Index

2-3 and 2-3-4 trees, 5-59	and (\wedge), 3-7	Bacon, Kevin, 4-46, 11-20
9/11 Memorial, 11-28	anonymization, 10-20	balanced binary search trees, 6-53
123456791, 7-66	antisymmetry, 8-26 ff.	Bayes' Rule, 10-44 ff.
987654263, 7-66	approximate equality, 2-6	begging the question, see fallacy
	Ariane 5 rocket, 4-82	Bernoulli distribution, 10-16 ff., 10-60,
\forall (universal quantifier), 3-42 ff.	arithmetic mean, 4-50, 4-72	10-73
absolute value, 2-7, 4-34, 4-36	arithmetic series, 2-15, 5-14, 5-25	Bernoulli's inequality, 5-26
abstract algebra, 7-46	Arrow's Theorem, 8-38	betweenness, 8-15
abstraction, 4-2	artificial intelligence, 12-3	BFS, see breadth-first search
ACM Code of Ethics and Professional	computer vision, 11-38	bias, see algorithmic bias
Conduct, 12-3	game trees, 3-54, 9-52	biased coins, 10-17 ff.
ACM Conference on Fairness,	assertions, 3-77, 5-20	$\operatorname{big} O$, big Ω, and big $\Theta, 6-5 \mathrm{ff}$., 8-31 ff.
Accountability, and Transparency,	associativity, 3-27, 5-59, 7-46	bigrams, 10-48
8-19	assuming the antecedent, see proofs	bijections, 2-79, 9-35, 9-46
adjacency, see graphs	asymmetry, 8-26 ff.	binary numbers, see integers
affirming the consequent, see fallacy	asymptotics	binary relation, see relations
algorithmic bias, 2-62, 4-86, 4-87, 8-19,	analysis of algorithms, 6-22 ff.	Binary Search, see searching
12-3	asymptotic analysis, 6-4 ff.	binary search trees, see trees
algorithmic sentencing, 8-19	asymptotic relationships viewed as	binary symmetric channel, 10-44, 10-45
algorithms, 2-83 ff., see also randomized	relations, 8-31 ff.	binary trees, see trees
algorithms	best- and average-case running time,	binomial coefficients, see combinations
asymptotic analysis, 6-22 ff.	6-29 ff.	binomial distribution, 10-17 ff., 10-65
brute force, 3-32, 5-17, 9-2, 9-73	divide and conquer, 6-61 ff.	Binomial Theorem, 9-67 ff.
divide and conquer, 6-60 ff., 6-68	$O(\operatorname{Big~O}), 6-5 \mathrm{ff}$.	bipartite graphs, 11-21 ff.
dynamic programming, 5-17, 9-2, 9-73	o, Ω, ω, and $\Theta, 6-10 \mathrm{ff}$.	complete bipartite graphs, 11-22
greedy algorithms, 4-28, 9-20	polynomials, logs, and exponentials,	birthday paradox, 5-34, 10-68
recurrence relations, 6-42 ff.	6-8 ff.	Bitcoin, 12-2
time, space, and power, 6-32	recurrence relations, 6-42 ff.	bitmaps, 2-56
Alice and Bob, 7-58 ff.	worst-case analysis, 6-23 ff.	bits/bitstrings, 2-4, 2-51, 3-20, 4-5 ff.,
ambiguity	automata, 8-59, 9-54	7-58, 9-6, 9-37, 9-58 ff., 9-79
in natural language, 3-10, 3-11, 3-17	automated theorem proving, 4-31	Bletchley Park, 9-75
order of operations, 5-56, 8-7	average distance in a graph, 11-54	blockchain, 12-2
order of quantification, 3-65 ff., 3-78	average-case analysis, see running time	Bloom filters, 10-54
prefix-free/Huffman codes, 9-20	AVL trees, 6-53 ff.	Bob smells, 5-22
analysis (mathematics), 8-48	axiom of extensionality, 2-35	Booleans, 2-4, 3-6, see also logic

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.
bound (vs. free) variables, 3-46, 3-56
breadth-first search, 11-42 ff.
finding cycles, 11-59
brute force, see algorithms
Bubble Sort, see sorting
Buffon's needle, 10-76
bugs, 2-20, 4-82, 5-20, 11-34
butterfly ballots, 8-38

C (programming language), 3-34, 3-56, 5-47

Caesar Cipher, see cryptography cardinality, 2-28-2-29, 9-4 ff. infinite, 9-46

Carmichael numbers, 7-51, 7-53, 7-56
Cartesian plane, 2-50
Cartesian product (\times), 2-48
catchphrase, 8-40, 11-81
Cauchy sequences, 8-48
ceiling, 2-7
cellular automata, 9-54
Chain Rule (probability), 10-43 ff.
change of index, 2-15
checkers, 3-54, 4-48, 9-31
checksum, 4-4, 4-15
chess, 2-48, 3-54, 5-25, 9-15, 9-30, 11-40
children (in a tree), 11-62
Chinese Remainder Theorem, 7-30 ff.
circle packing, 4-21
circuits, 3-2, 3-20
printing and planar graphs, 11-24
representing logical propositions, 3-27, 3-37
using nand gates, 4-57
class-size paradox, 10-61
cliques, 11-19 ff.
closure, 7-46, 8-33 ff.
clustering, 2-42
coarsening equivalence relations, 8-48 ff.
codomain (of a function), 2-72
collaboration networks, 11-20
collaborative filtering, 2-45
combinations, 9-57 ff.
k-combinations, 9-60 ff.

Binomial Theorem, 9-67 ff
Pascal's identity, 9-66, 9-71
Pascal's triangle, 9-70
combinatorial proof, 9-64 ff.
commutativity, 2-58, 3-27, 3-66, 5-59, 7-46
comparability, see partial orders
comparison-based sorting, see sorting
compilers, 2-71, 3-34, 5-56
complement (of a set), 2-33
complete graphs, 11-19 ff.
complexity, see computational complexity
composite numbers, 2-13, see also prime
numbers
composition
of functions, 2-76, 8-13
of relations, 8-9, 8-30
compression
entropy and compressibility, 10-24
Huffman coding, 9-20, 9-48
impossibility of lossless compression, 9-48
lossy vs. lossless, 9-48
quantization of images, 2-71, 2-87
URL shortening, 9-9
computability, 4-62
computational biology
genome rearrangements, 3-76, 9-54
motifs in gene networks, 11-18
computational complexity
and cryptography, 7-65
complexity classes, 6-35
graph isomorphism, 11-17
input size, 7-8
P vs. NP, 3-32
regular languages, 8-40, 8-59
computational geometry, 2-66
computational linguistics, see natural
language processing
computer architecture, 3-28 ff., 4-58
and running times, 6-23
Moore's Law, 6-16
power consumption, 6-32
representation of numbers, 2-20
computer graphics
hidden-surface removal, 8-61
morphing, 2-68
rotation matrices, 2-63
triangulation, 5-36
computer security, 7-65-7-67
computer vision, 11-38
computing networking, 9-22
conditional expectation, $10-71 \mathrm{ff}$.
conditional independence, 10-42
conditional probability, 10-36 ff.
Bayes' Rule, 10-44
Chain Rule, 10-43
Law of Total Probability, 10-43
Condorcet paradox, 8-38
congruences (modular), 7-8 ff., 7-31 ff., 8-47
conjunctive normal form, 3-29 ff., 4-53 ff., 5-52 ff.
connectivity (in graphs), 11-36 ff.
connected component, 11-36 ff.
reachability, 11-38 ff.
constructive proofs, 4-41
constructivism, 4-42
context-free grammar, 5-56
contradiction, 3-23
contrapositive, 3-25, 4-36, see also proofs
converse, 3-25
Cook-Levin Theorem, 3-32
correlation, 10-30
correlation vs. causation, 4-81
positive and negative, 10-33
countable sets, 9-46
counterexamples, 4-40 ff.
counting
Binomial Theorem, 9-67 ff.
combinations, 9-57 ff.
combinatorial proofs, 9-64 ff.
combining products and sums, 9-17 ff.
Division Rule, 9-38 ff.
double counting, 9-10 ff.
Generalized Product Rule, 9-14 ff.
inclusion-exclusion, 9-10 ff.
for 3+ sets, 9-13

$\bigoplus \bigoplus$

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

Mapping Rule, 9-34 ff. order, 9-58 ff.	degree (in a graph), 11-8 ff., 11-10 degree distribution, 11-26	e (base of natural logarithm), 2-11 edges, see graphs
Pascal's triangle, 9-70 ff. permutations, 9-59 ff.	regular graphs, 11-22 degree (of a polynomial), 2-82	efficiency, see running time, see also computational complexity
Pigeonhole Principle, 9-43 ff.	density (of a graph), 6-20, 11-32	ELIZA, 12-3
Product Rule (sequences), 9-8	denying the hypothesis, see fallacy	Emacs, 9-29, 12-3
repetition, 9-58 ff.	dependent events, 10-30 ff.	empty set, 2-32
Sum Rule (unions), 9-5	depth-first search, 11-46 ff.	Enigma Machine, 9-75
Counting Sort, see sorting	Descartes, René, 2-48	entropy, 10-24
coupon collector problem, 10-84	descendants (in a tree), 11-63	equivalence relations, $8-45 \mathrm{ff}$.
crossword puzzles, 3-75	deterministic finite automata, 8-59	equivalence classes, 8-47
cryptography, 5-22, 7-58 ff., 8-38, 12-2	DFS, see depth-first search	refinements and coarsenings, 8-48
and pseudorandomness, 10-15	diagonalization, 9-46	Eratosthenes, 7-22, 7-40
Caesar Cipher, 7-59, 10-53	diameter (of a graph), 11-53	Erdős numbers, 4-46
Diffie-Hellman key exchange, 7-67	differential privacy, 10-20	Erdős, Paul, 4-46, 11-20
digital signatures, 7-61	Diffie-Hellman key exchange, 7-67	error-correcting codes, 4-6 ff.
Enigma Machine and WWII, 9-75	Dijkstra's algorithm, 11-80 ff.	Golay code, 4-28
frequency analysis, 10-34, 10-52	directed graphs, 8-24	Hamming code, 4-15 ff., 9-33
key exchange, 7-67	disconnected, see connectivity in graphs	messages and codewords, 4-6 ff.
man-in-the-middle attack, 7-67	disjoint sets, 2-37, 4-20	minimum distance and rate, 4-8 ff.
one-time pads, 7-58	disjunctive normal form, 3-29 ff., 4-53 ff.,	Reed-Solomon codes, 4-23, 7-38
public-key cryptography, 7-60 ff.	5-52 ff.	repetition code, 4-13 ff.
RSA cryptosystem, 4-68, 7-60 ff.	distance, see also metrics	upper bounds on rates, 4-19
secret sharing, 7-36	Euclidean, see Euclidean distance	error-detecting codes, 4-6 ff.
substitution cipher, 10-34, 10-40, 10-52	Hamming, see Hamming distance	credit card numbers, 4-4, 4-25
Currying, 3-73	in a graph, 11-41 ff.	UPC, 9-51
cycles, 8-52, 11-57 ff.	Manhattan, see Manhattan distance	ethics, 4-86, 5-22, 6-66, 8-19, 10-20,
acyclic graphs, 11-59 ff.	minimum distance of a code, 4-8 ff.	12-2-12-4
cycle elimination algorithm, 11-69	divide and conquer, see algorithms	Euclid, 4-60, 7-12
cycle rule for minimum spanning trees,	divisibility, 2-12, 2-74, 5-18, 8-53	Euclidean algorithm, 7-12, 7-26
11-86	and modular arithmetic, 7-9 ff.	efficiency, 7-15, 7-19
kidney transplants, 11-71	common divisors, 7-11 ff.	Extended Euclidean algorithm, 7-27
simple cycles, 11-58	divisibility rules, 3-20, 4-33, 4-50, 7-19	Euclidean distance, 2-66, 4-72
weighted cycle elimination algorithm,	Division Theorem, 7-4	Euler's Theorem, 7-56
11-86	division, see mod	even numbers, 2-13, 4-38
	in $\mathbb{Z}_{n}, 7-44$	evenly divides, see divisibility
DAG (directed acyclic graph), 11-60	Division Rule, 9-38 ff.	events (probability), 10-8 ff.
data mining, see machine learning	domain (of a function), 2-72	correlated, 10-30
data privacy, 10-20	dot product, 2-53 ff.	independent events, 10-30 ff.
data visualization, 11-11, 11-28	Dunbar's number, 11-30	exclusive or (\oplus), 2-13, 3-10 ff., 4-15 ff.
databases, 3-60, 8-17, 8-22	dynamic programming, see algorithms	existential quantifier (\exists), 3-42 ff.
De Morgan's Laws, 3-28	dynamic scope, 3-56	expectation, 10-60 ff.
decision problems, 4-62		average-case analysis of algorithms,
Deep Blue, 3-54	\exists (existential quantifier), 3-42 ff.	6-29 ff.

$\oplus \quad \bigoplus$

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

Index

$\bigoplus \bigoplus$

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

$\begin{aligned} & \text { hashing, 2-85, 9-55, 10-3-10-5, 10-66, } \\ & \quad 10-84 \end{aligned}$	inclusion-exclusion, 9-10 ff., 9-80 inclusive naming, 6-66
Bloom filters, 10-54	incomparability, 6-13, 8-50
chaining, 2-85	incompleteness (logic), 3-58
collisions, 2-85, 10-3 ff., 10-13, 10-28,	inconsistency (logic), 3-58
10-54, 10-67	independent events, 10-30 ff.
and pairwise independence, 10-36	pairwise independence, 10-36
chaining, 10-3	indicator random variables, 10-59
clustering, 10-13, 10-28	induction, see proofs
double hashing, 10-29	checklist for inductive proofs, 5-6
linear probing, 10-13, 10-28	generating conjectures, 5-10
quadratic probing, 10-28	proofs about algorithms, 5-16 ff.,
simple uniform hashing, 10-4	6-46 ff.
Hasse diagrams, 8-52	strengthening the inductive hypothesis,
heaps, 2-88, 5-38, 5-59	5-53
heavy-tailed distribution, 11-26	infinite sequences, 2-15, 5-14
height (of a tree), 11-63	infix notation, 8-6
Heron's method, 2-22, 4-50	information retrieval, 2-61
hidden-surface removal, 8-61	information theory, 10-24, 10-44
higher-order functions, 2-40, 3-73	injective functions, see one-to-one
Hopper, Grace Murray, 2-71, 4-82	functions
Huffman coding, 9-20, 9-48	Insertion Sort, see sorting
hypercube, 11-32	integers, 2-4 ff.
	algorithms for arithmetic, 7-6, 7-18
I (identity matrix), 2-56	efficiency, 7-8
idempotence, 3-27	division, see modular arithmetic
identity	primes and composites, see prime
identity function, 2-80	numbers
identity matrix, 2-56	recursive definition, 5-55
multiplicative identity, 7-44	representation
of a binary operator, 3-19, 5-59	binary numbers, 3-20, 5-7, 5-27,
if and only if $(\Leftrightarrow), 3-10 \mathrm{ff}$.	5-40, 7-8, 7-16
image (of a function), 2-73	different bases, 5-40, 7-16
image processing	ints, 2-20
blur filter, 2-22	modular representation, 7-35
dithering, 3-38	unary, 7-8
grayscale conversion, 2-2	successor relation, 8-36
quantization, 2-71	internet addresses, 9-22
seam carving, 9-73	intersection (of sets), 2-33
segmentation, 11-38	intervals, see real numbers
imaginary numbers, 2-9	invalid inference, 4-75
implication $(\Rightarrow), 3-8 \mathrm{ff}$.	inverse
in-degree, see degree	additive, 7-55
	multiplicative, 7-44 ff.

\bigoplus

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.
discrete logarithm, 7-67
polylogarithmic functions, 6-19, 7-8
logic
Boolean logic, 2-4, 7-46
consistency, 3-58
fuzzy logic, 3-17
incompleteness, 3-58
logical equivalence, 3-24, 3-47
logical fallacy, see fallacy
modal logic, 8-32
predicate logic, 3-40 ff.
games against the demon, 3-69
nested quantifiers, 3-63 ff.
order of quantification, 3-65 ff.
predicates, 3-40 ff.
quantifiers, 3-42 ff.
theorems in predicate logic, 3-47 ff
propositional logic, 3-4 ff.
atomic vs. compound propositions, 3-6
logical connectives, 3-6 ff.
propositions, 3-4 ff.
recursive definition of a well-formed
formula, 5-47
satisfiability, 3-23
tautology, 3-22 ff.
truth assignment, 3-13
truth tables, 3-13 ff.
truth values, 3-4, 5-48
universal set of operators, 4-72
temporal logic, 8-32
longest common subsequence, 5-17, 9-80
loop invariants, 5-20
Lovelace, Ada, 2-22, 2-48
machine learning
bias, 2-62
classification problems, 9-35, 10-50
clustering, 2-42
cross-validation, 9-79
macros, 3-56
Manhattan distance, 2-52, 2-66, 4-72
map, 2-40
Mapping Rule, 9-34 ff.

MapReduce, 2-40
maps, 4-48, 11-24
mark-and-sweep, 11-51
Markov's inequality, 10-84
matchings, see graphs
matrices, 2-55 ff.
adjacency matrices for graphs, 11-13 ff.
identity matrix, 2-56
inverse of a matrix, 2-68
matrix multiplication, 2-57 ff.
Strassen's algorithm, 6-68
rotation matrices, 2-63, 4-73
term-document matrix, 2-61
maximal element, 8-54 ff.
maximum element, 2-35, 2-84, 8-54 ff.
mazes, 11-46
median (of an array), 2-89, 10-78 ff.
memoization, 9-73
memory management, 11-51
Merge Sort, see sorting
metrics, 4-5, 4-25-4-26, 11-54
Milgram, Stanley, 4-46
Miller-Rabin test, 4-68, 7-53
minimal element, 8-54 ff.
minimum element, 2-35, 8-54 ff.
minimum spanning trees, 11-85 ff.
cycle rule, 11-86
Kruskal's algorithm, 11-87
weighted cycle elimination algorithm, 11-86

ML (programming language), 3-73, 5-52
modal logic, 8-32
modular arithmetic, 2-11-2-13, 7-4 ff.
Division Theorem, 7-4
mod-and-div algorithm, 7-6 ff., 7-18
modular congruences, 7-8
modular exponentiation, 7-19
modular products, 7-9
modular sums, 7-9
multiplicative inverse, 7-44 ff.
primitive roots, 7-67
Modus Ponens, 3-23
Modus Tollens, 3-23
Monte Carlo method, 10-76

Monty Hall Problem, 10-14
Moore's Law, 6-16
multiples, see divisibility
multiplicative identity, 7-44
multiplicative inverse, 7-44 ff.
multitasking, 6-33
naïve Bayes classifier, 10-50
nand (not and), 4-57, 5-60
n-ary relations, $8-14 \mathrm{ff}$.
expressing n-ary relations as binary
relations, 8-15
natural language processing, 12-3
ambiguity, 3-17
language model, 10-48
speech processing, 2-42, 9-32
speech recognition, 10-48
text classification, 10-50
text-to-speech systems, 9-32
natural logarithm, see logarithms
neighbors (in graphs), 11-7, 11-10
nested quantifiers, 3-63 ff.
games against the demon, 3-69
negations, 3-67
order of quantification, 3-65 ff.
nested sums, 2-16, 10-63
Newton's method, 2-22
nodes, see graphs
nonconstructive proofs, 4-41
nor (not or), 4-58, 5-60
$\operatorname{not}(\neg), 2-70,3-7$
NP (complexity class), 3-32, 4-79, 6-35
number line, 2-6
number theory, see modular arithmetic
numerical methods, see scientific
computing
$O(\operatorname{Big} \mathrm{O}), 6-5 \mathrm{ff}$., 8-31 ff.
o (little o), 6-10, 8-31 ff.
odd numbers, 2-13
off-by-one error, 11-34
Omega (Ω) (asymptotics), 6-10, 8-31 ff.
omega (ω) (asymptotics), 6-10, 8-31 ff.
one-time pads, 7-58

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

one-to-one functions, 2-78, 8-14, 9-35	minimum/maximum element, 8-54	power-law distribution, 11-26
onion routing, 5-22	strict partial order, 8-50	powers, see exponentials
onto functions, 2-77, 3-63, 8-14, 9-35	topological ordering, 8-56 ff.	precedence of operators, 2-34, 3-12, 3-45,
operating systems, 3-75	total orders, 8-50	5-56
multitasking, 6-33	consistency with a partial order,	predicate logic, see logic
virtual memory, 4-70	8-56 ff.	predicates, 3-40 ff., 8-7, see also logic
optimizing compilers, 3-34, 3-37	partition (of a set), 2-38	prefix notation, 8-6
or (V), 3-7	bipartite graphs, 11-21	prefix-free codes, 9-19
order of operations, see precedence of operators	equivalence relations, 8-47	preorder, 8-52
	Pascal's identity, 9-66, 9-71	prime numbers, 2-13, 4-63, 7-21 ff.
orders, see partial orders	Pascal's triangle, 9-70 ff.	Carmichael numbers, 7-51, 7-56
organ donation, 11-71	paths (in graphs), 11-34 ff.	distribution of the primes, 7-22
out-degree, see degree	breadth-first search, 11-42 ff.	infinitude of primes, 4-60
out-neighbor, see neighbors (in graphs)	connected graphs, 11-36 ff.	primality testing, 4-60, 4-68, 6-22, 7-21
outcome (probability), 10-6	depth-first search, 11-46 ff.	efficient algorithms, 7-53
overfitting, 10-48	Dijkstra's algorithm, 11-80 ff.	prime factorization, 7-24, 7-66
overflow, 2-20, 4-82	internet routing, 9-22	cryptography, 4-68, 7-65
	shortest paths, 11-41 ff.	existence of, 5-30-5-32
\mathscr{P}, see power set	simple paths, 11-35	Shor's algorithm, 10-22
P (complexity class), 3-32, 4-79, 6-35	Peirce's arrow (\downarrow), 4-58, 5-60	uniqueness of, 7-28-7-30
PageRank, 11-90	Pentium chip, 4-82, 6-16	Prime Number Theorem, 7-22
Painter's Algorithm, 8-61 pairwise independence, 10-36	perfect matchings, see graphs	Sieve of Eratosthenes, 7-22, 7-40
	perfect numbers, 2-26	priority queues, 5-38
palindromes, 5-60, 9-50	perfect square, 2-9	privacy, 5-22, 10-20, 12-2
paradoxes	Perl (programming language), 4-60	probability
birthday paradox, 10-68	permutations, 5-42, 9-16-9-17, 9-27	Bayes' Rule, 10-44 ff.
class-size paradox, 10-61	k-permutations, 9-59 ff.	conditional expectation, 10-71 ff.
Liar's paradox, 2-31	Petersen graph, 11-17, 11-25	conditional probability, 10-36 ff.
nontransitive dice, 10-82	Pigeonhole Principle, 9-43 ff., 9-48	coupon collector problem, 10-84
paradoxes of translation, 3-5	planar graphs, 4-48, 11-23 ff.	events, $10-8 \mathrm{ff}$.
Russell's paradox, 2-31	Kuratowski's Theorem, 11-25	expectation, 10-60 ff.
Simpson's Paradox, 4-87	polygons, 2-63, 5-27, 5-32, 5-36, 5-42,	infinitesimal probabilities, 10-40
voting paradoxes, 8-38	10-76	Law of Total Expectation, 10-72
parallel edges, 11-5	polylogarithmic, 6-19, 7-8	Law of Total Probability, 10-43
parent (in a tree), 11-62	polynomials, 2-81 ff., 4-23, see also P	linearity of expectation, 10-64 ff.
parity, 2-13, 4-15 ff., 5-29-5-30, 5-40	(complexity class)	Markov's inequality, 10-84
parsing, 5-56	asymptotics, 6-8 ff.	Monty Hall Problem, 10-14
partial orders, 8-50 ff.	evaluating modulo a prime, 7-25, 7-36,	outcomes, 10-6 ff.
chains and antichains, 8-65	7-38	probability functions, 10-6 ff.
comparability, 8-50	postfix notation, 8-6	random variables, 10-57 ff.
extending to a total order, 8-56 ff.	Postscript (programming language), 8-6	random walks, 11-90
Hasse diagrams, 8-52	power set, 2-39	standard deviation, 10-72 ff.
immediate successors, 8-53minimal/maximal elements, 8-54	as a relation, 8-6	tree diagrams, 10-12 ff.
	cardinality, 9-37	variance, 10-72 ff.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

12-12 Index

probability distributions	pseudocode, 2-84	approximate equality (\sim), 2-6, 8-4
Bernoulli, 10-16 ff.	pseudorandom generator, 10-15	defining via infinite sequences, $8-48$
binomial, 10-17 ff.	PSPACE (complexity class), 6-35	exponentiation, 2-8 ff.
entropy, 10-24	public-key cryptography, see	floats (representation), 2-20
geometric, 10-18 ff.	cryptography	intervals, 2-6
posterior distribution, 10-46	Pythagorean Theorem, 4-44, 4-58-4-60,	logarithms, 2-10 ff.
prior distribution, 10-46	4-72	trichotomy, 6-14
uniform, 10-16 ff.	incorrect published proof, 4-87	realization, see outcome (probability)
product, 2-18 ff.	Python (programming language), 2-20,	recommender system, 2-45
of a set, 2-35	2-40, 2-73, 3-20, 3-56, 3-73, 4-62 ff.,	recurrence relations, 6-42 ff.
product of sums, see conjunctive normal form	9-46, 11-51	divide and conquer, 6-61 ff. iterating, 6-45
Product Rule, 9-8	\mathbb{Q}, see rationals	sloppiness, 6-49
cardinality of S^{k}, 9-9	QR codes, 4-4, 4-23	solving by induction, 6-44
programming languages	quadtrees, 6-57	variable substitution, 6-47
compile-time optimization, 3-34	quantifiers, 3-42 ff.	recursion tree, 6-40, 6-61 ff.
Currying, 3-73	negating quantifiers, 3-49 ff.	recursively defined structures, 5-45 ff.
garbage collection, 6-33, 11-51	nested quantifiers, 3-63 ff.	Reed-Solomon codes, 4-23, 7-38
higher-order functions, 2-40, 3-73	vacuous quantification, 3-52	reference counting, 11-51
parsing, 5-56	quantum computation, 10-22	refining equivalence relations, 8-48 ff .
scoping/functions/macros, 3-56	Quick Sort, see sorting	reflexivity, 4-6, 8-25 ff.
short-circuit evaluation, 3-34		reflexive closure, 8-33 ff.
syntactic sugar, 3-28	\mathbb{R}, see real numbers	regular expressions, 8-40, 8-59
project (database operation), 8-17	Radix Sort, see sorting	regular graphs, 11-22
proofs, 4-30 ff.	raising to a power, see exponentials	reindexing, 2-15
by assuming the antecedent, 3-51, 4-33	Random Surfer Model, 11-90	relational databases, see databases
by cases, 4-18, 4-34	random variables, 10-57 ff.	relations
by construction, 4-14, 4-41 ff.	expectation, 10-60 f	n-ary relations, $8-14 \mathrm{ff}$.
by contradiction, 4-21, 4-38 ff	independent random variables, 10-59	binary relations, 8-5 ff.
by contrapositive, 4-36 ff	indicator random variables, 10-59	closures, 8-33 ff
by induction, 2-83, 5-4 ff	random walks, 11-90, 11-93	composition, 8-9 ff.
by mutual implication, 4-37	randomized algorithms, 6-32	equivalence relations, $8-45 \mathrm{ff}$.
by strong induction, 5-28 ff.	Buffon's needle, 10-76	functions as relations, $8-12 \mathrm{ff}$.
by structural induction, 5-48 ff	finding medians, 10-78	inverses, 8-8 ff
combinatorial proofs, 9-64 ff.	Johnson's algorithm, 10-85	partial orders, 8-50 ff.
direct, 4-32 ff.	Monte Carlo method, 10-76	reflexivity, 8-25
nonconstructive, 4-41	primality testing (Miller-Rabin), 7-53	relational databases, 8-17
strategy for proofs, 4-42 ff	Quick Sort, 10-27	symmetry, 8-26
unprovable true statements, 3-58	range (of a function), 2-73	total orders, 8-50 ff.
"without loss of generality", 4-35	rate (of a code), 4-8 ff.	transitivity, 8-29 ff.
writing proofs, 4-44 fi	rationals, 2-4 ff., 2-50, 4-33, 4-37, 7-11	visual representation, 8-7 ff., 8-2
proper subset and superset, 2-36	in lowest terms, 7-11, 8-47	Hasse diagrams, 8-52 ff.
propositional logic, see logic	real numbers, 2-4 ff.	vs. predicates, 8-7
proving true, see fallacy		relative primality, 7-24 ff., 7-46 ff.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

$\bigoplus \bigoplus$

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

syzygy, 11-25, 11-81	parse trees, 5-56
	quadtrees, 6-57
$T(n)=a T(n / b)+n^{k}, 6-61 \mathrm{ff}$.	recursion trees, 6-40 ff.
tautology, 3-22 ff.	recursive definitions of trees, 5-46,
temporal logic, 8-32	11-65
term frequency-inverse document	rooted trees, 11-62 ff.
frequency (TFIDF), 2-61	spanning trees, 11-68 ff.
The Book (of proofs), 4-46	minimum spanning trees, 11-85 ff.
Therac-25, 4-82, 12-2	subtrees, 11-63 ff.
Theta (Θ) (asymptotics), 6-10, 8-31 ff.	tree traversal, 11-65 ff.
tic-tac-toe, 3-54, 9-52	van Emde Boas trees, 6-71
topological ordering, 8-56 ff.	triangle inequality, 4-6, 4-35
Tor, 5-22, 12-2	triangulation, 5-32-5-33, 5-36
total orders, 8-50 ff., see also partial	truth tables, 3-13 ff.
orders	truth values, 3-4 ff.
totient function, 7-56, 9-30	tsktsks, 8-40, 11-81
Towers of Hanoi, 6-70	tuple, see sequence
transitivity, 8-29 ff.	Turing Award, 2-30, 3-26, 4-5, 6-5, 7-12,
nontransitive dice, 10-82	7-60, 7-67, 8-6, 8-17, 11-80
nontransitivity in voting, 8-38	Turing machines, 3-58, 4-62, 6-23
signed social networks, 11-18	Turing, Alan, 2-30, 4-61, 6-23, 9-75
transitive closure, 8-33 ff.	
Traveling Salesperson Problem, 9-73	unary numbers, see integers
trees, 11-57 ff.	uncomputability, 3-58, 4-61-4-66, 4-70,
2-3 and 2-3-4 trees, 5-59	9-46
AVL trees, 6-53 ff.	undecidability, see uncomputability
binary search trees, 5-58, 6-53, 11-73	underflow, 2-20
binary trees, 5-46, 6-53 ff., 11-65 ff.	Unicode, 9-30
complete binary trees, 11-77 ff.	uniform distribution, 10-8, 10-16 ff.
heaps, 2-88, 5-38	unigrams, 10-48
decision trees, 9-26	union (of sets), 2-33
forests, 11-60	Union Bound, 9-6
game trees, 3-54, 9-52	unit vector, 2-53
in counting problems, 9-20	universal quantifier (\forall), 3-42 ff.

unsatisfiability, 3-23
URL squatting, 9-52
vacuous quantification, 3-52
valid inference, 4-75
van Emde Boas trees, 6-71
variance, 10-72 ff.
Vector Space Model, 2-61
vectors, 2-51 ff.
dot product, 2-53 ff.
Venn diagrams, 2-32
virtual memory, 4-70
Von Koch snowflake, 5-2, 5-10, 5-25 ff.
Voronoi diagram, 2-66
voting systems, 8-38
wall clocks, 6-33
Weizenbaum, Joseph, 12-3
well-ordered set, 5-49
What Three Words, 9-2
"without loss of generality", 4-35
word2vec, 2-62
World War II, 9-75, 11-18
World-Wide Web, 11-26, 11-49
PageRank, 11-90
worst-case analysis, see running time
xor, see exclusive or
\mathbb{Z}, see integers
$\mathbb{Z}_{n}, 7-43 \mathrm{ff}$.
zero (of a binary operator), 3-19, 5-59
zyzzyvas, 8-7

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation of Computer Programs. MIT Press/McGraw-Hill, 2nd edition, 1996.
[2] David Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th ACM Conference on Electronic Commerce, pages 295-304, 2007.
[3] A. Adelson-Velskii and E. M. Landis. An algorithm for the organization of information. Proceedings of the USSR Academy of Sciences, 146:263-266, 1962.
[4] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of Mathematics, 160:781-793, 2004.
[5] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Prentice Hall, 2nd edition, 2006.
[6] Martin Aigner and Günter Ziegler. Proofs from The Book. Springer, 4th edition, 2009.
[7] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica, 23 May 2016.
[8] Kenneth Appel and Wolfgang Haken. Solution of the four color map problem. Scientific American, 237(4):108-121, October 1977.
[9] David Appell. The sun will eventually engulf Earth—maybe. Scientific American, September 2008.
[10] Kenneth Arrow. Social Choice and Individual Values. Wiley, 1951.
[11] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505-510, 2019.
[12] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. In $A C M$ SIGGRAPH, 2007.
[13] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general method for solving divide-and-conquer recurrences. ACM SIGACT News, 12(3):36-44, 1980.
[14] Ambrose Bierce. The Devil's Dictionary. Neale, New York, 1911.
[15] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7):422-426, July 1970.
[16] Paul Boersma and David Weenink. Praat: doing phonetics by computer. http://www.praat.org, 2012. Version 5.3.22.
[17] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Proceedings of the 29th International Conference on Neural Information Processing Systems, volume 29, pages 4349-4357, 2016.
[18] Katy Börner. Atlas of Science: Visualizing What We Know. MIT Press, 2010.
[19] Otakar Borůvka. O jistém problému minimálním. Práca Moravské Prírodovedecké Spolecnosti, 3(3):37-58, 1926.
[20] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel Smid, and Yihui Tang. On the false-positive rate of Bloom filters. Information Processing Letters, 108(4):210-213, 2008.
[21] Sergei Brin and Larry Page. The anatomy of a large-scale hypertextual web search engine. In 7th International World-Wide Web Conference, pages 107-117, 1998.
[22] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer Networks, 33(1-6):309-320, 2000.
[23] Stephen Budiansky. Journey to the Edge of Reason: The Life of Kurt Gödel. Oxford University Press, 2021.
[24] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency, pages 77-91, 2018.
[25] Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183-186, 2017.
[26] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. Deep Blue. Artificial Intelligence, 134:57-83, 2002.
[27] Dorwin Cartwright and Frank Harary. Structural balance: a generalization of Heider's theory. Psychological Review, 63(5):277-293, 1956.
[28] Alhaji Cherif, Nadja Grobe, Xiaoling Wang, and Peter Kotanko. Simulation of pool testing to identify patients with coronavirus disease 2019 under conditions of limited test
availability. JAMA Network Open, 3(6):e2013075-e2013075, June 2020.
[29] Ken Christensen, Allen Roginsky, and Miguel Jimeno. A new analysis of the false positive rate of a Bloom filter. Information Processing Letters, 110:944-949, 2010.
[30] Edgar F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):377-387, 1970.
[31] Stephen Cook. The complexity of theorem proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151-158, 1971.
[32] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90):297-301, 1965.
[33] Thomas H. Cormen, Charles E. Leisersen, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.
[34] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.
[35] Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against women. Reuters, 10 October 2018.
[36] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry. Springer-Verlag, 2nd edition, 2000.
[37] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107-113, 2008.
[38] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on Information Theory, pages 644-654, November 1976.
[39] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.
router. Technical report, Naval Research Lab Washington DC, 2004.
[40] Robin Dunbar. How Many Friends Does One Person Need?: Dunbar's Number and Other Evolutionary Quirks. Harvard University Press, 2010.
[41] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography Conference, pages 265-284, 2006.
[42] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211-407, 2014.
[43] David A. Easley and Jon M. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010.
[44] Michael Eisen. Amazon's \$23,698,655.93 book about flies. it is NOT junk blog, April 2011. https:
//www.michaeleisen.org/blog/?p=358, retrieved 16 August 2021.
[45] Jacob Eisenstein. Introduction to Natural Language Processing. MIT press, 2019.
[46] Scott L. Feld. Why your friends have more friends than you do. American Journal of Sociology, 96(6):1464-1477, May 1991.
[47] Judith Flanders. A Place for Everything: The Curious History of Alphabetical Order. Basic Books, 2020.
[48] Robert W. Floyd. Assigning meanings to programs. In Proceedings of Symposia in Applied Mathematics XIX, American Mathematical Society, pages 19-32, 1967.
[49] Simpson Garfinkel. History's worst software bugs. Wired Magazine, 2005.
[50] W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix reversals. Discrete Mathematics, 27:47-57, 1979.
[51] Alexander George. Letter to the editor. The New Yorker, page 12, 24 December 2007.
[52] Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2006.
[53] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal, XXIX(2):147-160, April 1950.
[54] Kashmir Hill. Wrongfully accused by an algorithm. The New York Times, 24 June 2020.
[55] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-585, October 1969.
[56] Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Vintage, 1980.
[57] Douglas Hofstadter. Le Ton Beau de Marot: In Praise of the Music of Language. Basic Books, 1998.
[58] Michael Huber and V. Frederick Rickey. What is 0^{0} ? Convergence, July 2012.
https://www.maa.org/press/ periodicals/convergence/what-is-00.
[59] David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098-1101, 1952.
[60] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge, 1996.
[61] John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, and Kurt Akeley. Computer Graphics: Principles and Practice. Addison-Wesley, 3rd edition, 2013.
[62] Tobias Isenberg, Knut Hartmann, and Henry König. Interest value driven adaptive subdivision. In Simulation and Visualisation (SimVis), pages 139-149. SCS European Publishing House, 2003.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.
[63] P. Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:241-272, 1901.
[64] Karen Spärck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28:11-21, 1972.
[65] Richard Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Management. Wiley, 1996.
[66] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Pearson Prentice Hall, 2nd edition, 2008.
[67] Frank Kafka. "Fürsprecher" ["Advocates"], c. 1922. Translation by Tania and James Stern. Available in Franz Kafka: The Complete Stories. Edited by Nahum Glatzer. New York: Schocken, 1971, pp. 449-451.
[68] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85-103. Springer, 1972.
[69] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman \& Hall/CRC Press, 2007.
[70] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture Techniques for Power-Efficiency. Morgan Claypool, 2008.
[71] Alfred B. Kempe. On the geographical problem of the four colours. American Journal of Mathematics, 2(3):193-200, 1879.
[72] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms (Volume 2). Addison-Wesley Longman, 3rd edition, 1997.
[73] Dexter Kozen. Automata and Computability. Springer, 1997.
[74] Joseph Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7:48-50, 1956.
[75] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach. Addison-Wesley, 6th edition, 2013.
[76] Jure Leskovec, Anand Rajaraman, and Jeff Ullman. Mining of Massive Datasets. Cambridge University Press, 2nd edition, 2014.
[77] Nancy Leveson. Safeware. Pearson, 1995.
[78] Nancy Leveson. Engineering a Safer World. MIT Press, 2016.
[79] Leonid Levin. Universal search problems. Problems of Information Transmission, 9(3):265-266, 1973.
[80] J. L. Lions. Ariane 5 flight 501 failure report: Report by the enquiry board, 1996.
[81] Elisha Scott Loomis. The Pythagorean Proposition. National Council of Teachers of Mathematics, June 1968.
[82] Joel Lovell. Left-hand-turn elimination. The New York Times, 9 December 2007.
[83] David J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.
[84] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008.
[85] Steve Martin. Born Standing Up: A Comic's Life. Simon \& Schuster, 2008.
[86] N. David Mermin. Quantum Computer Science: An Introduction. Cambridge University Press, 2007.
[87] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

Information Processing Systems, pages 3111-3119, 2013.
[88] Stanley Milgram. The small world problem. Psychology Today, 1:61-67, May 1967.
[89] Gary L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System Sciences, 13(3):300-317, 1976.
[90] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
[91] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114-117, April 1965.
[92] Gordon E. Moore. No exponential is forever: but "forever" can be delayed! In International Solid-State Circuits Conference, pages 20-23, 2003.
[93] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
[94] National Academies of Sciences, Engineering, and Medicine. Securing the Vote: Protecting American Democracy. National Academies Press, 2018.
[95] Sydney Padua. The Thrilling Adventures of Lovelace and Babbage: The (Mostly) True Story of the First Computer. Pantheon Books, 2015.
[96] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[97] David A. Patterson and John L. Hennessy. Computer Organization and Design: the Hardware/Software Interface. Morgan Kaufmann, 4th edition, 2008.
[98] Nick Paumgarden. The names. The New Yorker, 16 May 2011.
[99] Caroline Criado Perez. Invisible Women: Exposing Data Bias in a World Designed for Men. Random House, 2019.
[100] Ivars Peterson. MathTrek: Pentium bug revisited. MAA Online, May 1997.
[101] Madsen Pirie. How to Win Every Argument: The Use and Abuse of Logic. Continuum, 2007.
[102] George Pólya. How to Solve It. Doubleday, 1957.
[103] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numerical Recipes. Cambridge University Press, 3rd edition, 2007.
[104] Richard Preston. The Ebola wars. The New Yorker, 27 October 2014.
[105] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1):128-138, 1980.
[106] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21:120-126, February 1978.
[107] Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. The diameter of the Rubik's cube group is twenty. SIAM Review, 56(4):645-670, 2014.
[108] Mike Rosulek. The Joy of Cryptography. Oregon State, 2020.
[109] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.
[110] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd edition, 2009.
[111] R. M. Sainsbury. Paradoxes. Cambridge University Press, 3rd edition, 2009.
[112] Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishimoto, Martin Muller, Rob Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):1518-1522, 14 September 2007.
[113] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, November 1979.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

12-20
 References

[114] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 1948.
[115] Margot Lee Shetterly. Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race. William Morrow and Company, 2016.
[116] Peter Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2):303-332, 1999.
[117] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts. McGraw-Hill, 6th edition, 2010.
[118] Simon Singh. The Code Book: The Secret History of Codes and Code-breaking. Fourth Estate Ltd., 1999.
[119] Simon Singh. Fermat's Last Theorem: The Story of a Riddle That Confounded the World's Greatest Minds for 358 Years. Fourth Estate Ltd., 2002.
[120] Michael Sipser. Introduction to the Theory of Computation. Course Technology, 3rd edition, 2012.
[121] Laura Stark. Behind Closed Doors: IRBs and the Making of Ethical Research. University of Chicago, 2011.
[122] Tom Stoppard. Rosencrantz and Guildenstern are Dead. Grove/Atlantic, Inc., 1967.
[123] Latanya Sweeney. Simple demographics often identify people uniquely. Data Privacy Working Paper, Carnegie Mellon University, 2000.
[124] T. Taylor, G. VanDyk, L. Funk, R. Hutcheon, and S. Schriber. Therac 25: A new medical accelerator concept. IEEE Transactions on Nuclear Science, 30(2):1768-1771, 1983.
[125] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of Facebook networks. CoRR, abs/1102.2166, 2011.
[126] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230-265, 1937.
[127] Marilyn vos Savant. Ask Marilyn. Parade Magazine, 9 September 1990.
[128] Marilyn vos Savant. Ask Marilyn. Parade Magazine, 2 December 1990.
[129] Joseph Weizenbaum. ELIZA: a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1):36-45, January 1966.
[130] Joseph Weizenbaum. Computer Power and Human Reason: From Judgment to Calculation. W. H. Freeman \& Co, 1976.
[131] Virginia Vassilevska Williams. An overview of the recent progress on matrix multiplication. ACM SIGACT News, 43(4), December 2012.
[132] Wayne Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4):452-473, 1977.
[133] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like shopping: Reducing gender bias amplification using corpus-level constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2979-2989, 2017.
[134] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23(3):337-343, 1977.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley \& Sons, Inc as Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on September 8, 2021.

