
Requirements Analysis for a Product Family of DNA Nanodevices

Robyn R. Lutz∗† , Jack H. Lutz∗, James I. Lathrop∗, Titus H. Klinge∗, Divita Mathur‡,
D. M. Stull∗, Taylor G. Bergquist∗, and Eric R. Henderson‡

∗Department of Computer Science
Iowa State University, Ames, IA 50011 USA

{rlutz, lutz, jil, tklinge, dstull, knexer}@iastate.edu
†Jet Propulsion Laboratory

California Institute of Technology, Pasadena, CA 91104 USA
‡Department of Genetics, Development, and Cell Biology

Iowa State University, Ames, IA 50011 USA
{divita, telomere}@iastate.edu

Abstract—DNA nanotechnology uses the information pro-
cessing capabilities of nucleic acids to design self-assembling,
programmable structures and devices at the nanoscale. De-
vices developed to date have been programmed to implement
logic circuits and neural networks, capture or release specific
molecules, and traverse molecular tracks and mazes.

Here we investigate the use of requirements engineering
methods to make DNA nanotechnology more productive, pre-
dictable, and safe. We use goal-oriented requirements modeling
to identify, specify, and analyze a product family of DNA
nanodevices, and we use PRISM model checking to verify
both common properties across the family and properties
that are specific to individual products. Challenges to doing
requirements engineering in this domain include the error-
prone nature of nanodevices carrying out their tasks in the
probabilistic world of chemical kinetics, the fact that roughly
a nanomole (a 1 followed by 14 0s) of devices are typically
deployed at once, and the difficulty of specifying and achieving
modularity in a realm where devices have many opportunities
to interfere with each other. Nevertheless, our results show
that requirements engineering is useful in DNA nanotechnology
and that leveraging the similarities among nanodevices in
the product family improves the modeling and analysis by
supporting reuse.

Keywords-requirements modeling and analysis, DNA nan-
otechnology, goal-oriented, product families, model checking.

I. INTRODUCTION

DNA nanotechnology, pioneered by Seeman in the 1980s
[1] and now growing explosively, undertakes to program
matter to do our bidding at molecular and atomic scales.
Exploiting the information processing capabilities of nucleic
acids enables researchers to design complex structures and
devices that assemble themselves from molecular compo-
nents. Research in recent years has shown that DNA tile
self-assembly can implement algorithms [2] and enjoys a
very strong form of Turing universality [3]; that DNA strand
displacement reactions can implement Boolean circuits [4],
[5] neural networks [6], and molecular robots [7], [8], [9];
and that DNA origami can create two- and three-dimensional

structures that can serve as targeted drug-delivery devices or
“nano-breadboards” with hundreds of uniquely addressable
sites, separated by just 6 nanometers, to which sensors and
other features may be attached [10], [11]. This programming
of matter is thus programming in the literal sense. As such
it presents new opportunities and challenges for computer
science and software engineering.

As DNA nanotechnology progresses (with doubling times
of number and complexity of published nanodevices remi-
niscent of Moore’s law) and extends from basic science to
applications (with early work already underway in medicine
[12], [9] and computer chip design [13]), increasingly so-
phisticated methods are required for managing and reasoning
about complex nanosystems and their behaviors. DNA nan-
odevices carry out their tasks in the probabilistic, error-prone
world of chemical kinetics. They are inherently distributed.
Each instance of a nanodevice consists of a few (up to a few
hundred to date, a few thousand in the near future) carefully
designed molecular types, but the number of instances
deployed, all in the same solution, is typically on the order of
a nanomole (6×1014). Hierarchical construction of complex
nanosystems from modular nanodevices must take account
of the fact that these components are interacting at distance
scales in which the speed of diffusion is supersonic, so that
components encounter one another randomly and frequently.
Most DNA nanohnology experiments are already so complex
that their initial designs require nontrivial computations with
software tools such as caDNAno [14] or the DSD program-
ming language [15]. Probabilistic model checking has also
been used to make preliminary analyses of experimental
designs [16], [17]. These design-stage computations, much
faster and cheaper than the experiments themselves, are
essential to the predictability, and hence the productivity,
of DNA nanotechnology. As applications emerge in safety-
critical areas, they will also be essential to the safety of DNA
nanotechnology.

This paper investigates the use of requirements engineer-
ing methods to make DNA nanotechnology more productive,

c© 2012 IEEE

predictable, and safe. Our running example is a particular
product family of DNA nanodevices, i.e., a set of nanode-
vices that have a high degree of commonality and some
key variations among them [18], [19], [20]. This product
family is small, consisting initially of just three kinds of
DNA origami pliers, nanomechanical devices developed by
Kuzuya, et al. [21], to sense (detect) the presence of target
molecules in a solution. While we do not expect an off-the-
shelf framework to suffice completely in this domain, we use
van Lamsweerde’s goal-oriented requirements engineering
[22] as our framework for identifying the requirements that
are common across this sensing product family and the
requirements that are specific to individual nanodevices. The
goal modeling of our product family shows that it is useful in
this setting to augment the AND/OR goal diagrams of [22]
to allow goal refinements that are mediated by threshold
functions rather than ANDs or ORs. The obstacle analysis
of our product family uncovers a new failure mode in
which one of the nanodevices fails to detect target molecules
when they are present at concentrations so high that they
overwhelm the nanodevice.

Following the requirements analysis of the sensing prod-
uct family, we add a new DNA nanodevice to the family.
This new device, a zippered DNA tweezers developed by
Landon, et al. [23], is a very recent variant of the first
DNA strand-displacement nanomechanical device, the DNA
tweezers of Yurke, et al. [24]. The requirements evolution
brought on by this extension of the sensor product family
seems to require little change to the goal model, until
obstacle analysis reveals a new requirement for modularity
of the zippered DNA tweezers in order that they can be
integrated into complex hierarchical DNA nanomachines.
This requirement turns out to also apply to one of the kinds
of DNA origami pliers already in the product family. The
extension of the sensing product family thus leads to a more
complete set of requirements, even for the original product
family.

Having thus identified the requirements, we construct a
behaviorall model of the sensing product family and use
the PRISM model checker [25] to verify that it satisfies
both requirements that are common across the entire prod-
uct family and requirements that are specific to one or
more DNA nanodevices in the family. Our results indicate
that requirements engineering improves the design of DNA
nanodevices and that leveraging the commonalities among
nanodevices increases both the efficiency and the quality of
the requirements analysis.

II. REQUIREMENTS MODELING AND ANALYSIS

We investigate the requirements for a product family of
sensing DNA nanodevices where each member of the family
is customized to sense, or detect, a different molecular or
RNA target in a solution. Such nanodevices are of interest as
future candidates for diagnosing diseases in the human body.

The nanodevices are composed of DNA origami structures.
Being bio-compatible, such nanodevices might be able to be
deployed in the human body for in situ diagnosis, based on
their ability to sense the presence of specific molecules in
their operational environment. For example, an envisioned
application is sensing the presence or absence of harmful
molecules in human cells.

Each member of the product family is a nanodevice, and
each nanodevice is itself composed of a very large number
of self-assembled instances of that nanodevice. They must
autonomously detect and respond to the presence or absence
of a target by a shape change (e.g., from open jaws to
closed jaws) and/or by fluoresence. The presence or absence
of the target thus becomes observable and measurable to a
technician in the laboratory using atomic force microscopy
(AFM) or fluorescence spectroscopy.

A. A product family of DNA nanodevices

The product family of DNA nanodevices that we initially
studied had three members in it: simple pliers, G-zipper
pliers, and unzipper pliers. In early work we described the
first member of the sensing product family, simple DNA
pliers that close to grip a target molecule of SA (streptavidin
tetramer) [26]. We show the figure from that paper again
here as Fig. 1 because it so clearly illustrates some shared
behavior that we will describe below.

The nanodevice instances are DNA origami structures pro-
grammed to self-assemble in the shape of pliers in the open
position. Fig. 1(a) shows the open pliers as yellow crosses
with arrows pointing to them. The pliers are programmed
to, once assembled, capture a particular molecule of interest
by closing it in their jaws, as shown in Fig. 1(b). The pliers
should then release the molecule when unset strands of DNA
are added to the solution, as shown in Fig. 1(c).

We later studied two additional sensing nanodevices and
realized that the three products shared many common fea-
tures, with a few key variations among them [18], [19],
[20]. The G-zipper pliers (which use a G-quadriplex that
acts as a zipper) close to grip a metal ion such as sodium
(NA+). The unzipper pliers begin in the closed position and
“unzip” when they encounter human micro RNA (mRNA).
We describe below the results from goal modeling and
obstacle analysis on this product family, and the discovery
of a significant, common robustness requirement.

We initially used the FAST (Family-Oriented Abstraction,
Specification and Translation) process [18] to perform an
informal commonality and variability analysis (CVA) of
three DNA sensing nanodevices described in the literature.
These systems were experimentally created by researchers
in laboratories. This artifact-based CVA helped identify,
distinguish and document the features that stay the same
across systems and those that are expected to differ among
products. An example of a commonality is “the nanodevices
shall detect whether a target is present.” An example of a

Figure 1. Atomic Force Microscope images of DNA origami pliers: (a) at initiation, DNA pliers are open in the cross form, (b) upon adding SA molecules
to the solution, DNA pliers close to the parallel form, capturing the SA molecules in the pliers’ jaws; (c)at reset via addition of unset strands DNA pliers
re-open, releasing SA molecules. Adapted by permission from Macmillan Publishers Ltd: ref. [21], copyright 2011.

variation is ”the simple pliers shall capture the target SA.”
Dependencies that exist among the alternatives, whereby
choosing one variation requires choosing (or excluding)
another variation, were represented as commonalities. An
example is “if the nanodevice must unzip, then it must begin
in the closed initial state.”

In contrast to consideration of each nanodevice separately,
we describe in the next subsections how these DNA sensing
nanodevices are usefully considered as a product family. We
describe the challenges that arose in creating the goal model
for this family of asynchronous, complex and dynamic
nanodevices; the results of the obstacle analysis in terms of
making the product family requirements more complete; the
advantages we found in a goal-oriented approach when we
extended the product family with a new product; and how
obstacle analysis of this new product identified a missing
requirement for another product.

B. Goal modeling

Using the CVA described above as a starting point, we
then developed a detailed goal diagram for the product
family. We used product-line goal diagrams rather than
feature models since the former readily capture satisfaction-
based goal refinements in advance of formal modeling [22].

Fig. 2 shows the high levels of the hierarchical goal
diagram. The top four tiers are identical for the products,
confirming that the products have shared goals and subgoals
at the first several levels of refinement. For example, the
leftmost refinement into a subgoal, ”Achieve[Many accurate
signals of presence/absence of target]” is a commonality.
At the lower levels, different products displayed alternative
refinements of some subgoals as well as alternative assign-
ments to agents [22]. For example, at the bottom left of the
figure, there are three alternative refinements, or variations,
depending on whether it is a simple pliers, G-zipper pliers, or
unzipped pliers product. Domain experts among us increased
our understanding of the required behavior of the systems
and led to several rounds of corrections and improvements
in the goal diagrams. (The dotted box at the top right is
discussed below in the context of requirements evolution.)

A key difference between modeling for this domain and
for others is that we need to distinguish the goals for
the nanodevice (detecting the target) from the goals for
the individual instances of the nanodevice (e.g., gripping
a molecule). The instances are self-assembled DNA struc-
tures or strands. There are a very large number of them,
roughly on the order of a nanomole. Each has a significant
probability of failing to achieve its goal.

The desired behavior for the system is achieved if a
sufficient number of the nanodevice instances achieve their
assigned, nearly identical subgoals. As described in [26],
from which the rest of this paragraph is taken, we found
it useful to augment the AND/OR goal diagrams to allow
goal refinements that are mediated by threshold functions,
rather than ANDs or ORs. (While a threshold function can
logically be realized as an OR of ANDs, this is exponentially
larger and unintuitive.) We added a new kind of node, the
THRESHOLD node, with an associated threshold ratio, TR.
The meaning is that the goal is achieved if the number of
subgoals that are achieved exceeds the fraction TR of the
total number of subgoals of the THRESHOLD node. Note
that threshold nodes are not probabilistic goals [27]. They
depend not on the probability that something might happen,
but on the multiplicity of times that it does happen.

For ease of presentation and review, we created separate
goal diagrams for each product (with the top levels being
identical). Fig. 3 shows the goal diagram for one of the
products, the simple pliers. Each simple pliers has three
primary states: open, closed, and anti-parallel. Open simple
pliers can loosely capture an SA molecule in the left or
the right side of its jaw and fully capture it by closing
into a parallel form. The closed simple pliers fluoresce so
that the sensing of the target molecule is visible with AFM.
The Avoid subgoals at the bottom left of Fig. 3 were later
identified during obstacle analysis, as described below.

C. Obstacle Analysis

To identify missing requirements, we performed goal-
oriented obstacle analysis on leaf sub-goals of the individual
members of the product family. To do this, we used the
three-step approach described in [22], [28]: (1) identify

AGENT

Signal produced by
Pi if SA present

Signal produced by
Pi if NA+ present

Signal produced by
Pi if miRNA present

Lab technician

AGENT
TXR

AGENT
TXR

AGENT
Sequence allocator

AGENT
Sequence allocator

G-Zipper pliers G-Zipper pliersUnzipper pliers Unzipper pliersSimple pliers

See Figure 3

Simple pliers

Detect whether
target is present

ACHIEVE

Accurate signal by Pi
 of presence/absence

 of target

ACHIEVE

ACHIEVE

ACHIEVE ACHIEVE

ACHIEVE ACHIEVE

Large “number”
of signals observed

ACHIEVE
Many accurate signals
of presence/absence of

target

ACHIEVE
Modularity of detection

ACHIEVE

Appropriate signal by
Pi if target present

Appropriate signal by
Pi if target absent

Fluoresence of TXR Fluoresence of TXR

Unzipper pliers and
Zippered tweezers

Undeclared effect
on environment

AVOID
Undeclared sensitivity

to environment

AVOID

ACHIEVE AVOID

Threshold

Modification to goal diagram after Zippered
tweezers added.

Figure 2. High-level goal graph (commonalities)

candidate obstacles, (2) assess their likelihood and criticality,
and (3) control or resolve them, e.g., by adding or modifying
goals. Our application of obstacle analysis to the problem
was informal and manual, in accord with the criteria for
lightweight applications of formal methods to requirements
modeling described in [29]. Because we were interested in
the robustness of the system, we focused on failure modes.

The analysis identified a latent failure mode that could
obstruct satisfaction of a sub-goal. Specifically, we had
assumed that only one target molecule could bind to one nan-
odevice (i.e., by being gripped between its jaws). However,
a possible failure mode is for one target molecule to bind to
the left jaw of a nanodevice and another target molecule to
bind to its right jaw. Having two target molecules between its
jaws would prevent the jaws from closing and, thus, prevent
target detection. This obstacle was confirmed as feasible by
the domain experts among us. If the target molecules are
present at a high enough concentration, they thus overwhelm
the nanodevice and it fails to detect the target molecule’s
presence. This type of obstacle is called a non-satisfaction
obstacle in [22]. We thus revised the goal graph to include
the relevant Avoid subgoals (if the left ligand, or lining, or a
simple pliers binds to a SA molecule, its right ligand should
not bind to a different SA molecule, and similarly for the

right ligand).

D. Extending the product family

We subsequently extended the product family with an
additional, new product recently reported in a paper by
Landon et al. [23]. This product is DNA zippered tweezers,
as shown in Fig. 4. The tweezers are smaller than the other
products and less susceptible to unintended interactions (i.e.,
nonspecific binding). Like the unzipper pliers, they open in
the presence of the target. Upon addition of a closing strand,
they close, thus cycling back to their original position. We
describe how this affected the goal modeling and, in the
following subsection, how this prompted additional obstacle
analysis and the identification of a new goal for the product
family to make members modular for reliable composition
into larger systems.

The extension to the goal diagram was relatively straight-
forward. The commonalities among the four products were
high, and the new zippered tweezers product shared the
same high-level, product family goal diagram. In terms of
variations, like the unzipper pliers already in the product
family, the tweezers began in the closed state and opened
upon detection of the target. Thus, the target molecule was
not physically gripped during sensing for these two products.
The zippered tweezers and the unzipped pliers thus shared

AGENT
Ligand

AGENT
Ligand

AGENT
Ligand

AGENT
Ligand

AGENT
Holiday Junction

AGENT
Ligand

AGENT
TXR

Simple pliers

Signal produced by
Pi if SA present

ACHIEVE

Capture target SA

ACHIEVE

Achieve bound SA

ACHIEVE

Achieve left bound SA

ACHIEVE

Left ligand attached

ACHIEVE
Right ligand attached

AVOID

Parallel form

ACHIEVE

Fluoresence of FAM

ACHIEVE

Achieve right bound SA

ACHIEVE
Bound on other side

ACHIEVE

Right ligand attached

ACHIEVE
Left ligand attached

AVOID

OR

Figure 3. Low-level goal graph for simple pliers

Figure 4. Extending the product family to include zippered tweezers.
Reprinted with permission from [23]. Copyright 2012. American Chemical
Society.

a further portion of the goal graph. However, at the lowest
levels the zippered tweezers employed a somewhat different
mechanism than the unzipper pliers to achieve sensing. This
required the addition of a new agent assignment at the
bottom level of its goal diagram (not shown here). We
anticipate that the product family will continue to expand

as additional DNA nanodevices are invented and found that
the goal-oriented requirements modeling supports this type
of product family extension.

E. Requirements evolution

More interesting were the new, high-level goals uncovered
by the obstacle analysis of the newly added zippered tweez-
ers. The dashed box in Fig. 1 shows how the goal graph
changed.

The tweezers were created to be “compact and modular
so that they could be easily integrated with complex hier-
archical DNA nanomachines” [23]. The obstacle analysis
led us to more thoroughly examine the possibility that
unintended interactions among the tweezers could obstruct
satisfaction of goals. A significant obstacle that can prevent
satisfaction of the zippered tweezers’ requirement, “Achieve
strand displacement by DNA strand” is crosstalk between
tweezers, because it can prevent strand displacement.

The feasibility of this sort of unintended interaction has
been shown experimentally and in formal verification of
composed DNA gates [17]. Crosstalk is recognized as a
potentially significant threat to successful self-assembly.
Seeman described this in 2007, as “the key to any successful
molecular engineering approach is to design the components
of a construction not just so that they are capable of yielding
the product, but also to ensure, insofar as possible, that no
other product will be competitive with the target” [30].

The test tube solution is, in essence, a global memory.
Each tweezers releases (writes) DNA strands into this shared
environment and each tweezers uses (reads) DNA strands
from this shared environment. The problem is that although
we want opening of the tweezers (via DNA strand displace-
ment) to be done by a specific local strand, the displacement
instead might be done by a DNA strand that is floating freely
in the test tube solution. In this case, the tweezers will have
an unwanted interaction with other tweezers.

The obstacle analysis performed when the tweezers was
added to the product family thus identified a significant
missing requirement, namely modularity of detection. This is
a requirement for both the tweezers and for another member
of the product family that also uses strand displacement, the
unzipped pliers. The members of the product family must
be modular so that nanodevice products can be assembled
into larger nanodevices with more complex behavior, while
each of the component nanodevices continues to carry out its
intended sensing function [21]. (Elbaz, Moshe, and Willner,
for example, report the cyclic operation of a two-tweezer
assembly [31].) This goal was added to the goal diagram
(see dashed box in Fig. 1).

The modularity of detection goal was then refined into
two subgoals: Avoid[Undeclared effect on environment] and
Avoid[Undeclared sensitivity to environment]. These sub-
goals are similar to the attribute of specificity in chemistry,
roughly that a molecule should interact with the intended
target and with nothing else. They also fit nicely into Parnas’
4-variable model as constraints on SoftReq, the relation
between input variables and output variables [32]. These
subgoals were then assigned to the Sequence Allocator
agent responsible for assigning DNA sequences to the strand
components. (In actuality there are several agents used to
achieve this allocation, ranging from the DSD programming
language to the lab technician, but we do not describe these
separately here.)

To summarize, requirements evolution prompted by the
addition of a fourth product and the associated obstacle
analysis added a modularity goal for the product family. This
made the requirements for the product family more fault
tolerant to the likely and problematic scenario of crosstalk
when products are later composed. As described below,
formal modeling and verification of common and product-
specific properties provided some additional assurance that
the goal diagrams were accurate.

PSA2CSA2C2

AP2

P2

CSA1C1

AP1

P1

C0

AP0

P0

C2SA2

Figure 5. The PRISM model for the simple pliers. State labels are of the
form XY Z , where: X ∈ {C,P,AP} indicates whether the pliers are in
cross, parallel or antiparallel form, respectively, Y ∈ {ε, SA, 2SA} indi-
cates the number of SA molecules caught by the pliers, and Z ∈ {0, 1, 2}
indicates the number of ligands attached to the pliers. For example, C2SA2

indicates that the pliers are in cross form, have captured two SA molecules,
and still have both ligands attached.

III. REQUIREMENTS VERIFICATION

A. Probabilistic model checking

With the requirements identified, we then used formal
verification techniques to reason about the correctness of
the system. Since the dynamic behavior of these nanodevices
can be described as a memoryless, stochastic, asynchronous
process, we modeled this behavior with a continuous time
Markov chain (CTMC). Because of the memoryless property
of the process described by the CTMC, the amount of time
between state transitions was distributed according to an
exponential distribution e−λt where the rate constant λ was
in this context chosen based on the concentration of the
reactants and the properties of the chemical reaction.

We performed analysis and verification of our derived
models using PRISM, an open source program which can
verify properties of probabilistic models [25]. We commu-
nicated requirements to PRISM in the form of properties,
specified as formulae in a probabilistic temporal logic.
For example, we verified requirements by asking PRISM

Boolean questions such as “Is the probability of failure less
than 0.01?” and performed analysis by asking questions such
as ”What is the expected time of the first detection?”

B. Model implementation

We used PRISM’s modeling language to define a model
that described the behavior of a single nanodevice. We relied
on mechanisms in PRISM’s modeling language to expand
this model to one that described the behavior of a population
of nanodevices. Figure 5 shows the graphical representation
of the model for a single simple pliers.

Recall that a CTMC is composed of a set of states and
set of transitions with corresponding rates. Each transition
corresponded to a first or second order chemical reaction.
As such, the rate at which these reactions occured were
defined by the product of the concentrations of the reactants
with the rate constant K. We derived the concentrations
of nanodevices in each configuration from the state of the
expanded model. The rate constants were derived using a
combination of known experimental results and theoretical
analysis.

The state-structure, the transitions and corresponding rates
were all common features of the models of the products
in the product family. This was a direct result of common
features of the physical systems being modeled. In addition,
the pliers products shared a particular subgraph of the graph-
ical representation of the single-pliers model. Specifically,
the pliers in each of the pliers products could be in cross,
parallel, or antiparallel form, such as the C2, P2, and AP2

states in Figure 5.
The systems being modeled varied in the modes by

which the nanodevices interacted with their respective tar-
get molecules. These differences manifested themselves as
variations in the states which occurred in the respective
Markov models. For example, the simple pliers could detect
streptavidin (SA) molecules. The detection interactions were
modeled by the addition of configurations {CSA2, C2SA2,
PSA2, etc.} along with associated transitions and rates as
shown in Figure 5.

Each simple pliers could be in 13 different configurations.
This meant that the expanded model had approximately 13n

states where n is the number of pliers modeled. Similarly, the
other expanded models grew exponentially in the number of
nanodevices. Consequently, it was not feasible to precisely
model large populations of nanodevices.

However, this was not necessary for the verification.
The rate at which a chemical reaction occurred decreased
exponentially with the number of reactants. Therefore, for
reactions of order greater than some small finite constant,
we assumed their effects were negligible.

C. Property specification

Having identified the requirements for the sensing product
family, we used the PRISM probabilistic model checker to

specify and verify them. The requirements were specified
as properties in PRISM’s continuous stochastic logic (CSL)
language [33] . The reward-based paradigm that PRISM uses
enabled us to specify many of these properties as queries that
return useful non-Boolean quantities such as probabilities
and expected waiting times [34].

For example, the following five properties specify require-
ments that Figure 2 shows are common to all nanodevices
in the sensing product family. (Here the variable deadlock
is the number of nanodevice instances that have reached
a permanent configuration; NP is the number of nanode-
vice instances being modeled; and the Boolean variable
target detected holds in states in which the target molecule
has been detected.)

1) R{"T"}=? [F deadlock = NP]
“What is the expected time for the system to reach
equilibrium? (all deadlock states)”

2) R{"T"}=? [F "target_detected"]
“What is the expected time until the target is de-
tected?”

3) P=? [F "target_detected"]
“What is the probability that the target will eventually
be detected?”

4) P=? [F<=t "target_detected"]
“What is the probability of target being detected within
time t?”

5) P>0.94 [F<=0.072 "target_detected"]
“Is the probability of the target being detected within
2 hours greater than 0.94.”

For an example of a requirement that is specific to one
nanodevice in the product family, consider the failure mode
for simple pliers discussed at the end of section II.C. Figure
3 enables us to specify a variable, errors, that is the number
of modeled instances of the simple pliers for which this
failure mode occurs. The following two properties were then
specified.

1) R{"errors"}=? [S]
“What is the expected number of errors at equilib-
rium?”

2) P=>0.999 [G errors < 0.01]
“Is the probability that more than 1% of the nanode-
vices in solution deadlock in an error state greater than
0.01?”

D. Verification results

After the requirements were specified as CSL properties,
they were verified using PRISM. Properties that are com-
mon across the entire sensing product family were reused
intact for each of the nanodevices. For example, consider
properties 1-5 in section III-C. The reuse of these properties
was achieved by using the Boolean label target detected as
an interface to each of the nanodevices. For example, in
the simple pliers, this condition measures the intensity of

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5

P
ro

b
ab

ili
ty

Time (h)

P [Target Detected]

Figure 6. Plot of Property 4 in section III-C

TXR fluorescence, and becomes true when TXR becomes
sufficiently low (in this case, below 20%). Note that this
interface is shared among some of the products; specifically
the simple pliers and the G-zipper pliers utilize this same
condition. However, the unzipped pliers achieves detection
when the intensity of TXR becomes sufficiently high, specif-
ically over 80%.

The last two properties listed in section III-C were specific
to potential errors that could occur in the simple pliers
product. These properties were also verified using PRISM,
and were of particular interest because the potential error
state of the simple pliers resulted in a deadlock state.
Therefore, if a pliers ever entered this state, that pliers
became permanently disabled. Therefore it was important
to verify that this was a rare event. For properties required
in only one nanodevice, there was no reuse. However, if the
product family grows over time (as, in fact, this one did),
unique variations and their associated properties may recur
in future products. The opportunity for reuse of previously
formally specified properties then may help ease the burden
of identifying and specifying model checking properties for
new members.

Some of the properties were dependent on a variable such
as time. Using those properties, we were able to reason
about the probability of detection with varying time. Figure 6
shows property 4 for the simple pliers product plotted over
time. It is important to note that each point on this graph
was a verified value for that specific time.

Other properties calculated exact expected values or prob-
abilities, such as properties 1, 2, and 3 in section III-C above.
These expected values were also computed precisely using
the PRISM verification engine and gave added assurance that
the requirements accurately described the intended behavior.

IV. RELATED WORK

The primary area of related work is the formal verifi-
cation and more specifically, model checking, of software

product lines (SPLs), an active research area with many
contributions. Fischbein, Uchitel, and Braberman proposed
using Modal Transition Systems (MTS) to model SPLs
[35]. MTS supports modeling and reasoning in the presence
of partial behavioral information, allowing description of
optional and variant behaviour of the different systems that
compose the product line. Fantechi and Gnesi subsequently
extended Modal Transition Systems (MTS) with variability
operators to model SPLs [36]. They used ACTL temporal
logic, an action based version of CTL, to express and verify
properties of the system. Asirelli, Beek, Fantechi and Gnesi
have since combined MTS with a branching-time temporal
logic to allow greater flexibility in defining product families
[37]. Lauenroth, Toehning, and Pohl modeled the behavior of
SPLs with labeled automata, where the labels are the features
of a particular product in the family, and used Computational
Tree Logic (CTL) to describe properties to be model checked
[38].

In a 2012 paper Cordy, Classen, Schobbens, Heymans and
Legay built on their previous work [39] to symbolically
model check SPLs efficiently [40]. They extended their
Featured Transition Systems to handle SPLs that evolve over
time. The goal is to reduce the complexity of formal verifi-
cation on new features by only verifying the differences.

Compositional model checking similarly saves effort by
reusing results from the model checking of common features
to reduce the amount of re-verificaton needed. Krishna-
murthi and Fisler have described incremental, compositional
model checking of systems using aspects to verify the
behavioral properties [41]. Liu, Basu and Lutz subsequently
showed how every new, sequentially composed product in
the product line could be compositionally model checked by
generating and reusing variation-point obligations [42].

The major difference between our work and previous
research is our use of probabilistic model checking. We
need this capability because the nanodevices in our product
family are molecular and therefore inherently probabilistic.
The most relevant work is that of Lakin et al. They have
recently used the DSD strand displacement specification
language and the probabilistic model checker PRISM to
verify properties on simple DNA reaction gates and then
composed them into a larger DNA system that implements
the approximate majority protocol [17]. Our work differs
from theirs in focusing on the identification, analysis and
verification of requirements rather than, as they do, on
design. Filieri, Ghezzi and Tamburrelli have also recently de-
veloped efficient runtime model checking to verify reliability
requirements described in a Discrete Time Markov Chain
model. Their approach out-performed PRISM in experiments
[43].

There has been little work at the interface of requirements
engineering and biological or chemical systems. Fisher,
Harel and Henzinger have described the computational
modeling of biological systems as reactive systems [44].

Hetherington et al. have assembled a complex, computa-
tional model of liver function from seven sub-models of
different aspects of the system, each previously validated
with experimental data [45], [46]. This work addressed
the challenges of composing models of complex biological
systems and demonstrated the predictive advances and effi-
ciencies possible via the principled reuse of model building.

V. CONCLUSION

We found that use of goal-oriented requirements engi-
neering methods improved the modeling and analysis of
requirements for a product family of sensing nanodevices
by revealing new failure modes and facilitating reuse. This
in turn made the development process more productive,
predictable and safe.

The goal diagrams for the product family showed a high
degree of common goals and subgoals among the nano-
devices. These commonalities simplified reasoning about
their behavior as well as the process of goal modeling. We
used the threshold gates that we defined in [26] to describe
goal refinements involving the action of a very large number
of instances of the nanodevice mediated by thresholds.

The obstacle analysis that we performed resulted in
identification of a latent failure mode in which too high a
concentration of target molecules could prevent detection
of the target in one nanodevice. We added requirements
to avoid this failure mode, making the nanodevice more
robust. Since an envisioned use of the sensing nanodevices
is for diagnostics in human cells, this may also make the
nanodevices safer for use.

When we extended the product family with a new nano-
device, we saw a high degree of reuse in the goal diagram.
This reuse made the evolution process more efficient. The
obstacle analysis on the new nanodevice found a potential
for interference between instances of nanodevices that could
prevent successful detection, not just in this nanodevice
but also in another one. The goal graphs were updated in
response, once again improving the safety of the product
family requirements.

The requirements for the nanodevice product family de-
scribed in the goal diagrams were formally specified in
CSL and model checked using the probabilistic symbolic
model checker PRISM. The verification process benefited
from high reuse among the product family PRISM models
and from the common CSL properties that were verified.
The model checking capability of PRISM proved useful in
exploring and understanding the probabilistic behavior of the
self-assembling nanodevices in a world of chemical kinetics.

ACKNOWLEDGMENTS

We thank Samik Basu, Anthony Finkelstein, and Axel
van Lamsweerde for useful discussions. This research was
supported by NSF grants 1143830, 0916275, and 0652569.
Part of the first author’s work was performed while on

sabbatical at Caltech and at the Open University, UK. Part of
the second author’s work was performed while on sabbatical
at Caltech and at the Isaac Newton Institute for Mathematical
Sciences.

REFERENCES

[1] N. Seeman, “Nucleic acid junctions and lattices,” Journal of
Theoretical Biology, vol. 99, pp. 237–247, 1982.

[2] E. Winfree, “On the computational power of DNA annealing
and ligation,” in DNA Based Computers II: DIMACS Work-
shop, June 10-12, 1996. AMS, 1998, pp. 191–213.

[3] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Sum-
mers, and D. Woods, “The tile assembly model is intrinsically
universal,” ArXiv e-prints, Nov. 2011.

[4] L. Qian and E. Winfree, “A simple DNA gate motif for syn-
thesizing large-scale circuits,” J Royal Soc Interface, vol. 8,
pp. 1281–1297, 2011.

[5] ——, “Scaling up digital circuit computation with DNA
strand displacemen cascades,” Science, pp. 1196–1201, 2011.

[6] L. Qian, E. Winfree, and J. Bruck, “Neural network com-
putation with DNA strand displacement cascades,” Nature,
vol. 45, pp. 368–372, Oct. 2011.

[7] L. M. Smith, “Nanotechnology: Molecular robots on the
move,” Nature, vol. 465, no. 7295, pp. 167–168, 2010.

[8] D. Y. Zhang and G. Seelig, “Dynamic DNA nanotechnol-
ogy using strand-displacement reactions,” Nature Chemistry,
vol. 3, pp. 103–113, 2011.

[9] S. M. Douglas, I. Bachelet, and G. M. Church, “A logic-
gated nanorobot for targeted transport of molecular payloads,”
Science, vol. 335, no. 6070, pp. 831–834, 2012.

[10] P. W. K. Rothemund, “Folding DNA to create nanoscale
shapes and patterns,” Nature, vol. 440, pp. 297–302, 2006.

[11] J. Nangreave, D. Han, Y. Liu, and H. Yan, “DNA origami: A
history and current perspective,” Current Opinion in Chemical
Biology, vol. 14, pp. 608–615, 2010.

[12] S. Venkataraman, R. Dirks, C. Ueda, and N. Pierce, “Selective
cell death mediated by small conditional RNAs,” in Proc Natl
Acad Sci USA, vol. 107, no. 39, 2010, pp. 16 777–16 782.

[13] R. Kershner et al., “Placement and orientation of individual
DNA shapes on lithographically patterned surfaces,” Nature
Nanotechnology, vol. 3, pp. 557–561, 2009.

[14] S. M. Douglas, A. H. Marblestone, S. Teerapittayanon,
A. Vazquez, G. M. Church, and W. M. Shih, “Rapid proto-
typing of 3D DNA-origami shapes with caDNAno,” Nucleic
Acids Research, vol. 37, no. 15, pp. 5001–5006, 2009.

[15] A. Phillips and L. Cardelli, “A programming language for
composable DNA circuits,” Journal of the Royal Society
Interface, vol. 6, pp. S419–S436, 2009.

[16] M. Lakin and A. Phillips, “Modelling, simulating and veri-
fying Turing-powerful strand displacement systems,” in DNA
17, 2011.

[17] M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and
A. Phillips, “Design and analysis of DNA strand displacement
devices using probabilistic model checking,” J Royal Soc
Interface, 2012.

[18] D. Weiss and C. Lai, Software product-line engineering:
a family-based software development process. Addison-
Wesley, 1999.

[19] P. C. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, ser. SEI Series in Software Engineer-
ing. Addison-Wesley, 2001.

[20] K. Pohl, G. Böckle, and F. van der Linden, Software Product
Line Engineering: Foundations, Principles and Techniques.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[21] A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama,
“Nanomechanical DNA origami ‘single-molecule beacons’
directly imaged by atomic force microscopy,” Nat Commun,
vol. 2, 2011/08/23/online.

[22] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications. Chicester,
England: Wiley, 2009.

[23] P. B. Landon, S. Ramachandran, A. Gillman, T. Gidron,
D. Yoon, and R. Lal, “DNA zipper-based tweezers,” Lang-
muir, vol. 28, no. 1, pp. 534–540, 2012.

[24] B. Yurke, A. J. Turberfield, J. Allen P. Mills, F. C. Simmel,
and J. L. Neumann, “A DNA-fuelled molecular machine made
of DNA,” Nature, vol. 406, pp. 605–608, 2000.

[25] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” in CAV11,
2011, pp. 585–591.

[26] R. Lutz, J. Lutz, T. Klinge, E. Henderson, D. Mathur, and
A. Sheasha, “Engineering and verifying requirements for
programmable self-assembling nanomachines (NIER track),”
in Int’l Conf on Software Eng. IEEE, 2012, to appear.

[27] E. Letier and A. van Lamsweerde, “Reasoning about partial
goal satisfaction for requirements and design engineering,” in
SIGSOFT FSE, 2004, pp. 53–62.

[28] A. van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering,” IEEE Trans. Soft-
ware Eng., vol. 26, no. 10, pp. 978–1005, 2000.

[29] S. M. Easterbrook, R. R. Lutz, R. Covington, J. Kelly,
Y. Ampo, and D. Hamilton, “Experiences using lightweight
formal methods for requirements modeling,” IEEE Trans.
Software Eng., vol. 24, no. 1, pp. 4–14, 1998.

[30] N. Seeman, “An Overview of Structural DNA Nanotechnol-
ogy,” Molecular Biotechnology, vol. 37, no. 3, pp. 246–257,
Nov. 2007.

[31] J. Elbaz, M. Moshe, and I. Willner, “Coherent activation of
DNA Tweezers: A SET/RESET Logic System,” Angewandte
Chemie, vol. 121, no. 21, pp. 3892–3895, 2009.

[32] D. L. Parnas and J. Madey, “Functional documents for com-
puter systems,” Sci. Comput. Program., vol. 25, pp. 41–61,
October 1995.

[33] A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton, and R. K.
Brayton, “Model-checking continous-time markov chains.”
ACM Trans. Comput. Log., pp. 162–170, 2000.

[34] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic
model checking,” in SFM’07, 2007, pp. 220–270.

[35] D. Fischbein, S. Uchitel, and V. A. Braberman, “A foundation
for behavioural conformance in software product line archi-
tectures,” in ROSATEA, 2006, pp. 39–48.

[36] A. Fantechi and S. Gnesi, “Formal modeling for product
families engineering,” in SPLC. IEEE Computer Society,
2008, pp. 193–202.

[37] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi,
“Formal description of variability in product families,” in
SPLC, E. S. de Almeida, T. Kishi, C. Schwanninger, I. John,
and K. Schmid, Eds. IEEE, 2011, pp. 130–139.

[38] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of
domain artifacts in product line engineering,” in ASE. IEEE
Computer Society, 2009, pp. 269–280.

[39] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay,
“Symbolic model checking of software product lines,” in
ICSE ’11, 2011, pp. 321–330.

[40] M. Cordy, A. Classen, P.-Y. Schobbens, P. Heymans, and
A. Legay, “Managing evolution in software product lines: a
model-checking perspective,” in VaMoS, U. W. Eisenecker,
S. Apel, and S. Gnesi, Eds. ACM, 2012, pp. 183–191.

[41] S. Krishnamurthi and K. Fisler, “Foundations of incremental
aspect model-checking,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, April 2007.

[42] J. Liu, S. Basu, and R. R. Lutz, “Compositional model
checking of software product lines using variation point
obligations.” in Autom. Softw. Eng., 2011, pp. 39–76.

[43] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” in ICSE ’11, 2011, pp. 341–
350.

[44] J. Fisher, D. Harel, and T. A. Henzinger, “Biology as reac-
tivity,” Commun. ACM, vol. 54, pp. 72–82, Oct. 2011.

[45] J. Hetherington, T. Sumner, R. M. Seymour, L. Li, M. V.
Rey, S. Yamaji, P. Saffrey, O. Margoninski, I. D. L. Bogle,
A. Finkelstein, and A. Warner, “A composite computational
model of liver glucose homeostasis. I. building the composite
model,” Journal of The Royal Society Interface, 2011.

[46] T. Sumner, J. Hetherington, R. M. Seymour, L. Li,
M. Varela Rey, S. Yamaji, P. Saffrey, O. Margoninski, I. D. L.
Bogle, A. Finkelstein, and A. Warner, “A composite com-
putational model of liver glucose homeostasis. II. exploring
system behaviour,” Journal of The Royal Society Interface,
vol. 9, no. 69, pp. 701–706, 2012.

