
Engineering and Verifying Requirements for Programmable Self-Assembling
Nanomachines

R. Lutz∗†, J. Lutz∗, J. Lathrop∗, T. Klinge∗, E. Henderson‡, D. Mathur‡, and D. Abo Sheasha∗
∗Department of Computer Science

Iowa State University, Ames, IA 50011 USA
{rlutz, lutz, jil, tklinge, dalia}@iastate.edu

†Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA 91104 USA
‡Department of Genetics, Development, and Cell Biology

Iowa State University, Ames, IA 50011 USA
{telomere, divita}@iastate.edu

Abstract—We propose an extension of van Lamsweerde’s
goal-oriented requirements engineering to the domain of pro-
grammable DNA nanotechnology. This is a domain in which
individual devices (agents) are at most a few dozen nanometers
in diameter. These devices are programmed to assemble them-
selves from molecular components and perform their assigned
tasks. The devices carry out their tasks in the probabilistic
world of chemical kinetics, so they are individually error-prone.
However, the number of devices deployed is roughly on the
order of a nanomole (a 6 followed by fourteen 0s), and some
goals are achieved when enough of these agents achieve their
assigned subgoals. We show that it is useful in this setting to
augment the AND/OR goal diagrams to allow goal refinements
that are mediated by threshold functions, rather than ANDs or
ORs. We illustrate this method by engineering requirements
for a system of molecular detectors (DNA origami “pliers”
that capture target molecules) invented by Kuzuya, Sakai,
Yamazaki, Xu, and Komiyama (2011). We model this system
in the Prism probabilistic symbolic model checker, and we
use Prism to verify that requirements are satisfied, provided
that the ratio of target molecules to detectors is neither too
high nor too low. This gives prima facie evidence that software
engineering methods can be used to make DNA nanotechnology
more productive, predictable and safe.

Keywords-Requirements engineering; validation and verifi-
cation; safety; DNA nanotechnology; molecular programming

I. INTRODUCTION

Nanotechnology–the control of matter at the nanoscale–
promises transformative benefits for medicine, information
technology, energy production, and other enterprises of
twenty-first century society. The realization of these benefits
depends on scaling up the precise nanoscale control of
matter. A promising method for such large-scale control is
nanoscale self-assembly, the engineering and programming
of useful nanomachines that autonomously assemble them-
selves from molecular components.

The prospect of the programmable self-assembly of
nanomachines was enabled by pioneering work of Seeman
[1], Winfree [2], and Rothemund [3]. It was Seeman’s idea

to use the information-processing capabilities of DNA to
program short strands of DNA to assemble themselves into
specified structures and devices. Winfree showed that self-
assembly is Turing universal, i.e., that any computation
can be simulated by self-assembly. This implies that self-
assembly can be algorithmically directed, whence extremely
complex shapes and behaviors can be realized by self-
assembly. Doty et al. have recently shown that self-assembly
is universal in an even stronger, intrinsically geometric sense
[4]. Rothemund introduced DNA origami, a very general
method for using short DNA “staples” to cause a long,
single-strand DNA “scaffold” (usually the genome of one
specific bacteriophage) to fold itself into a desired shape. It
is, to date, the most flexible and impressive means of control-
ling matter at the nanoscale. The prospect of programming
molecular devices (e.g., circuits and robots) with dynamic
behaviors using DNA strand displacement was raised by
work by Yurke et al. [5].

Programmable DNA nanotechnology is a rapidly emerg-
ing field. It is highly interdisciplinary, bringing together
computer science, molecular biology, biochemistry, and ma-
terials science and engineering. While many applications are
envisioned, most research is still basic, demonstrating vari-
ous ways of controlling matter at molecular scales. However,
DNA nanotechnology experiments are already so complex
that their initial design requires significant use of computer
software such as the DSD programming language [6] or caD-
NAno software [7]. The probabilistic model checker PRISM
[8] has been used to verify properties of nanomachines but,
to the best of our knowledge, requirements engineering has
not been used previously in this domain. It is our contention
that the systematic study of requirements and verification
for programmable, self-assemblying nanomachines needs to
start now, so that a requirements engineering framework
is in place well before the envisioned, future deployment
of safety-critical applications [9] (e.g., RNA nanomachines
embedded in human cells [10], [11]).



Figure 1. Atomic Force Microscope images of DNA origami pliers: (a) at initiation, DNA pliers are open in the cross form, (b) upon adding SA molecules
to the solution, DNA pliers close to the parallel form, capturing the SA molecules in the pliers’ jaws; (c)at reset via addition of unset strands DNA pliers
re-open, releasing SA molecules. Adapted by permission from Macmillan Publishers Ltd: ref. [12], copyright 2011.

The contribution of this paper is to suggest a discipline
by which requirements engineering and formal verifica-
tion can be performed on programmable, self-assemblying
nanomachines. We restrict ourselves here to discussing this
in the context of an important, recent development of one
such nanomachine, DNA origami pliers [12]. We investigate
(1) what it means to specify and validate requirements on
programmable DNA self-assemblies and (2) how we can
verify formally that a self-assembly satisfies its require-
ments. While we do not expect an off-the-shelf framework
to suffice in this domain, we take as our starting point the
identification, evaluation, specification and verification of
requirements for DNA origami pliers as a self-assembling,
programmable nanomachine, using van Lamsweerde’s goal-
oriented requirements engineering [13] and the model check-
ing of the derived requirements using PRISM. We describe
below our use, results and adjustments of the existing
methods to better fit this new domain.

II. REQUIREMENTS ENGINEERING

The requirements identification and domain understand-
ing for this initial work were largely artifact-driven, based on
reverse engineering requirements for the nanomachines from
papers describing experimental results. Some of us are do-
main experts, who also served as stand-ins for stakeholders.
We gained additional insights into the domain by visits to the
wet laboratory. In identifying and refining the requirements,
our primary concern was accuracy. The creation of a goal
graph and operational model matured the requirements, led
to many revisions of domain properties and assumptions,
and surfaced additional subgoals. It also provided a way to
structure the variety of unfamiliar information that we had.

The requirements evaluation found inconsistencies in the
vocabulary used due to the interdisciplinary nature of DNA
nanotechnology and lab-specific dialects. The evaluation
also showed that the functional requirements for the pliers
nanomachine were probabilistic. The requirements speci-
fication constructed iterative versions of the goal graphs
that were increasingly precise and accurate. The plan to
formally verify the requirements led to a better informal
representation, as well. We simultaneously built a formal

state machine model in PRISM, and formalized a set of key
requirements in it. Requirements validation and verification
by simulation and model checking helped assure that these
requirements were satisfied in the model, as described below.

The nanomachines to be built are complex, asynchronous,
probabilistic, and resource constrained. They have both
functional and nonfunctional requirements. Functional re-
quirements state what the self-assembly shall do. The most
important functional requirements are geometric (specifying
the shape or structure that the assembly shall achieve) or
behavioral (specifying what the assembled shape shall do).

DNA origami pliers. We consider a DNA origami struc-
ture that can detect the presence of a target molecule in a
solution [12]. The pliers are a nanomachine because they
open and close autonomously (i.e., change their shape)
depending upon the presence or absence of a target molecule
(in this case, SA-streptavidin tetramer) in their environment.
They thus can serve as monitors to “diagnose” whether SA is
present. A future such application might be to detect harmful
molecules within human cells. As shown in Fig. 1(a), the
DNA origami structure is programmed to assemble in the
shape of “pliers” in the open position. (Each yellow cross
pointed to by an arrow is an open pliers.) The pliers are
programmed such that, once assembled, they will capture a
particular molecule of interest by closing that molecule in
their jaws, Fig. 1(b). They should then release the molecule
when “unset strands” of DNA are added to the solution.
Observation through an atomic force microscope (AFM) of
the pliers shows whether the molecule of interest is present
in the solution.

There is a key difference between goal modeling for this
domain and for others in that we need to distinguish the
goals for the entire system from the goals for the individual
pliers. The high-level goal is to detect the target molecule.
The assigned agents to achieve this are the pliers. There are
thus a huge number of agents, roughly on the order of a
nanomole (6 × 1014) of them. Each of these agents has a
significant probability of failing to achieve its goal.

The desired behavior for the system is achieved if a
sufficient number of the agents achieve their assigned, nearly
identical subgoals. We thus found it useful to augment the



ACHIEVE
Detected whether

SA is present

ACHIEVE
Many signals
produced iff
SA present

ACHIEVE
Large “number”

of signals observed

AGENT
AFM operator

AGENT
Pliers

ACHIEVE
Signal produced by

Pi iff SA present

ACHIEVE
Signal produced by

Pi if SA present

AVOID
Signal produced by

Pi if SA absent

Threshold

Figure 2. Goal graph

AND/OR goal diagrams to allow goal refinements that are
mediated by threshold functions, rather than ANDs or ORs.
(While a threshold function can logically be realized as an
OR of ANDs, this is exponentially larger and unintuitive.)
We thus add a new kind of node, the THRESHOLD node,
with an associated threshold ratio, TR. The meaning here
is that the goal is achieved if the number of subgoals that
are achieved exceeds the fraction TR of the total number
of subgoals of the THRESHOLD node. Note that threshold
nodes are not probabilistic goals [14]. They depend not on
the probability that something might happen, but on the
multiplicity of times that it does happen.

The goal graph, shown in Fig. 2, has the top-level goal,
Achieve[Detected Whether SA Is Present]. This goal is
refined in the diagram into subgoals Achieve[Many Sig-
nals Produced iff (if and only if) SA Is Present] and
Achieve[Large Number of Signals Observed]. The latter
subgoal is assigned to a human agent, the AFM operator,
who images a sample of the solution and manually counts
the state of the pliers. The former subgoal is achieved
provided that a sufficient number of individual pliers each
produce a signal if and only if SA is present. The signal is
the change to the closed shape.

There is no cooperative or swarm behavior here, nor do
the sensors form a network. However, the requirements for

False
Positive
Parallel

Cross
Initial
State

Anti
Parallel

SA
Capture

Left

SA
Capture
Right

Parallel
Capture

SA Capture
Left-Right

Cross

Figure 3. PRISM state model

pliers to capture a SA molecule are very similar, but not
identical to, the requirements for capturing other molecules.
It is likely that such highly similar self-assemblies may be
usefully considered as a product line [15].

It is also worth mention that the process of constructing
the goal graph alerted us to a failure mode that we had not
considered, namely, that SA molecules might bind to both
jaws of a pliers before they can close. PRISM verification
indicates that this can happen often enough to prevent
detection if the concentration of SA is sufficiently high.

III. VERIFICATION

We created a continuous-time Markov chain model in
PRISM of the reactions described in [12] that model the
detection of target molecules. We then specified properties
that define correct operation and used PRISM to verify that
these properties are satisfied. We used a Markov chain,
shown in Fig 3, and the PRISM software tool to model the
behavior of a large number of pliers existing in solution
with SA molecules or unset strands. The state of the model
depended on the state of the individual pliers in the system.
Each pliers had three primary states: open, closed, and anti-
parallel. Pliers in open form could loosely capture an SA
molecule in the left or the right side of its jaw and fully
capture it by closing while it is caught. With unset strands in
the system, it was possible for them to displace the gripping
surface on one or both of the jaws of the pliers. The number
of gripping surfaces present contributed to the state of the
system and increased the complexity of the Markov chain.

Three of the requirements derived above were written as
properties within PRISM in order to verify their correctness:



Figure 4. Error Graph

(1) ensuring capture when the target molecule, SA, is
present, (2) avoiding false positives when the target molecule
is not present, and (3) avoiding pliers in error states (such
as one SA in each side of its jaw). These properties were
implemented in PRISM’s property specification language
and verified using PRISM’s implementation of the Gauss-
Seidel method for solving linear systems of equations.

We also found that as the concentration of SA is increased,
the expected value of total captures decreases. This is
illustrated in Fig 4. In this graph, the y-axis shows the ratio
of the number of pliers in a certain state and the x-axis
shows the number of SA molecules that are in the system.
The blue series represents the expected number of pliers
with successful captures, and the green series represents the
expected number of pliers resulting in an error state.

IV. CONCLUSION

We have seen that adding threshold-mediated goal re-
finement to van Lamsweerde’s goal models enables re-
quirements engineering to be used—for the first time to
the best of our knowledge—in the emerging field of DNA
nanotechnology. We have illustrated this approach by ap-
plying it to the DNA origami pliers molecular detection
system, thereby obtaining requirements that we have verified
using the Prism probabilistic symbolic model checker. We
believe that this work provides prima facie evidence that
software engineering methods can be used to make DNA
nanotechnology more productive (e.g., by improved and
more automated design of wet-lab experiments), predictable
(e.g., by improved methods for reasoning about the behav-
iors of self-assembling, programmable systems operating in
kinetic molecular environments), and safe (e.g., by analyzing
the embedded systems obtained when programmable nan-
odevices are deployed in living cells). Only a great deal of
research by many investigators will turn this prima facie case
into a clear scientific demonstration.

ACKNOWLEDGMENTS

We thank Samik Basu for useful discussions. This re-
search was supported by NSF grants 1143830, 0916275,
and 0652569. Part of this work was performed while the first
author was on sabbatical at Caltech and the Open University

and the second author was on sabbatical at Caltech and
the Isaac Newton Institute for Mathematical Sciences at the
University of Cambridge.

REFERENCES

[1] N. Seeman, “Nucleic acid junctions and lattices,” Journal of
Theoretical Biology, vol. 99, pp. 237–247, 1982.

[2] E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dis-
sertation, California Institute of Technology, 1998.

[3] P. W. K. Rothemund, “Folding DNA to create nanoscale
shapes and patterns,” Nature, vol. 440, pp. 297–302, 2006.

[4] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Sum-
mers, and D. Woods, “The tile assembly model is intrinsically
universal,” ArXiv e-prints, Nov. 2011.

[5] B. Yurke, A. J. Turberfield, J. Allen P. Mills, F. C. Simmel,
and J. L. Neumann, “A DNA-fuelled molecular machine made
of DNA,” Nature, vol. 406, pp. 605–608, 2000.

[6] A. Phillips and L. Cardelli, “A programming language for
composable DNA circuits,” Journal of the Royal Society
Interface, vol. 6, pp. S419–S436, 2009.

[7] S. M. Douglas, A. H. Marblestone, S. Teerapittayanon,
A. Vazquez, G. M. Church, and W. M. Shih, “Rapid proto-
typing of 3D DNA-origami shapes with caDNAno,” Nucleic
Acids Research, vol. 37, no. 15, pp. 5001–5006, 2009.

[8] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0:
Verification of probabilistic real-time systems,” in Proc. 23rd
International Conference on Computer Aided Verification
(CAV11), vol. 6806. Springer, 2011, pp. 585–591.

[9] N. G. Leveson, Safeware: system safety and computers. New
York, NY, USA: ACM, 1995.

[10] K. Rinaudo, L. Bleris, R. Maddamsetti, S. Subramanian,
R. Weiss, and Y. Benenson, “A universal RNAi-based logic
evaluator that operates in mammalian cells,” Nature Biotech-
nology, vol. 25, pp. 795–801, 2007.

[11] S. Venkataraman, R. Dirks, C. Ueda, and N. Pierce, “Selective
cell death mediated by small conditional RNAs,” in Proc Natl
Acad Sci USA, vol. 107, no. 39, 2010, pp. 16 777–16 782.

[12] A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama,
“Nanomechanical DNA origami ’single-molecule beacons’
directly imaged by atomic force microscopy,” Nat Commun,
vol. 2, 2011/08/23/online.

[13] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications. Chicester,
England: Wiley, 2009.

[14] E. Letier and A. van Lamsweerde, “Reasoning about partial
goal satisfaction for requirements and design engineering,” in
SIGSOFT FSE, 2004, pp. 53–62.

[15] J. Dehlinger and R. R. Lutz, “Gaia-PL: A product line
engineering approach for efficiently designing multiagent
systems,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4,
p. 17, 2011.


