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ABSTRACT 
Atmospheric data analysis is an important area of scientific 
endeavor, with both government and industrial applications. Our 
work focuses on clustering particle data acquired via an Aerosol 
Time-of-Flight Mass Spectrometer (ATOFMS), which is sold and 
marketed by TSI, Inc. Most papers and software tools developed 
by the single-particle mass spectrometry community use the 
ART-2a clustering algorithm. We present in this paper a 
comparison of the well-known K-means algorithm with ART-2a 
in this application area. Specifically, we show that despite the 
entrenched position of the ART-2a algorithm in this domain, K-
means is faster, more scalable, and considerably easier for 
practitioners to use while obtaining results of similar accuracy. 
For data mining practitioners in general and for those who 
develop software in particular, our work shows that in an 
important application area K-means is much easier for users to 
use than ART-2a without sacrificing accuracy. For researchers in 
the single-particle mass spectrometry community, our 
experiments demonstrate that ART-2a presents some issues that 
may be of concern. We propose that K-means offers an attractive 
alternative. 

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering 

General Terms 
Algorithms, Measurement, Performance 

Keywords 
K-means, ART-2a, Atmospheric data analysis 

1. INTRODUCTION 
Atmospheric data analysis is an important area of scientific 
endeavor. Examples such as the study of atmospheric pollution 
and the detection of contaminants in the air indicate that there is a 
strong need for systems that can provide accurate and detailed 
information. Our work focuses on the analysis of single-particle 

mass spectrometry (SPMS) data.  We use the Aerosol Time-of-
Flight Mass Spectrometer (ATOFMS), which is sold and 
marketed by TSI, Inc. (Shoreview, MN). These instruments 
analyze the chemical makeup of aerosol particles suspended in 
air, one particle at a time. ATOFMS analysis has been used for a 
wide variety of research, industry and government applications. 
This technology is in active development for detection of airborne 
toxins and disease-related contaminants [5], which makes its 
importance for government applications all the more clear.  
The NSF-funded EDAM project (Exploratory Data Analysis and 
Monitoring) is a joint collaboration between computer scientists, 
chemists, and atmospheric scientists. One of the major goals of 
this project is to provide software tools to atmospheric scientists 
to facilitate and automate the data mining of ATOFMS and other 
related forms of data. In this paper, we focus on the problem of 
clustering the data. A typical SPMS dataset consists of a series of 
mass spectra, each one of which is associated with an aerosol 
particle. The goal is to use these spectra to cluster these particles 
into similar groups. Most papers and software tools developed by 
the SPMS community use the ART-2a clustering algorithm. We 
present in this paper a comparison of the well-known K-means 
algorithm with ART-2a in this application area, and show that K-
means as described in this paper is faster, more scalable, and 
considerably easier for practitioners to use while obtaining results 
of similar accuracy to ART-2a. These results are important for 
two reasons. For data mining practitioners in general and for those 
who develop software in particular, our work shows that in an 
important application area K-means is much easier for users to 
use than ART-2a is without sacrificing accuracy. For researchers 
in the SPMS community, our experiments demonstrate that ART-
2a presents some issues that may be of concern. 
K-means has been used in a variety of atmospheric contexts [4, 
7]. However, the use of K-means on aerosol atmospheric data 
seems to be limited. In fact, any clustering analysis on such data 
is fairly recent. As single-particle chemical analysis has become 
more common, both with home-built and commercial instruments, 
research started focusing more on data analysis and results from 
field campaigns and lab experiments rather than on instrument 
development. In the mid-1990’s, the first publications about 
specific methods for analyzing the data from SPMS instruments 
appeared, and their numbers have increased ever since, from 2 in 
1996 to 10 and 8, respectively, in 2003 and 2004. In recent years, 
20-40% of the publications dealing with SPMS focused on 
specific data analysis methods.  The two methods discussed most 
in the literature are ART-2a [18, 19] and fuzzy-clustering 
algorithms[12, 13], with ART-2a being the method used in about 

 
 



58% of all data analysis publications. These results are shown in 
Figure 1. 
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Figure 1: Distribution of single particle analysis research. 
ART-2a is a common choice. 
Our contributions in this paper are as follows: 

• We show that ART-2a, one of the dominant clustering 
algorithms used for ATOFMS data, is not as well suited to 
the task as the well-known K-means algorithm. K-means 
does not seem to have been used on this kind of data prior to 
this paper. 

• We examine the usability characteristics of K-means when 
compared with ART-2a, and argue that K-means is the more 
user-friendly algorithm for a variety of reasons. Practitioners 
concerned with making clustering "easy to do," regardless of 
application area, should consider K-means over ART-2a. 

• We demonstrate experimentally that on ATOFMS data, K-
means performs faster and more automatically than ART-2a 
with comparable accuracy. 

2. ATOFMS DATA 
An aerosol particle is a particle of solid or liquid material which 
is small enough to be suspended in air. An ATOFMS desorbs and 
ionizes individual particles, sampled directly from the ambient 
atmosphere, into their constituent ions. For each particle the 
positive ions and the negative ions are separately represented by a 
mass spectrum. See Figure 2 for an example. A mass spectrum is 
a plot of signal intensity (often normalized to the largest peak in 
the spectrum) versus the mass-to-charge (m/z) ratio of the ions 
produced by fragmenting the components of the aerosol particle.  
Thus, the presence of a peak indicates the presence of one or more 
ions containing the m/z value indicated within the ion cloud 
generated upon the interaction between the particle and the 
desorption/ionization laser beam. The mass spectra obtained by 
ATOFMS have 30,000 data points in each spectrum, each of 
which corresponds to a different mass-to-charge ratio. The goal is 
to cluster these spectra to determine what common patterns of 
particle chemical compositions appear in the data. 

In order to remove some noise and to render the data more 
tractable, the data is preprocessed and cleaned in a number of 
ways. A peak detection algorithm is used to zero out data which is 
believed to be noise. The horizontal axis for the spectrum is 
calibrated and aggregated to 2000 integer m/z values in order to 
reduce the dimensionality of the data. Since the negative and 
positive spectra both represent data for a single particle, they are 
combined to make a virtual single spectrum for each particle that 
contains 4000 bins. The data for the particle can now more 
conveniently be thought of as a 4000 dimensional vector, each 
component of which corresponds to the quantity of a particular 
m/z value. Each spectrum is then normalized to a magnitude of 1. 
This is to ensure that clustering takes into account the relative 
magnitude of the peaks, and not the absolute. The ATOFMS 
might measure two different particles of different size with 
precisely the same chemical makeup. It is this relative makeup 
that we are typically interested in studying, and thus we normalize 
each particle. It should be noted that our dataset of high-
dimensional normalized vectors now resembles those commonly 
found in other areas of data mining, particularly text data sets [1]. 
In a similar fashion to such text datasets, we measure the distance 
between any two spectra by the square of the Euclidean distance 
between them. We note that since these spectra are normalized to 
have a magnitude of 1, this distance is functionally equivalent for 
clustering purposes to using the cosine of the angle between them 
(which is often easily calculated as the dot product of the two 
vectors.) 
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Figure 2: Calibrated single-particle time-of-flight mass 
spectra, showing positive (top) and negative (bottom) 
ions generated from the interaction of a single laser 
pulse with a single atmospheric aerosol particle.  Major 
peaks are labeled with the ion composition that 
corresponds to the m/z value of the peak. 



3. ART-2A CLUSTERING 
The ART-2a clustering algorithm [3] is a neural-network based 
approach to clustering, and is popular among its users for its 
flexibility. ART-2a appears to be one of the most popular 
clustering algorithms used by the single-particle mass 
spectrometry (SPMS) community for clustering data. Our 
particular implementation of ART-2a is based on descriptions 
provided in ATOFMS papers [19], which we reproduce here. 
ART-2a does not require the user to specify in advance how many 
clusters are desired, which is different from other more well-
known clustering algorithms such as K-means. Instead, the user 
specifies a parameter referred to as the vigilance. The vigilance 
represents the maximum distance that a point can be from its 
cluster center while still remaining a member of that cluster. 
ART-2a also requires the user to specify a learning rate which 
controls the rate at which the algorithm converges to a solution. A 
small learning rate results in slow convergence. A large learning 
rate results in wild swings as the algorithm proceeds. 
The ART-2a algorithm conducts multiple iterations through the 
dataset. Cluster assignments for each point are not retained 
through the course of the algorithm; the only information retained 
is the centroids themselves. The first point in the dataset 
automatically becomes the first cluster centroid. For each 
successive point in the dataset, its distance to all existing 
centroids is determined. If the distance to all existing centroids is 
at least as large as the vigilance parameter, then this point is 
added to the set of centroids. If the distance between this point 
and its closest centroid is less than or equal to the vigilance 
parameter, then the closest centroid is shifted towards this point. 
The distance that the centroid shifts is determined by the learning 
rate: a learning rate of 1 indicates that the centroid becomes the 
new point itself, whereas a learning rate of 0 indicates that the 
centroid does not move at all. This process continues for every 
point in the dataset, and then the process is repeated. The number 
of iterations through the dataset is subject to the control of the 
user (and thus is technically a third parameter). At the end, each 
point is assigned to its closest centroid so long as the distance to 
that centroid is less than or equal to the vigilance value. Any 
points at the end with no centroids within a distance less than or 
equal to the vigilance value are classified as outliers. This is made 
precise in Algorithm 1. ART-2a is quite easy to implement, and 
this is one of its strengths. It has been used quite successfully in a 
number of ATOFMS studies [6, 19, 20]. 
Before addressing our concerns with the ART-2a algorithm, we 
will first present the K-means algorithm so that we can adequately 
compare the two. 

4. K-MEANS CLUSTERING 
K-means is likely the most well-known clustering algorithm [9-
11]. It has been used in a wide variety of applications, and is the 
baseline to which many other clustering algorithms are compared. 
It has also been highly studied, and a wide variety of extensions 
and variations on it are known. 
Both ART-2a and K-means require the user to supply certain 
information in advance. The information that K-means requires, 
however, is considerably easier for the user to handle. We will 
first review our implementation of the K-means algorithm, and 
then we will address the distinctions between it and ART-2a from 
a user's perspective. 

K-means requires the user to specify in advance the number of 
clusters that should be found. This parameter thus serves a similar 
role as the vigilance in ART-2a. While it is true that the user 
typically does not know in advance how many clusters should be 
present in the data, a number of well-known techniques exist for 
determining what an appropriate number of clusters is after trying 
a series of possibilities [8, 14, 21]. 
K-means in its pure sense requires that a set of initial centroids be 
provided to serve as seeds for the algorithm. K-means is a local 
optimization algorithm, and its results are highly dependent on the 
choice of initial centroids. In our implementation, we use the 
refined initial starting points algorithm of Bradley and Fayyad [2]. 
This technique draws a series of samples of points from the 
original dataset and clusters each sample separately. The resulting 
centroids from clustering each of these samples are then clustered 
themselves to result in the starting centroids for clustering on the 
entire dataset. This "centroid clustering" is done repeatedly, one 
time for each sample, where the centroids found for each 
individual sample are used as starting centroids. For each of these 
centroid clustering attempts, a new set of centroids is produced. 
The set of centroids produced from this process that has the least 
error when compared to all other sampled centroids is the one that 
serves as the starting set of centroids for clustering on the entire 
dataset. We choose 50 samples from the dataset to use in 
determining refined centroids. We point out that we leave this 
number of samples fixed within our program, and do not change it 
from dataset to dataset. Within each sample, though, we still need 
to choose starting centroids. We do so via the heuristic technique 
of choosing the first point in the sample as the first centroid, then 
choosing each successive centroid to be the point in the dataset 
whose distance to its closest centroid is greatest. This heuristic is 
computationally slow, but runs quite fast since we use it on small 
samples in these examples. 
Once the initial centroids have been chosen, K-means makes 
repeated passes through the dataset. During each pass, each point 

Algorithm 1: ART-2a 
 
Let S = {centroids} = ∅. 
Let v = vigilance, v > 0. 
Let α = learning rate, 0 ≤ α ≤ 1. 
Let m = number of points. 
Let n = number of iterations. 
Let A[j] = array of points, 1 ≤ j ≤ m. 
Let O = {outliers} = ∅. 
For i = 1 to n 
 For j = 1 to m 
  if S = ∅, then S = S ∪ A[j]. 
  else 
   let s ∈ S such that dist(s,A[j]) ≤ dist(t,A[j]) ∀t ∈ S 
   let s' = s + α  * (A[j]-s) 
   Replace s in S with s'. 
 End 
End 
For j = 1 to m 
 let s ∈ S such that dist(s,A[j]) ≤ dist(t,A[j]) ∀t ∈ S 
 if dist(s,A[j]) > v, then O = O ∪ A[j]. 
End 



is assigned to the cluster whose centroid is closest to that point. At 
the end of each pass, a new centroid for each cluster is found by 
averaging all of the points assigned to it. K-means is typically run 
until the results stabilize, i.e. until two successive iterations 
produce identical cluster assignments. This is made precise below. 

 

5. ART-2A COMPARED WITH K-MEANS 
K-means plus refined starting centroids is considerably easier for 
practitioners to use, though ART-2a is easier to implement. There 
are a number of significant issues with the ART-2a algorithm that 
should be addressed. 
ART-2a, as it has been used, requires the user to specify three 
parameters: vigilance, learning rate, and number of iterations. We 
will examine each of these in turn. 
The vigilance parameter determines "how similar" points must be 
to pre-existing centroids in order to be assigned to a pre-existing 
cluster. If a point is not similar enough to pre-existing centroids, it 
becomes a centroid itself. The difficulty, of course, is that it is not 
clear for a given dataset what a good value for the vigilance 
parameter is. The user must experiment with a variety of vigilance 
values, look at the results, and intuit what the right value should 
be. This is quite difficult and time consuming for the practitioner 
who is not an expert in ART-2a as applied to SPMS datasets. In 
much of the SPMS work, it appears as though practitioners settle 
on a particular vigilance value and stick with it for a particular 
application. In fact, sometimes the authors of one paper [20] will 
start with the vigilance value provided in another paper [19]. We 
will provide evidence in the experimental section of this paper 
that the results from ART-2a are extremely sensitive to the choice 
of vigilance parameter, and that this practice of fixing the 
vigilance parameter may be dangerous. K-means has a similar 
parameter which controls the number of clusters that will be 
formed. However, many techniques exist in the data mining 
literature for estimating after the fact the right number of clusters 
[8, 14, 21]. Such techniques do not seem to be well-known for 
ART-2a in helping to choose vigilance. Moreover, the number of 
clusters is an integer parameter, and thus there are a limited 
number of discrete possibilities which are reasonable. Vigilance, 
on the other hand, is a distance value. This means that it is a 

positive real number, and thus it is unclear how many different 
vigilance parameter values must be tried, or how many significant 
digits are required. 
The learning rate controls how dramatically ART-2a moves its 
centroids. A high learning rate means that the centroids move 
quickly, and are influenced highly by the most recent points. A 
low learning rate means that the centroids are quite inertial, and 
change very slowly over time. A low learning rate will likely 
cause ART-2a to proceed in a reasonably stable but slow manner 
towards a local optimal solution. A high learning rate may cause 
ART-2a to proceed more rapidly towards a solution, but it can 
also swing and exhibit wild behavior. It is not clear how one 
should choose an appropriate learning rate, and the papers that use 
ART-2a in SPMS contexts seem to choose the learning rate either 
arbitrarily or via experimentation. K-means requires no such 
parameter. 
The number of iterations controls how long ART-2a runs in trying 
to stabilize the cluster centroids. This value is typically set via 
experimentation in the ART-2a literature [19]. Specifically, the 
practitioner runs as many iterations as necessary to ensure that the 
cluster centroids do not dramatically change. This therefore 
requires additional labor from the practitioner, and the correct 
number of iterations to run can easily change for different 
datasets, vigilance settings, and learning rates. 
ART-2a is further complicated by the fact that the error metric 
(average of the squares of the distances of all points to their 
nearest centroids) does not converge monotonically, i.e. it is not 
guaranteed to decrease at each iteration. In fact, it is easily seen 
that with a learning rate of 1 the centroids will continue to drift 
from point to point without ever stabilizing. Unlike many other 
clustering algorithms, it is not known at any given point whether 
the error in the next ART-2a iteration will get worse or better. K-
means, on the other hand, is theoretically guaranteed to reduce its 
error metric at each iteration. Therefore, K-means will continue to 
improve at each iteration until the cluster centroids stop moving. 
This frees the practitioner from needing to worry about how many 
iterations to run, or from trying to estimate if the changes from 
iteration to iteration are "small enough" in order to stop. K-means 
has a clear stopping point. 
Finally, ART-2a does not scale well to datasets that are too large 
to fit into core memory. Each iteration of ART-2a requires a full 
scan over the dataset. Modifying ART-2a to scale reasonably is, 
to the best of our knowledge, an open research question. K-means 
differs significantly here as there are a considerable number of 
algorithms that adapt it, or algorithms related to it, to perform 
well on massive data sets [15, 17, 22]. 
K-means is a more user-friendly algorithm than ART-2a for the 
reasons presented above. When ease of use is desired, K-means 
should clearly be preferred over ART-2a. We now demonstrate 
that in addition to being easier to use, K-means is also faster than 
ART-2a and provides results of comparable accuracy. 

6. EXPERIMENTAL RESULTS 
In order to measure the effectiveness of K-means vs. ART-2a on 
ATOFMS data, we run three different sets of experiments. The 
first set of experiments is on a small set of aerosol particles that 
we transformed into a larger set by adding synthetic noise. This 
dataset allows us to cluster it with full knowledge of what the 
results should be. The second and third datasets are real ATOFMS 

Algorithm 2: K-means 
 
Let k = number of clusters, k > 0. 
Let C[i] = initial centroids as described above, 1 ≤ i ≤ k. 
Let m = number of points. 
Let A[j] = array of points, 1 ≤ j ≤ m. 
Let B[j] = cluster assignments for each point, 
  1 ≤ j ≤ m, 1 ≤ B[j] ≤ k. 
While clusters continue to change 
 For j = 1 to m 
  Let B[j] = i ∈ {1,...,k} such that 
   dist(A[j],C[i]) ≤ dist(A[j],C[i']) ∀i' ∈ {1,...,k} 
 End 
 For i = 1 to k 

  Let C[i] = 
[ ]

1
[ ]

number of  where B[ ] B j i
A j

j j i ==
∑  

 End 
End 



data, acquired from an atmospheric and a laboratory source, 
respectively. 

6.1 SYNTHETIC DATASET 
We generated a synthetic dataset by starting with spectra from 
seven actual particles. These particles represent common types of 
particles observed in atmospheric sampling, including three 
particles containing organic carbon-containing compounds, one 
particle containing elemental carbon, two compounds containing 
metal ions, and one particle that contains a mixture.  Two of the 
particles were laboratory generated. The remaining five were 
sampled from ambient air: one particle was sampled from Atlanta, 
GA, two particles were sampled from St. Louis, MO, and the 
remaining two particles were sampled from Mt. Horeb, WI. 
Based on these seven particles, we created 2000 artificial particles 
by adding noise to the spectra of the seven particles. All random 
noise that we generated to add to the spectra was drawn from a 
Gaussian distribution with mean zero and standard deviation σ, 
where σ is a parameter that we chose in advance to represent the 
"magnitude" of the noise. We added noise to each spectrum in 
three different ways to model different particle characteristics: 

• Different particles sampled from the same source can have 
varying quantities of the same chemical substances. 
Therefore, for all peaks that were already present in each 
spectrum, we added to their areas random numbers drawn 
from the above Gaussian distribution. 

• In actual experiments, peaks sometimes arise in completely 
unexpected locations due to measurement noise or other 
effects. We thus choose 20 random locations (drawn 
uniformly) in each spectrum that did not already have peaks. 
At each of these 20 locations, we added Gaussian noise as 
described above.  

• Particles sampled from ambient air may occasionally have 
other substances within them that represent other background 
effects. Particles sampled from the same source could be 
contaminated by such substances. To reflect this, for each 
particle we randomly chose 8 locations from a common set 
of 24 predetermined locations. For each of these 8 locations, 
we added Gaussian noise. 

For all three of the above cases, if the peak area would have 
become negative due to large negative amounts of noise, we set 
the area to zero. 
We wanted to add enough noise to the dataset to make it 
challenging to cluster, but not so much so that the dataset ended 
up being completely dominated by random noise. Therefore, we 
generated a variety of versions of this dataset with different noise 
levels, and clustered it using K-means and ART-2a with some 
fixed parameter values just to get a rough sense of how 
"clusterable" the data was. We then plotted the clustering error 
(average distance of each point to its closest centroid), which is 
shown in Figure 3. The chart shows the error to increase as the 
noise increases, which makes sense: for a fixed number of 
centroids, the distance of each point from its nearest centroid will 
increase as noise is added to the data. Based on this chart, we 
chose two standard deviations from which to generate synthetic 
datasets: 1000 and 4000. The first dataset has only a moderate 
amount of noise, and is used as an example of an easily clustered 

dataset. A standard deviation of 4000 adds considerable noise to 
the dataset, while still retaining some of the pattern within. 

 
Figure 3: Clustering error vs. Gaussian noise standard 

deviation 

We compare the output of ART-2a with K-means by measuring 
error defined as the average of the squares of all distances from 
each point to its closest centroid. For ART-2a this error metric is 
not guaranteed to decrease monotonically. In fact, when it reaches 
"stability" it often bounces back and forth between various similar 
solutions. Rather than specify a number of iterations in advance, 
we automate termination by tracking the minimum error that 
ART-2a manages to achieve (even if that error gets worse in later 
iterations), and halting if after 10 successive iterations it fails to 
find a new minimum error. 
We set the learning rate in ART-2a according to the following 
heuristic:  

 
1 1

expected # points per cluster /m S
α = =  

where m is the number of points, and |S| is the expected number of 
clusters.  In our synthetic dataset, |S| = 7. In general, if the user 
does not have a good intuitive sense of how many clusters to 
expect, an "arbitrary but small" learning rate (such as 0.01) can be 
used to run a dummy pass to get an estimate of |S|. This may not 
be particularly accurate, but might lead to a reasonable estimate 
for the learning rate. This heuristic is an attempt to allow each 
point to contribute to its centroid in roughly the same manner as it 
would in calculating the mean of all points in the centroid.  This 
heuristic gets smaller as the number of expected points per cluster 
gets larger, which makes sense. We acknowledge that in general 
there is no clear way to pick a learning rate a priori, which is one 
of the significant difficulties with ART-2a.  
For all of our ART-2a experiments, we left the learning rate set at 
0.0035, which is the value from this heuristic for 2000 points 
distributed over 7 clusters. We observed that the progress that 
ART-2a made with this learning rate is quite slow, and thus this is 
likely a "conservative" learning rate that would earn us better 
accuracy at the expense of more iterations. We acknowledge that 
it is entirely possible that a different learning rate might give 
better results, though we point out that it took considerably more 
work to generate the ART-2a results than the K-means results due 
to choosing the vigilance parameter as described below. Even if it 
is theoretically possible that a better learning rate would have 
yielded slightly better results, it is difficult to know in advance 
what that learning rate should be. A practitioner using clustering 
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software would not wish to spend massive amounts of time 
experimenting to find the right learning rate. 
The vigilance parameter of ART-2a was the one that we made the 
most effort to set carefully so that we could perform a fair 
comparison with K-means. Note that ART-2a looks at each point 
and assigns it to its closest centroid if the distance to that closest 
centroid is less than or equal to the vigilance parameter. The 
vigilance parameter thus strongly affects the number of clusters: a 
high vigilance parameter results in few clusters, whereas a low 
vigilance parameter results in many clusters. To compare K-
means with ART-2a, then, we used the number of clusters as the 
common factor between them. Setting the number of clusters for 
K-means is trivial, since this is the parameter that K-means 
expects. To set ART-2a to give us a specified number of clusters, 
we conducted a binary search to find a vigilance setting that 
would give us the desired number of clusters. 
We should point out that in comparing the results of our ART-2a 
experiments with those that may be found in other places, it 
should be taken into account that we are using the square of the 
Euclidean distance as our distance metric. Some of the ART-2a 
papers in this context use the cosine distance. For points of unit 
magnitude (which all of ours are), these two metrics result in the 
same clustering results. Specifically, given two vectors x and y of 
unit magnitude, the cosine distance between them is given as 

 
i i

x y x y• = ∑  

and the squared Euclidean distance between two such vectors is 
given as 

 
2 2 2( ) ( 2 )

2 2 2(1 )

i i i i i i

i i

x y x x y y

x y x y

− = − +

= − = − •

∑ ∑
∑

 

To compare a vigilance parameter from a paper that uses cosine 
distance with ours, one should subtract it from 1, then double it. 
The results turn out the same because clustering approaches that 
use cosine measure seek to maximize this cosine value, whereas 
we seek to minimize error. 
Table 1 and Figure 4 show the results of these experiments. The 
number of nonzero decimal places in the vigilance parameter 
indicates how carefully we had to search to find a value that gave 
us the desired number of clusters. In other words, the number of 
digits in the vigilance parameter indicates how sensitive that 
region is to changes in the number of clusters compared with 
changes in vigilance. The results show that ART-2a and K-means 
provide comparable results from an accuracy perspective. From a 
usability perspective, however, the difference is dramatic. Setting 
the vigilance parameter based on heuristics or prior experiments is 
clearly dangerous, as the number of clusters that results can be 
extremely sensitive to the value chosen. In order to appropriately 
determine the right clustering, one should try a series of vigilance 
parameters and compare results. However, the varying sensitivity 
to vigilance makes it difficult to see how one would 
systematically vary the vigilance in a reasonable way except via 
something similar to our approach here. In that case, however, it 
would seem that setting the number of clusters directly (such as is 
done in K-means) is much simpler, faster, and more direct. 
In order to characterize how much time each algorithm takes, we 
report three different kinds of passes. "Data passes" are the 
number of passes that the algorithm makes over the entire dataset, 

and is thus the most important measurement on which to focus. 
This count indicates how many times the algorithm needed to 
scan the entire dataset and compare each point within to all 
known centroids. If we were to run these same algorithms on 
datasets of millions of particles, the amount of time that these data 
passes take would completely dominate all other measurements. 
We show that K-means needs dramatically fewer passes over the 
entire dataset, which is a major advantage. 
The other two measurements for K-means, i.e. "sampling passes" 
and "centroid passes," refer to passes made over much smaller 
datasets during the process of choosing refined starting centroids. 
In using the refined centroid process of Bradley and Fayyad [2], 
we break the dataset up into 50 samples. The number of sampling 
passes refers to the first stage of the refined centroid technique, 
where we cluster small subsets of the data (1/50 the size of the 
original). The number of centroid passes refers to the second stage 
of choosing refined centroids, where we cluster all of the 
centroids that result from the first pass. We do this clustering 50 
times, each time using for the starting points the centroids that 
were found at each first pass iteration. Thus, the passes counted 
here are not for subsets of the dataset at all, but instead for a small 
dataset consisting of potential centroids. If we were to scale our 
technique to work on a much larger dataset that did not fit in core 
memory, we could still sample the dataset such that the refined 
centroids algorithm could be done in memory. We thus re-
emphasize that it is the "data passes" measurement that truly 
indicates which algorithm would perform better on a large scale. 
Furthermore, it should be taken into account that there were many 
further ART-2a runs which were necessary that are not shown 
here. In order to obtain a particular number of clusters, we had to 
try a number of different vigilance values. These extra runs are 
quite time consuming, and add to the time it takes to run ART-2a 
if one is searching for optimal clustering. 
σ = 1000

# average # sampling # centroid # data average vigilance # data #
clusters error passes passes passes error passes outliers

1 0.6818 150 150 4 0.6822 1.60 18 0
2 0.6171 223 233 4 0.4531 1.58 15 0
3 0.3913 200 196 4 0.3915 1.50 32 0
4 0.3397 195 230 4 0.3399 1.40 41 0
5 0.2751 198 176 4 0.2752 1.38 40 0
6 0.2612 177 316 6 0.2613 1.20 48 0
7 0.2424 168 440 6 0.2425 1.00 49 0
8 0.2373 163 506 13 0.2379 0.95 84 0
9 0.2336 156 590 14 0.2341 0.93 107 0
10 0.2311 153 545 14 0.2305 0.91 75 0
11 0.2284 151 627 16 0.2289 0.90 112 0
12 0.2250 151 721 20 *
13 0.2227 150 772 12 0.2224 0.76 122 1

* A vigilance value with fewer than 5 decimal places could not be found.

σ = 4000
# average # sampling # centroid # data average vigilance # data #

clusters error passes passes passes error passes outliers
1 0.5040 150 150 4 0.5044 1.200 14 0
2 0.4437 269 259 6 0.4440 1.150 23 0
3 0.4262 269 309 6 0.4265 1.100 31 0
4 0.4153 259 403 23 0.4135 0.950 49 0
5 0.4060 232 457 19 0.4052 0.930 88 0
6 0.3974 225 560 20 0.3994 0.920 75 0
7 0.3917 205 644 27 0.3937 0.910 65 0
8 0.3863 195 665 14 0.3887 0.900 93 0
9 0.3821 192 778 14 0.3824 0.890 97 0
10 0.3776 182 856 23 0.3784 0.870 93 0
11 0.3748 173 818 19 0.3773 0.850 99 0
12 0.3714 168 872 22 0.3715 0.843 109 0
13 0.3686 161 906 27 0.3677 0.840 99 0

ART-2aK-means

ART-2aK-means

 



Table 1: K-means vs. Art-2a results for synthetic data. 
Average error is nearly identical for both techniques, and 
number of data passes for K-means is significantly fewer. 

 
Figure 4: Synthetic data with Gaussian noise. The left plots 
show that the error for K-means and ART-2a are nearly 
identical. The right plots show that the results from ART-2a 
can be highly sensitive to small changes in vigilance. 
In order to provide another look at the comparative accuracy of 
these two algorithms, we consider the homogeneity of the clusters. 
Since the "true" clusters of each particle in these synthetic 
datasets are known, we can measure how homogeneous each 
cluster is with respect to the original seven true particles.  To do 
this, we look at which particles are assigned to each cluster 
centroid, at differing total numbers of clusters.  At low noise 
levels (1000), the results from ART-2a and K-means are almost 
identical up to the highest number of clusters we investigated.  
For 9 clusters, only 4.6 % of the particles are assigned differently, 
and all but three clusters contain only one particle type; those that 
are mixed have at most 2 of 72 (2.7 %) cross assignments.  There 
are two clusters assigned by ART-2a which contain this mixing, 
while there is only one assigned by K-means.  As expected, at the 
higher noise level (4000), the results show considerably more 
variability.  Figure 5 illustrates this graphically, showing the 
assignments of each of the seven particle types to each of the 9 
clusters, using both algorithms.  In these results, we can see that 
K-means and ART-2a are in remarkably good agreement in their 
assignments, even with noisy data forced into more clusters than 
inherently exist in the data.  With such a high level of noise, 
neither algorithm could correctly cluster the data completely. 
Nonetheless, certain particle types (eg. OC-2, Inorganic-2, and 
Mixture) stay separate from the other particle types even under 
these conditions. 
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Figure 5: Cluster populations for clusters 1 through 9 when 
comparing ART-2a (gray bars) with K-means (white bars) for 
9 clusters with noise level of 4000. The x-axis labels indicate 
the particle types.  The middle cluster has 700 particles and 
has been divided by 10 to fit the same scale. 

6.2 ACTUAL DATASET 
In order to compare the differences in these two clustering 
algorithms on a real dataset, we used a dataset consisting of 2966 
particles obtained in St. Louis, Missouri at the EPA SuperSite 
location.  The data was collected during February 2004, using a 
TSI Model 3800 ATOFMS instrument. We will focus here on the 
results obtained when the data is sorted into 12 clusters. We chose 
12 by looking at the clustering error vs. number of clusters (see 
Figure 7), and looking for the "knee" of the curve, i.e. the point at 
which adding further clusters produces marginal improvements in 
clustering error. (We acknowledge that there are significantly 
better quantitative methods for making this decision [8, 14, 21] 
that we hope to integrate in future work.) The cluster centroids 
that result from these two algorithms are again remarkably 
similar. This is illustrated by the results shown in Figure 6, which 
shows two of the 12 cluster centroids, graphed as overlaid 
centroid mass spectra, from each algorithm. The similarity is 
striking, with both centroids having peaks of very similar peak 
area at the same m/z values. 
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Figure 6: Cluster centers, in the form of peak area versus m/z 
for two of the 12 clusters obtained from the St. Louis data.  
ART-2a results are shown as thick gray bars, and K-means 
results are shown as thin black bars.  The positive and 
negative ions together comprise the cluster center.  

To obtain a more quantitative measurement of the similarity 
between the cluster centers obtained with ART-2a and K-means, 
we measure the distance between the two cluster centers, by 
calculating the sum of the squares of the difference between the 
peak areas of the cluster centers at each m/z value.  The average 
value is 3.1x10-2 ± 4.4x10-2, indicating a large spread but very 
small magnitude in the errors.  These errors are all significantly 
smaller than the clustering error. 
The most important aspect of these results, from the data analysis 
perspective, is that they make chemical sense. The experienced 
ATOFMS user can look at the cluster-centers and recognize the 
particle types represented. 
We carried out similar experiments on another real data set, 
comprising 1812 particles sampled from a laboratory-based diesel 
engine [16]. This time, we focused on 8 clusters (chosen via the 
same heuristic mechanism as above). We obtained similar results 
for this analysis, with the difference between K-means and ART-
2a characterized by a similar average error as we found for the St. 
Louis dataset (2.6x10-2 ± 4.5x10-2), showing that both algorithms 
perform similarly, and very well. As with the data from St. Louis, 
the cluster centers compare well with known particle types 
observed in the data. 
Finally, Figure 7 and Table 2 show detailed results from these 
experiments. We see in Figure 7 very similar results to those seen 
in the synthetic datasets. One difference here is that ART-2a 
produces a number of outliers. Recall that when ART-2a has 
finished, any points where the square of the distance to the closest 
centroid is greater than the vigilance parameter are declared to be 
outliers. Since ART-2a does not consider these points to be part 
of any cluster at all, it is not customary to report any error for 
these points. However, this is in some sense unfair when 
comparing to K-means, since K-means assigns all points to their 
nearest centroid regardless of how far they are located from the 
centroid. ART-2a could conceivably classify all points as outliers 
and report zero error. We thus report three error metrics here for 
ART-2a. The first, "average error," is the average distance of each 
point from its closest centroid with the outliers ignored. The 
second metric, "best case," assumes optimistically that each 

outlier is just outside the range of its closest centroid. Therefore, 
the "best case" estimate is obtained by adding an error equal to 
the vigilance for each outlier. Finally, the "worst case" assumes 
pessimistically that each outlier is as far away as possible from its 
nearest centroid; hence an error of 2 is added for each outlier 
before averaging. (2 is an upper bound for the squared Euclidean 
distance between two positive normalized vectors). We see that as 
in the case for a synthetic set of particles, K-means has 
comparable error with ART-2a with many fewer data passes. 

 
Figure 7: St. Louis and Diesel Engine data. We again see that 
K-means has similar error to ART-2a, and that ART-2a 
exhibits hypersensitivity to the vigilance parameter. 
St. Louis

# average # sampling # centroid # data average vigilance # data #
clusters error passes passes passes error passes outliers best case worst case

1 0.4148 150 150 4 0.4207 2.000 14 0 0.4207 0.4207
2 0.3227 198 230 7 0.3223 1.999 35 1 0.3229 0.3229
3 0.3069 222 300 6 0.3095 1.995 111 1 0.3101 0.3101
4 0.2734 221 405 9 0.2943 1.960 105 4 0.2965 0.2966
5 0.2614 256 475 8 0.2501 1.940 107 5 0.2529 0.2530
6 0.2413 243 422 16 0.2370 1.900 121 7 0.2409 0.2411
7 0.2347 274 496 14 0.2076 1.600 127 30 0.2217 0.2258
8 0.2051 278 527 22 0.1915 1.550 79 31 0.2057 0.2104
9 0.1993 286 592 25 0.1738 1.500 113 28 0.1863 0.1910

10 0.1970 309 584 21 0.1684 1.400 35 31 0.1812 0.1875
11 0.1795 308 658 14 0.1575 1.200 99 44 0.1729 0.1848
12 0.1682 298 747 24 0.1419 1.050 116 52 0.1578 0.1745
13 0.1754 291 683 16 0.1417 1.000 137 57 0.1582 0.1775

Diesel
# average # sampling # centroid # data average vigilance # data #

clusters error passes passes passes error passes outliers best case worst case
1 0.7843 150 150 4 0.7864 2.000 15 0 0.7864 0.7864
2 0.5961 223 256 16 0.5971 1.980 27 0 0.5971 0.5971
3 0.4906 220 418 26 0.4914 1.950 68 0 0.4914 0.4914
4 0.4214 223 392 21 0.4211 1.900 85 0 0.4211 0.4211
5 0.3970 215 487 33 0.3974 1.880 244 0 0.3974 0.3974
6 0.3532 214 445 29 0.3901 1.800 126 1 0.3909 0.3910
7 0.3426 201 555 28 0.3761 1.700 160 5 0.3798 0.3806
8 0.3084 202 590 34 0.2998 1.630 140 8 0.3057 0.3073
9 0.2965 208 583 12 0.2890 1.600 190 9 0.2955 0.2975

10 0.2908 210 711 9 0.2825 1.500 118 11 0.2899 0.2929
11 0.2740 203 734 13 0.2591 1.410 206 25 0.2750 0.2831
12 0.2676 195 812 14 0.2653 1.400 43 20 0.2778 0.2844
13 0.2498 198 789 13 0.2278 1.220 107 28 0.2431 0.2552

error with outliers
ART-2a

ART-2a
error with outliers

K-means

K-means

 
Table 2: K-means vs. Art-2a results for St. Louis and diesel 
engine data. Average error is nearly identical for both 
techniques, and number of data passes for K-means is 
significantly lower. Since outliers do not contribute to ART-2a 
error, "best case" and "worst case" provide more accurate 
comparisons to K-means results. 
Both of these real data sets are in fact small subsets of the data 
acquired in each experiment.  We anticipate we will learn about 
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new particle types by running the clustering algorithms on the 
entire data sets. 

7. CONCLUSIONS AND FUTURE WORK 
Despite its common use for SPMS data analysis, the ART-2a 
algorithm is quite difficult and time consuming for the 
practitioner to use. It requires the use of a number of parameters 
that the user does not have clear guidelines on how to set, and it is 
difficult to determine when the algorithm has terminated. K-
means, on the other hand, is considerably easier for users to 
manage while providing accuracies comparable with ART-2a. 
We are in the process of developing an open-source software 
environment for atmospheric data analysis, and we thus intend to 
make K-means one of the primary clustering tools available 
within. We will be providing an ART-2a implementation as well 
so that users can make comparisons. Now that we have 
established that K-means is a stronger algorithm than ART-2a for 
this purpose, we will begin integrating scalable clustering 
algorithms into our system so that we can cluster massive 
datasets. We also plan to look at outlier-resistant algorithms such 
as K-medians to see if we can further improve clustering quality. 
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