

Active Support Vector Machine (ASVM) Fast algorithm which utilizes an active set method for solving the quadratic program Requires no specialized solvers or software tools, apart from a freely available equation solver Inverts a matrix of the order of the number of features • Guaranteed to converge in a finite number of iterations Changes to SVM Formulation

- Allow soft margin error (y) to contribute in a quadratic fashion, instead of *linear*.
- Maximize the margin between the separating
- hyperplanes with respect to orientation (w) as well as location relative to the origin (γ).

for margin orientation margin location

$$\min_{x,\gamma,y} \frac{1}{2} \nu y'y + \frac{1}{2}(w'w + \gamma^2)$$
i.t. $D(Aw - e\gamma) + y \ge e$

The Wolfe Dual Problem

 The Wolfe dual is an equivalent quadratic program with nonnegativity constraints only that is easier to solve.

$$\frac{1}{2}u'(\frac{I}{\nu}+D(AA'+ee')D)u-e'u$$

$$A'Du, y = u/\nu, \gamma = -e'Du$$

Non-negativity constraints only, which leads to active set

- Compared ASVM with standard formulation (SVM-QP), run under both CPLEX 6.5 and SVM^{light} 3.10b
- measured generalization accuracy and running time
- Tuning set w/ tenfold cross-validation used to find
- Massive Gaussian data generated by NDC generator
- All experiments run on Locop2
 - 400 MHz Pentium II Xeon, 2 Gigabytes available
- Windows NT Server 4.0, Visual C++ 6.0

Active Set Algorithm: Idea

- Partition dual variables into:
- nonbasic variables: $u_i = 0$
- basic variables: $u_i > 0$
- Algorithm is an iterative procedure.
- Choose a working set of variables corresponding to active constraints to be nonbasic
- Calculate the global minimum on basic variables
- Appropriately update working set
- Goal is to find appropriate working set. • When found, global minimum on basic variables is solution to problem

Setting It Up

Make substitutions to simplify formulation:

$$H = D[A - e], \quad Q = \frac{I}{\nu}$$

• Dual problem then becomes:

 $\min \ \frac{1}{2}u'Qu - e'u$

• When computing Q⁻¹, we use Sherman-Morrison-Woodbury identity:

$$Q^{-1} = (\frac{I}{\nu} + HH')^{-1} = \nu(I - H)$$

 Only need to invert a much smaller matrix of size $(n + 1) \times (n + 1)$

Experiments on UCI datasets: ASVM is fast!

Dataset		Training	Testing	Time
m x n	Algorithm	Correctness	Correctness	(CPU sec)
Liver Disorders	CPLEX	70.76%	68.41%	7.87
	SVMlight	70.37%	68.12%	0.26
345 x 6	ASVM	70.40%	67.25%	0.03
Cleveland Heart	CPLEX	87.50%	84.20%	4.17
	SVMlight	87.50%	84.20%	0.17
297 x 13	ASVM	87.24%	85.56%	0.05
Pima Diabetes	CPLEX	77.36%	76.95%	128.90
	SVMlight	77.36%	76.95%	0.19
768 x 8	ASVM	78.04%	78.12%	0.08

Dataset		Training	Testing	Time
m x n	Algorithm	Correctness	Correctness	(CPU sec)
lonosphere	CPLEX	92.81%	88.60%	9.84
	SVM <i>light</i>	92.81%	88.60%	0.23
351 x 34	ASVM	93.29%	87.75%	0.26
Tic Tac Toe	CPLEX	65.34%	65.34%	206.52
	SVM <i>light</i>	65.34%	65.34%	0.23
958 x 9	ASVM	70.27%	69.72%	0.05
Votes	CPLEX	96.02%	95.85%	27.26
	SVM <i>light</i>	96.02%	95.85%	0.06
435 x 16	ASVM	96.73%	96.07%	0.09

ASVM runs quickly on massive datasets

# of	# of		Training	Testing	Time
Points	features	Iterations	Correctness	Correctness	(CPU min)
million	32	5	86.09%	86.06%	38.04
million	32	5	86.10%	86.28%	95.57

Notes:

 Data was in core for these experiments. The algorithm can easily be extended for larger datasets.

- Convergence is guaranteed in a *finite* number of iterations.
- Nonlinear kernels are possible, but slower the Sherman-Morrison-Woodbury identity cannot be used.
- ASVM is available on the web for download at http://www.cs.wisc.edu/dmi/asvm