Math 5707 Stable Matchings

JED YANG

"It is a truth universally acknowledged, that a single man in possession of a good fortune must be in want of a wife."

Recall 1. A binary relation \(\leq \) is a linear or total order if it is antisymmetric \((a \leq b \text{ and } b \leq a \text{ implies } a = b)\), transitive, and total \((a \leq b \text{ or } b \leq a)\).

Definition 2. Let \(G = (A, B, E) \) be a bipartite graph. For each \(v \in A \sqcup B \), let \(\leq_v \) be a linear order on \(N(v) \). Call the collection \(\{\leq_v\}_{v \in V} \) a set of preferences for \(G \). A matching \(M \) of \(G \) is stable if for every edge \(e \in E \setminus M \), there exists an edge \(f \in M \) such that \(e = vx, f = vy \), and \(x <_v y \).

Example 3. National Resident Matching Program

Definition 4 (Stable matching algorithm). Let \(G = (A, B, E) \) be a bipartite graph and \(\{\leq_v\}_{v \in V} \) a set of preferences.

(a) For each vertex \(a \in A \), let \(b \in N(a) \) be the \(\leq_a \)-maximal vertex, and add \(ab \) to \(M \).

(b) For each vertex \(b \in B \) incident to multiple edges in \(M \), let \(a \in N(b) \) be the \(\leq_b \)-maximal vertex such that \(ab \in M \), and delete from \(E \) (and thus also from \(M \)) all edges in \(M \) incident to \(b \) except for \(ab \).

(c) Repeat the steps above until unmatched \(a \in A \) are all isolated.

"And now nothing remains for me but to assure you in the most animated language of the violence of my affection."

Theorem 5 (2.1.4, Gale–Shapley 1962). Given a bipartite graph \(G = (A, B, E) \) and a set of preferences, the stable matching algorithm produces a stable matching \(M \). Moreover, if \(G = K_{n,n} \) is a complete bipartite graph, then \(M \) is perfect.

Proof. Note that if \(b \in B \) is in \(M \) after some round, it will always be in \(M \). Furthermore, \(b \) will only “trade up” and be matched with increasingly more desirable vertices. Therefore we will never get the same \(M \) again (except immediately, when we terminate). As there are only finitely many possible \(M \), the process will terminate at some point.

Suppose \(ab \in E(G) \setminus M \). If \(a \) never proposed to \(b \), that means \(a \) is currently matched with someone \(b' \in B \) more preferable \((b <_a b')\). Otherwise, \(a \) proposed to \(b \) at some point. Then \(ab \) was deleted from \(M \) at some point, which could only happen if \(b \) had a better match \(a' \in A \) available. Since \(b \) only trades up, \(b \) is currently matched with someone \(a'' \in A \) more preferable. □

Exercise 6. Stable matchings might not exist in non-bipartite graphs. For example, a triangle where each vertex prefers its right neighbour.

Example 7. Stable matchings are not (necessarily) unique. For example, a 4-cycle where each vertex prefers its neighbour on the right. This also means whether \(A \) or \(B \) propose will lead to different results in the algorithm.