Intelligent Agents

- Agent: anything that can be viewed as...
 - perceiving its environment through sensors
 - acting upon its environment through actuators

- Examples:
 - Human
 - Web search agent
 - Chess player

- What are sensors and actuators for each of these?
Rational Agents

- Conceptually: one that does the right thing
- Criteria: Performance measure
- Performance measures for
 - Web search engine?
 - Tic-tac-toe player? Chess player?
- When performance is measured plays a role
 - short vs. long term
Rational Agents

- Omniscient agent
 - Knows actual outcome of its actions
 - What info would chess player need to be omniscient?

- Omniscience is (generally) impossible
 - Rational agent should do right thing based on knowledge it has
Rational Agents

- What is rational depends on four things:
 - Performance measure
 - Percept sequence: everything agent has seen so far
 - Knowledge agent has about environment
 - Actions agent is capable of performing

- Rational Agent definition:
 - Does whatever action is expected to maximize its performance measure, based on percept sequence and built-in knowledge
Autonomy

“Independence”

A system is autonomous if its behavior is determined by its percepts
- An alarm that goes off at a prespecified time is not autonomous
- An alarm that goes off when smoke is sensed is autonomous

A system without autonomy lacks flexibility
The Task Environment

- An agent’s rationality depends on
 - Performance Measure
 - Environment
 - Actuators
 - Sensors

What are each of these for:
- Chess Player?
- Web Search Tool?
- Matchmaker?
- Musical performer?
Environments: Fully Observable vs. Partially Observable

- Fully observable: agent’s sensors detect all aspects of environment relevant to deciding action
- Examples?
- Which is more desirable?
Environments: Deterministic vs. Stochastic

- Deterministic: next state of environment is completely determined by current state and agent actions
- Stochastic: uncertainty as to next state
- If environment is partially observable but deterministic, may appear stochastic
- If environment is deterministic except for actions of other agents, called strategic
- Agent’s point of view is the important one
- Examples?
- Which is more desirable?
Environments: Episodic vs. Sequential

- Episodic: Experience is divided into “episodes” of agent perceiving then acting. Action taken in one episode does not affect next one at all.

- Sequential typically means need to do lookahead

- Examples?

- Which is more desirable?
Environments: Static vs. Dynamic

- Dynamic: Environment can change while agent is thinking
- Static: Environment does not change while agent thinks
- Semidynamic: Environment does not change with time, but performance score does
- Examples?
- Which is more desirable?
Environments: Discrete vs. Continuous

- Discrete: Percepts and actions are distinct, clearly defined, and often limited in number
- Examples?
- Which is more desirable?
Environments: Single agent vs. multiagent

- What is distinction between environment and another agent?
 - for something to be another agent, maximize a performance measure depending on your behavior

- Examples?
Structure of Intelligent Agents

- What does an agent program look like?
- Some extra Lisp: Persistence of state (static variables)
- Allows a function to keep track of a variable over repeated calls.
 - Put functions inside a let block
 - `(let ((sum 0))
 (defun myfun (x)
 (setf sum (+ sum x)))
 (defun report ()
 sum)
)
Generic Lisp Code for an Agent

(let ((memory nil))
 (defun skeleton-agent (percept)
 (setf memory
 (update-memory memory percept))
 (setf action
 (choose-best-action memory))
 (setf memory
 (update-memory memory action))
 action ; return action
))
Table Lookup Agent

- In theory, can build a table mapping percept sequence to action
 - Inputs: percept
 - Outputs: action
 - Static Variable: percepts, table
(let ((percepts nil) (table ????))
 (defun table-lookup-agent (percept)
 (setf percepts
 (append (list percept) percepts))
 (lookup percepts table)))
Specific Agent Example: Pathfinder (Mars Explorer)

- Performance Measure:
- Environment:
- Actuators:
- Sensors:
- Would table-driven work?
Four kinds of better agent programs

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
Simple reflex agents

- Specific response to percepts, i.e. condition-action rule
 - if new-boulder-in-sight then move-towards-new-boulder

- Advantages:
- Disadvantages:
Model-based reflex agents

- Maintain an internal state which is adjusted by each percept
 - Internal state: looking for a new boulder, or rolling towards one
 - Affects how Pathfinder will react when seeing a new boulder
- Can be used to handle partial observability by use of a model about the world
- Rule for action depends on both state and percept
- Different from reflex, which only depends on percept
Goal-Based Agents

- Agent continues to receive percepts and maintain state
- Agent also has a goal
 - Makes decisions based on achieving goal
- Example
 - Pathfinder goal: reach a boulder
 - If pathfinder trips or gets stuck, can make decisions to reach goal
Utility-Based Agents

- Goals are not enough – need to know value of goal
 - Is this a minor accomplishment, or a major one?
 - Affects decision making – will take greater risks for more major goals
- Utility: numerical measurement of importance of a goal
- A utility-based agent will attempt to make the appropriate tradeoff