1. Derivatives

1.1. Basics. Given a function \(f(x) \). The slope of the tangent line at \(x = c \) is \(f'(c) \).

1.1.1. Power Rule. For all exponents \(n \in \mathbb{R} \), \(\frac{d}{dx} x^n = nx^{n-1} \). Not for \(e^x \), \(x^x \).

1.1.2. Linearity Rules. If \(f \) and \(g \) are differentiable functions, \(c \in \mathbb{R} \), then \(cf \) and \(f + g \) are differentiable. Indeed, \((f + g)' = f' + g' \) and \((cf)' = cf' \).

1.1.3. Product and Quotient Rules. If \(f \) and \(g \) are differentiable, \((fg)' = fg' + gf' \). And \((f/g)' = (f'g - gf')/g^2 \).

1.2. Exercise 3.2.46. Sketch the graphs of \(f(x) = x^2 - 5x + 4 \) and \(g(x) = -2x + 3 \). Find the value of \(x \) at which the graphs have parallel tangent lines.

Solution. We need \(f'(x) = g'(x) \). Notice \(f'(x) = 2x - 5 \) and \(g'(x) = -2 \). So we solve \(2x - 5 = -2 \) to get \(x = \frac{3}{2} \).

1.3. Exercise 3.2.52. Show that if the tangent lines to the graph of \(y = \frac{1}{3}x^3 - x^2 \) at \(x = a \) and \(x = b \) are parallel, then either \(a = b \) or \(a + b = 2 \).

Solution. We want \(y'(a) = y'(b) \). Now \(y' = x^2 - 2x \). So if \(a^2 - 2a = b^2 - 2b \), then \((a^2 - b^2) = 2(a - b) \), giving \((a + b)(a - b) = 2(a - b) \).

1.4. Exercise 3.3.55. Let \(f(x) \) be a polynomial. Then \(c \) is a root of \(f(x) \) if and only if \(f(x) = (x - c)g(x) \) for some polynomial \(g(x) \). We say that \(c \) is a multiple root if \(f(x) = (x - c)^2h(x) \) for some polynomial \(h(x) \).

Show that \(c \) is a multiple root of \(f(x) \) if and only if \(c \) is a root of both \(f(x) \) and \(f'(x) \).

Solution. Suppose \(c \) is a multiple root of \(f(x) \). Then there exists some polynomial \(h(x) \) such that \(f(x) = (x - c)^2h(x) \). Obviously \(c \) is a root of \(f(x) \). Let \(g(x) = (x - c)h(x) \), thus \(f(x) = (x - c)g(x) \). Using the Product Rule, we have \(f'(x) = g(x) + (x - c)g'(x) \). Notice \(f'(c) = g(c) = 0 \), so \(c \) is a root of \(f'(x) \), as desired.

Conversely, suppose \(c \) is a root of both \(f(x) \) and \(f'(x) \). As \(c \) is a root of \(f(x) \), there exists some polynomial \(g(x) \) such that \(f(x) = (x - c)g(x) \). By the Product Rule, we again have \(f'(x) = g(x) + (x - c)g'(x) \) and \(f'(c) = g(c) \). Since \(c \) is a root of \(f'(x) \), we have \(f'(c) = 0 \), hence \(g(c) = 0 \). We conclude that \(g(x) = (x - c)h(x) \) for some polynomial \(h(x) \), hence \(f(x) = (x - c)^2h(x) \), as desired.

1.5. Exercise 3.3.56. Use Exercise 55 to determine whether \(c = -1 \) is a multiple root of the polynomial \(f(x) = x^4 + x^3 - 5x^2 - 3x + 2 \).

Solution. First check \(f(-1) = 0 \), so \(-1\) is a root of \(f \). Now \(f'(x) = 4x^3 + 3x^2 - 10x - 3 \). So \(f'(-1) = 6 \neq 0 \), so \(-1\) is not a multiple root.
1.6. Exercise 3.4.32. It takes a stone 3 s to hit the ground when dropped from the top of a building. How high is the building and what is the stone’s velocity upon impact.

Solution. The position is \(s(t) = s_0 + v_0 t - \frac{1}{2} g t^2 \), where \(s_0 \) is the initial height, \(v_0 \) is the initial velocity, and \(g \approx 9.8 \text{ m/s}^2 \). We have \(v_0 = 0 \), and \(s(3) = 0 \). So we get \(s(3) = s_0 - \frac{1}{2} g (3)^2 = 0 \). So the initial height is \(4.5g \approx 44.1 \text{ m} \).

The velocity is \(v(t) = v_0 - gt \). So \(v(3) = -3g \approx -29.4 \text{ m/s} \).

1.7. Exercise 3.4.33. A ball is tossed up vertically from ground level and returns to earth 4 s later. What was the initial velocity of the stone and how high did it go?

Solution. We have \(s_0 = 0 \), \(s(4) = 0 \), so we can solve for \(v_0 \). Indeed, \(s(4) = 0 + 4v_0 - 8g = 0 \), so \(v_0 = 2g = 19.6 \text{ m/s} \).

The maximum height occurs when the derivative is zero. So \(s'(t) = v(t) = v_0 - gt = 0 \) gives \(t = v_0 / g = 2 \). This confirms what we thought this is the half way point. The height is \(s(2) = 0 + 2v_0 - 2g = 2g = 19.6 \text{ m} \).