Informed Search Methods

- How can we improve searching strategy by using intelligence?
- Map example:
 - Heuristic: Expand those nodes closest in “as the crow flies” distance to goal
- 8-puzzle:
 - Heuristic: Expand those nodes with the most tiles in place
- Intelligence lies in choice of heuristic
Best-First Search

- Create evaluation function $f(n)$ which returns estimated "value" of expanding node

- Example: Greedy best-first search
 - "Greedy": estimate cost of cheapest path from node n to goal
 - $h(n) = "as the crow flies distance"
 - $f(n) = h(n)$
Romania with step costs in km

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobresta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rmnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy Best-First Search
Greedy Best-First Search

- Expand the node with smallest h
- Why is it called greedy?
 - Expands node that appears closest to goal
- Similar to depth-first search
 - Follows single path all the way to goal, backs up when dead end
- Worst case time:
 - $O(b^m)$, $m = \text{depth of search space}$
- Worst case memory:
 - $O(b^m)$, needs to store all nodes in memory to see which one to expand next
Greedy Best-First Search

- Complete and/or optimal?
 - No – same problems as depth first search
 - Can get lost down an incorrect path
- How can you (help) to prevent it from getting lost?
 - Look at shortest total path, not just path to goal
A* search (another Best-First Search)

- Greedy best-first search minimizes
 - $h(n) = \text{estimated cost to goal}$
- Uniform cost search minimizes
 - $g(n) = \text{cost to node } n$
 - Example of each on map
- A* search minimizes
 - $f(n) = g(n) + h(n)$
 - $f(n) = \text{best estimate of cost for complete solution through } n$
A* search

- Under certain conditions:
 - Complete
 - Terminates to produce best solution

- Conditions
 - (assuming we don’t throw away duplicates)
 - $h(n)$ must never overestimate cost to goal
 - admissible heuristic
 - “optimistic”
 - “Crow flies” heuristic is admissible
A* Search

A

Z

S

T

A

O

F

R

C

P

S

\(f(n) = 366 \)

\(f(n) = 449 \)

\(f(n) = 393 \)

\(f(n) = 447 \)

\(f(n) = 646 \)

\(f(n) = 526 \)

\(f(n) = 417 \)

\(f(n) = 413 \)

\(f(n) = 526 \)

\(f(n) = 526 \)

\(f(n) = 415 \)

\(f(n) = 553 \)
A* Search

A

S

Z

A

O

F

R

S

B

f(n) = 366

f(n) = 449

f(n) = 393

f(n) = 447

f(n) = 646

f(n) = 526

f(n) = 417

f(n) = 413

f(n) = 591

f(n) = 450
A* terminates with optimal solution

- Stop A* when you try to expand a goal state.
 - This is the best solution you can find.
- How do we know that we’re done when the next state to expand is a goal?
 - A* always expands node with smallest f
 - At a goal state, f is exact.
 - Since heuristic is admissible, f is an underestimate at any non-goal state.
 - If there is a better goal state available, with a smaller f, there must be a node on the graph with smaller f than that – so you would be expanding that instead!
More about A*

- **Completeness**
 - A* expands nodes in order of increasing \(f \)
 - Must find goal state unless
 - infinitely many nodes with \(f(n) < f^* \)
 - infinite branching factor OR
 - finite path cost with infinite nodes on it

- **Complexity**
 - Time: Depends on \(h \), can be exponential
 - Memory: \(O(b^m) \), stores all nodes
Valuing heuristics

Example: 8-puzzle

- $h_1 =$ number of tiles in wrong position
- $h_2 =$ sum of distances of tiles from goal position (1-norm, also known as Manhattan distance)

Which heuristic is better for A*?
Which heuristic is better?

- h2(n) >= h1(n) for any n
 - h2 dominates h1
- A* will generally expand fewer nodes with h2 than with h1
 - All nodes with f(n) < C* (cost to best solution) are expanded.
 - Since h2 >= h1, any node that A* expands with h2 would also be expanded with h1
 - But A* may be able to avoid expanding some nodes with h2 (larger than C*)
 - (Exception where you might expand a state with h2 but not with h1: if f(n) = C*).
- Better to use larger heuristic (if not overestimate)
Inventing heuristics

- h_1 and h_2 are exact path lengths for simpler problems
 - h_1 = path length if you could transport each tile to right position
 - h_2 = path length if you could just move each tile to right position, irrelevant of blank space

- **Relaxed problem**: less restrictive problem than original

- Can generate heuristics as exact cost estimates to relaxed problems
Memory Bounded Search

- Can A* be improved to use less memory?
- Iterative deepening A* search (IDA*)
 - Each iteration is a depth-first search, just like regular iterative deepening
 - Each iteration is not an A* iteration: otherwise, still $O(b^m)$ memory
 - Use limit on cost (f), instead of depth limit as in regular iterative deepening
IDA* Search

\[f(n) = 366 \]

\[f(n) = 449 \]

\[f(n) = 393 \]

\[f(n) = 447 \]

f-Cost limit = 366
IDA* Analysis

- **Time complexity**
 - If cost value for each node is distinct, only adds one state per iteration
 - BAD!
 - Can improve by increasing cost limit by a fixed amount each time
 - If only a few choices (like 8-puzzle) for cost, works really well

- **Memory complexity**
 - Approximately O(bd) (like depth-first)

- Completeness and optimality same as A*
Simplified Memory-Bounded A* (SMA*)

- Uses all available memory
- Basic idea:
 - Do A* until you run out of memory
 - Throw away node with highest f cost
 - Store f-cost in ancestor node
 - Expand node again if all other nodes in memory are worse
SMA* Example: Memory of size 3

A f = 12
SMA* Example: Memory of size 3

Expand to the left
SMA* Example: Memory of size 3

Expand node A, since f smaller
SMA* Example: Memory of size 3

Expand node C, since f smaller
SMA* Example: Memory of size 3

Node D not a solution, no more memory: so expand C again
SMA* Example: Memory of size 3

A \(f = 12 \)

B \(f = 15 \)
C \(f = 13 \)
Forgotten \(f = 24 \) (right)

Re-expand A; record new f for C
SMA* Example: Memory of size 3

Expand left B: not a solution, so useless

A \hspace{1cm} f = 12

B \hspace{1cm} f = 15

F \hspace{1cm} f = 25

forgotten = 24
SMA* Example: Memory of size 3

Expand right B: find solution

- A: \(f = 12 \)
 - Forgotten: \(f = 24 \)

- B: \(f = 15 \)
 - Forgotten: \(f = \text{inf} \)

- G: \(f = 20 \)
SMA* Properties

- Complete if can store at least one solution path in memory
- Finds best solution (and recognizes it) if path can be stored in memory
 - Otherwise, finds best that can fit in memory