
CS 127: Data Structures Winter 2006

Handout 3: Problem Set #1 (Due: 11:59p, Sunday, 15 January 2006) 6 January 2006

The only place success comes before work is in the dictionary.
— Vince Lombardi (1913–1970).

This assignment is to be done with your assigned partner. You’ll submit a single solution, with both of
your names on it. Of course, you haven’t yet had your partner assigned, so take the time between now
and when I send out the pair assignments to read over this assignment and think about it. Don’t start to
answer the questions until you’ve met with your partner, but you’re welcome—encouraged!—to start reading
the code. There are two major goals with this assignment: first, to shake off any Java rust that may have
accumulated since you took CS117; and, second, to get some experience thinking about interfaces, abstract
classes, subclasses, inheritance, and so forth.

Go to one of the labs in CMC 304 or 306 and make sure that you can log in. If you’re having any trouble,
see Mike Tie in CMC 305. After you’ve logged in, create a directory called ps1. In it, create a text file called
ps1.txt, which should have both of your names at the top. Go to the course web page and download the
following files into your ps1 directory:

• Dictionary.java,
• DictionaryEntry.java,
• NotInDictionaryException.java,
• DictionaryUnsortedArray.java,
• DictionarySortedArray.java, and
• Tester.java.

Read over the code and make yourself happy with it.

0. Estimate the amount of time you spent on this problem set, and write it at the top of your ps1.txt.

1. There’s a subtle difference between the sorted- and unsorted-array implementations of Dictionary: if
the user defines the same word w twice, then the two different implementations may possibly return
different definitions of w when define(w) is invoked, even after exactly the same sequence of previous
insertions/definitions. Although the specification of dictionary as we’ve given it only requires that
some definition of w be returned, let’s be consistent with a more stringent specification.

(a) Write (in your ps1.txt file) a brief (∼2–3 sentence) description of why this difference between the
implementations can occur. Then create a new tester class—akin to Tester.java—that shows
the two implementations performing differently.

(b) Modify the implementations so that they are guaranteed to give the most recently inserted defi-
nition of word w when define(w) is invoked. Using your new tester class, demonstrate that this
discrepancy between the two implementations has been resolved.

2. The major limitation with these array-based implementations of dictionaries is that they can run out of
space: when you create a new DictionaryUnsortedArray (or a DictionarySortedArray), you specify
(as a parameter to the constructor) the maximum size that your dictionary will ever take on. This is
a pain for the user—and you have to know in advance how many words you’re going to define.

If you know what ArrayLists are, don’t use them in this question.1

(a) Copy DictionaryUnsortedArray.java into DictionaryExtendableUnsortedArray.java and
modify it to remove this limitation. Whenever insert() is called when the array dict[] is

1Don’t use them if you don’t know what they are, either.

1



already full, instead of throwing an exception, instead do the following: create a new array that’s
twice the size of the previous one; copy all the entries from the old array into the new array, and
set dict to be the new array instead. Also add a new constructor that takes no arguments and
sets the initial maximum size of the dictionary to be, say, five.

(b) Write some tests to show that your dictionary can now handle large numbers of words even if it
was constructed with a small initial maximum size.

3. Now that you’ve made these changes to the unsorted-array implementation of Dictionary, you should
be in a great mood. Except for one picky thing: really, you ought to update the sorted -array implemen-
tation, too. And the problem with that is this: you’re going to end up writing the same array-doubling
code over again in the sorted version. One of the great things about object-oriented programming is
avoiding code duplication, and here we are duplicating code. This situation should suggest that there
is a better way to organize these classes.

Create a reasonably named subdirectory of ps1 to hold your code for this question. You’ll probably
want to copy everything that you’ve done so far into your subdirectory; you’ll be doing a lot of code
reorganization here.

Define an abstract class DictionaryArray that implements the interface Dictionary. Now rewrite
DictionaryExtendableUnsortedArray and DictionaryExtendableSortedArray (which you should
create by copying DictionarySortedArray and making appropriate modifications) to be subclasses
of DictionaryArray. This question is mainly asking you to move code around—you shouldn’t have
to write much more code beyond what you did for the previous questions. In order to make this
class organization work properly, the code that would have been duplicated will have to appear in the
abstract class DictionaryArray.

Before you start coding, think! Figure out what code needs to go into the abstract class, what code will
remain in the (actual) subclasses. Only then should you start typing anything.

4. I promise you that doubling the array when it fills up is a good plan—but you shouldn’t believe my
promises so quickly. This question asks you to explain as fully as you can why doubling the array size
makes sense. Write as full an explanation as you can, and include your answer in ps1.txt. Here is
a hint to get you started in the right direction: 1 + 2 + 4 + 8 + · · · + 2k

< 2(2k). You should try to
incorporate responses to the following questions in your answer:

(a) Suppose that you start out with an array of size 1, and you subsequently insert 65536 (= 216)
different words. How many “entry-moving” events (where an entry is copied from a full array
into the new double-size array) are there? Suppose that, instead of doubling the array size from
n to 2n when it fills up, you add 10 to the array size, from n to n + 10. How many entry-moving
events would there be now?

(b) If multiplying is so good, why wouldn’t you expand the array from n to 9999n when it fills up?
Wouldn’t that be even better? And, if not, if multiplying by a small number is so good, why
wouldn’t you expand the array from n to d1.0001ne when it fills up?2 Wouldn’t that be even
better? You might want to use the word “tradeoff” in your answer.

Note: this is an open-ended question! Give as complete and coherent an answer as you can, but don’t
fret if you don’t have a totally complete explanation. Do the best that you can. Don’t feel obligated
to write more than 2–3 paragraphs in response.

When you’re done, use hsp to submit your answers—you can submit your entire ps1 directory. Again, be
sure that both of your names appear at the top of your ps1.txt.

Start early, ask questions, and good luck!

2The expression dxe—read “ceiling of x”—is the smallest integer that is at least as large as x.

2


