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Graphs and Trees

In which our heroes explore the many twisting paths through the gnarled
forest, emerging in the happy and peaceful land in which their
computational adventures will continue.
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1102 CHAPTER 11. GRAPHS AND TREES

11.1 Why You Might Care
Oh what a tangled web we weave,
When first we practise to deceive!

Sir Walter Scott (1771–1832), Marmion (1808)

It’s possible to make graphs sound hopelessly abstract and utterly uninteresting: a
graph is a pair 〈V,E〉, where V is a nonempty collection of entities called nodes and E is a
collection of edges that join pairs of nodes. But graphs are fascinating—at least, when the
entities and the relationship represented by the edges are themselves interesting! Here
are a few of the many examples of types of graphs:

• social networks like Facebook (or LinkedIn or Pinterest or . . . ): the nodes are people,
and an edge between two people represents a friendship (or at least a “friendship”).

• the world-wide web: the nodes are web pages, and an edge represents a hyperlink
from one page to another. These hyperlinks between pages form the basis for the
ranking of web pages by search engines like Google.1 1 Sergei Brin and

Larry Page. The
anatomy of a large-
scale hypertextual
web search engine.
In 7th International
World-Wide Web
Conference, 1998.

• dating networks: nodes represent people; an edge connects two people who have
been involved in a romantic relationship. These networks have implications for
the spread of certain communicable diseases, particularly sexually transmitted
infections.

• road networks and other transportation networks: edges represent roads; nodes
represent intersections. For example, United Parcel Service (UPS) saves gas (and
money!) by using a route-finding algorithm through this network that avoid turns
across traffic.2 2 Joel Lovell. Left-

hand-turn elimina-
tion. The New York
Times, 9 December
2007.

• food webs: nodes represent species within a particular ecosystem, and an edge from
one species to another indicates that the first species preys on the latter.

• co-purchase networks: nodes are products that are sold by a retailer like Walmart or
Amazon; an edge between two products indicates the number of customers who
bought both products. These networks have implications for recommender systems,
the “people who bought x also bought y” feature of Amazon.

• the internet: nodes are computers (personal computers, servers, and other network-
ing hardware like routers), and edges represent physical wires connecting two
machines together. When you request a video from youtube.com, the computers
involved in the network must collectively construct a path along which YouTube’s
bits can flow so that they reach your computer.

Graphs are ubiquitous. Indeed, any pairwise relationship among entities is really
underlyingly a graph: web pages and links, computers and fiber optic cables, kidney
patients/donors and compatibility for transplants. The applications are innumerable,
and this chapter will barely scratch the surface. Graphs and graph-theoretic reasoning
will arise again and again well beyond the end of this book.
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11.2 Formal Introduction
The Bible tells us to love our neighbors, and also to
love our enemies; probably because they are generally
the same people.

G. K. Chesterton (1874–1936)
We begin by defining the terminology for the two different basic types of graphs. In

both, we have a set of entities called nodes, some pairs of which are joined by a relation-
ship called an edge. (A node can also be called a vertex.) The two types of graph differ
in whether the relationship represented by an edge is “between two nodes” or “from
one node to another.” In an undirected graph, the relationship denoted by the edges is
symmetric (for example, “u and v are genetically related”):

vertex, n.: a node.
plural: vertices.

We will use the
terms node/nodes
and vertex/vertices
interchangeably
throughout this
chapter. (Both terms
are used commonly
in CS.) A graph
can also be called
a network; edges
are also sometimes
called links, or
occasionally arcs in
directed graphs.

Definition 11.1 (Undirected Graph)
A undirected graph is a pair G = 〈V,E〉 where V is a nonempty set of vertices or nodes,
and E ⊆

{
{u, v} : u, v ∈ V

}
is a set of edges joining pairs of vertices.

The second basic kind of graph is a directed graph, in which the relationship denoted by
the edges need not be reciprocated (for example, “u has texted v”):

Definition 11.2 (Directed Graph)
A directed graph is a pair G = 〈V,E〉 where V is a nonempty set of nodes, and E ⊆ V ×V
is a set of edges joining (ordered) pairs of vertices.

In other words, in a directed graph an edge is an ordered pair of vertices (“an edge from
u to v”) and in an undirected graph an edge is an unordered pair of vertices (“an edge
between u and v”). Think about the difference between Twitter followers (directed)
and Facebook friendships (undirected): Alice can follow Bob without Bob following
Alice, but they’re either friends or they’re not friends.

Graphs are generally drawn with nodes represented as circles, and edges repre-
sented by lines. Each edge in directed graphs is drawn with an arrow indicating its
orientation (“which way it goes”). Here is an example of each:

Example 11.1 (A sample undirected graph)
Here is an undirected graph:

A

B

C D

E
F

G
H

I
J

K L

This graph contains:
• 12 nodes: {A, B, C, D, E, F, G, H, I, J, K, L}.
• 10 edges:

{
{A, B} , {B, C} , {C, D} , {E, F} , {E, H} , {F, G} , {G, H} , {I, J} , {J, K} , {K, L}

}
.
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1104 CHAPTER 11. GRAPHS AND TREES

Example 11.2 (Streets of Manhattan: a sample directed graph)
The following directed graph contains 9 nodes, each corresponding to an intersection
of a “street” running east–west and an “avenue” running north–south in Manhattan:

43rd&9th 43rd&8th 43rd&7th

42nd&9th 42nd&8th 42nd&7th

41st &9th 41st &8th 41st &7th

There are 14 edges in this graph. There’s something potentially tricky in count-
ing to 14: edges in a directed graph are ordered pairs, so there are two edges be-
tween 42nd& 9th and 42nd& 8th, one in each direction—〈42nd& 9th, 42nd& 8th〉 and
〈42nd& 8th, 42nd& 9th〉. The pair of nodes 42nd& 8th and 42nd& 7th is similar.

For many of the concepts that we’ll explore in this chapter, it will turn out that there
are no substantive differences between the ideas for directed and undirected graphs.
To avoid being tedious and unhelpfully repetitive, whenever it’s possible we’ll state
definitions and results about both undirected and directed graphs simultaneously. But
doing so will require a little abuse of notation: we’ll allow ourselves to write an edge
as an ordered pair 〈u, v〉 even for an undirected graph. In an undirected graph, we will
agree to understand both 〈u, v〉 and 〈v, u〉 as meaning {u, v}.

Simple graphs

(a) Undirected graphs.

(b) Directed graphs.

Figure 11.1: Parallel
edges and self-
loops.

For many of the real-world phenomena that we will be interested in
modeling, it will make sense to make a simplifying assumption about
the edges in our graphs. Specifically, we will typically restrict our at-
tention to so-called simple graphs, which forbid two different kinds of
edges: edges that connect nodes to themselves, and edges that are pre-
cise duplicates of other existing edges. (See Figure 11.1.)

Definition 11.3 (Self-loops and parallel edges)
A self-loop is an edge from a node u to itself. Two edges are called parallel if they both go
from same node u and both go to the same node v.

Note that the edges 〈u, v〉 and 〈v, u〉 are not parallel in a directed graph: directed edges
are parallel only if they both go from the same node and to the same node, in the same
orientation.

Definition 11.4 (Simple graph)
A graph is simple if it contains no parallel edges and no self-loops.

In general, the particular real-world phenomenon that we seek to model will dictate
whether self-loops, parallel edges, or both will make sense. Here are a few examples:
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Example 11.3 (Self-loops and parallel edges)
Problem: Suppose that we construct a graph to model each of the following phenom-

ena. In which settings do self-loops or parallel edges make sense?
1. A social network: nodes correspond to people; (undirected) edges represent

friendships.
2. The web: nodes correspond to web pages; (directed) edges represent links.
3. The flight network for a commercial airline: nodes correspond to airports;

(directed) edges denote flights scheduled by the airline in the next month.
4. The email network at a college: nodes correspond to students; there is a (di-

rected) edge 〈u, v〉 if u has sent at least one email to vwithin the last year.

Solution: 1. Neither self-loops nor parallel edges make sense. A self-loop would
correspond to a person being a friend of himself, and parallel edges between
two people would correspond to them being friends “twice.” (But two people
are either friends or not friends.)

2. Both self-loops and parallel edges are reasonable. It is easy to imagine a web
page p that contains a hyperlink to p itself. It is also easy to imagine a web page
p that contains two separate links to another web page q. (For example, as of
this writing, the “CNN” logo on www.cnn.com links to www.cnn.com. And, as of
the end of this sentence, this page has three distinct references to www.cnn.com.)

3. In the flight network, many parallel edges will exist: there are generally many
scheduled commercial flights from one airport to another—for example, there
are dozens of flights every week from BOS (Boston, MA) to SFO (San Francisco,
CA) on most major airlines. However, there are no self-loops: a commercial
flight from an airport back to the same airport doesn’t go anywhere!

4. Self-loops are reasonable but parallel edges are not. A student u has either sent
email to v in the last year or she has not, so parallel edges don’t make sense
in this network. However, self-loops exist if any student has sent an email to
herself (as many people do to remind themselves to do something later).

Throughout, we assume that all graphs are simple unless otherwise noted.

Taking it further: Actually, the way that we phrased our definitions of graphs in Definitions 11.1
and 11.2 doesn’t even allow us to consider parallel edges. (Our definitions do allow self-loops, though.)
That’s because we defined the edges as a subset E of V ×V or { {u, v} : u, v ∈ V}, and sets don’t allow
duplication—which means that we can’t have 〈u, v〉 in E “twice.” There are alternate ways to formalize
graphs that do permit parallel edges, but they’re needlessly complicated for the applications that we’ll
focus on in this chapter.

11.2.1 Neighborhoods and Degree
Imagine a social network in which two people, Ursula and Victor, are friends—or,
more generally, imagine an undirected graph in which nodes u and v are joined by an
edge. Here’s the vocabulary for referring to these nodes and the edge between them:
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1106 CHAPTER 11. GRAPHS AND TREES

Definition 11.5 (Adjacency, neighbors, endpoints, incidence)
For an edge e = {u, v} in an undirected graph (see Figure 11.2), we say that:

• the nodes u and v are adjacent;
• the node v is a neighbor of the node u (and vice versa);
• the nodes u and v are the endpoints of the edge e; and
• the nodes u and v are both incident to the edge e.

It’s important to distinguish between two distinct concepts:

u ve

Figure 11.2: Two
nodes joined by an
edge.• the direct connection between two nodes u and v that are adjacent—that is, a single

edge that joins u and v directly; and

• an indirect connection between two nodes that follows a sequence of edges.
At the moment, we’re talking only about the first kind of connection, a direct connec-
tion via a single edge. (A multihop connection is called a path; we’ll talk about paths in
Section 11.3.) Here’s an example of the vocabulary from Definition 11.5:

Example 11.4 (Disney World to Disney Land)
Here is a small portion of the U.S. Interstate system between Orlando, FL and Los
Angeles, CA. Each of the roads is labeled by its name.

Los Angeles

Lake City, FL Jacksonville

Tampa Daytona Beach

Orlando

I10(west)

I75

I10(east)

I95

I4(east)I4(west)

In this graph:

• Orlando is adjacent to Tampa and Daytona Beach.
• None of the other nodes (Lake City, Jacksonville, Los Angeles) is a neighbor of

Orlando. Orlando is also not a neighbor of itself.
• The endpoints of edge I75 are Tampa and Lake City.
• Jacksonville is incident to I95, as is Daytona Beach.

The neighborhood of a node is the set of all nodes adjacent to it:

Definition 11.6 (Neighborhood)
Let G = 〈V,E〉 be an undirected graph, and let u ∈ V be a node. The neighborhood of u is
the set

{
v ∈ V : {u, v} ∈ E

}
—that is, the set of all neighbors of u.
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For example, in the graph from Example 11.4 (reproduced in abbreviated form in
Figure 11.3), the neighborhood of Lake City (LC) is {Los Angeles (LA), Tampa (TA),
Jacksonville (JA)}. Or, for a graph G that represents a social network, the neighborhood
of a node u is the set of people who are u’s friends.

LA

LC JA

TA DB

OR

Figure 11.3: The
road network from
Example 11.4,
abbreviated.

Degree
It’s also common to refer the number of neighbors that a node has (without reference

to which particular nodes happen to be that node’s neighbors):

Definition 11.7 (Degree)
The degree of a node u in an undirected graph G is the size of the neighborhood of u in
G—that is, the number of nodes adjacent to u.

For example, in the graph in Figure 11.3, Lake City (LC) has degree 3 and Los Angeles
(LA) has degree 1. Or, in a social network, the degree of a node u is the popularity of
u—the number of friends that u has. Here are a few practice questions:

Example 11.5 (Neighborhood and degree)
Problem: Consider the following graph:

A

B

C

D

E

F

G

H

1. What are the neighbors of node C?
2. What nodes, if any, have degree equal to one?
3. What node has the highest degree in this graph?
4. What nodes, if any, are in the neighborhoods of both nodes B and E?

Solution: 1. Node C has two neighbors, namely the nodes B and E.
2. The nodes with degree one are those with precisely one neighbor. These nodes

are: A, D, F, and H. (Their solitary neighbors are, respectively: B, G, E, and G.)
3. We simply count neighbors for each node, and we find that nodes B and E both

have degree three, and are tied as the nodes with the highest degree.
4. The neighborhood of node B is {A, C, E}, and the neighborhood of node E is

{B, C, F}. Taking the intersection of those sets yields the one node in the neigh-
borhood of both B and E, namely node C.

Taking it further: Consider a population of people—say, the current residents of Canada—represented
as a social network, in an undirected graph whose edges represent friendship. For a node in the social
network (also known as a person), we can calculate many numbers that may be interesting: height, age,
income, number of cigarettes smoked per day, self-reported happiness, etc. Then, for any one of these
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1108 CHAPTER 11. GRAPHS AND TREES

numerical properties, we can consider the distribution over the population: for example, the distribution
of heights, or the distribution of ages. (The height distribution will follow a roughly bell-shaped curve;
the age distribution is more complicated, both because of death and because of variation in the birth
rate over time.) Another interesting numerical property of a person u is the degree of u: that is, the
number of friends that u has. The degree distribution of a graph describes how popularity varies across
the nodes of the network. The degree distribution has some interesting properties—very different from
the distribution of heights or ages. See p. 1123 for some discussion.

The Handshaking Lemma
Before we move on from degree, we’ll prove a basic but valuable fact, colloquially

called the “handshaking lemma.” (We can represent a group of people, some pairs of
whom shake hands, using an undirected graph: an edge joins u and v if and only if u
and v shook hands; the theorem describes the number of shakes.) The handshaking
lemma relates the sum of nodes’ degrees to the number of edges in the graph: 1

3 2

2 2

2

Figure 11.4: The
road network from
Figure 11.3, with
nodes labeled by
their degree.

Theorem 11.1 (“Handshaking Lemma”)
Let G = 〈V,E〉 be an undirected graph. Then

∑
u∈V

degree(u) = 2|E|.

For example, Figure 11.4 shows our road network from Example 11.4, with all nodes
labeled by their degree. This graph has |E| = 6 edges, and the sum of the nodes’
degrees is 1 + 3 + 2 + 2 + 2 + 2 = 12, and indeed 12 = 2 · 6. Here is a proof:

Proof of Theorem 11.1. Every edge has two endpoints! Or, more formally, imagine loop-

“Look on every exit
as being an entrance
somewhere else.”
— Tom Stoppard
(b. 1937),
Rosencrantz and
Guildenstern are
Dead (1966)

ing over each edge to compute all nodes’ degrees:

1: initialize du to 0 for each node u
2: for each edge {u, v} ∈ E:
3: du := du + 1
4: dv := dv + 1

In each iteration of the for loop, we increment two different d• values; thus, after i
iterations, we have that ∑u du = 2i. (We could give a fully rigorous proof of this fact by
induction.) We complete |E| iterations of the for loop, one for each edge, and thus at
the end of the algorithm we have that ∑u∈V du = 2|E|. Furthermore, after the loop, it’s
clear that du = degree(u) for every node u. Thus

∑
u∈V

du = ∑
u∈V

degree(u) = 2|E|.

Here’s a useful corollary of Theorem 11.1 (the proof is left to you as Exercise 11.17):

Corollary 11.2
Let nodd denote the number of nodes whose degree is odd. Then nodd is even.

(For example, for the graph in Figure 11.4, we have nodd = 2: the two nodes with odd
degree are those with degree 1 and 3. And 2 is an even number.)
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Neighborhoods and degree: directed graphs
The definitions of adjacency, neighbors, and degree from Definitions 11.5–11.7

were all for undirected graphs. Here we’ll introduce the analogous notions for directed
graphs, all of which are slightly more complicated because they must account for the
orientation of each edge. We start with the directed version of “neighbors”:

Definition 11.8 (Neighbors in directed graphs)
For an edge 〈u, v〉 from node u to node v in a directed graph, we say that:

• the node v is an out-neighbor of the node u; and
• the node u is an in-neighbor of the node v.

For example, if G represents a flight network (with nodes as airports and directed
edges corresponding to flights), then the out-neighbors of node u are those airports
that have direct flights from u, and the in-neighbors of u are those airports that have
direct flights to u. (See Figure 11.5.) Now, using these definitions, we can define the
analogues of neighborhoods and degree in directed graphs:

u

(a) in-neighbors

u

(b) out-neighbors

Figure 11.5: The in-
and out-neighbors
of a node u.

Definition 11.9 (Neighborhoods and degrees in directed graphs)
For a node u in an directed graph, we say that:

• the in-neighborhood of u is {v : 〈v, u〉 ∈ E}, the set of in-neighbors of v;
• the in-degree of u is its number of in-neighbors (its in-neighborhood’s cardinality);
• the out-neighborhood of u is {v : 〈u, v〉 ∈ E}, the set of out-neighbors of u; and
• the out-degree of u is its number of out-neighbors (its out-neighborhood’s cardinality).

Here are a few practice questions about in- and out-neighborhoods:

Example 11.6 (Neighborhood and degree in a directed graph)
Problem: Consider the following directed graph:

A

B

C

D

E

F

G

H

1. What are the in-neighbors of node C? The out-neighbors of C?
2. What nodes, if any, are in both the in-neighborhood and out-neighborhood of

node E?
3. What nodes, if any, have in-degree zero? Out-degree zero?

Solution: 1. Node C has one in-neighbor, namely B, and two out-neighbors, namely D

and E.
2. Node E has three in-neighbors (B, C, and F) and two out-neighbors (B and F). So

nodes B and F are in both E’s in-neighborhood and E’s out-neighborhood.
3. Node A has no in-neighbors, so A’s in-degree is zero. Node G has no out-

neighbors, so G’s out-degree is zero.
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1110 CHAPTER 11. GRAPHS AND TREES

11.2.2 Representing Graphs: Data Structures
The graphs that we’ve considered so far have been presented visually: as a picture,
with nodes drawn as circles and edges drawn as lines or arrows. But, of course, when
we represent a graph on a computer, we’ll need to use some data structure to store a
network, not just some image file. Here we will give a brief summary of the two major
data structures used to represent graphs. If you’ve had a course on data structures,
then this material may be a review; if not, it will be a preview.3

3 Katy Börner.
Atlas of Science:
Visualizing What We
Know. MIT Press,
2010.

Taking it further: A visual representation is great for some smaller networks, and a well-designed lay-
out can sometimes make even large networks easy to understand at a glance. Graph drawing is the prob-
lem of algorithmically laying out the nodes of a graph well—in an aesthetic and informative manner.
There’s a physics analogy that’s often used in laying out graphs, in which we imagine nodes “attracting”
and “repelling” each other depending on the presence or absence of edges. See p. 1124 for some discus-
sion, including an application of this graph-drawing idea to the 9/11 Memorial in New York City. Some
other gorgeous visualizations of network (and other!) data can be found online at sites like Flowing Data
(http://flowingdata.com/), Information Is Beautiful (http://informationisbeautiful.net), or some
of the beautiful books on data visualization like the Atlas of Science.3

The most straightforward data structure for a graph is just a list of nodes and a list
of edges. But this straightforward representation suffers for some standard, natural
questions that are typically asked about graphs. Many of the natural questions that we
will find ourselves asking are things like: What are all of the neighbors of A? or Are B and
C joined by an edge? There are two standard data structures for graphs, each of which is
tailored to make it possible to answer one of these two questions quickly.

Adjacency lists
The first standard data structure for graphs is an adjacency list, which—as the name

implies—stores, for each node u, a list of the nodes adjacent to u:

Definition 11.10 (Adjacency list)
In an adjacency list of a graph G = 〈V,E〉, for each node u ∈ V, we store an unsorted list of
all of u’s neighbors in the graph.

linked list of u’s neighbors

(empty) list of x’s neighbors

array containing all nodes in the graph

u v1 v2 v3 v4

x

...

...

Figure 11.6: A
schematic of an
adjacency list.

The schematic for an adjacency list is illus-
trated in Figure 11.6: each node in the graph
corresponds to a row of the table, which points
to an unsorted list of that node’s neighbors.
(These lists are unsorted so that it’s faster to
add a new edge to the data structure.)

There’s no significant difference between
adjacency lists for undirected graphs and for
directed graphs: for an undirected graph, we
list the neighbors for each node u; for a directed
graph, we list the out-neighbors of each node. (Every edge 〈u, v〉 in a directed graph
appears only once in the data structure, in u’s list. Every edge {u, v} in an undirected
graph is represented twice: v appears in u’s list, and u appears in v’s list. This observa-
tion is another way of thinking of the proof of Theorem 11.1.)
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Here are example adjacency lists for two graphs, one undirected and one directed:

Example 11.7 (Two sample adjacency lists)
Consider the following two graphs:

Allie

Ben

Camille

DerekEvie

A

B

C

D

E

The adjacency lists for these two graphs are as follows.

Allie: Evie, Ben

Ben: Allie, Evie

Camille: --

Derek: --

Evie: Allie, Ben

A: B

B: C, D

C: E, A

D: --

E: C

Note that the order of the (out-)neighbors of any particular node isn’t specified:
for example, we could just as well said that Evie’s neighbors were [Ben, Allie] as
[Allie, Ben].

Adjacency matrices
The second standard data structure for representing graphs is an adjacency matrix:

Definition 11.11 (Adjacency matrix)
In an adjacency matrix of a graph G = 〈V,E〉, we store the graph using an |V|-by-|V| table.
The ith row of the table corresponds to the neighbors of node i. A True (or 1) in column j
indicates that the edge 〈i, j〉 is in E; a False (or 0) indicates that 〈i, j〉 /∈ E.

In a directed graph, the ith row corresponds to the out-neighbors of node i, so that
the 〈i, j〉th entry of the matrix corresponds to the presence/absence of an edge from
i to j. The ith column corresponds to the in-neighbors of i. Here are two examples of
adjacency matrices, for the graphs from Example 11.7:

Example 11.8 (Two sample adjacency matrices)
The following adjacency matrices represent the graphs from Example 11.7:

A
l
l
i
e

B
e
n

C
a
m
i
l
l
e

D
e
r
e
k

E
v
i
e

Allie 0 1 0 0 1

Ben 1 0 0 0 1

Camille 0 0 0 0 0

Derek 0 0 0 0 0

Evie 1 1 0 0 0

A B C D E

A 0 1 0 0 0

B 0 0 1 1 0

C 1 0 0 0 1

D 0 0 0 0 0

E 0 0 1 0 0
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the main diagonal
〈j, j〉 /∈ E (for simple graphs)

〈j, i〉 ∈ E?
(identical in undirected graphs)

〈i, j〉 ∈ E?

0
0

0
0

0
0

0
0

i

j

i j

Figure 11.7: A
schematic of an
adjacency matrix.

The adjacency matrix has two properties
that are worth a note. (See Figure 11.7.)

• The main diagonal contains all zeros: a 1
in the 〈i, i〉th position of the matrix would
correspond to an edge between node i and
node i—that is, a self-loop, which is forbidden
in a simple graph.

• For an undirected graph, the matrix is sym-
metric: the 〈i, j〉th position of the matrix records
the presence or absence of an edge from i to j,
which is identical to the presence or absence
of an edge from j to i in an undirected graph. Adjacency matrices are not necessarily
symmetric in directed graphs: there may be an edge from u to v without an edge from
v to u.

Choosing between adjacency lists and matrices
Which of the two data structures that we’ve seen for graphs should we choose? Are

adjacency lists better than adjacency matrices, or the other way around? Recall the two Meta–problem-
solving tip: The
answer to “which
is better?” in a
class or textbook
is almost always
It depends! After
all, why would we
waste time/pages
on a solution that’s
always worse!?
(The only plausible
answer is that
it warms us up
conceptually for
a better but more
complex solution.)
The real question
here what does it
depend on?

basic questions about graphs that we wish to answer quickly:

(A) is v a neighbor of u?
(B) what are all of u’s neighbors?

Figuring the details of how efficiently we can answer these questions with an adja-
cency list or an adjacency matrix is better suited to a data-structures textbook than this
one, but here’s a brief summary of the reasoning.

Adjacency Lists: An adjacency list is perfectly tailored to answering Question (B):
we’ve stored precisely the list of u’s neighbors for each node u, so we simply iter-
ate through that list to output u’s neighborhood. To answer Question (A), we need
to search through that same unsorted list to see if v is present. In both cases, we
have to spend constant time finding u’s list in the table, and then we examine a list
of length degree(u) to answer the question.

Adjacency Matrices: An adjacency matrix is perfect for answering Question (A): we
just look at the appropriate spot in the table. If the 〈u, v〉th entry is True, then the
edge 〈u, v〉 exists. This lookup takes constant time. Answering Question (B) requires
looking at one entire row of the table, entry by entry. There are |V| entries in the
row, so this loop requires |V| operations.

Thus adjacency matrices solve Question (A) faster, while adjacency lists are faster at
solving Question (B). In addition to the time to answer these questions, we’d also want
the space—the amount of memory—consumed by the data structure to be as small as
possible. (You can think of “the amount of memory” as the total number of boxes that
appear in the diagrams in Figures 11.6 and 11.7.)
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Example 11.9 (Space consumption for adjacency lists and matrices)
Problem: Consider a graph G = 〈V,E〉 stored using an adjacency list or an adjacency

matrix. In terms of the number of nodes and the number of edges in G—that is, in
terms of |V| and |E|—how much memory is used by these data structures?

Solution: An adjacency matrix is a |V|-by-|V| table, and thus contains exactly |V|2
cells. (Of them, the |V| cells on the diagonal are always 0, but they’re still there!)

An adjacency list is a |V|-element table pointing to |V| lists; the length of the list
for node u is exactly degree(u). Thus the total number of cells in the data structure
is

|V| + ∑
u∈V

degree(u).

In an undirected graph we have ∑u degree(u) = 2|E|, by Theorem 11.1; in a directed
graph we have ∑u out-degree(u) = |E| by Exercise 11.18. Thus the total amount of
memory used is 



|V| + 2|E| for an undirected graph
|V| + |E| for a directed graph.

Here’s the summary of the efficiency differences between these data structures (using
asymptotic notation from Chapter 6):

adjacency list adjacency matrix
is v a neighbor of u? 1 +Θ(degree(u)) Θ(1)

what are all of u’s neighbors? 1 +Θ(degree(u)) Θ(|V|)
space Θ(|V| + |E|) Θ(|V|2)

The better data structure in each row is highlighted. (Note that, in a simple graph, we
have that degree(u) ≤ |V| and |E| ≤ |V|2.) So, is an adjacency list or an adjacency
matrix better? It depends!

First, it depends on what kind of questions—Question (A) or Question (B) listed
previously, for example—we want to answer: if we will ask few “is v a neighbor of
u?” questions, then adjacency lists will be faster. If we will ask many of those ques-
tions, then we probably prefer adjacency matrices. Similarly, it might depend on how
much, if at all, the graph changes over time: adjacency lists are harder to update than
adjacency matrices.

Second, it depends on how many edges are present in the graph. If the total num-
ber of edges in the graph is relatively small—and thus most nodes have only a few
neighbors—then degree(u) will generally be small, and the adjacency list will win. If
the total number of edges in the graph is relatively large, then degree(u) will generally
be larger, and the adjacency matrix will perform better. (Many of the most interesting
real-world graphs are sparse: for example, the typical degree of a person in a social
network like Facebook is perhaps a few hundred or at most a few thousand—very
small in relation to the hundreds of millions of Facebook users.)
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11.2.3 Relationships between Graphs: Isomorphism and Subgraphs
Now that we have the general definitions, we’ll turn to a few more specific properties
that certain graphs have. We’ll start in this section with two different relationships
between pairs of graphs—when two graphs are “the same” and when one is “part” of
another; in Section 11.2.4, we’ll look at single graphs with a particular structure.

Graph isomorphism
When two graphs G and H are identical except for how we happen to have arranged

the nodes when we drew them on the page (and except for the names that we happen
to have assigned to the nodes), then we call the graphs isomorphic. Informally, G and H Greek: iso “same”;

morph “form.”are isomorphic if there’s a way to relabel (and rearrange) the nodes of G so that G and
H are exactly identical. More formally:

Definition 11.12 (Graph isomorphism)
Consider two graphs G = 〈V,E〉 and H = 〈U, F〉. We say that G and H are isomorphic if
there exists a bijection f : V → U such that

for all a ∈ V and b ∈ V, 〈a, b〉 ∈ E ⇔ 〈f (a), f (b)〉 ∈ F.

(By abusing notation as we described earlier, this definition works for either undi-
rected or directed graphs G and H.) Here are some small examples:

Example 11.10 (Two isomorphic graphs)
Let’s show that the following two directed graphs are isomorphic. (The first graph’s
edges could also have be written as {〈a, b〉 : a < b and a evenly divides b}.)

1 2 3 4 5 6 A

D

C

B

F

E

To do so, define the following bijection f : {1, 2, . . . , 6} → {A, B, . . . , F}:
x 1 2 3 4 5 6

f (x) A D C F B E

The tables of edges in the graphs now match exactly, so they are isomorphic:
1 2 3 4 5 6

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓

3 ✓

4
5
6

A D C F B E

f (1) = A ✓ ✓ ✓ ✓ ✓

f (2) = D ✓ ✓

f (3) = C ✓

f (4) = F

f (5) = B

f (6) = E
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Example 11.11 (Isomorphic graphs)
Problem: Which pairs, if any, of the following graphs are isomorphic?

A

B

C

DE

F

G

H

IJ

1

2

3

4

5 0

7

9

6

8 Z

U

Y

V

Q

W

S

R

X

T

Solution: The first two graphs are isomorphic. The easiest way to see this fact is to
show the mapping between the nodes of the two graphs:

A B C D E F G H I J

1 2 3 4 5 0 7 9 6 8

It’s easy to verify that all 15 edges now match up between the first two graphs. But
the third graph is not isomorphic to either of the others. The easiest justification is
that node S in the third graph has degree 5, and no node in either of the first two
graphs has degree 5. No matter how we reshuffle the nodes of graph #3, there will
still be a node of degree 5—so the third graph can never match the others.

Problem-solving
tip: When you’re
trying to prove or
disprove a claim
about graphs,
you may find it
useful to test out
the claim against
the following four
“trivial” graphs:

A lot of bogus
claims about graphs
turn out to be false
on one of these
four examples—
or, unexpectedly,
the so-called
Petersen graph,
the first graph in
Example 11.11. (The
Petersen graph is
named after Julius
Petersen, a 19th-
century Danish
mathematician.) It’s
a good idea to try
out any conjecture
on all five of these
graphs before you
let yourself start to
believe it!

Taking it further: In general, it’s easy to test whether two graphs are isomorphic by brute force (try all
permutations!), but no substantially better algorithms are known. The computational complexity of the
graph isomorphism problem has been studied extensively over the last few decades, and there has been
substantial progress—but no complete resolution.

It’s easy to convince someone that two graphs G and H are isomorphic: we can simply describe
the relabeling of the nodes of G so that the resulting graphs are identical. (The “convincee” then just
needs to verify that the edges really do match up.) When G and H are not isomorphic, it might be easy
to demonstrate their nonisomorphism: for example, if they have a different number of nodes or edges,
or if the degrees in G aren’t identical to the degrees in H. But the graphs may have identical degree
distributions and yet not be isomorphic; see Exercise 11.49.

Subgraphs
When a graph H is isomorphic to a graph G, we can think of having createdH by

moving around some of the nodes and edges of G. When H is a subgraph of G, we can
think of having createdH by deleting some of the nodes and edges of G. (Of course,
it doesn’t make sense to delete either endpoint of an edge e without also deleting the
edge e.) Here’s the definition, for either undirected or directed graphs:

Note that Defini-
tion 11.13 uses the
abuse of notation
that we mentioned
earlier: we “ought”
to have written
{u, v} ∈ E′ for
the case that G is
undirected.

Definition 11.13 (Subgraph)
Let G = 〈V,E〉 be a graph. A subgraph of G is a graph G′ = 〈V ′,E′〉 where V ′ ⊆ V and
E′ ⊆ E such that every edge 〈u, v〉 ∈ E′ satisfies u ∈ V ′ and v ∈ V ′.

For example, consider the graph G = 〈V,E〉with nodes V = {A, B, C, D} and edges
E = {{A, B} , {A, C} , {B, C} , {C, D}}. Then the graph G′ with nodes {B, C, D} and edges
{{B, C} , {C, D}} is a subgraph of G. In fact, G has many different subgraphs:
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Example 11.12 (All 3-node subgraphs of G)
Here are all of the 3-node subgraphs of the graph Gwith nodes V = {A, B, C, D} and
edges E = {{A, B} , {A, C} , {B, C} , {C, D}}. (There are many other subgraphs—about 50
total—when we consider subgraphs with 1, 2, 3, or 4 nodes.)

A, B, C: A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D

A, B, D: A

B

C

D A

B

C

D

A, C, D: A

B

C

D A

B

C

D A

B

C

D A

B

C

D

B, C, D: A

B

C

D A

B

C

D A

B

C

D A

B

C

D

Ger

Jap Ita

US UK

+ +

+

+

− −

− − − −

(a) A signed
network from 1941

+ +
−

−
−
−

(b) Two triangles

Figure 11.8: Signed
social networks. For
more about signed
networks and these
results, see

Taking it further: One of the earliest applications of a formal, mathematical perspective to networks—a
collaboration between a psychologist and mathematician, in the 1950s—was based on subgraphs. Con-
sider a signed social network, an undirected graph where each edge is labeled with ‘+’ to indicate friends,
or ‘−’ to indicate enemies. (See Figure 11.8(a).) The adages “the enemy of my enemy of my friend”
and “the friend of my friend is my friend” correspond to the claim that the subgraphs in Figure 11.8(b)
would not appear. Dorwin Cartwright (the psychologist) and Frank Harary (the mathematician) proved
some very interesting structural properties of any signed social network G that does not have either
triangle in Figure 11.8(b) as a subgraph—a property that they called “structural balance”—and in the
process helped launch much of the mathematical and computational work on graphs that’s followed.4

4
4 Dorwin
Cartwright and
Frank Harary.
Structural balance:
a generalization of
Heider’s theory.
Psychological Review,
63(5):277–293, 1956.

We sometimes refer to a special kind of subgraph: the subgraph of G = 〈V,E〉 induced
by a set V ′ ⊆ V of nodes is the subgraph of G where every edge between nodes in V ′ is
retained. The first subgraph in each row of Example 11.12 is the induced subgraph for
its nodes. Here’s a brief description of one application of (induced) subgraphs:

Example 11.13 (Motifs in biological networks)
At any particular moment in any particular cell, some of the genes in the organism’s
DNA are being expressed—that is, some genes are “turned on” and the proteins that
they code for are being produced by the cell. Furthermore, one gene g can regulate
another gene g′: when g is being expressed, gene g can cause the expression of gene
g′ to increase or decrease over the baseline level. A great deal of recent biological re-
search has allowed us to construct gene-regulation networks for different such settings:
that is, a directed graph G whose nodes are genes, and whose edges represent the
regulation of one gene by another.

Consider the induced subgraph of a particular set of genes in such a graph G—
that is, the interactions among the particular genes in that set. Certain patterns of
these subgraphs, called motifs, occur significantly more frequently in gene-regulation
networks than would be expected by chance. Biologists generally believe that these
repeated patterns indicate something important in the way that our genes work, so
computational biologists have been working hard to build efficient algorithms to
identify induced subgraphs that are overrepresented in a network.
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11.2.4 Special Types of Graphs: Complete, Bipartite, Regular, and Planar Graphs
In Section 11.2.3, we looked at two ways in which a pair of graphs might be related.
Here, we’ll consider special characteristics that a single graph might have—that is,
subcategories of graphs with some particular structural properties. These special types
of graphs arise frequently in various applications.

Complete graphs
Our first special type of graph is a complete graph (also called a clique), which is an In CS, the word

clique usually
rhymes with
bleak or sleek. In
common-language
usage, the word
usually rhymes
with slick or flick.

undirected graph in which every possible edge exists:

Definition 11.14 (Complete graph/clique)
A complete graph or clique is an undirected graph G = 〈V,E〉 such that {u, v} ∈ E for any
two distinct nodes u ∈ V and v ∈ V.

Figure 11.9: Com-
plete graphs with 3,
5, 8, and 16 nodes.

See Figure 11.9 for examples of com-
plete graphs of varying sizes. (In
everyday usage, a clique is a small,
tight-knit, and exclusionary group
of friends that doesn’t mingle with
outsiders. If you think about a graph
as a social network, the common-language meaning is similar to Definition 11.14.)

Observe that an undirected graph with n nodes has (n2
) unordered pairs of nodes,

and therefore an n-node complete graph has
(n
2
)
= n(n− 1)/2 edges.

A complete graph with n nodes is sometimes denoted by Kn. There are two
different prevailing
explanations for the
Kn notation:
• the K is as in

complete—or, rather,
as in komplett;
the notation was
invented by a
German speaker.
• the K is in

honor of Kazimierz
Kuratowski, a
20th-century Polish
mathematician
who made major
contributions
to the study of
graphs (among
other mathematical
topics).

The word clique can also refer to a subgraph that’s complete—that is, in which every
possible edge actually exists. For example, the graph G = 〈V,E〉 with V = {A, B, C, D}
and E =

{
{A, B} , {A, C} , {B, C} , {C, D}

}
contains a 3-node clique {A, B, C}. Here’s one

small example of an interesting application in which cliques arise:

Example 11.14 (Collaboration networks and cliques)
Imagine a setting in which different groups of people can work together in different
teams, with each person allowed to participate in multiple teams. For example:

• actors in movies. (A “team” is the cast of a single movie.)
• scientific researchers. (A “team” is the set of coauthors of a published paper.)
• employees of a company. (A “team” is a group that worked on a specific project.)

A collaboration network is a graph G that represents a setting like these: the nodes of G
are the people involved; there is an edge between any two people who have worked
together on at least one team. (You may have heard of a challenge in the collabora-
tion network: in the Kevin Bacon Game, you’re given the name of some actor A; your
job is to find a sequence of edges that connects A to the “Kevin Bacon” node in the
movie collaboration network. There’s a similar game that computer scientists play in
the scientific collaboration network, trying to connect themselves to the Hungarian
polymath Paul Erdős. See p. 438.)
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For example, for the teams listed below, we get the collaboration network at right:
• Tigers: Deborah, George, Hicham, Josh, Lauren
• Unicorns: Anita, Bev, Eva, Fernan
• Vultures: Cathy, Eva, Kelly

EA

B F

C K

D

G
H

J
L

Notice that each team results in a clique inside the collaboration graph—every pair of
members of that team is joined by an edge—in this case, creating a K5, K4, and K3 in
the graph:

Tigers

EA

B F

C K

D

G
H

J
L

Unicorns

EA

B F

C K

D

G
H

J
L

Vultures

EA

B F

C K

D

G
H

J
L

Bipartite graphs
Our second special kind of graph is a bipartite graph. In a bipartite graph, the nodes Latin: bi “two”; part

“part.”can be divided into two groups such that no edges join two nodes that are in the same
group: that is, there are two “kinds” of nodes, and all edges join a node of Type A to a
node of Type B. Formally:

Definition 11.15 (Bipartite graph)
A bipartite graph is an undirected graph G = 〈V,E〉 such that V can be partitioned into two
disjoint sets L and R where, for every edge e ∈ E, one endpoint of e is in L and the other
endpoint of e is in R.

For example, consider the graph G = 〈V,E〉whose nodes are V = {A, B, C, D, E, F} and
whose edges are E =

{
{A, B} , {A, C} , {C, E} , {D, E}

}
. The graph G is bipartite: for ex-

ample, we can split the nodes into two groups—the vowels {A, E} and the consonants
{B, C, D, F}—such that every edge joins a vowel and a consonant. (There’s another split
that would also have worked: {A, E, F} and {B, C, D}.) See Figure 11.10 for a visualiza-
tion of the vowel–consonant split.

Bipartite graphs are traditionally drawn with the nodes arranged in two columns,

A

E

B

C

D

F

L R

Figure 11.10: A
bipartite graph.

one for each part: left (“L”) and right (“R”). But notice that the definition only requires
that it be possible to divide the nodes into two groups, with no within-group edges.

Example 11.15 (Bipartite or nonbipartite?)
Problem: Which of the following graphs are bipartite?

(a) (b) (c) (d) (e)
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Solution: All of them except (c)! Although (d) and (e) are the only graphs drawn in
the “two-column” format, both (a) and (b) can be rearranged into two columns. In
fact, aside from node positioning, graphs (a) and (d) are identical. And, similarly,
graphs (b) and (e) are isomorphic!

Only (c) is not bipartite: if we attempt to put the topmost node in one group,
then both of the next higher two nodes must both be in the other group—but
they’re joined by an edge themselves, and so we’re stuck.

Many interesting real-world phenomena can be modeled using bipartite graphs:

Example 11.16 (Bipartite graphs as models)
Here are just a few of the scenarios that are naturally modeled using bipartite graphs:

• dating relationships in a strictly heterosexual community: the nodes are the boys B
and the girls G; every edge connects some boy to some girl.

• nodes are courses and students; an edge joins a student to each class she’s taken.

• affiliation networks: people and organizations are the nodes; an edge connects per-
son p and organization o if p is a member of o.

Figure 11.11:
Complete bipartite
graphs of varying
sizes: K1,4, K4,4,
K8,4, K8,8, and K2,4.

There’s one further refinement of bipartite
graphs that we’ll mention: a complete bipartite
graph is a bipartite graph in which every pos-
sible edge exists. In other words, a complete
bipartite graph has the form G = 〈L ∪ R,E〉
where {ℓ, r} ∈ E for every node ℓ ∈ L and
r ∈ R. A complete bipartite graph with ℓ
nodes in the left group and r nodes in the
right group is sometimes denoted by Kℓ,r.
See Figure 11.11 for a few examples. (Note again that, as with the K2,4 in Figure 11.11,
we don’t have to draw a bipartite graph in two-column format—if it’s bipartite, then
it’s still bipartite no matter how we draw it!)

Regular graphs
Our next type of graph is defined in terms of the degree of its nodes: a regular graph

is one in which all of the nodes have an identical number of neighbors.

Definition 11.16 (Regular graph)
Let d ≥ 0 be an integer. A d-regular graph is a graph G such that every node has degree
precisely equal to d. If G is d-regular for any d, then we say that G is a regular graph.

(Most of the time one talks about regular graphs that are undirected, but we can speak
of regular directed graphs, too; we’d generally require that all in-degrees match each
other and all out-degrees match each other.)
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For example, consider the graph G = 〈V,E〉whose nodes are V = {A, B, C, D, E, F}
and whose edges are E =

{
{A, B} , {A, E} , {B, C} , {C, F} , {D, E} , {D, F}

}
. The graph

1

2

3

4
5

6

7

8

9
10

Figure 11.12: A
4-regular 10-node
graph.

G is 2-regular: you can check that each node has exactly two neighbors. As
another example, note that the complete graph Kn is (n− 1)-regular, as each
node has all n − 1 other nodes as neighbors. Or see Figure 11.12 for another
example of a regular graph.

There are many real-world examples in which regular graphs are useful: for
example, imagine constructing a physical network of computers in which each
machine only has the capacity for a fixed number of connections. Here are two
other useful applications of regular graphs:

Example 11.17 (Scheduling sports with a regular graph)
You are the League Commissioner for an intramural ultimate frisbee league. There
are 10 teams in the league, each of whom should play four games. No two teams
should play each other twice. Suppose that you construct an undirected graph
G = 〈V,E〉, where V = {1, 2, . . . , 10} is the set of teams, and E is the set of games
to be played. If G is an 4-regular graph, then all of the listed requirements are met.
Figure 11.12 is a randomly generated example of such a graph; you could use that
graph to set the league schedule.

A 1-regular graph is called a perfect matching, because each node is “matched” with
one—and only one—neighbor. (If every node has degree at most 1, then the graph is
just called a matching.) Matchings have a variety of applications—for example, see
p. 960 for their role in the Enigma machine—but here’s another specific use of match-
ings, in assigning partnerships:

Example 11.18 (Matchings for CS partnerships)
Each of n students in an Intro CS class submits a list of people whom they’d like to
have as a partner for the final project. Define the following undirected graph G:
• the set V of nodes is {1, 2, . . . , n}, one per student.
• the set E of edges includes {u, v} if both of the following are true: student u wants

to work with student v, and student v wants to work with student u.
The instructor can assign partnerships by finding a 1-regular graph G′ = 〈V,E′〉 with
E′ ⊆ E—that is, a subgraph of G that includes all of the nodes of G. For example:
For this graph G . . . . . . these graphs (among others) are valid partner assignments.
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(Incidentally, Example 9.32 asked: how many perfect matchings are there in Kn?)
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Planar graphs
Our last special type of graph is a planar graph, which is one that can be drawn on a

sheet of paper without any lines crossing:

Definition 11.17 (Planar graph)
A planar graph is a graph G such that it is possible to draw G on a plane (that is, on a piece
of paper) such that no edges cross.

It’s important to note that a graph is planar if it is possible to draw it with no crossing
edges; just because a graph is drawn with edges crossing does not mean that it isn’t
planar. Here is an example of a planar graph:

Example 11.19 (New England, in a plane)
Here are two copies of the same graph—one drawn with edge crossings, and another
with the nodes rearranged to avoid edge crossing:

NH ME NY

RI

CTMA

VT

NH

ME

NY

RICT

MA

VT

Example 11.19 shows one of the most famous types of planar graph, one derived from
a map: we can think of the countries on a map as nodes, and we draw an edge be-
tween two country–nodes if those two countries share a border. (See p. 437 for a dis-
cussion of the four-color theorem for maps, which we could have phrased as a result
about planar graphs instead.)

There are other applications of planar graphs in computer science, too. For example,
we can view a circuit (see Section 3.3.3) as a graph, where the logic gates correspond
to nodes and the wires correspond to edges. Most modern circuits are now printed on
a board (where the “ink” is the conducting material that serves as the wire), and the
question of whether a particular circuit can be printed on a single layer is precisely the
question of whether its corresponding graph is planar. (If it’s not planar, we’d like to
minimize the number of edges that cross, or more specifically the number of layers
we’d need in the circuit.)

Here’s one more set of planarity challenges for you to try:

Example 11.20 (Two planar challenges)
Problem: Are these graphs planar? 1. A

D

FB

E

G

C

2. HI

J K L M
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Solution: Yes, both: we can rearrange the nodes so that there are no edges that cross.

1.
A D

F

B

E G C
2.

HI
J

K

L

M

(a) K5 (b) K3,3

A

B

C

DE

F

G

H

IJ

(c) The Petersen graph

Figure 11.13:
Nonplanar graphs.

Taking it further: Determining how to lay out a planar
graph without edge crossings can be an interesting
amusement—see www.planarity.net for a surprisingly
fun game based on planar graphs. So far we haven’t
seen any examples of graphs that can’t be rearranged
so that no edges cross. But, if you play around long
enough, you should be able to convince yourself that
neither K5 and K3,3 are planar; see Figure 11.13. And,
while this shouldn’t be at all obvious, it turns out
that K5 and K3,3 are in a sense the only “reasons” that a graph can be nonplanar. A theorem known
as Kuratowski’s Theorem—after the Polish mathematician who may have lent his initial to the notation
for complete graphs—says that every graph is planar unless it “contains” K5 or K3,3 for a subgraph-
like notion of “containment.” (It’s not exactly the subgraph relation, because there are graphs that do
not contain K5 or K3,3 as subgraphs but nonetheless are nonplanar in some sense “because” of one of
them. For example, the Petersen Graph from Example 11.11—see Figure 11.13(c)—is nonplanar, but it
doesn’t have K5 as a subgraph. But if we “collapse” together the nodes A/F, B/G, C/H, D/I, and E/J into
“supernodes” then the resulting graph is K5.)
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Computer Science Connections

Degree Distributions and the Heavy Tail
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(c) The cumulative degree distribution

Figure 11.14: The degree distribution of
≈ 18,000 Facebook users at the Univer-
sity of North Carolina. Figure 11.14(b)
shows a log–log plot of the same data
as the linear plot in Figure 11.14(a). Fig-
ure 11.14(c) shows a log–log plot of the
cumulative degree distribution: the num-
ber of people with degree ≥ k, whereas
Figures 11.14(a) and 11.14(b) showed the
number with degree = k.

When we think about massive graphs like the World-WideWeb (with
nodes representing web pages and edges representing hyperlinks from one
page to another) or an online social network (with nodes representing people
and edges representing “friendships”), it is interesting to look at how proper-
ties of individual nodes are distributed across the population. We can look at
the distribution of any node-by-node property—the physical height of Twitter
users, or the number of words of text per web page, for example. But in addi-
tion to demographic properties like height and length, we can also look at the
distribution of network-type properties.

The degree distribution of a graph G shows, for each possible degree d, the
number of nodes in G whose degree is d. While one might initially expect
degree distributions to look similar to the distribution of heights, it turns out
that the degree distribution of an online social network has very different
properties. Figure 11.14 shows the degree distribution (in linear, log–log, and
cumulative form) for members of the University of North Carolina.5

From the Facebook5 dataset, from
Mason Porter via the International
Network for Social Network Analysis:
5 Amanda L. Traud, Peter J. Mucha,
and Mason A. Porter. Social struc-
ture of Facebook networks. CoRR,
abs/1102.2166, 2011.

Figure 11.14 shows, for each value of k, the number of people who have
precisely k Facebook friends. About 350 people have only 1 friend, which is
the most common number of friends to have. There are about 750,000 friend-
ships represented in this dataset; the average degree is ≈ 84. But, looking at
the far-right end of Figure 11.14(a) and 11.14(b), we see a handful of people
with very high degrees: 2000, 2500, 3000, and even ≈ 3800. One of the inter-
esting facts about degree distributions in real social networks (or the web)
is that there are people whose popularity is massively larger than average:
the highest-degree person in this dataset is about 3800/84 ≈ 45 times more
popular than average. (Imagine the tallest person at the University of North
Carolina being 45 times taller than average!)

Significant research by computer scientists (and many others!) interested
in the structure of social networks and the world-wide web has focused on
this so-called heavy-tailed degree distribution.6 Some of the literature debates the

You can read more about power laws
and heavy-tailed degree distributions:
6 David A. Easley and Jon M. Kleinberg.
Networks, Crowds, and Markets: Reason-
ing About a Highly Connected World.
Cambridge University Press, 2010.

particular form of this distribution; for example, whether the distribution has
the particular form of a power law,where the number of people with degree k
is roughly kα for some small constant α, usually around 2.
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Computer Science Connections

Graph Drawing, Graph Layouts, and the 9/11 Memorial
Visual representations of most large graphs are too cluttered for a hu-

man viewer to process: there are just too many nodes and edges crammed
into a small space to see much of anything. Visually presenting a graph like
Facebook (billions of nodes, tens of billions of edges) without it looking like
a grade-school scribble is daunting. But there is an entire subfield of com-
puter science called graph drawing, which is devoted to taking networks and
producing good—clear, aesthetic, informative—images of the networks.

Figure 11.15: A visualization of selected
European train routes, where each
node’s position corresponds to the city’s
spatial location. Image reproduced
with permission from RGBAlpha/Getty
Images, Inc.

In some large graphs, each node has
a “natural location” and thus it is clear
where on the page it should be placed. For
example, graphs may represent data in
which the nodes have a precise location sit-
uated in the physical world. When we have
that kind of layout information for each
node, presenting the graph well is easier.
(See Figure 11.15.) But many large graphs
do not have obvious coordinates associ-
ated with each node: while you and your
college classmates do have geographic loca-
tions (dorm rooms), it’s not clear that your
dorm really best describes “where” you fit
in the social scene of your institution.

For graphs whose nodes don’t have
obvious coordinates, we have to do some-
thing else. One approach that’s often used in graph drawing is to arrange the
nodes based on a physics analogy, as follows. Imagine each node as a charged
particle: any two nodes that are joined by an edge are pulled together by an
attractive force, and any two nodes that are not joined by an edge are pushed
apart by a repulsive force. Then figuring out how to place nodes on the page
can be done by starting them in a random configuration and letting the attrac-
tive/repulsive forces move the nodes around until they’re “happy” in their
current positions.

An idea like this one was actually used in designing the 9/11 memorial at
the site of the World Trade Center. The memorial was designed with bronze
panels inscribed with the 2982 names of victims. A team of computer sci-
entists, architects, and visual artists collaborated to organize the names in a
meaningful way. Families were invited to submit “meaningful adjacencies”
between victims—which would cause two names to be as close together in
the bronze panels as possible. (One of the other algorithmic issues regarding
the layout of this memorial was that the designers wanted the names to be
placed at evenly spaced intervals on the bronze panels; this constraint added
to the computational complexity of the process.) The team used an algorithm
to organize the names in an arrangement that respected these requests, which
was then used in the final design of the memorial.7

In addition to the broader news reports
on the wrenching emotional and his-
torical aspects of 9/11 Memorial, the
algorithmic aspects of the memorial
were also covered in the popular press.
You can read more about it here:
7 Nick Paumgarden. The names. The
New Yorker, 16 May 2011.
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11.2.5 Exercises

For each of the following, draw a graph G = 〈V,E〉 for the following sets of nodes and edges. Does it make sense to use a
directed or undirected graph? Is the graph you’ve drawn simple?
11.1 nodes V = {1, 2, . . . , 10}; an edge connects x and y if gcd(x, y) = 1.
11.2 nodes V = {1, 2, . . . , 10}; an edge connects x and y if x divides y.
11.3 nodes V = {1, 2, . . . , 10}; an edge connects x and y if x < y.

For the following undirected graphs, list the edges of the graph, and identify the node(s) with the highest degree. For the
directed graphs, identify the node(s) with the highest in-degree, and the node(s) with the highest out-degree.
11.4

A

B

C

D

E

F

G

H

11.5

A

E

B F

C G

D

H

11.6

A

E

B F

C G

D

H

11.7
A

B

C

D

Consider a graph G = 〈V,E〉 with n := |V| nodes. State your answers in terms of n. Justify.
11.8 If G is an undirected, simple graph, what’s the largest that |E| can be? The smallest?
11.9 If G is a directed, simple graph, what’s the largest that |E| can be? The smallest?
11.10 How do your answers to Exercise 11.9 change if self-loops are allowed?
11.11 How do your answers to Exercise 11.9 change if self-loops and parallel edges are allowed?

The anthropologist Robin Dunbar has argued that humans have a mental capacity for only ≈ 150 friends.8 (This argu- 8 Robin Dunbar.
How Many Friends
Does One Person
Need?: Dunbar’s
Number and Other
Evolutionary Quirks.
Harvard University
Press, 2010.

ment is based in part on the physical size of the human brain, and cross-species comparisons; 150 is now occasionally
known as Dunbar’s Number.)

Thanks to Michael
Kearns, from
whom I learned a
somewhat related
version of these
exercises.

Suppose that Alice has exactly 150 friends, and each of her friends has exactly 150 friends—that is, a friend of Alice
knows Alice and 149 other people. (Note that Alice’s friends’ sets of friends can overlap.) Let S denote the set of people
that Alice knows directly or with whom Alice has a mutual friend.
11.12 What’s the largest possible value of |S|?
11.13 What’s the smallest possible value of |S|?
Continue to assume that everyone has precisely 150 friends. Let Sk denote the set of all people that Bob knows via a
chain of k or fewer intermediate friends:
• Bob’s friends are in S0;
• the people in S0 and the friends of people in S0 are in S1;
• the people in S1 and the friends of people in S1 are in S2; and so forth.
11.14 Let k ≥ 0 be arbitrary. What’s the largest possible value of |Sk |?
11.15 Let k ≥ 0 be arbitrary. What’s the smallest possible |Sk |?

Prove the following properties of graphs, related to Theorem 11.1 or degree more generally:
11.16 Let u be a node in an undirected graph G. Prove that u’s degree is at most the sum of the degrees
of u’s neighbors.
11.17 Prove Corollary 11.2: in an undirected graph G = 〈V,E〉, let nodd denote the number of nodes
whose degree is odd. Prove that nodd is an even number. That is: prove that

| {u ∈ V : degree(u) mod 2 = 1} | mod 2 = 0.
11.18 Prove the analogy of Theorem 11.1 for directed graphs: for a directed graph G = 〈V,E〉,

∑
u∈V

in-degree(v) = ∑
u∈V

out-degree(v) = |E|.
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head

Figure 11.16: A
linked list. Each
rectangle is a node,
and shows two
fields: data on the
left and next on the
right.

A linked list is a data structure consisting of a collection of nodes,
each of which contains two fields: a data field (whatever the node stores)
and a next field that is either null or points to a node in the linked list.
A particular node is designated as the head node. Note that a circular
linked list in which a node points back to a previously encountered
node meets this definition. See Figure 11.16.

Define a not-necessarily-simple directed graph G = 〈V,E〉, where
V is the set of all nodes reachable by following any number of next
pointers starting at the head node, and 〈u, v〉 ∈ E if u’s next field points to u. Observe that each node u in G has
out-degree d ∈ {0, 1}.

Describe a 5-node linked list in which . . .
11.19 . . . every node has in-degree d = 1.
11.20 . . . some node has in-degree d = 2.
11.21 . . . the resulting graph G is not simple.
11.22 (This exercise is a tougher algorithmic challenge.) You are given access to the head node h of an n-
node linked list. The value of n is unknown to you. The only operations permitted are (a) to save a node;
(b) test whether two saved nodes are the same or different; and (c) given a node u, fetch the node pointed to
by u.next. Give an algorithm to determine whether the given list is circular using only a constant amount of
memory—that is, remembering only a constant number of nodes at a time.

1 2 3 4

Figure 11.17: A
doubly linked list.
Each rectangle
is a node, and
shows three fields:
previous on the
left, data in the
middle, and next

on the right.

A doubly linked list has n nodes with data and two pointers, previous
and next, to other nodes (or null). (See Figure 11.17 for an example.) Let
Cn denote an n-node doubly linked list with nodes {1, 2, . . . , n}, where, for
each node u,
• u’s next node is v = (u mod n) + 1
• v’s previous node is u.
Define a directed graph Gn = 〈V,E〉, where V is the set {1, 2, . . . , n} of
nodes, and every node has two edges leaving it: one edge 〈u,u.next〉, and
one edge 〈u,u.previous〉.
11.23 Draw G5.
11.24 Give an example of a Gn that contains a self-loop.
11.25 Give an example of a Gn that contains parallel edges.

Write down an adjacency list representing each of the following graphs.

11.26

A

B

C

D

E

F

G

H

11.27

A

E

B F

C G

D

H

11.28

A

E

B F

C G

D

H

11.29
A

B

C

D

Now give an adjacency matrix for the graphs shown in the above exercises:

11.30 Exercise 11.26
11.31 Exercise 11.27

11.32 Exercise 11.28
11.33 Exercise 11.29

11.34 Suppose that a (possibly directed or undirected) simple graph G is represented by an adjacency
list. Suppose further that, for every node u in G, the list of (out-)neighbors of u has a different length. True or
False: G must be a directed graph. Justify your answer.
11.35 Describe a directed graph Gmeeting the specifications of Exercise 11.34.
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The density of a graph G = 〈V,E〉 is the fraction of all possible edges that actually exist: that is,

density = |E|
[your answer to the first part of Exercise 11.8/Exercise 11.9] .

Taking it further: Informally, a dense graph is one for which most pairs of nodes are joined by an edge, and
a sparse graph is one in which few pairs of nodes are joined by an edge. We will use these terms informally; a
graph is dense if its density is close to 1, and sparse if its density is close to 0. Some people define graphs as dense
if |E| = Θ(|V|2) and as sparse if |E| = O(|V|). (These asymptotic definitions only make sense for a family
of graphs—one for each size n.) There are (families of) graphs that are neither sparse nor dense according to this
definition; see Exercise 6.37.

Figure 11.18: A
12-node path,
cycle, collection of
n
3 triangles, and
collection of three
n
3 -node cliques.

As a function of n, what are the densities of the following undirected graphs, with nodes V =
{1, 2, . . . n}? (See Figure 11.18 for small versions of each of these graphs.)
11.36 an n-node path: E = {{1, 2} , {2, 3} , . . . , {n− 1, n}}.
11.37 an n-node cycle: E = {{1, 2} , {2, 3} , . . . , {n− 1, n} , {n, 1}}.
11.38 n

3 disconnected triangles (assume that n mod 3 = 3):
E = {{1, 2} , {2, 3} , {3, 1}︸ ︷︷ ︸

triangle on 1, 2, 3

, {4, 5} , {5, 6} , {6, 4}︸ ︷︷ ︸
triangle on 4, 5, 6

, . . . {n− 2, n− 1} , {n− 1, n} , {n, n− 2}︸ ︷︷ ︸
triangle on n− 2,n− 1,n

} .

11.39 3 separate n
3 -node cliques (assume that n mod 3 = 3): E = {{x, y} : x mod 3 = y mod 3}.

A hypercubeHn is a graph in which the 2n different nodes are all elements of {0, 1}n. There is an edge between x
and y if they differ in only one bit position. (Using the language of Chapter 4.2, there’s an edge between any two nodes
whose Hamming distance is 1.)
11.40 Draw H3.
11.41 Write down an adjacency list for H4.
11.42 Write down an adjacency matrix for H4.
11.43 In terms of n, how many edges does Hn have? What is its density?

Decide whether the following pairs of graphs are isomorphic, and prove your answers.
11.44

A

B

C

D

E

F

G

H
J

OP

I

L

MK

N

11.45

A

B

C

D E

F

G

L

J K M H

IN

11.46 G1 = 〈V1,E1〉, where V1 =
{10, 11, 12, 13, 14, 15} and 〈x, y〉 ∈ E1 if and only
if x and y are not relatively prime.

G2 = 〈V2,E2〉, where V2 = {20, 21, 22, 23, 24, 25}
and 〈x, y〉 ∈ E2 if and only if x and y are not rela-
tively prime.

Prove or disprove the following claims about isomorphism:
11.47 All 5-node graphs with degrees 1, 1, 1, 1, and 0 are isomorphic.
11.48 All 5-node graphs with degrees 4, 4, 4, 3, and 3 are isomorphic.
11.49 All 5-node graphs with degrees 3, 3, 2, 2, and 2 are isomorphic.
11.50 All n-node, 3-regular graphs are isomorphic.

The computational problem of finding the largest clique (complete graph) that’s a subgraph of a given graph G is
believed to be very difficult. But for small graphs it’s possible to do, even by brute force. For each of the following
graphs, identify the size of the largest clique that’s a subgraph of the given graph.

11.51 B

H

A

F

I

G

D

E

C 11.52 B

H

A

FI G

D

E

C

J

11.53 B

H

A

FI G

D

E

C

J
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Figure 11.19: A
collaboration
network.

11.54 Consider the collaboration network (see Example 11.14) in Figure 11.19. Assum-
ing that the nodes correspond to actors in movies, what is the smallest number of movies that
could possibly have generated this collaboration network?
11.55 Are you certain that there weren’t more movies than [your answer to the previous
exercise] that generated this graph? Explain.

For which integers n are the following graphs bipartite? Prove your answers.
11.56 V = {1, 2, . . . , n}; E = {〈i, i− 1〉 : i ≥ 2}.
11.57 V = {0, 1, . . . , n− 1}; E = {〈i, i + 1 mod n〉 : i ≥ 1}.
11.58 Kn. That is, a complete graph of n nodes: V = {1, 2, . . . ,n}; E = {{u, v} : u ∈ V and v ∈ V}.
11.59 V = {0, 1, . . . , 2n− 1}; E = {〈i, (i + n) mod 2n〉 : i ∈ V}.

Are either of the following graphs bipartite? Explain.
11.60

A

E

B F

C G

D

H

11.61
A

B

C

D

E

F

G

H

Consider a bipartite graph with a set L of nodes in the left column and a set of nodes R on the right column, where
|L| = |R|. Prove or disprove the following claims:
11.62 The sum of the degrees of the nodes in L must equal the sum of the degrees of the nodes in R.
11.63 The sum of the degrees of the nodes in L must be even.
11.64 The sum of the degrees of all nodes (that is, all nodes in L ∪R) must be an even number.

Suppose that G is a complete bipartite graph with n nodes—that is, G = K|L|,|R| for |L| + |R| = n.
11.65 What’s the largest number of edges that can appear in G?
11.66 What’s the smallest number of edges that can appear in G? (Careful!)

11.67 Prove or disprove: any graph that does not contain a triangle (that is, three nodes a, b, and c with
the edges {a, b} and {b, c} and {c, a} in the graph) as a subgraph is bipartite.

11.68 Definition 11.16 describes a regular undirected graph. In a directed regular graph, we require that
there be two integers din and dout such that every node’s in-degree is din and every node’s out-degree is dout.
Prove that we must have din = dout.

Show that both of the following graphs are planar.
11.69

A

B

C

D

E

F G

H 11.70 B

H

A

F

I

G

D

E

C

11.71 Prove that any 2-regular graph is planar.
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11.3 Paths, Connectivity, and Distances
Well, you can go west to the next intersection, get onto
the turnpike, go north through the toll gate at
Augusta, ’til you come to that intersection . . . well, no.
You keep right on this tar road; it changes to dirt now
and again. Just keep the river on your left. You’ll come
to a crossroads and . . . let me see. Then again, you can
take that scenic coastal route that the tourists use. And
after you get to Bucksport . . . well, let me see now.
Millinocket. Come to think of it, you can’t get there
from here.

Marshall Dodge (1935–1982) and Robert
Bryan (b. 1931), “Which Way to Millinocket?”

Bert and I (1958)
One of the most basic questions that one can ask about a graph is whether it is

possible to get from some given node s to some given node t by following a sequence

u1 u2 u3 · · ·
uk−1 uk

u1 u2 u3 · · ·
uk−1 uk

Figure 11.20: Paths
in undirected and
directed graphs.

of edges. Is there some chain of friends that connects
Barack Obama to Phil Collins? Can you get from Missoula
to Madison by car? (And, if there is a way to get from s to t,
what is the shortest way to get there?) These basic questions
concern the existence of paths in the graph:

Definition 11.18 (Path)
Consider a (directed or undirected) graph G = 〈V,E〉. A path in G is a sequence
〈u1, u2, . . . , uk〉 of k ≥ 1 nodes such that:

• ui ∈ V for every i ∈ {1, . . . , k}, and
• 〈ui, ui+1〉 ∈ E for every i ∈ {1, . . . , k− 1}.

(See Figure 11.20.) We say that such a sequence of nodes is a path from u1 to uk , and that
this path has length k− 1. We also say that this path traverses the edges 〈ui, ui+1〉.

A

B C

D E

Z

X

Y

A

B C

D E

Z

X

Y

Figure 11.21: Two
graphs with paths
from A to Z.

(Note that this definition includes both directed and
undirected graphs: if the edges are directed, we have
to follow them “in the right direction.”) For example,
in both of the graphs shown in Figure 11.21, there is no
path from A to X. But, in both, the sequence 〈A, C, E, Z〉 is a path of length 3 from A to
Z. In both cases, the edges traversed by the path are {〈A, C〉, 〈C, E〉, 〈E, Z〉}. Notice that
the length of a path is the number of edges that it traverses, which is one fewer than the
number of nodes in the path.

Taking it further: A common mistake made by novice (and not-so-novice) programmers is an off-by-
one error in specifying the bounds on a loop, by iterating either one time too many or one time too few.
These errors are also sometimes called fencepost errors: if you build a 10-yard fence with posts placed
every yard, then there are eleven fenceposts (at yard 0, yard 1, . . ., yard 10). Be careful! A path 〈A, C, E, Z〉
contains four nodes, but it traverses three edges (A → C, C → E, and E → Z) and has length 3.

Here’s an example of finding paths in a small graph:
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Example 11.21 (Finding paths)
Problem: Consider the following undirected graph:

A

B

C

D

E

F

G

H

1. Is there a path from node H to node E?
2. Name three different paths from node D to node F. What is the length of each

path?

Solution: 1. Yes; 〈H, A, F, G, E〉 is a path from node H to E.
2. The following sequences are paths from D to F:

• 〈D, B, E, G, F〉, which has length 4.
• 〈D, B, C, E, G, F〉, which has length 5.
Finding a third path might seem harder, but Definition 11.18 did not require
that the nodes in a path be distinct from each other. (In other words, nothing
forbade the repetition of nodes in a path.) So a third path from D to F is:
• 〈D, B, C, E, B, C, E, G, F〉, which has length 8.

We will often restrict our attention to paths that never go back to a vertex that
they’ve already visited, which are called simple paths:

Definition 11.19 (Simple Path)
A path 〈u1, u2, . . . , uk〉 is simple if all of the nodes u1, . . . , uk are distinct.

Of the three paths identified in Example 11.21, the first two are simple paths, but the
third path is not simple because it repeated nodes {B, C, E}.

11.3.1 Connectivity in Undirected Graphs
The most basic question about two nodes in a graph is whether it’s possible to get from
one to another—that is, are these two nodes connected? We start with a formal defini-
tion of connectivity for undirected graphs, because the relevant notions are simpler in
the undirected setting.

Definition 11.20 (Connected nodes and connected graphs)
Let G = 〈V,E〉 be an undirected graph.

• Two nodes u ∈ V and v ∈ V are connected if there exists a path from u to v.
• The graph G is connected if u and v are connected for any two nodes u ∈ V and v ∈ V.
• The graph G is called disconnected if it is not connected.
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A

B C

D E

F

G

H

I
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L M

N

O

P

Figure 11.22: A
disconnected
and connected
undirected graph.

For example, Figure 11.22 shows one disconnected
graph—there’s no path from A to H, for example—and
one connected graph. You can check that the second
graph is connected by testing all pairs of nodes. (Exer-
cise 11.87 asks you to show that connectivity is symmetric in an undirected graph: if
there exists a path from u to v, then there exists a path from v to u.)

Example 11.22 (Connectivity of an undirected graph)
Problem: Is the following graph connected?

1 3

57

2

4

6

8

Solution: No: odd-numbered nodes have edges only to other odd-numbered nodes,
and even-numbered nodes have edges only to other even-numbered nodes. So
there is no path from, for example, node 1 to node 2; this graph is disconnected.

Problem-solving
tip: Sometimes
it’s very helpful to
redraw a graph that
you’re given, with
nodes placed more
meaningfully. For
example, the graph
from Example 11.22
can be redrawn as

1 3

57

2

4

6

8

just by sliding the
even-numbered
nodes down. This
visualization
makes it clear
that the graph is
disconnected.

Connected components
More generally, we will talk about the connected components of an undirected graph

G = 〈V,E〉—“subsections” of the graph in which all pairs of nodes are connected.

Definition 11.21 (Connected component)
In an undirected graph G = 〈V,E〉, a connected component is a set C ⊆ V such that:

(i) any two nodes s ∈ C and t ∈ C are connected.
(ii) for any node x ∈ V − C, adding x to C would make (i) false.

A

B C

D E

F

G

H

(a) The original graph.

A

B C

D E

F

G

H

A

B C

D

(b) Component #1.

A

B C

D E

F

G

H

E

F H

(c) Component #2.

A

B C

D E

F

G

H

G

(d) Component #3.

Figure 11.23: A
graph’s connected
components.

A subset C ⊆ V of nodes is a connected
component of an undirected graph G = 〈V,E〉
if, intuitively, it forms its own “section” of the
graph: any two nodes in C are connected, and
no node in C is connected to any node not in
C. For example, Figure 11.23 shows a graph
with three connected components—one with
4 nodes, one with 3 nodes, and one with just
a single node.

Note that we could have defined a “con-
nected graph” in terms of the definition of
connected components (instead of Definition 11.20): an undirected graph G = 〈V,E〉 is
connected if it contains only one connected component, namely the entire node set V.
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Example 11.23 (Connected components of an undirected graph)
Problem: What are the connected components of the following graph?

A B

CD

E

F

G

H

Solution: The set S = {A, B, C, G, H} is a connected component; there are paths from
every node u ∈ S to every node v ∈ S, and furthermore no node in S is connected
to any node not in S. To be thorough, here are paths connecting each pair of nodes
from S:

A B C G H

A 〈A〉 〈A, C, G, B〉 〈A, C〉 〈A, C, G〉 〈A, C, G, H〉
B 〈B〉 〈B, G, C〉 〈B, G〉 〈B, H〉
C 〈C〉 〈C, G〉 〈C, G, H〉
G 〈G〉 〈G, H〉
H 〈H〉

Note that we haven’t bothered to write down a path from u to vwhen we’d already
recorded a path from v to u, because the graph is undirected and paths are sym-
metric. We also had many choices of paths for many of these entries: for example,
other paths from B to H included 〈B, G, H〉 or 〈B, G, H, B, G, H〉.

There’s a second connected component in the graph: the nodes {D, E, F}. It’s
easy to check that both clauses of Definition 11.21 are also satisfied for this set.

Observe that, in any undirected graph G = 〈V,E〉, there is a path from each node u ∈ V
to itself. Namely, the path is 〈u〉, and it has length 0. Check Definition 11.18!

Taking it further: There are many computational settings in which undirected paths are relevant; here’s
one example, in brief. In computer vision, we try to build algorithms to process—”understand,” even—
images. For example, before it can decide how to react to them, a self-driving car must partition the
image of the world from a front-facing camera into separate objects: painted lines on the road, trees,
other cars, pedestrians, etc. Here’s a crude way to get started (real systems use far more sophisticated
techniques): define a graph whose nodes are the image’s pixels; there is an edge between pixels p and
p′ if (i) the two pixels are adjacent in the image, and (ii) the colors of p and p′ are within a threshold of
acceptable difference. The connected components of this graph are a (very rough!) approximation to the
“objects” in the image.

This description misses all sorts of crucial features of good algorithms for the image-segmentation
problem, but even as stated it may be familiar from a different context: the “region fill” tool in image-
manipulation software uses something very much like what we’ve just described.

11.3.2 Connectivity in Directed Graphs
Recall that we have to follow edges “in the right direction” in a directed graph G: as
in Definition 11.18, a path from u1 to uk in G is a sequence 〈u1, u2, . . . , uk〉 where every
pair 〈ui, ui+1〉 is an edge in G. Thus notions of connectivity in directed graphs are more
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complicated: the existence of a path from u to v does not imply the existence of a path
from v to u. We will speak of a node t as being reachable from a node s if it’s possible to
go from s to t, and of pairs of nodes as being strongly connected when it’s possible to “go
in both directions” between them:

Definition 11.22 (Reachability and strongly connected nodes/graphs)
Let G = 〈V,E〉 be a directed graph.

• A node u ∈ V is reachable from a node v ∈ V if there is a directed path from u to v.
• Two nodes u ∈ V and v ∈ V are strongly connected if u is reachable from v, and v is

reachable from u.
• The graph G is strongly connected if every pair of nodes in V is strongly connected.

A

B C

D E

F

G

H

I

J K

L M

N

O

P

Figure 11.24: Two
directed graphs,
one that’s strongly
connected and one
that’s not.

For example, you can check that the first graph in Fig-
ure 11.24 is strongly connected by testing for directed
paths between all pairs of nodes, in both directions. But
the second graph in Figure 11.24 is not strongly con-
nected: there’s no path from any node in the right-hand side (nodes {M, N, O, P}) to any
node in the left-hand side (nodes {I, J, K, L}).

Strongly connected components
As with undirected graphs, for a directed graph we will divide the graph into

“sections”—subsets of the nodes—each of which is strongly connected. These sections
are called strongly connected components of the graph:

Definition 11.23 (Strongly connected component)
In a directed graph G = 〈V,E〉, a strongly connected component (SCC) is a set C ⊆ V
such that:

(i) any two nodes s ∈ C and t ∈ C are strongly connected.
(ii) for any node x ∈ V − C, adding x to C would make (i) false.
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(a) The original graph.
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(b) SCC #1.
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(c) SCC #2.
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(d) SCC #3.

Figure 11.25:
A graph and
its connected
components.

Figure 11.25 shows an example of a directed
graph G and the three strongly connected
components in G. The easiest strongly con-
nected component to identify is {A, B, C, D}:
we can go counterclockwise around the loop
A → B → C → D → A, so we can go from any
one of these four nodes to any other, and we
can’t get from any of these four nodes to any
of the other nodes. The other two strongly
connected components are {E, F, H} and, sep-
arately, {G} on its own. The reason is that G
is not strongly connected to any other node: we can’t get from G to any other node. (We
can go around the E → F → H → E loop, so these three nodes are together in the other
strongly connected component.)
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Here’s another example of finding strongly connected components:

Example 11.24 (Finding strongly connected components)
Problem: What are the strongly connected components of the following graph?

A

B

C

D

E

F

Solution: The three nodes {C, D, E} form a strongly connected component: there is a
path from any one of them to any other of them (C → D → E → C → D → E · · · ),
and furthermore there is no path from any {C, D, E} to any other node in the graph.

In fact, every other node in the graph is alone in a strongly connected compo-
nent by itself. For example, while there is a path from A to every node in the graph,
there is no path from any other node to A. (There is a path from A to A, so the set
{A} is a strongly connected component.) Thus the four strongly connected compo-
nents of the graph are {A}, {B}, {F}, and {C, D, E}.

Here’s an example that shows why the second clause of Definition 11.23 is crucial:

Example 11.25 (A non-SCC)
Problem: In the following graph, the set S := {A, B, C, E, F} is not a strongly connected

component. Why not?

A

B

C

D

E

F

G

Solution: It is indeed the case that there is a path in both directions between any two
nodes in S: we can just keep “going around” clockwise in S and we eventually
reach every other node in S. So S satisfies Definition 11.23(i). But it fails to satisfy
Definition 11.23(ii): if we considered the set S+ := S ∪ {D}, it is still the case that
there is a path in both directions between any nodes in S+. Thus S is not a strongly
connected component!

On the other hand, S+ = {A, B, C, D, E, F} is a strongly connected component:
we can’t add any other node (specifically G; it’s the only other node) to S+ without
falsifying this property—because there’s no path from G to A, for example. Thus
the two strongly connected components are {A, B, C, D, E, F} and {G}.
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Taking it further: There are many computational settings in which directed paths, reachability, and
strongly connected components are relevant. For example, for a spreadsheet, consider a directed graph
whose nodes are the spreadsheet’s cells, and an edge 〈u, v〉 indicates that u’s contents affect the contents
of cell v; when a user changes the content of cell c, we must update all cells that are reachable from node
c. For a chess-playing program, consider a directed graph whose nodes are board configurations, and
there’s an edge 〈u, v〉 if a legal move in u can result in v; any configuration u that’s unreachable from the
starting board configuration can never occur in chess, and thus your program doesn’t have to bother
evaluating what move to make in position u.

See p. 1142 for a discussion of another application of reachability and strongly connected compo-
nents: the structure of the world-wide web, understood with respect to the directed paths in the graph
defined by the pages and the hyperlinks of the web.

11.3.3 Shortest Paths and Distance
So far we have concentrated on the basic question of connectivity: for a given pair
of nodes, does any path exist from one node to the other? Here we address a more
refined question: what is the shortest path that goes from one node to the next?

Definition 11.24 (Shortest Paths)
Let G = 〈V,E〉 be a graph (undirected or directed), and let s ∈ V and t ∈ V be two nodes. A
path from s to t is a shortest path if its length is the smallest out of all s-to-t paths.

(Recall that the length of a path 〈u1, u2, . . . , uk〉 is k − 1, the number of edges that it
traverses.) Observe that there may be more than one shortest path from a node s to a
node t, if there are multiple paths that are tied in length.

Definition 11.25 (Distance)
The distance from s to t is the length of a shortest path from s to t. If there is no path from s to
t, then we say that the distance from s to t is infinite (written as “∞”).

A

B

C

D

E

F

Figure 11.26: An
undirected graph.

For example, consider the undirected graph in Figure 11.26. We have the
following distances from node A in this graph:

A B C D E F

0 1 2 2 1 1

The distance from A to A is 0 because 〈A〉 is a path from A to A. This graph
also has an example of a pair of nodes connected by two different shortest
paths, going from A to C (via either B or E).

G

H

I

J

K

L

Figure 11.27: A
directed graph.

For the directed graph in Figure 11.27, we have the following distances
from node G:

G H I J K L

0 1 2 3 1 ∞

Again, there’s a path from G to G of length zero, so the distance from G to G is
0. Note that there’s no G-to-J path of length two (because the edge from J to
K goes in the wrong direction), so the distance from G to J is 3 (via K and I, or via H and
I). Similarly, there is no directed path from G to L, so the distance is infinite.

Here’s another example of finding shortest paths in a small graph:
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Example 11.26 (Shortest paths in directed graphs)
Problem: Find the shortest path from A to L in the graph with this adjacency list:

A: B, D, E, F, G

B: C, D, I

C: B, D, I

D: E

E: A, F

F:

G: F

H: E, F

I: B, H, K

J: C, K

K: L

L: F

Solution:
The nodes at distance 1 from A are B, D, E,
F, and G. There’s no edge from any of those
nodes to L—or indeed to K, which is L’s
only in-neighbor. Thus the distance from A

to L cannot be any smaller than 4. But there
is an edge from I to K, and one from B to I.
We can assemble these edges into the path
〈A, B, I, K, L〉. This path has length 4. So
the distance from A to L is 4. (Drawing the
graph, as on the right, with nodes arranged
by their distance from A, can make these facts easier to see.)

di
sta

nc
e0

di
sta

nc
e1

di
sta

nc
e2

di
sta

nc
e3

di
sta

nc
e4

di
sta

nc
e∞

A

B C

D

E

F

G

HI J

K

L

Problem-solving
tip: In solving any
graph problem with
a small graph, a
good first move is to
draw the graph.

11.3.4 Finding Paths: Breadth-First Search (BFS)
There are many aspects of graphs that are valuable for interesting computational ap-
plications, but perhaps the single most important graph algorithm is breadth-first search
(BFS). BFS is a path-finding algorithm: it explores outward from a given source node s
in a given graph G until it finds every node reachable from s in G. BFS can be used to
solve all sorts of graph-related problems, as we’ll see.
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Figure 11.28:
The intuition of
breadth-first search:
the steps of BFS
on a small graph,
starting at node A.

Here’s the intuition of the algorithm. (See
Figure 11.28.) We maintain a set L of nodes
that are reachable from the given node s
(the shaded nodes in Figure 11.28). To start,
we set L := {s}. Now we find all as-yet-
undiscovered neighbors of nodes in L, and
add those nodes (the dark-shaded nodes in
Figure 11.28) to L: if 〈u, v〉 ∈ E and you can reach the node u from s, then you can also
reach v from s, via u. But now we’ve found some more nodes that can be reached from
s, which means that we can also reach any nodes that are directly connected to them
from s. So we’ll repeat that process with the updated list L. And we’ll do it again, and
again, and again, until we stop finding new nodes.
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Breadth-First Search (BFS):
Input: a graph G = 〈V,E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G
1: Frontier := 〈s〉

// Frontier will be a list of nodes to process, in order.
2: Known := ∅

// Known will be the set of already-processed nodes.
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: for every neighbor v of u:
7: if v is in neither Frontier nor Known then
8: add v to the end of Frontier
9: add u to Known
10: return Known

Figure 11.29: The
pseudocode for
breadth-first search.

Observe that BFS discovers nodes in order of their dis-
tance from the source node. Every expansion of L takes the
full breadth of the frontier and expands it out by one more
“layer” in the graph. (That’s why the algorithm is called
breadth-first search.) You can think of BFS as throwing a
pebble onto the graph at the node s, and then watching the
ripples expanding out from s.

Breadth-first search is presented more formally in Fig-
ure 11.29. (While we’ve described BFS in terms of undirected
graphs for simplicity, it works equally well for directed
graphs. The only change is that Line 6 should say “for ev-
ery out-neighbor” for a directed graph.)

Here’s another example of breadth-first search in action, running the algorithm in
full detail (precisely as specified in Figure 11.29):

Example 11.27 (Sample run of BFS, in detail)
We’ll trace BFS starting at node A in the following graph (shown here in the form of a
picture and as an adjacency list):

A

B

C

G

E

F

D H

A: B, C
B: A, C, G
C: A, B, E, F, G
D: H
E: C
F: C, G
G: B, C, F
H: D

= Frontier
= just moved from Frontier to Known
= Known
= neither Known nor Frontier Known Frontier Explanation

A

B

C

G

E

F

D H

{} 〈A〉 initialization
(Lines 1–2)

A

B

C

G

E

F

D H

{A} 〈B, C〉 processing A

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B} 〈C, G〉 processing B

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C} 〈G, E, F〉 processing C

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C, G} 〈E, F〉 processing G

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C, G, E} 〈F〉 processing E

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C, G, E, F} 〈〉 processing F

(Lines 4–9)

Because Frontier is now empty, the while loop in BFS terminates. The algorithm
returns the set Known, {A, B, C, G, E, F}.
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Correctness of BFS
We’ll prove two important properties of BFS. The first is correctness: the set that BFS

returns is precisely those nodes that are reachable from the starting node. The second
is efficiency: BFS finds this set quickly. The first claim might seem obvious—and thus
proving it may feel annoyingly pedantic—but there’s a bit of subtlety to the argument,
and it’s good practice at using induction in proofs besides.

Theorem 11.3 (Correctness of BFS)
Let G = 〈V,E〉 be any graph, and let s ∈ V be an arbitrary node. Then the set of nodes
discovered by BFS(G, s) is exactly {t ∈ V : t is reachable from s in G}.

Proof. We’ll prove the result by showing two set inclusions: the discovered nodes
form a subset of the reachable nodes, and the reachable nodes form a subset of the
discovered nodes. Both proofs will use induction, though on different quantities. Problem-solving

tip: The hard part
here is figuring on
what quantity to do
induction. One way
to approach this
question is to figure
out a recursive
way of stating the
correctness claim.
Q: why is there a

path to every node
added to Frontier?
(A: there was a path
to every previous
node in Frontier,
and there’s an
edge from some
previously added
node to this one!)
Q: why is every

node u reachable
from s eventually
added to Frontier?
(A: because a
neighbor of u
that’s closer to s is
eventually added
to Frontier, and
every neighbor of a
node in Frontier is
eventually added to
Frontier!)

Claim #1: BFS(G, s) ⊆ {t ∈ V : t is reachable from s in G}. By inspection, we see that (i)
BFS returns the set of nodes that end up in the Known set, and (ii) the only way that
a node ends up in Known is having previously been in Frontier. Thus it will suffice to
prove the following property for all k ≥ 0, by strong induction on k:

Q(k) := if a node t ∈ V is added to the list Frontier during the kth iteration of the
while loop of BFS, then there is a path from s to t.

Base case (k = 0): If the node t was added to Frontier during the 0th iteration of the
while loop—that is, before the while loop begins—then t was added in Line 1 of
BFS. Therefore t is actually the node s itself. There is a path from s to s itself in
any graph, and thus Q(0) holds.

Inductive case (k ≥ 0): We assume the inductive hypotheses Q(0), . . . ,Q(k− 1), and
we must prove Q(k). Consider a node t that was added to Frontier during the kth
iteration of the while loop—in other words, t was added in the for loop (Lines
6–8) because t is a neighbor of some node u that was already in Frontier. That is,
we know that 〈u, t〉 ∈ E and that u was added to Frontier in the (k′)th iteration,
for some k′ < k. By the inductive hypothesis Q(k′), there is a path P from s to u.
Therefore there is a path from s to t, too:

s u t
edges of P edge 〈u, t〉 .

Claim #2: BFS(G, s) ⊇ {t ∈ V : t is reachable from s in G}. If a node t is reachable from s
in G, then by definition the distance from s to t is some integer d ≥ 0. Furthermore,
by inspection of the algorithm, we see that any node that’s added to Frontier is even-
tually moved to Known. Thus it will suffice to prove the following property for all
d ≥ 0, by (weak) induction on d:
R(d) := if a node t ∈ V at distance d from s, then t is eventually added to Frontier.

Base case (d = 0): We must prove R(0): any node t at distance 0 is eventually added
to Frontier. But the only node at distance 0 from s is s itself, and BFS adds s itself
to Frontier in Line 1 of the algorithm.
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Inductive case (d ≥ 1): We assume the inductive hypothesis R(d− 1), and we must
prove R(d). Let t be a node at distance d from s. Then by definition of distance
there is a shortest path P of length d from s to t. Let u be the node immediately
before t in P. Then the distance from s to u must be d − 1, and therefore by the
inductive hypothesis R(d− 1) the node u is added to Frontier in some iteration of
the while loop. There are at most |V| iterations of the loop, and thus eventually
u is the first node in Frontier. In that iteration, the node t is added to Frontier (if it
had not already been added). Thus R(d) follows.

(In the exercises, you’ll show how to modify BFS so that it actually computes distances
from s, using an idea very similar to the proof of Claim #2 of Theorem 11.3.)

Running time of BFS

Theorem 11.4 (Efficiency of BFS)
For a graph G = 〈V,E〉 represented using an adjacency list, BFS takes Θ(|V| + |E|) time.

Breadth-First Search (BFS):
Input: a graph G = 〈V,E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G
1: Frontier := 〈s〉
2: Known := ∅
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: for every neighbor v of u:
7: if v is in neither Frontier nor Known then
8: add v to the end of Frontier
9: add u to Known
10: return Known

Figure 11.30: A
reminder of BFS.

Proof. See Figure 11.30 for a reminder of the algorithm. Lines
1, 2, and 10 take Θ(1) time, so the only question is how long
the while loop takes. In the worst case, every node in the
graph is reachable from the node from which BFS is run. In
this case, there is one iteration of the while loop for every
node u ∈ V. How long does the body of the while loop
(Lines 4–9) take for a particular node u?
• Lines 4, 5, and 9 take Θ(1) time.
• The for loop in Lines 6–8 has one iteration for each neighbor

of u. (In an adjacency list, the loop simply steps through
the list of neighbors, one by one.) Each for-loop iteration takes Θ(1) time, and there
are degree(u) iterations for node u.

Therefore, ignoring multiplicative constants, the worst-case running time of BFS is

1 + ∑
u∈V

[
1 + degree(u)

]

= 1 +
[

∑
u∈V

1
]
+
[

∑
u∈V

degree(u)
]

rearranging the summation

= 1 + |V| + 2|E| or 1 + |V| + |E| for a directed graph Theorem 11.1/Exercise 11.18

= Θ(|V| + |E|).

Taking it further: BFS arises in applications throughout computer science, from network routing to arti-
ficial intelligence. Another application of BFS occurs (hidden from your view) as you use programming
languages like Python and Java, through a language feature called garbage collection. In garbage-collected
languages, when you as a programmer are done using whatever data you’ve stored in some chunk of
memory, you just “drop it on the floor”; the “garbage collector” comes along to reclaim that memory for
other use in the future of your program. The garbage collector runs BFS-like algorithms to determine
whether a particular piece of memory is actually trash. See p. 1143 for more.
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11.3.5 Finding Paths: Depth-First Search (DFS)
Another important algorithm for exploring graphs is called depth-first search (DFS),
which can be described informally as follows. Instead of exploring outward from the
source node s in “layers” as in BFS, we will try to explore a new node at every stage of
the search. We start at s, and at every stage we move to an unvisited neighbor of our
current node. If at any stage we’re stuck at a node u that has no unvisited neighbors,
we go back from u to the node from which we first reached u and continue exploring
from there. Here is an example of DFS in a small graph, informally:

Example 11.28 (Sample run of depth-first search)

A

B

D

E

FC

G

H

We start exploring node A; in each frame, the dark-
shaded node is the current node.

A

B

D

E

FC

G

H

Previously discovered nodes are lightly shaded.
Arrows indicate the steps of the exploration.

A

B

D

E

FC

G

H

In each of the first four frames, we move from the
current node to a neighbor that is unexplored. (We
pick the alphabetically first node if there’s a choice.)

A

B

D

E

FC

G

H

A

B

D

E

FC

G

H

The current node E has no unvisited neighbors, so
we backtrack from E to D to find D’s unvisited neigh-
bor F.

A

B

D

E

FC

G

H

We backtrack from F to D to B to discover the new
node C.

A

B

D

E

FC

G

H

We backtrack from C to B to A; there are no further
unexplored nodes from any of these nodes, and thus
the algorithm terminates.

Intuitively, depth-first search is a close match for the way that you would explore
a maze: you start at the entrance, follow a passageway to a location you’ve never vis-
ited before; using breadcrumbs or a pencil, you remember where you’ve been and
backtrack if you get stuck. You may have heard of another algorithm for mazes:

Place your right hand on the wall as you go in the entrance. Continue to walk forward,
always keeping your right hand on the wall. Eventually, you will get out of the maze.

In fact, this right-hand-on-the-wall algorithm is identical in spirit to DFS: whenever
you encounter a choice, you always choose the first (right-most) unexplored pas-
sageway, and if you ever get stuck at a dead end you turn around and go back from
whence you came.
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Depth-First Search (DFS):
Input: a graph G = 〈V,E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G
1: Frontier := 〈s〉
2: Known := ∅
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: if u is not in Known then
7: for every neighbor v of u:
8: if v is not in Known then
9: add v to the start of Frontier
10: add u to Known
11: return Known

Figure 11.31: The
pseudocode for
depth-first search.
The only changes
from BFS are
underlined.

We can implement DFS with only a small change to BFS,
as shown in Figure 11.31: instead of putting a newly discov-
ered node u at the end of the list Frontier of nodes from which
to explore (as in BFS), we put a newly discovered node u at
the beginning of Frontier. (In other words, BFS treats the list
Frontier as a queue—first in, first out—while DFS treats the list
Frontier as a stack—last in, first out.) Another small change is
necessary, to allow a node already in Frontier to be “moved”
earlier in the list of nodes to explore.

Because this alteration of BFS changes only the order in
which the nodes in Frontier are explored, DFS does precisely
the same work as BFS, and is correct for the same reasons:
DFS returns precisely the set of nodes reachable from the given source node s. (With a
little more cleverness in moving nodes to the front of Frontier, DFS can also be imple-
mented in Θ(|V| + |E|) time.) Here’s a fully detailed example of DFS:

Example 11.29 (Sample run of DFS, in detail)
We’ll trace DFS starting at node A in this graph:

A

B

C E

FG

D H

A: B, C
B: A, G
C: A, E
D: H
E: C, F, G
F: E, G
G: B, E, F
H: D

= Frontier
= just moved from Frontier to Known
= Known
= neither Known nor Frontier Known

Frontier
u: just added. Explanation

A

B G

EC

F

D H

{} 〈A〉 initialization

A

B G

EC

F

D H

{A} 〈B, C〉 processing A

A

B G

EC

F

D H

{A, B} 〈G, C〉 processing B

(A known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G} 〈E, F, C〉 processing G

(B known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G, E} 〈C, F, F, C〉 processing E

(G known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G, E, C} 〈 F, F, C〉 processing C

(A,E known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G, E, C, F} 〈 F, C〉 processing F

There are two more iterations that remove the last two entries in Frontier (making no
changes to Known and adding nothing further to Frontier), because both F and C are
already in Known. The while loop then terminates, and DFS returns {A, B, G, E, C, F}.
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Computer Science Connections

The Bowtie Structure of the Web
As the web has grown more and more central in the daily lives of us all,

it has garnered increasing attention from researchers in computer science. A
great deal of work has been performed to characterize the web in terms of its
degree distribution (see p. 1123) or in terms of the “small-world phenomenon”
(see p. 438). But one foundational and influential paper sought to characterize
the web’s structure in terms of its strongly connected components.9 In the 9 Andrei Broder, Ravi Kumar, Farzin

Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew
Tomkins, and Janet Wiener. Graph
structure in the web. Computer Networks,
33(1–6):309–320, 2000.

early days of the web, eight researchers from AltaVista, IBM, and Compaq
downloaded around 200 million web pages, comprising about 1.5 billion links.
They then analyzed the structure of the resulting graph, by categorizing the
pages:
1. Let core denote those web pages contained in the largest SCC of the

web graph. Like many other networks (for example, social networks and
collaboration networks), the web graph has a giant component that contains
many more nodes than the second-largest SCC. Denote by core those
nodes in the largest SCC in the web graph.

2. Let in denote those web pages p such that (i) p /∈ core, and (ii) there is a
path from p to some node in core. That is, there is a path from p to every
page in core, but there’s no path from any node in core to p.

3. Let out denote those web pages p such that (i) p /∈ core, and (ii) there is a
path from some node in core to p. That is, there is a path from every page
in core to page p, but there’s no path from p to any node in core.

When displayed graphically, as in Figure 11.32, these categories of web pages
look like a bowtie, and so the paper by Broder et al. came to be known as “the
bowtie paper.”

COREIN OUT

Figure 11.32: The “bowtie structure” of
the web graph, in its basic form. Broder
et al. found that roughly 25% of web
pages fell into each of these categories:
56M pages (of 200M) in core, 43M
pages in in, and 43M pages in out.

To complete the picture of the bowtie structure of the web, we must note
that not all web pages are included in Figure 11.32. There are three further
categories of nodes:
4. Let tubes denote those pages p that (i) are reachable from a node of in

(that is, there’s a page q ∈ in that has a path to p), and (ii) can reach a node
of out (that is, there’s a page q ∈ out to which p has a path), and (iii)
p /∈ core.

5. Let tendrils denote those pages p that are either reachable from a node of
in, or can reach a node of out, but not both.

6. Let disconnected denote those pages p that are not in core, in, out,
tubes, or tendrils—that is, those pages p that can neither reach nor be
reached by any node in those sets.
One of the unexpected facts found by Broder et al. was the extent to which

COREIN OUT

TUBES

TENDRILS TENDRILS

DISCONNECTED

Figure 11.33: The remainder of the
“bowtie structure” of the web graph.
There were about 44M pages in
tendrils and tubes, and about 17M
pages in disconnected.

the web is actually not particularly well connected. In particular, if we were to
choose web pages p and q uniformly at random from the web graph, there was
only a roughly 24% chance of that a directed path from p to q exists—far lower
than the “small world” phenomenon would suggest.
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Computer Science Connections

Garbage Collection
In many modern programming languages, including Python and Java, the

burden of managing memory is lifted from the shoulders of the program-
mer. When a new object is needed, the programmer just creates it. After a
program has been running for a while, there may be objects that were stored
in memory but are now inaccessible because the programmer has no way to
refer to them ever again. This stored but inaccessible data is called garbage.
Figure 11.34 shows an example of garbage being created. In Python- and Java-
like languages, the system provides a garbage collector that periodically runs to
clean up the garbage, which allows that memory to be reused for future allo-
cations. (In contrast, in languages like C or C++, when you as a programmer
are done using a chunk of memory, it’s your responsibility to declare to the
system that you’re done using that memory by explicitly “deallocating” or
“freeing” it.)

There are many sophisticated garbage-collection algorithms that are em-

Suppose that Node(data,next) creates
a new node for a singly linked list,
with data data and with a pointer
next to the next node in the list. Imag-
ine executing the following code:

1 L = Node(7,NULL)

2 L = Node(5,L)

3 L = Node(3,L)

4 L = Node(2,L)

5 L.next = L.next.next

Then the state of memory after execut-
ing lines 1–4 is
L

2 3 5 7

But when we execute line 5, the state
of memory becomes
L

2 3 5 7

The node with data = 3 is garbage now:
there is no way to access that memory
again, because there is no way for the
programmer to refer to it.

Figure 11.34: Garbage being created.

ployed in real systems, but fundamentally the algorithmic idea is based on
finding reachable nodes in a graph. There is a root set of memory locations
that are reachable—essentially every variable that’s defined in any cur-
rently active function call on the stack. Furthermore, if a memory location
ℓ is pointed to by a reachable memory location, then ℓ too is reachable. Two
simpler algorithms that are sometimes used in garbage collection are based
on some corresponding simple graph-theoretic approaches. Here’s a brief
description of these two garbage-collection algorithms:10

You can learn more about garbage
collection in any good textbook on
programming languages. A few of these
are:
10 Michael L. Scott. Programming Lan-
guage Pragmatics. Morgan Kaufmann
Publishers, 3rd edition, 2009; and
Kenneth C. Louden and Kenneth A.
Lambert. Programming Languages: Prin-
ciples and Practices. Course Technology,
3rd edition, 2011.

Reference counting: For each block b of memory, we maintain a reference count
of the number of other blocks of memory (or root set variables) that refer to
b. When the garbage collector runs, any block b that has a reference count
equal to 0 is marked as garbage and reclaimed for future use.

Mark-and-sweep: When the garbage collector runs, we iteratively mark each
block b that is accessible. Specifically, for every variable v in the root set,
we mark the block to which v refers. Then, for any block b that is marked,
we also mark any block to which b refers. Once the marking process is
completed, we sweep through memory, and reclaim all unmarked blocks.

x y

1 2 3 4 5 6

Figure 11.35: A memory diagram with
six blocks of memory, and two root set
variables x and y. Reference counting
would show block #6 with a reference
count of zero, and therefore it would
be reclaimed. Mark-and-sweep would
mark blocks #1, #4, and #5; thus it would
reclaim blocks #2, #3, and #6.

In graph-theoretic terms, we view memory as a directed graph,
with an edge from each block b to the block(s) to which b refers.
Reference counting declares as garbage any node with in-degree 0;
mark-and-sweep declares as garbage any node that is not reached
by BFS starting from the root set.

Reference counting is a simpler algorithm, but it has a prob-
lem with cyclical structures. If two inaccessible blocks of memory refer to
each other, they both have nonzero reference count, and therefore won’t be
marked as garbage. An example is shown in Figure 11.35. There are issues
of efficiency with mark-and-sweep (the entire system has to pause while the
garbage collector runs), and so other, more sophisticated algorithms are gener-
ally used in real systems.
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11.3.6 Exercises

A

B

C

D

E

F

G

H

(a)

A

B

C

D

E

F

G

H

(b)

A: B, E, F

B: A

C: D

D: C, F

E: A

F: A, D

(c)

A: B, C

B: A, C

C: A, B, F

D: E

E: B, D

F: C

(d)

A B C D E F G H

A 1 1
B 1 1 1
C 1 1
D 1 1 1
E 1 1
F 1 1
G 1
H 1 1 1

(e)

Figure 11.36:
Several graphs.For the graphs defined in Figure 11.36, identify the following specified objects (or indicate why no such thing exists):

11.72 a path from D to B in Figure 11.36(a)
11.73 two different paths from C to H in Figure 11.36(a)
11.74 a path from C to B in Figure 11.36(b)
11.75 two different paths from A to H in Figure 11.36(b)
11.76 a path from D to H in Figure 11.36(b) that is not simple.
11.77 a path from B to C in the graph defined by the adjacency list in Figure 11.36(c)
11.78 a shortest path from B to F in Figure 11.36(d)
11.79 a non–shortest path from B to C in the graph defined by the adjacency matrix in Figure 11.36(e)
11.80 all nodes reachable from A in Figure 11.36(d)
11.81 all nodes reachable from A in Figure 11.36(e)

Which of these graphs are (strongly) connected? Explain your answers. Identify all of the connected components for the
undirected graphs, and all of the strongly connected components for the directed graphs.
11.82 Figure 11.36(a)
11.83 Figure 11.36(b) (strong connectivity)
11.84 Figure 11.36(c)
11.85 Figure 11.36(d) (strong connectivity)
11.86 Figure 11.36(e)

Let G = 〈V,E〉 be an undirected graph, and let s ∈ V and t ∈ V be any two nodes in G. Prove the following:
11.87 If there’s a path of length k from s to t, then there’s a path of length k from t to s.
11.88 Every shortest path between s and t is a simple path.

For a directed graph G = 〈V,E〉, the diameter of G is the largest node-to-node distance in the graph. That is, Although the
context is different,
our version of
“diameter” matches
the idea from
geometry: the
diameter of a circle
is the distance
between the two
points in the circle
that are farthest
apart. That’s still
true for a graph.

diameter(G) = max
s∈V,t∈V

d(s, t),

where d(s, t) denotes the length of the shortest path from node s to node t in G. Prove your answers:
11.89 In terms of n, what is the smallest diameter that an n-node undirected graph can have?
11.90 In terms of n, what is the largest diameter that a connected n-node undirected graph can have?
Give an example of a graph where the diameter is this large. (In other words, assuming that G is connected,
what’s the largest possible distance between two nodes in G? Note that, without the restriction that the graph be
connected, the answer would be ∞.)

Consider an n-node 3-regular undirected graph G. (That is, we’re considering a graph G = 〈V,E〉 with |V| = n, where
each node u ∈ V has degree exactly equal to 3.) In terms of n:
11.91 What is the largest possible number of connected components in a 3-regular graph?
11.92 What is the smallest possible number of connected components in a 3-regular graph?
11.93 Describe a connected 3-regular graph with n nodes with a diameter that’s at least n

8 .
11.94 Describe a connected 3-regular graph with n nodes with a diameter that’s at most 8 log n.
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11.3. PATHS, CONNECTIVITY, AND DISTANCES 1145

11.95 Prove or disprove: let G = 〈L ∪ R,E〉 be a bipartite graph with |L| = |R|. Suppose that every node
in the graph (that is, all nodes in L and R) has at least one neighbor. Then the graph is connected.

Consider an undirected graph G. Recall that a simple path from s to t in G is a path that does not go through any node
more than once. A Hamiltonian path from s to t in G is a path from s to t that goes through each node of G precisely
once. In general, finding Hamiltonian paths in a graph is believed to be computationally very difficult. But there are Hamiltonian paths

are named after
William Rowan
Hamilton, a 19th-
century Irish
mathematician/
physicist.

some specific graphs in which it’s easy to find one.
11.96 Find a Hamiltonian path in the Petersen graph:

A

B

C

DE

F

G

H

IJ

11.97 Let Kn be a complete graph, and let s and t be two distinct nodes in the graph. How many differ-
ent Hamiltonian paths are there from s to t?
11.98 Let Kn,m be a complete bipartite graph with n +m nodes, and let s and t be two distinct nodes in
the graph. How many different Hamiltonian paths are there from s to t? (Careful; your answer may depend on s
and t.)

The diameter of an undirected graph G = 〈V,E〉 is defined as the maximum distance between any two nodes s ∈ V
and t ∈ V. (See Exercises 11.89 and 11.90.) The maximum distance is one measure of how far a graph “sprawls,”
but another way of measuring this idea is by looking at the average distance instead. That is, for a pair of distinct
nodes 〈s, t〉 chosen uniformly from the set V, what’s the distance from s to t? That is, the average distance of a graph
G = 〈V,E〉 is defined as

the average distance of G = ∑s∈V ∑t∈V:t 6=s distance(s, t)
n(n− 1) .

(There are n(n − 1) ordered pairs of distinct nodes.) Often the average distance is a bit harder to calculate than the
maximum distance, but in the next few exercises you’ll look at the average distance for a pair of simple graphs.
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(a) A 15-node cycle.
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(b) A 16-node cycle.
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(c) A 15-node path.

Figure 11.37: Three
graphs.

11.99 Consider an n-node cycle,
where n is odd. (We’ll see a formal
definition of a cycle in Section 11.4, but
for now just look at the 15-node example
in Figure 11.37(a).) Compute the average
distance in this n-node graph. (Hint:
every node is positioned symmetrically, so
you can just figure out the average distance
from some particular node u.)
11.100 What is the average distance
for an n-node cycle where n is even? (See
the 16-node example in Figure 11.37(b).)
11.101 What is the average distance for an n-node path? (See the 15-node example in Figure 11.37(c).)
(Hint: for any particular integer k, how many pairs of nodes have distance k? Then simplify the summation.)
11.102 (programming required) Write a program, in a language of your choice, to verify your answers to
the last three exercises: build a graph of the appropriate size and structure, sum all of the node-to-node
distances, and compute their average.

Suppose that G is an undirected graph with n nodes. Answer the following questions in terms of n:
11.103 If G is disconnected, what is the largest possible number of edges that G can contain?
11.104 If G is connected, what is the smallest possible number of edges that G can contain?

Suppose that G is a directed graph with n nodes. Answer the following questions in terms of n:
11.105 If G is strongly connected, what is the smallest number of edges that G can contain?
11.106 If every node of G is in its own strongly connected component (that is, there are n different SCCs,
one per node), what is the largest number of edges that G can contain?
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1146 CHAPTER 11. GRAPHS AND TREES

A metric on a set V is a function d : V ×V → R≥0 that obeys the following conditions (see Exercise 4.6 for more):
• reflexivity: for any u ∈ V and v ∈ V, we have d(u, u) = 0 and d(u, v) 6= 0 whenever u 6= v.
• symmetry: for any u ∈ V and v ∈ V, we have d(u, v) = d(v, u).
• triangle inequality: for any u ∈ V and v ∈ V and z ∈ V, we have d(u, v) ≤ d(u, z) + d(z, v).
Let dG(u, v) denote the distance (shortest path length) between nodes u ∈ V and v ∈ V for a graph G = 〈V,E〉.
11.107 Prove that dG is a metric if G is any connected undirected graph.
11.108 Prove that dG is not necessarily a metric for a directed graph G, even if G is strongly connected.

11.109 Definition 11.23 defined a strong connected component in a graph G = 〈V,E〉 as a set C ⊆ V such
that: (i) any two nodes s ∈ C and t ∈ C are strongly connected; and (ii) for any node x ∈ V − C, adding x to C would
make (i) false. Suppose that we’d instead defined clause (i) as for any two nodes s ∈ C and t ∈ C, the node t is
reachable from node s. (But we don’t require that s be reachable from t.) This alternate definition is equivalent
to the original. Why?

11.110 Prove that the strongly connected components (SCCs) of a directed graph partition the nodes of
the graph: that is, prove that the relation R(u, v) denoting mutual reachability (u is reachable from v, and v is
reachable from u) is an equivalence relation (reflexive, symmetric, and transitive).

A

B

C

D

E

F

G

(a)

0: 3, 7

1: 9, 2, 5

2: 1, 10, 9

3: 0, 7, 1

4: 10, 7

5: 1

6: 7, 11

7: 0, 4, 6, 8

8: 11, 12

9: 1

10: 2, 4

11: 6, 8

12: 8

(b)
Figure 11.38: Two
graphs.

Consider the directed graphs represented in Figure 11.38, one by picture and
one by adjacency list. Identify the strongly connected components . . .
11.111 . . . in Figure 11.38(a).
11.112 . . . in Figure 11.38(b).
Suppose that we run breadth-first search from the following nodes. What is the
last node that BFS discovers? (If there’s a tie, then list all the tied nodes.)
11.113 BFS from node A in Figure 11.38(a).
11.114 BFS from node B in Figure 11.38(a).
11.115 BFS from node 0 in Figure 11.38(b).
11.116 BFS from node 12 in Figure 11.38(b).

Breadth-first search as described in Figure 11.29 finds all nodes reachable from a given source node in a given graph,
and, in fact, it discovers nodes in increasing order of their distance from s. But we didn’t actually record distances
during the computation.
11.117 Modify the pseudocode for BFS to compute distances instead of just whether a path exists, by
annotating every node added to Frontier with its distance from the source node s.
11.118 Argue that in your modified version of BFS, there are never more than two different distances
stored in the Frontier.
11.119 Argue that the claim from the previous exercise may be false for depth-first search.

11.120 Consider a graph G represented by an adjacency matrix M. What does the 〈i, j〉th entry of MM
(the matrix that results from squaring the matrixM) represent?

A word chain is a sequence 〈w1,w2, . . . ,wk〉 of words, where each wi is a word in English, and wi+1 is one letter
different from wi . For example, a word chain from FROWN to SMILE for my dictionary is

FROWN → FLOWN → FLOWS → SLOWS → SLOTS → SLITS → SKITS → SKITE → SMITE → SMILE.

(SKITE is a word of Scottish origin, meaning “an oblique blow.”)
11.121 (programming required) Write a program that uses a BFS-like algorithm to find a shortest word
chain between two given words w1 and w2 of the same length. (You can find a dictionary of English words
on the web, or /usr/share/dict/words on Unix-based operating systems. You’ll want to cull your dictionary
to only words of the right length before you start.) There are faster solutions that involve searching “in both
directions” out from w1 and into w2 until you find a match, but BFS from w1 will work.
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11.4 Trees
I think that I shall never see
A poem lovely as a tree.

Joyce Kilmer (1886–1918), “Trees”
Trees and Other Poems (1914)

leaves

root

Figure 11.39: A
small tree.

Informally, a tree is a graph that grows from a root, branching outward
and eventually leading to the leaves. (We computer scientists are always
upside down compared to botanists: unlike an oak or maple or tamarack,
the root of a tree in CS is at the top, and it grows downward toward the
leaves.) See Figure 11.39.

Trees arise very frequently in computer science: to name just a few exam-
ples, they’re the class hierarchies of object-oriented programming, the bi-
nary search trees of data structures (see p. 1160), the game trees describing
the progression of Tic-Tac-Toe or chess (p. 344), the parse trees that describe
formal or natural languages (p. 543), the recursion trees that describe the execution
of recursive algorithms (Section 6.4). Trees are also frequently used in computational
models of important phenomena from outside of CS: for example, in reconstructing
evolutionary phylogenies (in computational biology), or in reconstructing the paths by
which rumors spread from the originator of the information (in social network analy-
sis). In this section, we’ll introduce trees formally—including definitions, properties,
algorithms, and applications—as a special type of graph.

11.4.1 Cycles
Before we can define trees properly, we must first define another notion about graphs
in general—a cycle, which is way to get from a node back to itself:

Definition 11.26 (Cycle)
A cycle 〈u1, u2, . . . , uk, u1〉 is a path of length ≥ 2 from a node u1 back to node u1 that does
not traverse the same edge twice. Just as for any other path, the length of the cycle
〈u1, u2, . . . , uk, u1〉 is the number of edges it traverses—that is, k.

A

B

C

D

E

A

B

C

D

E

Figure 11.40: Two
graphs with cycles
〈A, B, C, A〉.

Figure 11.40 shows examples of an undirected and directed
graph with a cycle 〈A, B, C, A〉. Note that the edges 〈s, t〉 and 〈t, s〉
in a directed graph are different; in an undirected graph, the
edges {s, t} and {t, s} are the same. Thus a cycle in a directed
graph can use both 〈s, t〉 and 〈t, s〉, but a cycle in an undirected graph cannot use both
〈s, t〉 and 〈t, s〉. In Figure 11.40, the path 〈C, E, C〉 is a cycle in the directed graph, but is
not a cycle in the undirected graph because it reuses an edge.

Technically speaking, the definition of a cycle in Definition 11.26 says that the undi-
rected graph in Figure 11.40 has six different cycles:

• 〈A, B, C, A〉, 〈C, A, B, C〉, and 〈B, C, A, B〉 (going clockwise), and
• 〈A, C, B, A〉, 〈C, B, A, C〉, and 〈B, A, C, B〉 (going counterclockwise).
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1148 CHAPTER 11. GRAPHS AND TREES

However, we will adopt the convention that there is one and only one cycle in this
graph. Because we can “start anywhere” in a cycle, we consider a cycle to be defined
only by the relative ordering of the nodes involved, regardless of where we start. In

A

B

C

(a)
A

B

C

(b)
A

B

C

(c)

Figure 11.41: Some
cycles.

an undirected graph, we can “go either direction” (clock-
wise or counterclockwise), so we also ignore the di-
rection of travel in distinguishing cycles. In a directed
graph, the direction of travel doesmatter; we may be able
to go in one direction around a cycle without being able
to go in the other. In other words, we say that Figure 11.41(a) and Figure 11.41(b) have
one cycle each, while Figure 11.41(c) has two.

A cycle is by definition forbidden from traversing the same edge twice. A simple
cycle also does not visit any node more than once:

Definition 11.27 (Simple cycle)
A cycle 〈u1, u2, . . . , uk, u1〉 is simple if each ui is distinct—that is, no nodes in the cycle are
duplicated aside from the last node (which equals the first node).

(We’ve now used the word “simple” in three different contexts: simple graphs have
no parallel edges or self-loops, and simple paths and cycles have no repeated vertices.
Intuitively, all three definitions correspond to an entity that’s not unnecessarily compli-
cated.) For one example, see Figure 11.42; here are two more:

A

B

C

DE

Figure 11.42:
In this graph,
〈D, B, A, C, E, A, D〉
is a non-simple
cycle. This graph
also has two simple
cycles: 〈D, B, A, D〉
and 〈C, E, A, C〉.

Example 11.30 (Finding cycles)
Problem: Identify all simple cycles in the following graphs:

1.

A

B

C

D

E

F

G

H

2.

I J

K

L

M

Solution: A nice way to identify cycles systematically is to look for cycles of all possi-
ble lengths: 2-node cycles, 3-node cycles, etc. (Actually 2-node cycles are possible
only in directed graphs. Exercise: why?) Here are the simple cycles in these graphs:

1. 〈B, E, C, B〉
〈B, D, F, C, B〉
〈C, F, G, E, C〉
〈B, D, F, G, E, B〉
〈B, D, F, G, E, C, B〉

2. 〈I, J, I〉
〈J, L, J〉
〈J, M, L, J〉
〈J, K, M, L, J〉

Note that (to name one of several examples) the sequence 〈I, J, L, J, I〉 is also a
cycle in the second graph—it traverses four distinct directed edges and goes from
node I to I—but this cycle is not simple, because node J is repeated.
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11.4. TREES 1149

We can use a modification of breadth-first search to identify cycles algorithmically.
Specifically, suppose that we wish to find out whether a node u is involved in a cycle
in a directed graph. We run BFS starting at node u, and if we ever encounter a node
v that has u as a neighbor, then we have found a cycle involving node u. (An extra
modification is necessary for undirected graphs; see Exercise 11.129.)

Taking it further: Kidneys are the most frequently transplanted organ today, in part because—unlike
for other organs—humans generally have a “spare”: we’re born with two kidneys, but only need one
functioning kidney to live a healthy life. Thus patients suffering from kidney failure may be able to get a
transplant from friends or family members who are willing to donate one of their kidneys. But this po-
tential transplant relies on the donor and the patient being compatible in dimensions like blood type and
the physical size of the organs. Recently a computational solution to the problem of incompatibility has
emerged, using algorithms based on finding (short) cycles in a particular graph: there is now national
exchange for matching up two (or a few) patients with willing-but-incompatible donors, and doing a
multiway transplant. See p. 1159 for more discussion.

Acyclic graphs
While cycles are important on their own, their relevance for trees is actually when

they don’t exist:

Definition 11.28 (Acyclic Graphs)
A graph is acyclic if it contains no cycles.

Let’s prove a useful structural fact about acyclic graphs. (Recall that we are consid-
ering finite graphs, where the set of nodes in the graph is finite. The following claim
would be false if graphs could have an infinite number of nodes!)

Lemma 11.5 (Every acyclic graph has a node with degree 0 or 1)
Let G = 〈V,E〉 be an acyclic undirected graph. Then there exists a node in V whose degree is
zero or one.

Proof. We’ll give a constructive proof of the claim—specifically, we’ll give an algorithm
that finds a node with the stated property:

1: let u0 be an arbitrary node in the graph, and let i := 0
2: while the current node ui has no unvisited neighbors:
3: let ui+1 be a neighbor of ui that has not previously been visited.
4: increment i

Observe that this process must terminate in at most |V| iterations, because we must
visit a new node in each step. Suppose that this algorithm goes through k iterations of
the while loop, and let t be the last node visited by the algorithm. (So t = uk .)

• If k = 0, then t = u0 has degree zero, so the claim follows immediately.
• If k ≥ 1, then we’ll argue that t has degree one. Because the algorithm terminated,

there cannot be an edge between t and any unvisited node. Furthermore, if there
were an edge from t to any previously visited node uj for j < k− 1, then there would
be a cycle in the graph, namely 〈uj, uj+1, . . . , uk−1, uk, uj〉. Therefore t’s only neighbor
is uk−1, and the degree of t is one.
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1150 CHAPTER 11. GRAPHS AND TREES

For directed graphs, the claim analogous to Lemma 11.5 is every directed acyclic graph
contains a node with outdegree zero. (You’ll prove it in Exercise 11.130.)

Taking it further: A directed acyclic graph (often just called a DAG) is, perhaps obviously, a directed
graph that contains no cycles. A DAG G corresponds to a (strict) partial order (see Chapter 8); a cycle in
G corresponds to a violation of transitivity. In fact, we can think of any directed graph G = 〈V,E〉 as a
relation—specifically, the edge set E is a subset of V × V. Like transitivity and acyclicity, many of the
concepts that we explored in Chapter 8 have analogues in the world of graphs.

11.4.2 Trees
With the definition of cycles in hand, we can now define trees themselves:

Definition 11.29 (Tree)
A tree is an undirected graph that is connected and acyclic.

We will also sometimes talk about graphs that satisfy only the latter requirement:
a forest is an undirected graph that is acyclic (but not necessarily connected). Every
connected component of a forest is a tree, and note that a tree is itself a forest.

An irrelevant note
about Chinese: the
character for tree
is木; the character
for forest is森
(a disconnected
collection of trees!).

(a) (b) (c) (d) (e) (f)

Figure 11.43: Some
sample trees.

Several examples of trees
are shown in Figure 11.43:
all six graphs have a single
connected component and
contain no cycles. Therefore
all six are trees.

We’ll prove several struc-
tural facts about trees in this section, beginning with one concerning the number of
edges in a tree. To start, let’s look at the number of nodes and edges in each of the trees
in Figure 11.43:

(a) (b) (c) (d) (e) (f)
number of nodes 4 11 4 5 1 7
number of edges 3 10 3 4 0 6

In each of these trees, the number of nodes is one more than the number of edges, and
that’s no coincidence; here’s the statement and proof of the general fact:

Theorem 11.6 (Number of edges in a tree)
Let T = 〈V,E〉 be a tree. Then |E| = |V| − 1.

Proof. Let P(n) denote the property that any n-node tree has precisely n− 1 edges. We
will prove that P(n) holds for all n ≥ 1 by induction on n.

Base case (n = 1): We must prove P(1): any 1-node tree has 1− 1 = 0 edges. But the
only 1-node (simple) graph is the one shown in Figure 11.43(e), which has zero
edges, and so we’re done immediately.
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Inductive case (n ≥ 2): We assume the inductive hypothesis P(n− 1)—that is, every
(n− 1)-node tree has n− 2 edges. We must prove P(n).
Consider an arbitrary tree T = 〈V,E〉with |V| = n. By definition, T is acyclic and
connected. By Lemma 11.5, then, there exists a node u ∈ V with degree 0 or 1 in T.
Furthermore, because T is connected, the degree of u cannot be 0. Thus u is a node
with degree(u) = 1. Let v ∈ V be the unique neighbor of u in T. Let T′ be T with
node u and the edge {u, v} between u and v deleted. (See Figure 11.44.)
We claim that the graph T′ = 〈V − {u} ,E− {{u, v}}〉 is a tree, too. The acyclicity

T ′

u
v

Figure 11.44: A tree
T, with a node u of
degree = 1 and its
neighbor v. The tree
T ′ is T without the
node u and the edge
{u, v}.

and connectivity of T′ both follow from the fact that T was acyclic and connected,
and the fact that the eliminated node u was of degree 1.
The tree T′ contains n− 1 nodes, and thus, by the inductive hypothesis P(n− 1),
contains n− 2 edges. Therefore T, whose edges are precisely the edges of T′ plus
the eliminated edge {u, v}, contains precisely (n− 2) + 1 = n− 1 edges.

An immediate consequence of Theorem 11.6 is that every tree is teetering on the
edge of being disconnected and of having a cycle (see Figure 11.45):

✗

(a) Imagine adding
the dashed edge, or
removing the edge
marked with ✗ .

(b) Adding an edge
creates a cycle.

(c) Removing an
edge disconnects
the graph.

Figure 11.45:
Adding/removing
an edge from a tree.

Corollary 11.7 (A tree with an edge added or removed is not a tree)
Let T = 〈V,E〉 be any tree. Then:

1. adding any edge e /∈ E to T creates a cycle; and
2. removing any edge e ∈ E from T disconnects the graph.

Proof. 1. Define the graph G = 〈V,E∪ {e}〉 as the result of adding the new edge e to
the tree T. Because adding an edge to a graph can never disrupt connectivity and
T was already connected, we know that Gmust be connected too. Thus if G were
acyclic, then G would be a tree. But G has one more edge than T—specifically, G has
(|V| − 1) + 1 = |V| edges—and therefore isn’t a tree by Theorem 11.6.

2. The proof is similar: let G′ be T with e removed. Removing an edge cannot create
a cycle, so G′ is acyclic. But G′ has too few edges to be a tree by Theorem 11.6, so G′

must be disconnected.

(Here’s an alternative proof of Corollary 11.7.1. Let 〈u, v〉 be an edge not in the tree T.
Because T is connected, there is already a (simple) path P from u to v in T. If we add
〈u, v〉 to T, then there is a cycle: follow P from u to v and then follow the new edge
from v back to u. Therefore G contains a cycle.)

Rooted trees
We often designate a particular node of a tree T as the root, which is traditionally

drawn as the topmost node. (Note that we could designate any node as the root and—
just like that mobile of zoo animals from your crib from infancy—“hang” the tree by
that node.) We will adopt the standard convention that, whenever we draw trees, the
vertically highest node is the root.
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(a) The root.
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(b) The leaves.
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(c) The internal nodes.
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(d) The parent of E .
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(e) The children of E .
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(f) The sibling(s) of E .

Figure 11.46: The
root, leaves, and
internal nodes
of the tree; the
parent, children,
and siblings of a
particular node.

There’s a lot of terminology about
trees in computer science that’s bor-
rowed from the world of family trees:

• For a node u in a tree with root
r 6= u, the parent of u is the unique
neighbor of u that is closer to r than
u is. (The root is the only node that
has no parent.)

• A node v is one of the children of a
node u if v’s parent is u.

• A node v is a sibling of a node u 6= v
if v and u have the same parent.

A node with zero children is called a leaf. A node with one or more children is called
an internal node. (Note that the root is an internal node unless the tree is the trivial
one-node graph.) See Figure 11.46 for an illustration of all of these definitions. Note
that Figure 11.46 is correct only when the root is the topmost node in the image; with a
different root, all of the panels could change. Here’s a concrete example:

Example 11.31 (A sample tree)
Here are two trees. (The second tree is just the first, rerooted to make E the new root.)

A

C

G

J

B

FE

I

MLK

H

D

E

B

FDA

C

G

J

I

MLK

H

Then we have:
Root: A Root: E
Leaves: {D, F, H, J, K, L, M} Leaves: {D, F, H, J, K, L, M}
Internal nodes: {A, B, C, E, G, I} Internal nodes: {A, B, C, E, G, I}
Parent of B: A Parent of B: E
Children of B: {D, E, F} Children of B: {A, D, F}
Parent of A: none Parent of A: B
Children of A: {B, C} Children of A: {C}

While the leaves and internal nodes are identical in these two trees, note that if we’d
rerooted the tree at any of the erstwhile leaves instead, the new root would become
an internal node instead of a leaf. For example, if we reroot this tree at H, then the
leaves would be {D, F, J, K, L, M} and the internal nodes would be {A, B, C, E, G, H, I}.
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Subtrees, descendants, and ancestors
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(a) Ancestors of E .
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(b) Descendants of E .

E

HG

I

F

(c) Subtree rooted at E .

Figure 11.47: Ances-
tors, descendants,
and subtrees.

Let T be a rooted tree, and let u be
any node in T. The subtree rooted at u
consists of u and all those nodes and
edges “below” u in T. (In other words,
a node v is in the subtree rooted at
u if and only if v is no closer to the
root of T than u is; the subtree is the
induced subgraph of these nodes.) Such a node v in the subtree rooted at u is called
a descendant of u if v 6= u. The node u is called an ancestor of v. See Figure 11.47 for
illustrations of these three definitions. Here’s an example:

Example 11.32 (Descendants and ancestors)
Recall the trees from Example 11.31:

A

C

G

J

B

FE

I

MLK

H

D

E

B

FDA

C

G

J

I

MLK

H

Then we have:
Descendants of B: {D, E, F, H, I, K, L, M} Descendants of B: {A, C, D, F, G, J}
Ancestors of B: {A} Ancestors of B: {E}
Descendants of H: none Descendants of H: none
Ancestors of H: {A, B, E} Ancestors of H: {E}
Subtree rooted at B:

B

FE

I

MLK

H

D

Subtree rooted at B: B

FDA

C

G

J

A

C

E

HG

I

F

D

B

0

1 1

2 2

3 3 3

4

Figure 11.48: A
rooted tree’s nodes,
labeled by depth.

We have one final pair of definitions to (at last!) conclude our parade
of terminology about rooted trees, related to how “tall” a tree is. Con-
sider a rooted tree T with root node r. The depth of a node u is the dis-
tance from u to r. The height of a tree is the maximum, over all nodes u in
the tree, of the depth of node u.

For example, every node in the tree in Figure 11.48 is labeled by its
depth: the root has depth 0, its children have depth 1, their children (the
“grandchildren” of the root) have depth 2, and so forth. The height of the tree is the
largest depth of any of its nodes—in this case, the height is 4.
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Taking it further: Alternatively, we could give several of the definitions about rooted trees recursively.
For example, we could define ancestors and descendants of a node u be in a rooted tree T as follows:
• A node v is an ancestor of u if (i) v is the parent of u; or (ii) v is the parent of any ancestor of u.
• A node v is a descendant of u if (i) v is a child of u; or (ii) v is a child of any descendant of u.
We can also think of the depth of a node, or the height of a tree, recursively. The depth of the root is zero;
the depth of a node with a parent p is 1 + (the depth of p). For height:
• the height of a one-node tree T is zero; and
• the height of a tree T with root r with children {c1, c2 , . . . , ck} is

1 + max
i∈{1,...,k}

the height of the subtree rooted at ci .

Binary trees
We’ll often encounter a special type of tree in which nodes have a limited number of

children:

Definition 11.30 (Binary trees and k-ary trees)
A binary tree is a rooted tree in which each node has 0, 1, or 2 children. More generally, if
every node in a rooted tree T has k or fewer children, then T is called a k-ary tree. (In other
words, a binary tree is 2-ary.)

(a) (b) (c) (d) (e) (f)

Figure 11.49:
The trees from
Figure 11.43,
repeated. All but
(d) are binary trees.

For example, consider
the trees in Figure 11.49.
Of them, only the tree in
Figure 11.49(d) is not a
binary tree, because its root
has four children. (This
tree is a 4-ary tree.) But
the other five trees are all binary: in each, every internal node has either 1 child or 2
children.

In a binary tree, the possible children of a node are called its left child and right
child. (Even for a node u in a binary tree that has only one child, we’ll insist that the
lone child be designated as either the left child of u or the right child of u.) For a node
u, we say that u’s left subtree is the subtree rooted at u’s left child; the right subtree is
analogous.

11.4.3 Tree Traversal
We will sometimes want to list all of the nodes contained in a tree T. There are three
standard algorithms that are used for this purpose, called pre-order, in-order, and post-
order traversal. While these algorithms can be generalized to non-binary trees, they’re
easier to understand for binary trees (and they’re most frequently deployed for binary
trees), so we’ll consider them that way.

All three algorithms are recursive, and all three algorithms execute precisely the
same steps—just in a different order. On an empty tree T, we do nothing; on a non-
empty tree T, all three algorithms perform the following steps:
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• we “visit” the root of the tree T. (You can think of “visiting” the root as printing out
the contents of the root node, or as adding it to the end of an accumulating list of
the nodes that we’ve encountered in the tree.)

• we recursively traverse the left subtree of T, finding all nodes there.
• we recursively traverse the right subtree of T, finding all nodes there.
But the three traversal algorithms execute the three steps in different orders, either
visiting the root before both recursive calls (“pre-order”); between the recursive calls (“in-
order”); or after both recursive calls (“post-order”). We always recurse on the left subtree
before we recurse on the right subtree. Here are the details:

pre-order-traverse(T):
1: if T is empty then
2: do nothing.
3: else
4: visit the root of T
5: pre-order-traverse(T’s left subtree)
6: pre-order-traverse(T’s right subtree)

in-order-traverse(T):
1: if T is empty then
2: do nothing.
3: else
4: in-order-traverse(T’s left subtree)
5: visit the root of T
6: in-order-traverse(T’s right subtree)

post-order-traverse(T):
1: if T is empty then
2: do nothing.
3: else
4: post-order-traverse(T’s left subtree)
5: post-order-traverse(T’s right subtree)
6: visit the root of T

Figure 11.50: Three
different algorithms
to traverse a binary
tree.

Let’s take a look at an example of traversing a small tree using these algorithms.
First we’ll look at the pre-order traversal, in which the first node visited in any subtree is
the root of that subtree:

Example 11.33 (Traversing a small tree: pre-order traversal)
Let’s determine the order of nodes’ visits by a pre-order traversal of the following
tree:

A

B

D E F

C

In a pre-order traversal, we first visit the root, then pre-order-traverse the left subtree,
then pre-order-traverse the right subtree. In other words, we first visit the root A, then
pre-order-traverse B

D , then pre-order-traverse C
E F :

Step #1: visit the root. We visit the root A.
Step #2: pre-order-traverse the left subtree. To pre-order-traverse B

D , we first
visit the root B, then pre-order-traverse the left subtree D , then pre-order-traverse
the (empty) right-subtree. In order, these steps visit B and D.

Step #3: pre-order-traverse the right subtree. To pre-order-traverse C
E F ,

we first visit C, then pre-order-traverse the left subtree E , and then pre-order-
traverse the right subtree F . Pre-order-traversing E just results in visiting E, and
pre-order-traversing F just visits F. In order, these steps visit C, E, and F.

Putting this all together, the pre-order traversal of the tree visits the nodes in this
order:

A︸︷︷︸
step #1

, B, D︸︷︷︸
step #2

, C, E, F︸ ︷︷ ︸
step #3

.
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Here are examples of the other two traversal algorithms, on the same tree:

Example 11.34 (Traversing a small tree: in-order and post-order traversals)
Problem: Recall the tree from Example 11.33:

A

B

D E F

C

1. In what order are the nodes visited by an in-order traversal of this tree?
2. What about a post-order traversal?

Solution: 1. We first traverse B
D , then visit A, then traverse C

E F .
Traversing B

D visits D and B: first the left subtree, then the root.
Traversing C

E F visits E, then C, then F.
Thus an in-order traversal visits the nodes in the order D, B, A, E, C, F.

2. For a post-order traversal, the root of each subtree is the last node traversed in
that subtree: we first traverse B

D , then traverse C
E F , then visit A.

Traversing B
D visits D and B: first the left subtree, then the nonexistent

right subtree, then the root.
Traversing C

E F visits E, then F, then C.
Thus a post-order traversal visits the tree’s nodes in the order D, B, E, F, C, A.

Here’s another example, of using traversals to reconstruct a binary tree:

Example 11.35 (Trees from traversals)
Problem: Here is the output of all three traversals on a binary tree T. What’s T?

pre-order traversal in-order traversal post-order traversal
9, 2, 7, 4, 5, 3 2, 9, 5, 4, 3, 7 2, 5, 3, 4, 7, 9

Solution: We’ll reassemble T from the root down. The root is first in the pre-order
traversal (and last in the post-order), so 9 is the root. The root separates the left
subtree from the right subtree in the in-order traversal; thus the left subtree con-
tains just 2 and the right contains {3, 4, 5, 7}. So the tree has the following form:

9

{3, 4, 5, 7}
2

The post-order 5, 3, 4, 7 and in-order 5, 4, 3, 7 show that 7 is the root of the un-
known portion of the tree and that 7’s right subtree is empty. The last three nodes
are pre-ordered 4, 5, 3; in-ordered 5, 4, 3; and post-ordered 5, 3, 4. In sum, that says
that 4 is the root, 5 is the left subtree, and 3 is the right subtree. Assembling these
pieces yields the final tree:
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9

2 7

4

5 3

Taking it further: One particularly important type of binary tree is the binary search tree (BST), a widely
used data structure—one that’s probably very familiar if you’ve taken a course on data structures. A
BST is a binary tree in which each node has some associated “key” (a piece of data), and the nodes of the
tree are stored in a particular sorted order: all nodes in the left subtree have a key smaller than the root,
and all nodes in the right subtree have a key larger than the root. Thus an in-order traversal of a binary
search tree yields the tree’s keys in sorted order. For more, see p. 1160. An even more specific form of
binary search tree, called a balanced binary search tree, adds an additional structural property related to
the depth of nodes in the tree. See p. 643 for a discussion of one scheme for balanced binary search trees,
called AVL trees.

11.4.4 Spanning Trees
Let G = 〈V,E〉 be an undirected graph. For example, imagine that each node in V
represents a dorm room on your campus, and each edge in E denotes a possible fiber
optic cable that can be laid to build an ethernet connection throughout the residence
halls. A reasonable goal is to actually place only some of those possible cables, a subset
E′ ⊆ E, while ensuring that network traffic can be sent between any two dorm rooms—
that is, ensuring that the resulting network is connected. In other words, one seeks a
spanning tree of the graph G:

Definition 11.31 (Spanning tree)
Let G = 〈V,E〉 be a connected undirected graph. A spanning tree of G is a tree T = 〈V,E′〉
with the same nodes as G and with edges E′ ⊆ E that are a subset of G’s edges.

A

B

C
E

F

The original graph.

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

Figure 11.51: All 8
spanning trees of
the graph shown in
the first panel.

A spanning tree of G is called
“spanning” because it con-
nects (that is, spans) all nodes
in G. Figure 11.51 shows a
small example: the first panel
shows a small graph G; the
remaining panels show the 8
different spanning trees of G.

A graph G has a spanning tree if and only if G is connected: we can be sure to only
remove “redundant” edges that aren’t required for connectivity, and removing edges
from G can never cause a disconnected graph to become connected. (For disconnected
graphs, people sometimes talk about a spanning forest: a forest F = 〈V,E′〉 with E′ ⊆ E,
where the connected components of the original graph G and the connected compo-
nents of the forest F are identical.)

Although we didn’t talk about it this way when we introduced breadth- and depth-
first search (see Figures 11.29 and 11.31), these algorithms can find spanning trees,

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



1158 CHAPTER 11. GRAPHS AND TREES

with a small change: as we explore the graph, we include in E′ every edge 〈u, v〉 that
leads from a previously known node u to a newly discovered node v.

Cycle Elimination Algorithm:
Input: a connected graph G = 〈V,E〉
Output: a spanning tree of G
1: while there exists a cycle C in G:
2: let e be an arbitrary edge traversed by C
3: remove e from E
4: return the resulting graph 〈V,E〉.

Figure 11.52: The
pseudocode for an
algorithm to find a
spanning tree.

We’ll also see some other ways to find spanning trees in
Section 11.5.2, but here’s another, conceptually simpler tech-
nique. To find a spanning tree in a connected graph G, we
repeatedly find an edge that can be deleted without discon-
necting G—that is, an edge that’s in a cycle—and delete it.
See Figure 11.52 for the algorithm. Here’s an example:

Example 11.36 (Finding a spanning tree via cycle elimination)
Here are the iterations of the Cycle Elimination algorithm in computing a spanning
tree of a given connected graph. In each iteration, we’ve selected an arbitrary cycle
(lightly shaded) and then selected an arbitrary edge from that cycle (heavily shaded)
and removed it. After three iterations, the resulting graph has no cycles, and remains
connected; the resulting graph is a spanning tree of the original graph.

A

BC

D

E

FG

H

step #1 A

BC

D

E

FG

H

step #2 A

BC

D

E

FG

H

step #3 A

BC

D

E

FG

H

A

BC

D

E

FG

H

We can prove that the Cycle Elimination algorithm correctly finds spanning trees,
given an arbitrary connected graph as input:

Theorem 11.8 (Correctness of the Cycle Elimination algorithm)
Given any connected graph G = 〈V,E〉, the Cycle Elimination algorithm returns a spanning
tree T of G.

cycle C

s

u v

t

(a) The short way
from s to t, via
{u, v}.

cycle C

s

u v

t

(b) The long way
from s to t.

Figure 11.53: Main-
taining connectivity
in the Cycle Elimi-
nation Algorithm.

Proof. The algorithm only deletes edges from G, so certainly T = 〈V,E′〉 satisfies
E′ ⊆ E. We need to prove that T is a tree: that is, T is acyclic and T is connected.

Acyclicity: As long as there’s a cycle remaining, the algorithm stays in the while loop.
Thus we only exit the loop when the remaining graph is acyclic. (And the loop
terminates in at most |E| iterations, because an edge is deleted in every iteration.)

Connectivity: We claim that the graph is connected throughout the algorithm. It’s true
at the beginning of the algorithm, by assumption. Now consider an iteration in
which we delete the edge {u, v} from a cycle C. Let s and t be arbitrary nodes; we
will argue that there is still a path from s to t. Before we deleted {u, v}, there was a
path P from s to t. If P didn’t traverse the edge {u, v}, then P is still a path from s to
t. Otherwise, we can still get from s to t by going “the long way around” the cycle
C instead of following the single edge {u, v}. (See Figure 11.53.) Thus there is still a
path from any node s to any node t, and so the graph stays connected.
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Computer Science Connections

Directed Graphs, Cycles, and Kidney Transplants
Kidneys are essential to human life; they play an essential filtering role

in the body without which we would all die. Although we are born with
two kidneys, humans need only one functioning kidney to live healthy lives.
Because we’re all naturally equipped with a “spare,” kidney transplants are
the most common form of transplant surgery performed today. Thousands of
lives are saved annually through kidney transplants.

Typically a patient in need of a kidney identifies a friend or relative who
is willing to donate. If the patient and donor are compatible—for example,
blood type and physical size of the donor’s kidney must be appropriate—
then medical teams perform two simultaneous operations: one to remove the
“spare” kidney from the donor, and one to implant it in the patient. (Some
patients instead receive kidneys from strangers who chose to donate their
organs in case of an untimely death.) Unfortunately, many patients who need
kidneys have a friend or relative willing to donate to them—but they are
incompatible with their prospective donor’s kidney. These patients may spend
years on a waiting list for a transplant, undergoing painful, expensive, and
only partially effective dialysis while they wait and hope.

In recent years, medical personnel have begun a program of kidney ex-
changes. Suppose that a patient p1 is incompatible with her prospective donor
d1, another patient p2 is incompatible with his prospective donor d2, but pairs
〈p1, d2〉 and 〈p2, d1〉 are both compatible with each other. Four teams of doctors
can then do a “paired exchange” with four surgeries, in which d1 donates to p2
and d2 donates to p1. (To ensure that everybody follows through, the surgeries
must be simultaneous: if d1 donates to p2 before d2 undergoes surgery, then
d2 has no incentive to go through the surgery, as d2’s friend p2 has already
received his kidney.) We can even consider larger exchanges (three or more
simultaneous donations)—though as the number of surgeries increases, the
logistical difficulty increases as well.

Deciding which transplants to complete is done using a graph-based
algorithm. Each patient pi comes to the system with a donor di who is willing
to donate to pi . Define a directed graph G as follows. There is a node for each
patient pi and a node for each donor di. Add a directed edge 〈pi, di〉 for every
i. Also add a directed edge 〈di , pj〉 if donor dj is compatible with patient pj . A
cycle in G then corresponds to a set of surgeries that can be completed: every
donor in the cycle donates a kidney, and every patient in the cycle receives a
compatible kidney. See Figure 11.54 for an example.

The algorithm that’s actually used in the real kidney exchange net-

patient #1

patient #2

patient #3

patient #4

patient #5

donor #1

donor #2

donor #3

donor #4

donor #5
(a) The graph of compatibilities. A
directed edge goes from every
patient to her corresponding donor.
There is a directed edge from a
donor to a patient if that patient can
receive a kidney from that donor.

patient #1

patient #2

patient #3

patient #4

patient #5

donor #1

donor #2

donor #3

donor #4

donor #5
(b) The selected transplants. We
“cover” this graph with two cycles;
if we perform the transplants
highlighted (the darker
donor-to-patient edges), then every
patient receives a compatible
kidney.

Figure 11.54: An example of a kidney
exchange network, and the cycle-based
algorithm to select transplants.

work in the United States computes a set of node-disjoint cycles that will
be performed.11 To limit the number of simultaneous surgeries that are re- 11 David Abraham, Avrim Blum, and

Tuomas Sandholm. Clearing algorithms
for barter exchange markets: Enabling
nationwide kidney exchanges. In
Proceedings of the ACM Conference on
Electronic Commerce (EC), 2007.

quired, the algorithm seeks a set of cycles of length 4 or length 6—that is, 2 or 3
transplants—in G that maximizes the total number of nodes included. (The
constraint on cycle length makes the computational problem much more dif-
ficult, so the algorithm requires significant computational power to compute
the surgeries to complete.)
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Computer Science Connections

Binary Search Trees
Trees are the basis of many important data structures, of which binary

search trees are perhaps most frequently used. Binary search trees are data
structures that implement the abstract data type called a dictionary: we have
a set of keys, each of which has a corresponding value. (For example, the keys
might be words and the values definitions, or they might be student names
and GPAs, or usernames and encrypted passwords.) The data structure must
support operations like insert(k, v) (add a new key/value pair) and lookup(k)
(report the value associated with key k, if any).

A binary search tree (BST) is a binary tree for which every node u satisfies
the BST condition illustrated in Figure 11.55: every node v in u’s left subtree
has a key that is less than u’s key, and every node v in u’s right subtree has
a key that is greater than u’s key. (For simplicity, assume that all keys are
distinct.)

An example of a binary search tree is shown in Figure 11.56.

x

all keys > xall keys< x

Figure 11.55: The binary search tree
condition. For every node with key x:
all keys in the left subtree of the node
have a key < x; and all keys in the right
subtree of the node have a key> x.

Hanan

Evan Joseph

Isaac Noah

Mikenna

Morgan

Milan

Yasin

Qwill

Figure 11.56: A binary search tree
storing a set of 10 keys. The key is
shown in each node; the accompanying
value isn’t drawn.

Incidentally, the BST condition implies the following claim: an
in-order traversal of a binary search tree visits the keys in sorted order.
This claim can be proven formally by induction, but the intuition
is straightforward: an in-order traversal of a node with key x
first visits nodes < x (while traversing the left subtree), then x
itself, and then nodes > x (while traversing the right subtree).
Because, recursively, the nodes of the left and right subtrees
are themselves visited in sorted order, the entire tree’s keys are
visited in sorted order.

Binary search trees are good data structures for dictionaries
because insert and lookup can be implemented simply and effi-
ciently. If we perform a lookup for a key k in an empty BST T, we return “not
found.” (For simplicity, we allow a BST to be empty—that is, to contain zero
nodes.) Otherwise, compare k to the key r stored in the root node of T:
• if k = r, then return the value stored at the root.
• if k < r, then perform a lookup for k in the left subtree.
• if k > r, then perform a lookup for k in the right subtree. Morgan

Hanan

Evan Joseph

Isaac

Noah

Mikenna

Milan

Yasin

Qwill

Figure 11.57: Another binary search tree
with the same set of keys.

The BST condition guarantees that we find the node with key
k if it’s in the tree. (You can prove this fact by induction.) The
insert operation can be implemented similarly, by adding a new
node exactly where a lookup for the key k would have found k.

The worst-case running time of lookup and insert is propor-
tional to the height of the binary search tree. More “balanced”
BSTs—in which every internal node has a left subtree with roughly the same
height as its right subtree—have better performance. (There are many differ-
ent BSTs with the same set of keys; for example, another BST that has the same
keys as the BST in Figure 11.56 is shown in Figure 11.57.)

Most software therefore uses balanced binary search trees instead—for ex-
ample, AVL trees or red–black trees.12 (See p. 643 for further discussion of AVL

See the details in any good textbook on
data structures, or in
12 Thomas H. Cormen, Charles E.
Leisersen, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009.trees, and a proof of their efficiency.)
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11.4.5 Exercises
Identify all of the simple cycles in the following graphs:

11.122

A

B

C

D

E

F

G

H

11.123

A

B

C

D

E

F

G

H

11.124

A

B

C

D

E

F

G

H

Consider an undirected graph G with n nodes. In terms of n . . .
11.125 . . . what is the longest simple cycle that G can contain? Explain.
11.126 . . . what is the longest cycle (not necessarily simple) that G can contain? Explain.

Prove your answers to the following questions, and simplify your answer as n gets large. (For handling large n, a useful
fact from calculus: ∑n

i=0
1
i! approaches e = 2.71828 · · · as n grows.)

11.127 In the n-node complete graph Kn, how many simple cycles is a particular node u involved in?
11.128 Let u be a node in a n-node complete directed graph: all edges except for self-loops are present.
How many simple cycles is node u involved in?

Input: a graph G = 〈V,E〉 and a source node s ∈ V
Output: is s involved in a cycle in G?
1: Frontier := 〈s〉
2: Known := ∅
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: if s is a neighbor of u then
7: return “s is involved in a cycle.”
8: for every neighbor v of u:
9: if v is in neither Frontier nor Known then
10: add v to the end of Frontier
11: add u to Known
12: return “s is not involved in a cycle.”

Figure 11.58: BFS
modified (slightly
buggily) to detect
cycles involving the
node s.

11.129 A small modification to BFS can detect cycles involving a node
s a directed graph, as shown in Figure 11.58. However, this modification
doesn’t quite work for undirected graphs. Give an example of an acyclic
graph in which the algorithm Figure 11.58 falsely claims that there is a cycle.
Then describe briefly how to modify this algorithm to correctly detect cycles
involving node s in undirected graphs.

Recall Lemma 11.5: in any acyclic undirected graph, there exists a node whose
degree is zero or one. Prove the following two extensions/variations of this lemma:
11.130 Prove that every directed acyclic graph contains a node with
out-degree zero.
11.131 Prove that there are two nodes of degree 1 in any acyclic undi-
rected graph that contains at least one edge.

Recall Definition 11.26: a cycle 〈u0, u1, . . . , uk ,u0〉 is a path of length ≥ 2 from a node u0 back to node u0 that
does not traverse the same edge twice. At various times in class, I’ve tried to define cycles in all of the following
ways—and they’re all bogus definitions, in the sense that they describe something different from Definition 11.26. For
each of the following broken definitions, explain why I was wrong:
11.132 A cycle is a simple path from s to s.
11.133 A cycle is a path of length ≥ 2 from s to s.
11.134 A cycle is a path from s to s that doesn’t traverse any edge more than once.
11.135 A cycle is a path from s to s that includes at least 3 distinct nodes.
11.136 A cycle is a path of length ≥ 2 from s to s that doesn’t traverse any edge twice consecutively.

11.137 Definition 11.28 defines an acyclic graph as one containing no cycles, but it would have been
equivalent to define acyclic graphs as those containing no simple cycles. Prove that G has a cycle if and only if
G has a simple cycle.

Recall that G = 〈V,E〉 is a regular graph if every u ∈ V has degree(u) = d, for some fixed constant d.
11.138 Identify two different regular graphs that are trees.
11.139 It turns out that there are two and only two different trees T that are regular graphs. Prove that
there are no other regular graphs that are trees.
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A triangle is a simple cycle containing exactly three nodes. A square is a simple cycle containing exactly four nodes.
11.140 What is the largest number of triangles possible in an undirected graph of n nodes?
11.141 What is the largest number of squares possible in an undirected graph of n nodes?

Let’s analyze the largest number of edges that are possible in an n-node undirected graph that contains no triangles.
11.142 Consider a triangle-free graph G = 〈V,E〉. For nodes u ∈ V and v ∈ V, argue that if {u, v} ∈ E,
then we have degree(u) + degree(v) ≤ |V|.
11.143 Prove the following claim by induction on the number of nodes in the graph: if G = 〈V,E〉 is
triangle-free, then |E| ≤ |V|2/4. (Hint: use the previous exercise.)
11.144 Give an example of an n-node triangle-free graph that contains n2

4 edges.

Consider the following adjacency lists. Is the graph that each represents a tree? Justify your answers.
11.145

A: B, E

B: A

C: D

D: C, F

E: A

F: D

11.146
A: C

B: C, E

C: A, B, F

D: E

E: B, D

F: C

11.147
A: D

B: E, F

C: D, F

D: A, C

E: B

F: B, C

11.148
A: C, D, F

B: F

C: A, E, F

D: A

E: C

F: A, B, C

Prove or disprove the following claims about trees:
11.149 There is a node of degree equal to 2 in any tree with ≥ 3 nodes.
11.150 In any rooted binary tree (all nodes have 0, 1, or 2 children), there are an even number of leaves.
11.151 If a graph G = 〈V,E〉 has |V| − 1 edges, then G must be a forest.

11.152 The following pair of definitions is subtly broken: the root of a tree is a node that is not a child,
and a leaf is a node that is a child but not a parent. What’s broken?

A

B

C

D

E F

G

H I

Figure 11.59: A
rooted tree.

For the tree in Figure 11.59, with node A as the root . . .
11.153 . . . what are the leaves?
11.154 . . . which nodes are internal nodes?
11.155 . . . what the are parent, children, and siblings of node D?
11.156 . . . what are the descendants of node D?
11.157 . . . what are the ancestors of node F?
11.158 . . . what is the height of the tree?

11.159 Let T be an arbitrary n-node rooted tree, with root r and
with ℓ different leaves. Prove or disprove: if we reroot T at a new
node r′ 6= r, then the number of leaves remains exactly ℓ.

Figure 11.60: A
complete and nearly
complete binary
tree of height 3.

A complete binary tree of height h
has “no holes”: reading from top-to-
bottom and left-to-right, every node
exists. Complete binary trees form a
subset of nearly complete binary trees: a
nearly complete binary tree has every
node until the last row, which is allowed
to stop early. (See Figure 11.60, and see
also p. 529 for a discussion of heaps,
which are a data structure represented as a nearly complete binary tree.)
11.160 Prove by induction that a complete binary tree of height h contains precisely 2h+1 − 1 nodes.

11.161 How many leaves does a nearly complete binary tree of height h have? Give the smallest and
largest possible values, and explain.

11.162 What is the diameter of a nearly complete binary tree of height h? Again, give the smallest
and largest possible values, and explain your answer. (Recall that the diameter of a graph G = 〈V,E〉 is
maxs,t∈V d(s, t), where d(s, t) denotes the length of the shortest path from u to v in G.)
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Suppose that we “rerooted” a complete binary tree of height h by instead designating one of the erstwhile leaves as the
root. In the rerooted tree, what are the following quantities?
11.163 the height
11.164 the diameter
11.165 the number of leaves

Justify your answers to the following questions: describe an 1000-node binary tree with . . .
11.166 . . . height as large as possible.
11.167 . . . height as small as possible.

11.168 . . . as many leaves as possible.
11.169 . . . as few leaves as possible.

11.170 What is the largest possible height for an n-node binary tree in which every node has precisely zero
or two children? Justify your answer.

A

B

C

D

E F

G

H I

Figure 11.61: A
rooted tree.

In what order are nodes of the tree in Figure 11.61 traversed . . .
11.171 . . . by a pre-order traversal?
11.172 . . . by an in-order traversal?
11.173 . . . by a post-order traversal?

11.174 Draw the binary tree with in-order traversal
4, 1, 2, 3, 5; pre-order traversal 1, 4, 3, 2, 5; and post-order traver-
sal 4, 2, 5, 3, 1.
11.175 Do the same for the tree with in-order traversal
1, 3, 5, 4, 2; pre-order traversal 1, 3, 5, 2, 4; and post-order traver-
sal 4, 2, 5, 3, 1.

11.176 Describe (that is, fully explain the structure of) an n-node binary tree T for which the pre-order and
in-order traversals of T result in precisely the same ordering of T’s nodes. (That is, pre-order-traverse(T) =
in-order-traverse(T).)

11.177 Describe a binary tree T for which the pre-order and post-order traversals result in precisely the
same ordering of T’s nodes. (That is, pre-order-traverse(T) = post-order-traverse(T).)

11.178 Prove that there are two distinct binary trees T and T ′ such that pre-order and post-order traver-
sals are both identical on the trees T and T ′. (That is, pre-order-traverse(T) = pre-order-traverse(T ′) and
post-order-traverse(T) = post-order-traverse(T ′) but T 6= T ′.)

11.179 Give a recursive algorithm to reconstruct a tree from the in-order and post-order traversals.

11.180 Argue that we didn’t leave out any spanning trees of G in Figure 11.51, reproduced here for your
convenience:

A

B

C
E

F

The original graph.

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

How many spanning trees do the following graphs have? Explain.

11.181

A

B

C

D

E

F

G

H

11.182

A

B

C

D

E

F

G

H

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



1164 CHAPTER 11. GRAPHS AND TREES

11.5 Weighted Graphs
Force without wisdom falls of its own weight.

Horace (65–8 bce),Odes (23 bce)
Many real-world situations are naturally modeled by different edges having differ-

ent “weights”: the price of an airplane flight, the closeness of a friendship, the physical
length of a road, the time required to transmit data across an internet connection.
These graphs are called weighted graphs: Definition 11.32

considers only
nonnegative
weights—every
we ≥ 0—which is a
genuine restriction.
(For example, the
“signed” social
networks from
Figure 11.8(a)
have positive and
negative weights
signifying friend-
ship and enmity.)
Some, but not all,
of the results that
we’ll discuss in this
section carry over
to the setting of
negative weights.

Definition 11.32 (Weighted graph)
A weighted graph is a graph G = 〈V,E〉 and a weight function w : E → R≥0, so that each
edge e ∈ E has aweight w(e) ≥ 0. For simplicity of notation, we’ll often write we instead of
w(e); we’ll also sometimes refer to we as the length of the edge e.

In a weighted graph, the length of a path in a weighted graph is the sum of the lengths of
the edges traversed by the path. (A shortest path is, as before, one with the smallest length.)

Either undirected or directed graphs can be weighted. Aside from the length of a
path, all of the other notions and terminology from unweighted graphs carry over:
neighbors and degree, paths and connectivity, and so forth. Weighted graphs can be
represented just as unweighted graphs were: we typically store the weight of edge
〈u, v〉 directly in the 〈u, v〉th entry of the adjacency matrix, or attach the edge weight as
an additional slot in the adjacency list entries. Here’s an example:

Example 11.37 (A weighted graph)
Here’s the highway system from Example 11.4, where each road is labeled with its
length:

Los Angeles Lake City, FL Jacksonville

Tampa Daytona Beach

Orlando

2350 miles

180 miles

60 miles

90 miles

55 miles85 miles

There are two simple paths between Orlando and Lake City:

• Orlando↔ Tampa↔ Lake City: 85 + 180 = 265 miles.
• Orlando↔ Daytona Beach ↔ Jacksonville ↔ Lake City: 55 + 90 + 60 = 205 miles.

The second path is shorter, even though it traverses more edges, as 265 > 205.

Taking it further: The primary job of a web search engine is to respond to a user’s search query (“give
me web pages about Horace”) with a list of relevant pages. There’s a complex question of data struc-
tures, parallel computing, and networking infrastructure in solving even the simplest part of this
task: identifying the set R of web pages (out of many billions) that contain the search term. A subtler
challenge—and at least as important—is figuring out how to rank the set R. What pages in R are the
“most important,” the ones that we should display on the first page of results? See p. 1174 for some
discussion of how Google uses a weighted graph (and probability) to do this ranking.
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11.5.1 Shortest Paths in Weighted Graphs: Dijkstra’s Algorithm shaded nodes =
all nodes of distance ≤ d

v

s

u

Figure 11.62: The
intuition of BFS.
Assume the shaded
set S contains
every node within
distance d of s, and
that u /∈ S is a
neighbor of v ∈ S.
The distance from s
to u must be d + 1.

A shortest path from s to t in a weighted graph is the path connecting s and t
that has shortest total length. In many natural applications where shortest
paths are useful, we have weights on edges: you want the shortest walking
route from the bar back to your apartment, for example, not necessarily the
one with the fewest turns. In Example 11.37, we already saw a case in which
the shortest path used more edges than necessary. Thus we cannot directly
use breadth-first search to compute distances in weighted graphs.

But we can compute distances using an algorithm that’s very similar in
spirit to BFS. The basic idea of breadth-first search is to “expand outward” from the
source node s in layers, accumulating a set of nodes u for which we know the distance
from s to u. We add nodes in increasing order of their distance from s, and eventually
we’ve computed distances from s to all nodes in the graph. (See Figure 11.62.) The
trouble for weighted graphs is that the order in which BFS builds up its knowledge
about shortest paths doesn’t always work (as in Example 11.37). But we can use a
cleverer way of building up knowledge about the network to find shortest paths in
weighted graphs, too.

The algorithm that we’ll describe is due to Edsger Dijkstra, and hence it is known as

Edsger Dijkstra
was a 20th-century
Dutch computer
scientist—one
of the founders
of theoretical
computer science,
and the 1972 Turing
Award winner.

Irrelevant quotation:
“Computer science
is no more about
computers than
astronomy is about
telescopes.”
— attributed to
Edsger W. Dijkstra
(1930–2002)

Irrelevant challenge:
Name a common
English word that,
like DIJKSTRA, has
at least five (or 6
or even 7, which is
technically possible)
consecutive conso-
nants. (Not SYZYGY
or RHYTHMS; Y is a
vowel if it’s used as
a vowel!)

Dijkstra’s algorithm. The key idea of Dijkstra’s algorithm has parallels with BFS:
Suppose that we know the distance from a source node s to every node in some set S of
nodes. (Assume that s ∈ S.) We will find some node not in S for which we can determine
the shortest path from s.

For now, let’s not worry about where this set S came from; the key point is just that
we are assuming that we know distances to certain nodes (those in S), and we seek to
leverage that existing knowledge to learn the distance to some other node (not previ-
ously in S). We’ll then add that new node to S and iterate.

Before we state the formal result, let’s look at an example:

Example 11.38 (An example of distances)
Consider the following weighted, undirected graph (with edge weights marked on
the edges):

A

C

B

E

D

G

F

H

3
4 5

8

1
7

2
10

6

9

Suppose we know the distances from A to every node in the shaded set S = {A, B, C}:

d(A, A) = 0 d(A, B) = 1 d(A, C) = 3.
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We wish to expand our set of known nodes by adding a neighbor of an already
shaded node. The candidate nodes that are neighbors of nodes with known distances
are {D, E, F}. In particular, their candidate distances are:

node distance
F (via B) d(A, B) +wB,F = 1 + 6 = 7
E (via A) d(A, A) +wA,E = 0 + 9 = 9
E (via C) d(A, C) +wC,E = 3 + 8 = 11
D (via C) d(A, C) +wC,D = 3 + 5 = 8

Let’s argue that we can now conclude that d(A, F) = 7.
The key reason is that, to get from A to F, we have to “escape” the set of shaded

nodes—and every “escape route” (path to F) must reach its last shaded node v (that’s
d(A, v)) and then follow an edge to its first unshaded node u (that’s wv,u). Because this
table tells us that every path out of the shaded region has length at least 7, and we’ve
found a path from A to Fwith exactly that length, we conclude that d(A, F) = 7.

A

C B

E D

G F

H

3

4

58

1

7 2

10

6

9

Figure 11.63:
The graph for
Example 11.38,
repeated and
rotated. We’ve
computed that
d(A, A) = 0 and
d(A, B) = 1 and
d(A, C) = 3.

Computing the distance to a new node
The same basic reasoning that we used in Example 11.38 will allow us to prove a

general observation that’s the foundation of Dijkstra’s algorithm:

Lemma 11.9 (Foundation of Dijkstra’s Algorithm)
Let G = 〈V,E〉 be a graph with edge weights w, let S ⊂ V be a set of nodes, and let s ∈ S
be a source node. Let d(s, v) denote the distance from s to v for every node v in S. For a node
u /∈ S, define

du := min
v∈S : u is a neighbor of v

d(s, v) +wv,u.

Let u∗ be the node u /∈ S for which du is minimized. Then the distance from s to u∗ is du∗ .

shaded nodes = S

wv∗ ,u∗d(s, v∗) v∗

s

u∗

Figure 11.64:
The intuition for
Lemma 11.9.

Before we prove the lemma, let’s restate the claim in slightly less
notation-heavy English. (See Figure 11.64.) We have a set S of
nodes—the shaded nodes in the picture—for which we know the
distance from s. We examine all unshaded nodes u that are neighbors
of shaded nodes v. For each shaded/unshaded pair, we’ve computed
the sum of the distance d(s, v) and the edge weight wv,u. And we’ve
chosen the pair 〈v∗, u∗〉 that minimizes this quantity.

The lemma says that the shortest path from s to this particular
u∗ must have length precisely equal to du∗ := d(s, v∗) + wv∗,u∗ . The
intuition matches the argument in Example 11.38: to get from s to u∗,
we have to somehow “escape” the set of shaded nodes—and, by the
way that we chose u∗, every “escape route” must have length at least du∗ .
Proof of Lemma 11.9. We must show that the distance from s to u∗ is du∗ , and we’ll do
it in two steps: by showing that the distance is no more than du∗ , and by showing that
the distance is no less than du∗ .
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The distance from s to u∗ is ≤ du∗ . We must argue that there is a path of length
d(s, v∗) + wv∗,u∗ from s to u∗. By assumption and the fact that v∗ ∈ S, we know
that d(s, v∗) is the distance from s to v∗, so there must exist a path P of length d(s, v∗)
from s to v∗. (It’s the curved line in Figure 11.64.) By tacking u∗ onto the end of P,
we’ve constructed a path from s to u∗ via v∗ with length d(s, v∗) +wv∗,u∗ .

The distance from s to u∗ is ≥ du∗ . Consider an arbitrary path P from s to u∗. We must
show that P has length at least d(s, v∗) +wv∗,u∗ .
What does P look like? The node s is in the set S, so P starts out at s ∈ S, then
wanders around for a while inside S, then crosses outside of S for the first time,
wanders around outside S for a while, and eventually ends up at u∗ /∈ S. Nothing
prevents P from re-entering (and later re-exiting) S after its first departure—indeed,
it can go in and out of S several times—but it definitely has to leave S at least once.
Thus P has to look like the following:

v∗

s

u∗ v∗

s

u∗ v∗

s

u∗

(a) the entire path P (b) the portion of P up to the
first exit from S

(c) the portion of P after the
first exit from STherefore we know that

the length of P

= (the length of P up to the first exit) + (the length of P after the first exit)

≥ (the length of the shortest path exiting S) + (the length of P after the first exit)
P up to the first exit is a path exiting S, so its length is at least the length of the shortest such path

≥ d(s, v∗) +wv∗,u∗ + (the length of P after the first exit)
we chose u∗ and v∗ so that d(s, v∗) +wv∗ ,u∗ is exactly the length of the shortest path exiting S

≥ d(s, v∗) +wv∗,u∗ + 0 all edge weights are nonnegative, so all path lengths are ≥ 0 too

= du∗ . definition of du∗

Thus the length of P is at least du∗ .
We’ve therefore argued that the distance from s to u∗ is both ≤ du∗ and ≥ du∗ . Thus the
distance is precisely du∗ , and the lemma follows.

Problem-solving tip:
When we want to
prove that x = y, it’s
sometimes easier
to prove x ≥ y and
x ≤ y separately.Dijkstra’s Algorithm

With Lemma 11.9 proven, we can now put together the pieces of the entire algo-
rithm. The lemma describes a way to take a set S of nodes with known distance from
the source node s, and correctly calculate the distance from s to a new node u /∈ S.
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Dijkstra’s Algorithm:
Input: a weighted graph G = 〈V,E〉, nonnegative edge weights we ≥ 0, and

a source node s ∈ V.
Output: the distance from s to every node in G
1: Let S := {s} and let d(s, s) := 0. // S is the set of nodes with known distances.
2: while there exists a node in S with a neighbor not in S:
3: for every node u /∈ S, define

du := min
v∈S : u is a neighbor of v

d(s, v) +wv,u.
4: u∗ := the node with the smallest du.
5: Add u∗ to S and set d(s,u∗) := du∗ .
6: for every node u ∈ V − S:
7: d(s, u) := ∞
8: return the recorded values d(s, u).

Figure 11.65: The
pseudocode for
Dijkstra’s algorithm.

In Dijkstra’s algorithm, the idea is to
apply the calculation from Lemma 11.9
repeatedly to find all distances from the
given source node s. We’ll need a base
case to get started, but that’s straightfor-
ward: we start with the set of nodes with
known distance from s as S = {s}, where
the distance from s to s is zero. The full
algorithm is shown in Figure 11.65.

Before we prove the algorithm’s cor-
rectness, let’s run through an example:

Example 11.39 (Dijkstra’s algorithm in action)
Let’s run Dijkstra’s algorithm on the network from Example 11.37, with the graph ro-
tated for compactness. We’ll start from the Orlando (OR) node. Here is the execution:

DB JA LA LC OR TA

LALC

JA

TA

DB

OR

2350180

60

90
55

85

0

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 0

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 0 85

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 145 0 85

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 145 205 0 85

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 145 2555 205 0 85

nodes with known distances from OR

A “candidate” node for the next iteration: has unknown
distance, but has a neighbor with known distance.

Of the candidate nodes, DB has the
smallest value as per Lemma 11.9.
So its distance can now be recorded.
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The correctness of Dijkstra’s Algorithm
We’ll now prove the correctness of the algorithm, using Lemma 11.9 and induction:

Theorem 11.10 (Correctness of Dijkstra’s Algorithm)
Let G = 〈V,E〉 be a graph with nonnegative edge weights we for each edge. Let s ∈ V
be a source node, and let d(s, •) := Dijkstra(G,w, s) be the values computed by Dijkstra’s
Algorithm. Then, for every node u, we have that d(s, u) is the length of the shortest path from
s to u in G under w.

Proof. Looking at the algorithm, we see that Dijkstra’s Algorithm records finite dis-
tances from s in Line 1 (for s itself) and Line 5 (for other nodes reachable from s). Sup-
pose that Dijkstra’s algorithm executes n iterations of the loop in Line 2, thus recording
n + 1 total distances in Lines 1 and 5—say in the order u0, u1, . . . , un. Let P(i) denote the
claim that d(s, ui) is the length of the shortest s-to-ui path. We claim by strong induc-
tion on i that P(i) holds for all i ∈ {0, 1, . . . , n}.
Base case (i = 0): We must prove that d(s, u0) is recorded correctly. The 0th node u0 is

recorded in Line 1, so u0 is the source node s itself. And the shortest path from s to s
in any graph with nonnegative edge weights is the 0-hop path 〈s〉, of length 0.

Inductive case (i ≥ 1): We assume the inductive hypothesis P(0),P(1), . . . ,P(i − 1):
that is, all recorded distances d(s, u0), d(s, u1), . . . , d(s, ui−1) are correct. We must
prove P(i): that is, that the recorded distance d(s, ui) is correct. But this follows im-
mediately from Lemma 11.9: the algorithm chooses ui as the u /∈ S minimizing

du := min
v∈S : u is a neighbor of v

d(s, v) +wv,u,

where S = {u0, u1, . . . , ui−1}. Lemma 11.9 states precisely that this value du is the
length of the shortest path from s to u.

Finally, observe that any node u that’s only discovered in Line 6 is not reachable from s,
and so indeed d(s, u) = ∞. (A fully detailed argument that the ∞ values are correct can
follow the structure in Theorem 11.3, which proved the correctness of BFS.)

Taking it further: Dijkstra’s algorithm as written in Figure 11.65 can be straightforwardly implemented
to run in O(|V| · |E|) time: each iteration of thewhile loop (Line 2) can look at each edge to compute the
smallest du. But with cleverer data structures, Dijkstra’s algorithm can be made to run in O(|E| log |V|)
time. This improved running-time analysis, as well as other shortest-path algorithms—for example,
handling the case in which edge weights can be negative (it’s worth thinking about where the proof
of Lemma 11.9 fails if an edge e can have we < 0), or computing distances between all pairs of nodes
instead of just every distance from a single source—is a standard topic in a course on algorithms. Any
good algorithms text should cover these algorithms and their analysis.

Before we leave Dijkstra’s algorithm, it’s worth reflecting on its similarities with BFS.
In both cases, we start from a seed set S of nodes for which we know the distance from
s—namely S = {s}. Then we build up the set of nodes for which we know the dis-
tance from s by finding the unknown nodes that are closest to s, and adding them to
S. Of course, BFS is conceptually simpler, but Dijkstra’s algorithm solves a more com-
plicated problem. It’s a worthwhile exercise to think about what happens if Dijkstra’s
algorithm is run on an unweighted graph. (How does it relate to BFS?)
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11.5.2 Spanning Trees in Weighted Graphs: Minimum Spanning Trees
Recall from Definition 11.31 that a spanning tree of a connected graph G = 〈V,E〉 is a
tree T = 〈V,E′〉 where E′ ⊆ E. As with shortest paths, in many of the applications in
which spanning trees are interesting, we actually want to find a spanning tree whose
edges have minimum possible total cost. For example, when a college wants to put
down networking cable in a new dorm building, they wish to ensure that the resulting
network is connected, while minimizing the cost of construction.

Formally, in a weighted graph, the cost of a spanning tree T is the sum of the weights
of its edges: ∑e∈E′ we. A minimum spanning tree (MST) is a spanning tree whose cost is
as small as possible. Here are two small examples:

Example 11.40 (Some minimum spanning trees)
Consider the following two graphs (the road network from Example 11.37 and the
larger connected component from Example 11.38):
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TA DB

OR

180

2350

60

90

5585

A

C

B

E

D F

H

3
5

1
7

2
10

6

4

8

9

Here are the minimum spanning trees. (For the first, every spanning tree omits ex-
actly one edge from the lone cycle; the cheapest tree omits the most expensive edge.)
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LC JA
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As with shortest paths in weighted graphs, the question of how to find a minimum
spanning tree most efficiently is more appropriate to an algorithms text than this book.
But, between the Cycle Elimination Algorithm (Figure 11.52) and Example 11.40, we’ve
already done almost all the work to develop a first algorithm.

Assume throughout that all edge weights are distinct. (This assumption lets us refer
to “themost expensive edge” in a set of edges. Removing this assumption complicates
the language that we have to use, but it doesn’t fundamentally change anything about
the MST problem or its solution.)
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Lemma 11.11 (The “cycle rule”)
Let C be a cycle in a connected undirected graph G = 〈V,E〉, and let e be the heaviest edge in
C. Then e is not in any minimum spanning tree of G.

u v

V = nodes on
the v side
of the tree

U = nodes on
the u side
of the tree

(a) Removing the edge {u, v} splits the
tree into two connected components.

cycle C

u v

a
b

(b) C is a cycle with {u, v} as its heaviest
edge. Some other edge {a, b} from the
cycle has a ∈ U and b ∈ V.

Figure 11.66: The
cycle rule for MSTs.

Proof. Consider a spanning tree T of G, and suppose that e = {u, v}
is included in T. We’ll show that T is not a minimum spanning tree.
(Thus the only minimum spanning trees of G do not include e.)

By definition, the spanning tree T is connected. If we delete {u, v}
from T, the resulting graph will have two connected components, one
containing u and the other containing v. (This fact follows by Corol-
lary 11.7.) Call those connected components U and V, respectively.
See Figure 11.66(a).

Imagine following the cycle C from u to v the “long way” around
C. This part of C starts at u, wanders around U for a while, and even-
tually crosses over into V, before finally arriving at v. Let a ∈ U be
the last node in U and b the first node in V as we go around C. (Note
that C might go back and forth between U and V multiple times, but
define a and b based on the first time C leaves U.) See Figure 11.66(b).

Now define the graph T′ as T with the edge {u, v} removed and
with the edge {a, b} inserted instead. Crucially, T′ is a spanning
tree of G; because we’ve only swapped which edge connected the
connected sets U and V. Thus T′ remains connected and acyclic.

Now observe that the cost of T′ is less than the cost of T, because
the edge {u, v} is heavier than the edge {a, b}. (Both {u, v} and {a, b}
are in the cycle C, and by assumption {u, v} is the heaviest edge in C.)
But therefore T′ is a cheaper spanning tree than T, and thus T isn’t a
minimum spanning tree.

Finding MSTs by removing cycles
Lemma 11.11 immediately suggests that we can find minimum

spanning trees using a modification of the Cycle Elimination Algorithm:
Weighted Cycle Elimination Algorithm
Input: a weighted connected graph G = 〈V,E〉with edge weights we
Output: a minimum spanning tree of G
1: while there exists a cycle C in G:
2: let e be the heaviest edge traversed by C
3: remove e from E
4: return the resulting graph 〈V,E〉.

While the Weighted Cycle Elimination Algorithm is correct and reasonably efficient,
there are more efficient algorithms based on Lemma 11.11. One such algorithm is
called Kruskal’s Algorithm, named after its discoverer Joseph Kruskal. The key idea of

Joseph Kruskal
was a 20th-century
American com-
puter scientist/
mathematician/
statistician. He
published his MST
algorithm in 1956.

Kruskal’s Algorithm is that by sorting the edges in increasing order, we can be more
efficient: we add edges in increasing order of their weight, as long as doing so doesn’t
create a cycle.
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Kruskal’s Algorithm
Input: a weighted connected graph G = 〈V,E〉with distinct

edge weights we
Output: a minimum spanning tree of G
1: Sort the edges e in increasing order of weight.
2: S := ∅
3: for each edge e (taken in increasing order of weight):
4: if the graph 〈V,S ∪ {e}〉 doesn’t contain a cycle then
5: add e to S
6: return the resulting graph 〈V,S〉

Figure 11.67:
Kruskal’s Algo-
rithm.

The insight of this algorithm is that, by consider-
ing edges in increasing order of weight, if including
an edge e creates a cycle, then we know that e must
be the heaviest edge in that cycle. See Figure 11.67.
Kruskal’s algorithm is reasonably efficient: the sort-
ing step takes O(|E| log |E|) time, and each of the |E|
iterations of the for loop can be implemented using
one call to BFS to test for a cycle. (And, in fact, there
are some cleverer ways to implement Line 4 so that
the entire algorithm runs in O(|E| log |E|) time.) Here’s an example:

Example 11.41 (Sample run of Kruskal’s algorithm)
In each panel, the highlighted edge is being considered for inclusion in the tree.
Black edges have already been included; light edges have not yet been considered.
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D E
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7

The original graph.

A

B

C

D E
1 2 3
4 56

7

We examine the cheapest edge
{A, C}. It doesn’t create a cycle, so we
keep it.

A

B

C

D E
1 2 3
4 56

7

We examine the next cheapest edge
{B, C}. It doesn’t create a cycle, so we
keep it.

A

B

C

D E
1 2 3
4 56

7

We examine the next cheapest edge
{C, D}. It doesn’t create a cycle, so we
keep it.

A

B

C

D E
1 2 3
4 56

7

We examine the next cheapest edge
{A, B}. It creates a cycle 〈A, B, C, A〉, so
we discard it.

A

B

C

D E
1 2 3
4 56

7

The next edge is {D, E}; we keep it.

A

B

C

D E
1 2 3
4 56

7

The next edge is {B, D}; it creates a
cycle, so we discard it.

A

B

C

D E
1 2 3
4 56

7

We last edge is {C, E}; it creates a
cycle, so we discard it too.

A

B

C

D E
1 2 3
4 56

7

The final spanning tree.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



11.5. WEIGHTED GRAPHS 1173

Here is the general statement of correctness for both algorithms:

Theorem 11.12 (Correctness of minimum spanning tree algorithms)
The Weighted Cycle Elimination Algorithm and Kruskal’s Algorithm both return a minimum
spanning tree for any weighted connected undirected graph.

Proof. The correctness of the Weighted Cycle Elimination Algorithm follows immedi-
ately from Lemma 11.11 (the cycle rule) and from Theorem 11.8 (the correctness of the
Cycle Elimination Algorithm): the heaviest edge in any cycle does not appear in any
MST, and we terminate with a spanning tree when we repeatedly eliminate any edge
from an arbitrarily chosen cycle.

For Kruskal’s algorithm, consider an edge e that is not retained—that is, when e is
considered, it is not included in the set S. The only reason that e wasn’t included is
that adding it would create a cycle C involving e and previously included edges—but
because the edges are considered in increasing order of weight, that means that e is the
heaviest edge in C. Thus by Lemma 11.11, Kruskal’s algorithm removes only edges not
contained in any minimum spanning tree. Because it only excludes edges that create
cycles, the resulting graph is also connected—and thus a minimum spanning tree.

Taking it further: There are several other commonly used algorithms for minimum spanning trees,
using different structural properties than the Cycle Rule. For much more on these other algorithms, and
for the clever data structures that allow Kruskal’s Algorithm to be implemented in O(|E| log |E|) time, see
any good textbook on algorithms.
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Computer Science Connections

Random Walks and Ranking Web Pages
A

B

C

D E

0.5

0.5 0.33

0.33
1.0

1.0

0.33
1.0

(a) A sample 5-node graph. Edges are
annotated with their probabilities in a
random walk; we can view the
resulting weighted graph as defining
the process.

node steps
A 166,653
B 166,652
C 166,155
D 250,270
E 250,271

(b) The number of steps spent at each
node in a computer-generated
1,000,000-step random walk starting
at A. This particular walk began
ABABABABABABACEDCEDEDBABAC.

1
6

1
6

1
6

1
4

1
4

0.5

0.5 0.33

0.33
1.0

1.0

.33
1.0

(c) The stationary distribution for G.

A B C D E

A 0.03 0.45 0.45 0.03 0.03
B 0.88 0.03 0.03 0.03 0.03
C 0.03 0.03 0.03 0.03 0.88
D 0.03 0.31 0.31 0.03 0.31
E 0.03 0.03 0.03 0.88 0.03

(d) The updated link probabilities,
with random restarts.
Figure 11.68: A random walk.

When Google launched as a web search engine, one of its major innova-
tions over its competition was in how it ranked the pages returned in response
to a user’s query. Here are two key ideas in Google’s ranking system, called
PageRank (named after Larry Page, one of Google’s founders):
• view a link from page u to page v as implicit “endorsement” of v by u.
• not all endorsements are equal: if a page u is endorsed by many other

pages, then being endorsed by u is a bigger deal.
These point can be restated more glibly as: a page is important if it is pointed to
by many important pages. The idea of PageRank is to break this apparent circu-
larity using the Random Surfer Model. Imagine a hypothetical web user who
starts at a random web page, and, at every time step, clicks on a randomly
chosen link from the page she’s currently visiting. The more frequently that
this hypothetical user visits page u, the more important we’ll say u is.

The Random Surfer explores the web using what’s called a random walk
on the web graph. In its simplest form, a random walk on a directed graph
G = 〈V,E〉 visits a sequence u0,u1,u2, . . . of nodes in G as follows:
1. choose a node u0 ∈ V, uniformly at random.
2. in step t = 1, 2, . . ., the next node ut is chosen by picking a node uniformly

at random from the out-neighborhood of the previous node ut−1.
(See Figure 11.68(a) for an example.)

As you’ll explore in Exercises 11.204–11.208, under mild assumptions about
G, there’s a special probability distribution p over the nodes of the graph,
called the stationary distribution of the graph, that has the following property:
if we choose an initial node u with probability p(u), and we then take one step
of the random walk from u, the resulting probability distribution over the
nodes is still p. And, it turns out, we can approximate p by the probability
distribution observed simply by running the random walk for many steps, as
in Figure 11.68(b). We’ll use p as our measure of importance.

We’ve already made a lot of progress toward the stated goals: p(u) is higher
the more in-neighbors u has, but p(u) will be increased even more when the
in-neighbors of u have a high probability themselves. In Figure 11.68(c), for
example, we see that p(D) > p(B) and p(D) > p(C), despite B and C having higher
in-degree than D.

But there are a few complications that we still have to address to get to the
full PageRank model.13 One is that the Random Surfer has nowhere to go if

You can find more about the Random
Surfer model and PageRank (including
interesting questions about how to
calculate it on a graph with nodes
numbering in the billions) in a good
textbook on data mining, like
13 Jure Leskovec, Anand Rajaraman,
and Jeff Ullman. Mining of Massive
Datasets. Cambridge University Press,
2nd edition, 2014.
There are also many other ingredients
in Google’s ranking recipe beyond
PageRank, though PageRank was an
early and important one.

she ends up at a page u that has no out-neighbors. (The random walk’s next
step isn’t even defined.) In this case, we’ll have the Random Surfer jump to
a completely random page (each of the |V| nodes is chosen with probability
1
|V| ). Second, this model allows the Random Surfer to get stuck in a “dead
end” if there’s a group of nodes that has no edges leaving it. Thus—and this
change probably makes the Random Surfer more realistic anyway—we’ll add
a restart probability of 15% to every stage of the random walk: with probability
85%, we behave as previously described; with probability 15%, we jump to a
randomly chosen node. (See Figure 11.68(d) for the updated probabilities.)
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11.5.3 Exercises
For the following graphs, find all shortest paths between the given nodes. Give both the path length and the path itself.
11.183 From A to E:

A

B

C

D E

4

2
5

1

7
3

6

8

11.184 From A to E:

A

B

C

D E

1

4
6

7

5
8

3

2

11.185 From A to E:
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11.186 From A to H:
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11.187 From A to H:
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11.188 Let n be arbitrary. Give an example of an n-node weighted graph G = 〈V,E〉with designated
nodes s ∈ V and t ∈ V in which both of the following conditions hold:
(i) all edge weights are distinct (for any e ∈ E and e′ ∈ E, we have w(e) 6= w(e′) if e 6= e′), and
(ii) for some α > 1 and c > 0, there are at least c · αn different shortest paths between s and t.
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Figure 11.69: A
weighted graph.

Suppose that we are running Dijkstra’s Algorithm on the graph shown in
Figure 11.69 to compute distances from the node A. So far Dijkstra’s Algorithm
has computed four distances:

d(A, A) = 0 d(A, B) = 1 d(A, C) = 3 d(A, F) = 7
If we continue Dijkstra’s algorithm for further iterations, it records the distance
for a new node in each iteration.
11.189 What is the next node recorded, and what is its distance?
11.190 What is the next node (after the one from Exercise 11.189) for
which Dijkstra’s algorithm records a distance, and what is its distance?
List all subsequently discovered nodes, and their distances.
11.191 Trace Dijkstra’s algorithm on the graph shown in Figure 11.69 to compute distances from the node
H. List all discovered nodes and their distances, in the order in which they’re discovered.

11.192 Identify exactly where the proof of correctness for Dijkstra’s algorithm (specifically, in the proof
of Lemma 11.9) the argument fails if edge weights can be negative. Then give an example of a graph with
negative edge weights in which Dijkstra’s algorithm fails.

Suppose that G = 〈V,E〉 is a weighted, directed graph in which nodes represent physical states of a system, and an edge
〈u, v〉 indicates that one can move from state u to state v. The weight w〈u,v〉 of edge 〈u, v〉 denotes the multiplicative
cost of the exchange: one can trade wu,v units of u for 1 unit of v. For example, if there’s an edge 〈A, B〉 with weight
1.04, then I can trade 2.08 units of energy in state A for 2 units of energy in state B.

Suppose that we wish to find a shortest multiplicative path (SMP) from a given node s to a given node t in G,

A B

CD

1.1

1.5

1.4

2.25

Figure 11.70: A
weighted graph.

where the cost of the path is the product of the edge weights along it. For example, in Figure 11.70, the SMP from A to
D is A → B → C → D at cost 1.1 · 1.5 · 1.4 = 2.31, which is better than A → B → D at cost 1.1 · 2.5 = 2.75.
11.193 Describe how to modify Dijkstra’s algorithm to find the shortest SMP in a given weighted graph
G. Alternatively, describe how to modify a given weighted graph G into a graph G′ so that Dijkstra’s algo-
rithm run on G′ finds an SMP in G.
11.194 As you argued in Exercise 11.192, Dijkstra’s algorithm may fail if edge weights are negative. State
the condition that guarantees that your algorithm from Exercise 11.193 properly computes SMPs.
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List all minimum spanning trees of the following graphs. (Note that some have edges with nondistinct weights.)

11.195

A

B

C

D E

4

2
5

1

7
3

6

8

11.196

A

B

C

D E

1

4
6

7

5
8

3

2

11.197

A

B

C

D E

1

1
1

7

7
3

3

3

11.198

A

C

B

E

D F

H
7

10 5

6

1 9

8
4

3

2

11.199

A

C

B

E

D

G

F

H
3

4 1

8

5 7

2
10

9

6

Consider the undirected 9-node complete graph K9. There are
(9
2
) = 9·8

2 = 36 unordered pairs of nodes in this graph,
so there are 36 different edges in the graph. Suppose that you’re asked to assign each of these 36 edges a distinct weight
from the set {1, 2, . . . , 36}. (You get to choose which edges have which weights.)
11.200 What’s the cheapest possible minimum spanning tree of K9?
11.201 What’s the most expensive edge that can appear in a minimum spanning tree of K9?
11.202 What’s the costliest possible minimum spanning tree of K9?
11.203 Generalize Exercise 11.200 and 11.202: what are the cheapest and most expensive possible MSTs
for the graph Kn if all edges have distinct weights chosen from {1, 2, . . . , (n2

)}? (Hint: see Exercise 9.173.)

Recall from p. 1174 that a random walk in a graph G = 〈V,E〉 proceeds as follows: we start at a node u0 ∈ V, and, at
every time step, we select as the next node ui+1 a uniformly chosen (out-)neighbor of ui .

Suppose we choose an initial node u0 according to a probability distribution p, and we then take one step of the
random walk from u0 to get a new node u1. The probability distribution p is a stationary distribution if it satisfies
the following condition: for every node s ∈ V, we have that Pr [u0 = s] = Pr [u1 = s] = p(s). Such a distribution is
called “stationary” because, if p is the probability distribution before a step of the walk, then p is still the probability
distribution after a step of the walk (and thus the distribution “hasn’t moved”—that is, is stationary).

A

B

C

(a)

D

E

F

G

H

I

(b)

J

K L

M

(c)
Figure 11.71: Some
undirected graphs
upon which a
random walk can be
performed.

11.204 Argue that p(A) = p(B) = p(C) = 1
3 is a stationary distribution for the graph in Figure 11.71(a).

11.205 Argue that the graph in Figure 11.71(b) has at least two distinct stationary distributions.
Suppose that we start a random walk at node A in the graph in Figure 11.71(a). The following chart shows the probabil-
ity of being at any particular node after each step of the random walk:

1

0

0 0

1
2

1
2

2
4

1
4

1
4

2
8

3
8

3
8

6
16

5
16

5
16

10
32

11
32

11
32

22
64

21
64

21
64

Let pk (u) denote the probability of the kth step of this random walk being at node u. Although we’ll skip the proof, the
following theorem turns out to be true of random walks on undirected graphs G:

If G is connected and nonbipartite, then a unique stationary distribution p exists for this random walk on G
(regardless of which node we choose as the initial node for the walk). Furthermore, the stationary distribution is
the limit of the probability distributions pk of where the random walk is in the kth step.

11.206 (programming required) Write a random-walk simulator: take an undirected graph G as input,
and simulate 2000 steps of a random walk starting at an arbitrary node. Repeat 2000 times, and report the
fraction of walks that are at each node. What are your results on the graph from Figure 11.71(a)?
11.207 Argue that the above process doesn’t converge to a unique stationary distribution in a bipartite
graph. (For example, what’s p1000 if a random walk starts at node J in the graph in Figure 11.71(c)? Node K?)
11.208 Let G = 〈V,E〉 be an arbitrary connected undirected graph. For any u ∈ V, define

p(u) := degree(u)
2 · |E| .

Prove that the probability distribution p is a stationary distribution for the random walk on G.
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11.6 Chapter at a Glance

Formal Introduction
A graph is a pair G = 〈V,E〉where V is a set of vertices or nodes, and E is a set of edges.
In a directed graph, the edges E ⊆ V × V are ordered pairs of vertices; in an undirected
graph, the edges E ⊆ {{u, v} : u, v ∈ V} are unordered pairs. A directed edge 〈u, v〉
goes from u to v; an undirected edge 〈u, v〉 goes between u and v. We sometimes write
〈u, v〉 even for an undirected graphs. A simple graph has no parallel edges joining the
same two nodes and also has no self loops joining a node to itself.

A

B

C

D

E

F

G

H

For an edge e = 〈u, v〉, we say that u and v are adjacent;
v is a neighbor of u; u and v are the endpoints of e; and u
and v are both incident to e. The neighborhood of a node u
is {v : 〈u, v〉 ∈ E}, its set of neighbors. The degree of u is
the cardinality of u’s neighborhood. In a directed graph,
the in-neighbors of u are the nodes that have an edge
pointing to u; the out-neighbors are the nodes to which u
has an edge pointing; and the in-degree and out-degree of u are the number of in- and
out-neighbors, respectively.

An adjacency list stores a graph using an array with |V| entries; the slot for node
u is a linked list of u’s neighbors. An adjacency matrix stores the graph using a two-
dimensional Boolean array of size |V| × |V|; the value in 〈row u, column v〉 indicates
whether the edge 〈u, v〉 exists.

Two graphs are isomorphic if they are identical except for the naming of the nodes.
A subgraph of G contains a subset V ′ of G’s nodes and a subset E′ of G’s edges joining
elements of V ′. An induced subgraph is a subgraph in which every edge that joins ele-
ments of V ′ is included in E′. A complete graph or clique is a graph Kn in which every
possible edge exists. A bipartite graph is one in which nodes can be partitioned into sets
L and R such that every edge joins a node in L to a node in R. A regular graph is one
in which every node has identical degree. A planar graph is one that can be drawn on
paper without any edges crossing.

Paths, Connectivity, and Distances
A path is a sequence of k ≥ 1 nodes 〈v1, v2, . . . , vk〉, where 〈vi−1, vi〉 ∈ E for every index
i ∈ {1, 2, . . . , k− 1}. The path is simple if all the vis are distinct. This path has length
k− 1—the number of edges that it traverses—and is a path from v1 to vk.

In an undirected graph, nodes u and v are connected if there exists a path from u to v.
A connected component of G = 〈V,E〉 is a set S ⊆ V such that (i) every u ∈ S and v ∈ S
are connected; and (ii) for every w /∈ S, the set S ∪ {w} does not satisfy condition (i).
The entire graph is connected if it has only one connected component, namely V.

In a directed graph, node u is reachable from node v if there exists a path from v to u;
u and v are strongly connected if each is reachable from the other. A strongly connected
component is a set S of nodes such that any two nodes in S are strongly connected and
no node x /∈ S is strongly connected to any node s ∈ S.
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Breadth-First Search (BFS):
Input: a graph G = 〈V,E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G
1: Frontier := 〈s〉

// Frontier will be a list of nodes to process, in order.
2: Known := ∅

// Known will be the set of already-processed nodes.
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: for every neighbor v of u:
7: if v is in neither Frontier nor Known then
8: add v to the end of Frontier
9: add u to Known
10: return Known

Figure 11.72:
Breadth-first search.

Connectivity can be tested in time Θ(|V| + |E|) time using
breadth-first search (BFS; see Figure 11.72) or depth-first search
(DFS). The distance from node s to node t is the length of a
shortest path from s to t. BFS can also be used to compute
distances.

Trees
A cycle 〈v1, v2, . . . , vk, v1〉 is a path of length ≥ 2 from a node
v1 back to itself that does not traverse the same edge twice.
The length of the cycle is k. The cycle is simple if each vi is
distinct. Cycles can be identified using BFS.

A graph is acyclic if it contains no cycles. Every acyclic
graph has a node of degree 0 or 1. A tree is a connected, acyclic graph. (A forest is any
acyclic graph.) A tree has one more node than it has vertex. A tree becomes discon-
nected if any edge is deleted; it becomes cyclic if any edge is added.

One node in a tree can be designated as the root. Every node other than the root has
a parent (its neighbor that’s closer to the root). If p is v’s parent, then v is one of p’s chil-
dren. Two nodes with the same parent are siblings. A leaf is a node with no children; an
internal node is a node with children. The depth of a node is its distance from the root;
the height of the entire tree is the depth of deepest node. The descendants of u are those
nodes that go through u to get the root; the ancestors are those nodes through which u’s
path to the root goes. The subtree rooted at u is the induced subgraph consisting of u
and all descendants of u.

All nodes in binary trees have at most two children, called left and right. A traversal
of a binary tree visits every node of the tree. An in-order traversal recursively traverses
the root’s left subtree, visits the root, and recursively traverses the root’s right subtree.
A pre-order traversal visits the root and recursively traverses the root’s left and right
subtrees; a post-order traversal recursively traverses the root’s left and right subtrees
and then visits the root.

A spanning tree of a connected graph G = 〈V,E〉 is a graph T = 〈V,E′ ⊆ E〉 that’s a
tree. A spanning tree can by found by repeatedly identifying a cycle in G and deleting
any edge in that cycle.

Weighted Graphs
In a weighted graph, each edge e has a weight we ∈ R≥0. (Although graphs with
negative edge weights are possible, we haven’t addressed them in any detail.) The
length of a path in a weighted graph is the sum of the weights of the edges that it tra-
verses. Shortest paths in weighted graphs can be found with Dijkstra’s Algorithm
(Figure 11.65), which expands a set of nodes of known distance one by one. Minimum
spanning trees—spanning trees of the smallest possible total weight—in weighted
graphs can be found with Kruskal’s Algorithm (Figure 11.67) or by repeatedly identi-
fying a cycle in G and deleting the heaviest edge in that cycle.
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Key Terms and Results

Key Terms
Formal Introduction
• undirected and directed graphs
• nodes/vertices, edges
• parallel edges, self loops
• simple graphs
• adjacent node, incident edge
• (in/out-)neighbors, neighborhood
• (in/out-)degree
• adjacency list, adjacency matrix
• isomorphic graphs
• subgraphs
• complete, bipartite, regular, planar

graphs

Paths and Connectivity
• path
• connected (nodes), connected (graph)
• connected component
• reachability
• strongly connected component
• shortest path/distance
• breadth-first search (BFS)
• depth-first search (DFS)

Trees
• cycle
• tree, forest
• root, leaf, internal node, child, parent,

sibling, ancestor, descendant, depth,
height, subtree

• spanning tree

Weighted graphs
• Dijkstra’s algorithm
• minimum spanning trees
• Kruskal’s algorithm

Key Results
Formal Introduction
1. The “handshaking lemma”: for any undirected graph

G = 〈V,E〉, we have ∑u∈V degree(u) = 2|E|.
2. Representing G with an adjacency matrix requires

Θ(|V|2) space; we can answer “what are all of u’s
neighbors?” in Θ(|V|) time and “is there an edge between
u and v?” in Θ(1) time. Representing G = 〈V,E〉with an
adjacency list requires Θ(|V| + |E|) space; both questions
take 1 + Θ(degree(u)) time.

Paths, Connectivity, and Distances
1. Connectivity can be tested using breadth-first search (BFS)

(Figure 11.29) or depth-first search (DFS) (Figure 11.31). BFS
can also be used to compute the distance between nodes
in a graph, and it runs in Θ(|V| + |E|) time.

Trees
1. Any tree with n nodes has exactly n− 1 edges. Adding

any edge to a tree creates a cycle; deleting any edge
disconnects the graph.

2. A spanning tree of a graph G can by found by repeatedly
identifying a cycle in G and deleting an arbitrary edge in
that cycle.

Weighted Graphs
1. Shortest paths in weighted graphs can be found with

Dijkstra’s Algorithm (Figure 11.65) if all edges have
nonnegative weights.

2. Minimum spanning trees in weighted graphs can be
found with Kruskal’s Algorithm (Figure 11.67) or by
repeatedly identifying a cycle in G and deleting the
heaviest edge in that cycle.
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