Applications of the Derivative

1. Related Rates

1.1. Exercise 3.9.44. A wheel of radius \(r \) is centred at the origin. As it rotates, the rod of length \(L \) attached at the point \(P \) drives a piston back and forth in a straight line. Let \(x \) be the distance from the origin to the point \(Q \) at the end of the rod.

(a) Use the Pythagorean Theorem to show that
\[
L^2 = (x - r \cos \theta)^2 + r^2 \sin^2 \theta.
\]

(b) Differentiate part (a) with respect to \(t \) to prove that
\[
2(x - r \cos \theta) \left(\frac{dx}{dt} + r \sin \theta \frac{d\theta}{dt} \right) + 2r^2 \sin \theta \cos \theta \frac{d\theta}{dt} = 0.
\]

(c) Calculate the speed of the piston when \(\theta = \frac{\pi}{2} \), assuming that \(r = 10 \text{ cm} \), \(L = 30 \text{ cm} \), and the wheel rotates at 4 revolutions per minute.

Solution. Parts (a) and (b) are straightforward. 4 revolutions per minute means \(\frac{d\theta}{dt} = 4 \cdot 2\pi \) per minute. From part (a), we get \(30^2 = x^2 + 10^2 \), so \(x = 20\sqrt{2} \). Plugging in, we get
\[
2(20\sqrt{2} - 0) \left(\frac{dx}{dt} + 10 \cdot 8\pi \right) + 0 = 0.
\]
So \(\frac{dx}{dt} = -80\pi \text{ cm per minute}. \)

2. Linear Approximations

2.1. Approximating Change. If \(f \) is differentiable at \(x = a \) and \(\Delta x \) is small, then
\[
\Delta f \approx f'(a) \Delta x
\]
where \(\Delta f = f(a + \Delta x) - f(a) \).

2.2. Linearisation. If \(f \) is differentiable at \(x = a \), and \(x \) is close to \(a \), then
\[
f(x) \approx L(x) = f'(a)(x - a) + f(a).
\]

3. Extrema

3.1.1. Critical Points. A number \(c \) in the domain of \(f \) is called a critical point if either \(f'(c) = 0 \) or \(f'(c) \) does not exist.

3.1.2. Local Extrema. If \(f(c) \) is a local extremum, then \(c \) is a critical point of \(f \).

3.1.3. Extrema on Closed Interval. If \(f(x) \) is continuous on \([a, b] \), and \(f(c) \) be an extremum on \([a, b] \). Then \(c \) is either a critical point or one of the endpoints \(a \) or \(b \).
3.1.4. *Rolle’s Theorem.* Assume that \(f(x) \) is continuous on \([a, b]\) and differentiable on \((a, b)\). If \(f(a) = f(b) \), then there exists a number \(c \) between \(a \) and \(b \) such that \(f'(c) = 0 \).

3.2. **Exercise 4.2.39.** Find the maximum and minimum values of \(y = \sin x \cos x \) on \([0, \frac{\pi}{2}]\).

Solution. Notice \(y' = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 \). If \(y' = 0 \), then \(\cos x = \pm \sqrt{\frac{1}{2}} \). In \([0, \frac{\pi}{2}]\), this occur at \(x = \frac{\pi}{4} \). Now \(f(0) = f(\frac{\pi}{2}) = 0 \), and \(f(\frac{\pi}{4}) = \frac{1}{2} \). So min is 0 and max is \(\frac{1}{2} \).

3.3. **Exercise 4.2.73–74.** Show that \(f(x) = x^2 - 2x + 3 \) takes on only positive values. Find conditions on \(r \) and \(s \) under which the quadratic function \(f(x) = x^2 + rx + s \) takes on only positive values. Show that if \(f \) takes on both positive and negative values, then its minimum value occurs at the midpoint between the two roots.

Solution. For \(f(x) = x^2 - 2x + 3 \), we have \(f'(x) = 2x - 2 \), so \(x = 1 \) is critical point, and \(f(1) = 2 > 0 \). More generally, for \(f(x) = x^2 + rx + s \), we have \(f'(x) = 2x + r \), so \(x = -\frac{r}{2} \) is critical point. Now \(f(-\frac{r}{2}) = s - \frac{r^2}{4} \). So if we want this to be positive, we must have \(s > \frac{r^2}{4} \). If \(f \) takes on both positive and negative values, then the roots are \(x = -\frac{r \pm \sqrt{r^2 - 4s}}{2} \), whose midpoint is \(x = -\frac{r}{2} \), as desired.