
Support Vector Machines: Overview
Supervised Machine Learning Problem:

Discriminate class A+ from class A-

Given m points in the n dimensional space Rn

Represented by an m x n matrix A
Membership of each point Ai in the classes +1 or -1 is
specified by:

An m x m diagonal matrix D with along its diagonal
Separate by two bounding planes: such that:

More succinctly:

where e is a vector of ones.

Maximize Margin Between Separating Planes

The (Linear) Support Vector Machine Formulation
Solve the following quadratic program:

where y = nonnegative error (slack) vector.

ν is a parameter which indicates how much emphasis is to
be given on reducing misclassification error, in contrast
with maximizing the margin. It is typically chosen via
cross-validation.

w

x 0w = í + 1

x 0w = í à 1

x 0w = íSeparating Surface:

A+

A-

æ 1
x0w = í æ 1

Aiw õ í + 1; for Dii = + 1
Aiw ô í à 1; for Dii = à 1

D(Aw à eí) õ e

w
x 0w = í + 1

x 0w = í à 1

A+

A-

jjwjj2
2

Margin

min
w;í;y

÷e0y+ jjwjj22
s:t: D(Awà eí) + y õ e

y õ 0

Active Support Vector Machine (ASVM)
• Fast algorithm which utilizes an active set method for

solving the quadratic program
• Requires no specialized solvers or software tools, apart

from a freely available equation solver
• Inverts a matrix of the order of the number of features
• Guaranteed to converge in a finite number of iterations

Changes to SVM Formulation
• Allow soft margin error (y) to contribute in a quadratic

fashion, instead of linear.
• Maximize the margin between the separating

hyperplanes with respect to orientation (w) as well as
location relative to the origin (γ).

The Wolfe Dual Problem
• The Wolfe dual is an equivalent quadratic program with

nonnegativity constraints only that is easier to solve.

• I = identity matrix

• Non-negativity constraints only, which leads to active set
algorithm

• u = dual variable

s:t: D(Awà eí) + y õ e

min
w;í;y

2
1 ÷ y0y+

2
1(w0w+ í2)

soft margin error margin orientation margin location

min
0ôu2Rm

2
1u0(

÷
I+D(AA0+ ee0)D)uà e0u

(w=A0Du; y= u=÷; í=à e0Du)

Active Set Algorithm: Idea
• Partition dual variables into:

nonbasic variables:
basic variables:

• Algorithm is an iterative procedure.
• Choose a working set of variables corresponding to

active constraints to be nonbasic
• Calculate the global minimum on basic variables
• Appropriately update working set

• Goal is to find appropriate working set.
• When found, global minimum on basic variables is

solution to problem

Setting It Up
• Make substitutions to simplify formulation:

• Dual problem then becomes:

• When computing Q-1, we use
• Sherman-Morrison-Woodbury identity:

• Only need to invert a much smaller matrix of size
(n + 1) x (n + 1)

ui > 0
ui = 0

H = D[A à e]; Q =
÷
I +HH0

min
0ôu2Rm

2
1u0Quà e0u

Active Set Algorithm: Essentials
• Initialize u to the global minimum, then enforce

nonnegativity constraint.

• While basic set is smaller than previous iteration:
• Define basic and nonbasic sets:

• Find minimum on basic set:

• Repeat.

• Summary:
• The ASVM basic approach finds the minimum on a set

of basic variables, then projects onto the feasible
region.

• This differs from other active set methods, which
“backtrack” onto the feasible region.

u = (Qà1e)+min
0ôu2Rm

2
1u0Quà e0u

Set gradient = 0

B = fjjuj > 0g; N = fjjuj = 0g

uB = (Qà1
BBeB)+; uN = 0

Basic ASVM Step

Feasible Region

Initial point

Minimum

Projection

Standard Active Set Approach

Feasible Region

Initial point

Minimum

Projection

Experiments
• Compared ASVM with standard formulation (SVM-QP),

run under both CPLEX 6.5 and SVMlight 3.10b

• measured generalization accuracy and running time

• Tuning set w/ tenfold cross-validation used to find
appropriate values of ν

• Massive Gaussian data generated by NDC generator

• All experiments run on Locop2

• 400 MHz Pentium II Xeon, 2 Gigabytes available
memory

• Windows NT Server 4.0, Visual C++ 6.0

Dataset Training Testing Time
m x n Algorithm Correctness Correctness (CPU sec)
Liver Disorders CPLEX 70.76% 68.41% 7.87

SVMlight 70.37% 68.12% 0.26
345 x 6 ASVM 70.40% 67.25% 0.03
Cleveland Heart CPLEX 87.50% 84.20% 4.17

SVMlight 87.50% 84.20% 0.17
297 x 13 ASVM 87.24% 85.56% 0.05
Pima Diabetes CPLEX 77.36% 76.95% 128.90

SVMlight 77.36% 76.95% 0.19
768 x 8 ASVM 78.04% 78.12% 0.08

Dataset Training Testing Time
m x n Algorithm Correctness Correctness (CPU sec)
Ionosphere CPLEX 92.81% 88.60% 9.84

SVMlight 92.81% 88.60% 0.23
351 x 34 ASVM 93.29% 87.75% 0.26
Tic Tac Toe CPLEX 65.34% 65.34% 206.52

SVMlight 65.34% 65.34% 0.23
958 x 9 ASVM 70.27% 69.72% 0.05
Votes CPLEX 96.02% 95.85% 27.26

SVMlight 96.02% 95.85% 0.06
435 x 16 ASVM 96.73% 96.07% 0.09

of # of Training Testing Time
Points features Iterations Correctness Correctness (CPU min)

4 million 32 5 86.09% 86.06% 38.04
7 million 32 5 86.10% 86.28% 95.57Experiments on UCI datasets: ASVM is fast!

ASVM runs quickly on massive datasets

Notes:
• Data was in core for these experiments. The algorithm

can easily be extended for larger datasets.

• Convergence is guaranteed in a finite number of
iterations.

• Nonlinear kernels are possible, but slower – the
Sherman-Morrison-Woodbury identity cannot be used.

• ASVM is available on the web for download at
http://www.cs.wisc.edu/dmi/asvm

Qà1 = (
÷
I +HH0)à1 = ÷(IàH(

÷
I +H0H)à1H0)

x 0w = í à 1

