ v),

and so (53) holds.

Corollary 4.4. The limits of v(t) and w(t) are

lim
t→∞

v(t) = 0 (55)

lim
t→∞

w(t) =
√
p. (56)

Theorem 4.5. If a > 0, b > 0, and c > 0 are real valued
constants, N = (S,R) is constructed according to Construc-
tion 4.1 such that constraints (36)-(38) are satisfied, x0 is
an initial state of N with p = x0(X) + x0(Y ) + x0(Z), and

c < pa2

4(a+b)
, then the mass action IVP (N,x0) has the equi-

librium points x̂0, x̂1, and x̂2 defined by

x̂0(X) = 0, x̂0(Y ) = p,

x̂1(X) = E2
1 , x̂1(Y ) = (

√
p− E1)2,

x̂2(X) = E2
2 , x̂2(Y ) = (

√
p− E2)2,

and for all 0 ≤ i ≤ 2

x̂i(Z) = p− x̂i(X)− x̂i(Y ),

where E1 and E2 are real valued constants defined by

E1 =
√
p

(
b

a+ b

)
+A, E2 =

√
p−A,

and where A =
√
p

2

(
a
a+b

) (
1−
√

1− c∗
)
, and c∗ = c · 4(a+b)

pa2
.

Moreover, x̂0 and x̂2 are exponentially stable, and x̂1 is a
saddle node.

Proof. Assume the hypothesis. We prove the theorem
using the variables x̄(t) and w(t). By Lemma 4.2 and the
fact that v = w2 − p, the ODEs for x̄ and w can be written
as

dx̄

dt
= ax̄2(w − x̄)− bx̄(w − x̄)2 − cx̄− a

2
x̄(w2 − p)x̄ (57)

dw

dt
=
p− w2

2

(
ax̄+ b(w − x̄) +

c

w − x̄

)
, (58)

respectively. Corollary 4.4 tells us that all equilibrium points
are states in which w =

√
p. Therefore we need only find the

values for x̄ by finding the roots of the right-hand side of

dx̄

dt
= ax̄2(

√
p− x̄)− bx̄(

√
p− x̄)2ȳ − cx̄. (59)

The ODE (47) is identical in structure to (20), and it follows
that these roots are 0, E1, and E2. Since x = x̄2, we have
x̂0(X) = 0, x̂1(X) = E2

1 , and x̂2(X) = E2
3 . Similarly,

since ȳ = w − x̄ and y = ȳ2, it follows that x̂0(Y ) = p,
x̂1(Y ) = (

√
p−E1)2, and x̂2(Y ) = (

√
p−E2)2. Finally, since

z = p− x− y, it follows that x̂i(Z) = p− x̂i(X)− x̂i(Y ) for
0 ≤ i ≤ 2.

What remains to be shown is the stability of the three
points. Using the ODEs (57) and (50), it is routine to show
that the two eigenvalues of the Jacobian matrix evaluated at
x̂0 are

λ1 = λ2 = −c− bp.



Since both are negative, it follows that x̂0 is exponentially
stable.

Similarly, the eigenvalues at x̂1 are

λ3 =
a
√
p

2(a+ b)

√
1− c∗

(
a(1−

√
1− c∗) + 2b

)
,

λ4 = −
a
√
p

a+ b

(
a(1−

√
1− c∗) + 2b

)
.

Since 0 ≤
√

1− c∗ < 1, then λ3 > 0 and λ4 < 0, and so x̂1

is a saddle node.
Finally, the eigenvalues of x̂2 are

λ5 = − ap

2(a+ b)

√
1− c∗

(
a(1 +

√
1− c∗) + 2b

)
,

λ6 = − ap

a+ b

(
a(1−

√
1 + c∗) + 2b

)
,

which are both clearly negative, so x̂2 is exponentially sta-
ble.

The above theorem not only demonstrates that the bimolec-
ular algorithm has bistable behavior but that its behavior is
closely related to the termolecular algorithm from section 3.
In fact, if the CRN is initialized such that z(0) = 2

√
x(0)y(0),

then the solutions have a precise relationship.
From the theorem it is also clear that if x(0) > E2

1 and
y(0) < (

√
p−E1)2, then with certainty the system converges

to the equilibrium point x̂2.
We conclude this section with the following theorem that

bounds the fully general bimolecular algorithm.

Theorem 4.6. If N = (S,R) is constructed according to
Construction 4.1 with the strictly positive real-valued con-
stants k1, . . . , k6 and N̂ = (Ŝ, R̂) is constructed according

to Construction 4.1 with the constants k̂1, . . . , k̂6 defined

by k̂1 = k̂2
2

= min{k1, k22 }, k̂3 = k̂4
2

= max{k3, k42 }, and

k̂5 = k̂6
2

= max{k5, k62 }, then the behavior of X in N is

lower bounded by X̂ in N̂ .

Proof. The theorem immediately follows from the fact
that we are only reducing the rate constants responsible for
generating X and increasing the rate constants responsible
for destroying X.

The above theorem shows that we can bound the behavior
of a fully general CRN from Construction 4.1 by a slightly
modified CRN. Modifying the CRN in this way may not
always be possible, but in the most common uses of the
algorithm, the rate constants k1, . . . , k6 are “close” to satisfy-
ing the constraints (36)-(38), therefore the modifications are
minor.

5. CONCLUSION
The results presented in section 3 make the termolecular

algorithm easy to use in deterministic CRNs with many other
reactions. Theorems 3.2 and 3.3 give exact analytical de-
scriptions of the behavior and running time of the algorithm
under the worst case conditions.

The results in section 4 demonstrate an interesting relation-
ship between the termolecular and bimolecular algorithms.
However, the results are significantly less complete. We only
provide bounds on the behavior of the bimolecular algorithm
and provide no analysis of the running time. Giving tight
bounds on the runtime of the algorithm remains an open
problem at this time.
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