Math 4707 Random Graphs

JED YANG

The aim is to use random graphs to show that graphs with no short cycles can have high chromatic number. These lecture notes roughly follow Diestel's text.

Theorem 1 (Markov's inequality). Let $X \ge 0$ be a random variable on Ω and a > 0. Then

 \mathbb{E}

$$\Pr[X \ge a] \le \mathbb{E}(X)/a.$$

Proof.

$$\begin{split} (X) &= \sum_{t \in \Omega} \Pr(t) \cdot X(t) \\ &\geq \sum_{\substack{t \in \Omega \\ X(t) \geq a}} \Pr(t) \cdot X(t) \\ &\geq \sum_{\substack{t \in \Omega \\ X(t) \geq a}} \Pr(t) \cdot a \\ &\geq \Pr[X \geq a] \cdot a. \end{split}$$

Definition 2. Fix V = [n] and consider all (simple) graphs on vertex set V. For each of the $\binom{n}{2}$ pairs of vertices, decide whether there is an edge in the following manner. Pick $0 \le p \le 1$ and let q = 1 - p. Independently for each pair of vertices, let the edge be present with probability p and absent with probability q. [There is a way to formally construct a probability space that satisfies this requirement.] Call this space $\mathcal{G}(n, p)$.

Example 3. Let $G \in \mathcal{G}(n,p)$ be sampled. Fix a graph H on [n] with m edges. Then $\Pr[H \subseteq G] = p^m$ and $\Pr[H = G] = p^m q^{\binom{n}{2} - m}$.

Lemma 4. Let $X : \mathcal{G}(n,p) \to \mathbb{N}$ be the random variable that counts the number of k-cycles. The expected number of k-cycles in $G \in \mathcal{G}(n,p)$ is

$$\mathbb{E}[X] = \frac{n! p^{\kappa}}{2k(n-k)!}.$$

Proof. Linearity of expectation; necklaces have 2k-fold symmetry.

Definition 5. Let G = (V, E) be a graph. A set $S \subseteq V$ of vertices is **independent** if the vertices in S are pairwise non-adjacent. In other words, the induced graph G[S] is empty and has no edges. The **independence number** of a graph G, denoted $\alpha(G)$, is the maximum size of an independent set.

Lemma 6. For any graph G, we have $|V(G)| \leq \alpha(G)\chi(G)$.

Proof. Each colour class is an independent set.

Lemma 7. Let k > 0 be an integer, and p = p(n) be a function of n such that $p \ge (6k \ln n)/n$ for n large. Sample $G_n \in \mathcal{G}(n,p)$ for each n. Then

$$\lim_{n \to \infty} \Pr\left[\alpha(G_n) \ge \frac{1}{2}n/k\right] = 0$$

Proof. Let $r = \lfloor \frac{1}{2}n/k \rfloor$. By union bound, the probability that G_n has a set of r independent vertices is at most

(m)

,

$$\Pr[\alpha(G_n) \ge r] \le {n \choose r} q^{\binom{r}{2}}$$
$$\le n^r q^{\binom{r}{2}}$$
$$= (nq^{(r-1)/2})^r$$
$$\le (ne^{-p(r-1)/2})^r$$

since $q = 1 - p \le e^{-p}$. Now for large n, we get

$$ne^{-p(r-1)/2} = ne^{-pr/2+p/2} \leq ne^{-\frac{3}{2}\ln n+p/2} \leq n \cdot n^{-3/2}e^{1/2} = \frac{\sqrt{e}}{\sqrt{n}},$$

which tends to 0 as $n \to \infty$, as desired.

Definition 8. The girth of a graph G, denoted g(G), is the length of a shortest cycle. [By convention, write $g(G) = \infty$ if G is acyclic, and say $\infty > k$ for any integer k.]

Theorem 9 (Erdős 1959). For any integer k, there exists a graph H with girth g(H) > k and chromatic number $\chi(H) > k$.

Proof. Assume that $k \ge 3$, fix ε with $0 < \varepsilon < 1/k$, and let $p = n^{\varepsilon - 1}$. Say a cycle is **short** if its length is at most k. Let X(G) be a random variable denoting the number of short cycles in a random graph $G \in \mathcal{G}(n, p)$. By Lemma 4, we get

$$\mathbb{E}[X] = \sum_{i=3}^{k} \frac{n! p^i}{2i(n-i)!} \le \frac{1}{2} \sum_{i=3}^{k} n^i p^i \le \frac{1}{2} (k-2) n^k p^k,$$

where $(np)^i \leq (np)^k$ because $np = n^{\varepsilon} \geq 1$.

By Markov's inequality (Theorem 1), we get

$$\Pr[X \ge n/2] \le \mathbb{E}[X]/(n/2)$$
$$\le (k-2)n^{k-1}p^k$$
$$= (k-2)n^{k-1}n^{(\varepsilon-1)k}$$
$$= (k-2)n^{k\varepsilon-1}.$$

Note that $k\varepsilon - 1 < 0$, so

$$\lim_{n \to \infty} \Pr[X \ge n/2] = 0.$$

Note that for large $n, p = n^{\varepsilon - 1} \ge (6k \ln n)/n$, so Lemma 7 gives

$$\lim_{n \to \infty} \Pr\left[\alpha \ge \frac{1}{2}n/k\right] = 0.$$

Pick n large enough such that $\Pr[X \ge n/2] < \frac{1}{2}$ and $\Pr[\alpha \ge \frac{1}{2}n/k] < \frac{1}{2}$. Then there is some $G \in \mathcal{G}(n,p)$ with fewer than n/2 short cycles and $\alpha(G) < \frac{1}{2}n/k$.

Delete a vertex from each of the short cycles to obtain a subgraph H. Since H has no short cycles, g(H) > k. Since we deleted fewer than n/2 vertices, we get |V(H)| > n/2. Also note that $\alpha(H) \leq \alpha(G)$. By Lemma 6, we get

$$\chi(H) \ge \frac{|V(H)|}{\alpha(H)} > \frac{n/2}{\alpha(G)} > k,$$

as desired.