
Scheme Reference Guide

(define var expr) Evaluates expr. Binds the variable name var to the value in
the global environment.

(quote object)
’object

Returns object. E.g., ’(1 2 3) returns (1 2 3).

(lambda (param1 . . . paramn) body) Returns a procedure that takes n expressions as its argu-
ments, and when invoked evaluates the body. For exam-
ple, the value of (lambda (x) (* x x) is a one-argument
procedure (which squares its input). To invoke this pro-
cedure, put it in parentheses with its arguments. Thus
((lambda (x) (* x x) 5) evaluates to 25.

(lambda args body)
(lambda (p1 . . . pn . args) body)

Syntax for variable-arity functions. If a single symbol is in
the place of the arguments, the function takes any number
of arguments (when the function is invoked, that symbol is
bound to the list of arguments). A lambda expression with a
dotted pair (e.g., (a b . rest)) requires one argument for
each named symbol, aside from the last; when invoked, the
list of remaining arguments are bound to the last symbol.
(E.g., ((lambda (a . others) body) 1 2 3) has a bound
to 1 and others to (2 3).)

(if test conseq alt) Evaluates test. If the value is true (anything other than #f),
then it evaluates conseq, whose value is the value of the if;
otherwise it evaluates alt, whose value is the value of the if.

(cond (t1 v1) . . . (tn vn)) Evaluates t1, t2, . . . until one is true; then evaluates the
corresponding vi, which is the value of the entire cond. The
last test tn can be replaced by else, in which case the value
of the last body is returned whenever all previous tis are false.

(let ((v1 e1) . . . (vn en)) body) Evaluates e1, e2, . . . ; then binds corresponding vis to their
values. The value of the expression is the evaluation of body.

(let* ((v1 e1) . . . (vn en)) body) Similar, but when ek is being evaluated, the first k−1 values
are bound.

(letrec ((v1 e1) . . . (vn en)) body) Similar, but all of e1, e2, . . . are within the scope of all of
the variables v1, v2, . . . so letrec allows the definition of
mutually recursive procedures.

(apply f args) Invoke the function f with the arguments as args.

(map f L) Apply the function f to each element of L, and collect the
results in a list.

(filter f L) Apply the function f to each element of L, and collect all
elements x of L for which (f x) is true in a list.


