
preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-1

10 Probability

In which our heroes evade threats and conquer their fears by flipping

coins, rolling dice, and spinning the wheels of chance.

10-1

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-2

10-2 Probability

10.1 Why You Might Care

“Les Anglais!” he murmured. “No method—absolutely none whatever. They leave all to
chance!”

Agatha Christie (1890–1976)
The Murder on the Links (1923)

This chapter introduces probability, the study of randomness. Our focus, as will be no surprise by this

point of the book, is on building a formal mathematical framework for analyzing random processes. We’ll

begin with a definition of the basics of probability: defining a random process that chooses one particular

outcome from a set of possibilities (any one of which occurs some fraction of the time). We’ll then analyze

the likelihood that a particular event occurs—in other words, asking whether the chosen outcome has some

particular property that we care about. We then consider independence and dependence of events, and

conditional probability: how, if at all, does knowing that the randomly chosen outcome has one particular

property change our calculation of the probability that it has a different property? (For example, perhaps

90% of all email is spam. Does knowing that a particular email contains the word ENLARGE make that email

more than 90% likely to be spam?) Finally, we’ll turn to random variables and expectation, which give

quantitative measurements of random processes: for example, if we flip a coin 1000 times, howmany heads

would we see (on average)? How many runs of 10 or more consecutive heads? Probabilistic questions are

surprisingly difficult to have good intuition about; the focus of the chapter will be on the tools required to

rigorously settle these questions.

Probability is relevant almost everywhere in computer science. One broad application is in randomized

algorithms to solve computational problems. In the same way that the best strategy to use in a game of

rock–paper–scissors involves randomness (throw rock 1
3 of the time, throw paper 1

3 of the time, throw

scissors 1
3 of the time), there are some problems—for example, finding the median element of an unsorted

array, or testing whether a given large integer is a prime number—for which the best known algorithm (the

fastest, the simplest, the easiest to understand, …) proceeds by making random choices. The same idea

occurs in data structures: a hash table is an excellent data structure for many applications, and it’s best

when it assigns elements to (approximately) random cells of a table. (See Section 10.1.1.) Randomization

can also be used for symmetry breaking: we can ensure that 1000 identical drones do not clog the airwaves

by all trying to communicate simultaneously: each drone will choose to try to communicate at a random

time. And we can generate more realistic computer graphics of flame or hair or, say, a field of grass by, for

each blade, randomly perturbing the shape and configuration of an idealized piece of grass.

As a rough approximation, we can divide probabilistic applications in CS into two broad categories:

cases in which the randomness is internally generated by our algorithms or data structures, and cases in

which the randomness comes “from the outside.” The first type we discussed above. In the latter category,

consider building some sort of computational model to address some real-world phenomenon. For example,

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-3

10.1 Why You Might Care 10-3

we might wish to model social behavior (a social network of friendships), or traffic on a road network or

on the internet, or to build a speech recognition system. Because these applications interact with extremely

complex real-world behaviors, we typically think of them as generated according to some deterministic

(nonrandom) underlying rule, but with hard-to-model variation that is valuably thought of as generated

by a random process. In systems for speech recognition, it works well to treat a particular “frame” of the

speech stream (perhaps tens of milliseconds in duration) as a noisy version of the sound that the speaker

intended to produce, where the noise is essentially a random perturbation of the intended sound.

Finally, you might care about probability because anywell-educated person must understand something

about probability. You need probability to understand political polls, weather forecasting, news reports

about medical studies, wagers that you might place (either with real money or by choosing which of two

alternatives is a better option), and many other subjects. Probability is everywhere!

10.1.1 Hashing: A Running Example

Throughout this chapter, we will consider a running sequence of examples that are about hash tables, a

highly useful data structure that also conveniently illustrates a wide variety of probabilistic concepts. So

we’ll start here with a short primer on hash tables. (See also p. 2-85, or a good textbook on data structures.)

A hash table is a data structure that stores a set of elements in a table T[1 . . .m]—that is, an array of

size m. (Remember that, throughout this book, arrays are indexed starting at 1, not 0.) The set of possible

elements is called the universe or the keyspace. We will be asked to store in this table a particular small

subset of the keyspace. (For example, the keyspace might be the set of all 8-letter strings; we might be

asked to store the user IDs of all students on campus.) We use a hash function h to determine in which cell

of the table T[1 . . .m] each element will be stored. The hash function h takes elements of the keyspace as

input, and produces as output an index identifying a cell in T. To store an element x in T using hash function

h, we compute h(x) and place x into the cell T[h(x)]. (We say that the element x hashes to the cell T[h(x)].)

We must somehow handle collisions, when we’re asked to store two different elements that hash to the

same cell of T. We will usually consider the simplest solution, where we use a strategy called chaining

to resolve collisions. To implement chaining, we store all elements that hash to a cell in that cell, in an

unsorted list. Thus, to find whether an element y is stored in the hash table T, we look one-by-one through

the list of elements stored in T[h(y)].

Example 10.1: A small hash table.

Let the keyspace be {1, 2, 3, 4}, and consider a 2-cell hash table with the hash function h given by h(x) =

(x mod 2) + 1. (Thus h(1) = h(3) = 2 and h(2) = h(4) = 1.) Figure 10.1 shows two scenarios for this

hash function: storing the elements {1, 4}, and storing the elements {2, 4}.

More formally, we are given a finite set K called the keyspace, and we are also given a positive integer

m representing the table size. We will base the data structure on a hash function h : K→ {1, . . . ,m}. For

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-4

10-4 Probability

the purposes of this chapter, we choose h randomly, specifically choosing the hash function so that each

function from K to {1, . . . ,m} is equally likely to be chosen as h.

Let’s continue our above example with a randomly chosen hash function. For the moment, we’ll treat

the process of randomly choosing a hash function informally. (The precise definitions of what it means to

choose randomly, and what it means for certain “events” to occur, will be defined in the following sections

of this chapter.)

Example 10.2: A small hash table.

As before, let K = {1, 2, 3, 4} and m = 2. There are m|K| = 24 = 16 different functions h : K→ {1, 2},
and each of these functions is equally likely to be chosen. (The 16 functions are listed in Figure 10.2.)

Each of these functions is chosen a 1
16 fraction of the time. Thus:

• a 8
16 = 1

2 fraction of the time, we have h(4) = h(1).

• a 6
16 = 3

8 fraction of the time, the hash function is “perfectly balanced”—that is, hashes an equal share

of the keys to each cell.

• a 1
16 fraction of the time, the hash function hashes every element of K into cell #2.

(The functions meeting each of these three criteria are marked in Figure 10.2.)

Taking it further: In practice, the function hwill not be chosen completely at random, for a variety of practical reasons (for exam-

ple, we’d have to write down the whole function to remember it!), but throughout this chapter we will model hash tables as if h is

chosen completely randomly. The assumption that the hash function is chosen randomly, with every function K → {1, 2, . . . ,m}
equally likely to be chosen, is called the simple uniform hashing assumption. It is very common to make this assumption when

analyzing hash tables.

It may be easier to think of choosing a random hash function using an iterative process instead: for every key x ∈ K, we choose

a number ix uniformly at random and independently from {1, 2, . . . ,m}. (The definitions of “uniformly” and “independently”

are coming in the next few sections. Informally, this description means that each number in {1, 2, . . . ,m} is equally likely to

[4] [1]
T[1] T[2]

Scenario #1: storing the
elements {1, 4}. [2, 4] []

T[1] T[2]
Scenario #2: storing the
elements {2, 4}.

Figure 10.1 Hashing two elements (in two scenarios) using the hash function h(x) = (x mod 2) + 1.

3 3 3 3 3 3 3 3 functions with h(4) = h(1)
3 3 3 3 3 3 “perfectly balanced”

3 all elements hash into cell #2
h(1) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
h(2) 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
h(3) 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
h(4) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Figure 10.2 All functions from {1, 2, 3, 4} to {1, 2}. Each column is a different function h; the ith row records the
value of h(i). The letters mark some functions as described in Example 10.2.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-5

10.1 Why You Might Care 10-5

be chosen as ix, regardless of what choices were made for previous numbers.) Now define the function h as follows: on input x,

output ix. One can prove that this process is completely identical to the process illustrated in Example 10.2: write down every

function from K to {1, 2, . . . ,m} (there are m|K| of them), and pick one of these functions at random.

After we’ve chosen the hash function h, a set of actual keys {x1, . . . , xn} ⊆ K will be given to us, and we

will store the element xi in the table slot T[h(xi)]. Notice that the only randomly determined quantity is the

hash function h. Everything else—the keyspaceK, the table sizem, and the set of to-be-stored elements—is

fixed.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-6

10-6 Probability

10.2 Probability, Outcomes, and Events

Luck is not chance –
It’s Toil –
Fortune’s expensive smile
Is earned.

Emily Dickinson (1830–1886)

This section will give formal definitions of the fundamental concepts in probability, giving us a frame-

work to use in thinking about the many computational applications that involve chance. These definitions

are somewhat technical, but they’ll allow us reason about some fairly sophisticated probabilistic settings

fairly quickly.

Warning! It is very rare to have good intuition or instincts about probability questions. Try to hold yourself back from jumping to

conclusions too quickly, and instead use the systematic approaches to probabilistic questions that are introduced in this chapter.

10.2.1 Outcomes and Probability

Here’s the very rough outline of the relevant definitions; we’ll give more details in a moment. Imagine a

scenario in which some quantity is determined in some random way. We will consider a set S of possible

outcomes. Each outcome has an associated probability, which is a number between 0 and 1. The set S is

called the sample space. In any particular result of this scenario, one outcome from S is selected randomly

(by “nature”); the frequency with which a particular outcome is chosen is given by that outcome’s associ-

ated probability. (Sometimes we might talk about the process by which a sequence of random quantities is

selected, and the realization as the actual choice made according to this process.) For example, for flipping

an unweighted coin we would have S = {Heads,Tails}, where Heads has probability 0.5 and Tails has

probability 0.5. Our particular outcome might be Heads. Here are the formal definitions:

Definition 10.1: Outcomes and sample space.

An outcome of a probabilistic process is the sequence of results for all randomly determined quantities.

(An outcome can also be called a realization of the probabilistic process.) The sample space S is the set

of all outcomes.

Definition 10.2: Probability function.

Let S be a sample space. A probability function Pr : S → R describes, for each outcome s ∈ S, the

fraction of the time that s occurs. (We denote probabilities using square brackets, so the probability of

s ∈ S is written Pr [s].) We insist that the following two conditions hold of the probability function Pr:

∑

s∈S

Pr [s] = 1 (10.2.1)

Pr [s] ≥ 0 for all s ∈ S. (10.2.2)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-7

10.2 Probability, Outcomes, and Events 10-7

Intuitively, condition (10.2.1) says that something has to happen: when we flip a coin, then either it comes

up heads or it comes up tails. (And so Pr [Heads]+Pr [Tails] = 1.) The other condition, (10.2.2), formalizes

the idea that Pr [s] denotes the fraction of the time that the outcome s occurs: the least frequently that an

outcome can occur is never.

The probability function Pr is also sometimes called a probability distribution over S. (This function

“distributes” one unit of probability across the set S of all possible outcomes, as in (10.2.1).)

Taking it further: Bizarrely, in quantum computation—an as-yet-theoretical type of computation based on quantum

mechanics—we can have outcomes whose probabilities are not restricted to be real numbers between 0 and 1. This model is

(very!) difficult to wrap one’s mind around, but a computer based on this idea turns out to let us solve interesting problems, and

faster than on “normal” computers. For example, we can factor large numbers efficiently on a quantum computer. (Though we

don’t know how to build quantum computers of any nontrivial size.) See p. 10-22.

A few examples: cards, coins, and words

Here are a few examples of sample spaces with probabilities naturally associated with each outcome:

Example 10.3: One card from the deck.

We draw one card from a perfectly shuffled deck of 52 cards. Then we can denote the sample space as

S = {2, 3, . . . , 10, J,Q,K,A} × {♣,♢,♡,♠}, and |S| = 52. Each card c ∈ S has Pr [c] = 1
52 . Note that

condition (10.2.1) is satisfied because

∑
c∈S Pr [c] =

∑
c∈S

1
52 = 52 · 1

52 = 1,

and (10.2.2) is obviously satisfied because Pr [c] = 1
52 for each c, and 1

52 ≥ 0.

Example 10.4: Coin flips.

You flip a $1 coin and Margaret Thatcher flips a £1 coin. Assume that both coins are fair (equally likely

to come up Heads and Tails) and that flips of the $1 coin and the £1 coin do not affect each other in

any way. Then the four outcomes are—writing the dollar’s result first—⟨Heads,Heads⟩, ⟨Heads,Tails⟩,
⟨Tails,Heads⟩, and ⟨Tails,Tails⟩. Each of these four outcomes has probability 0.25.

Example 10.5: A word on the page.

Excluding spaces and punctuation, the following sentence—which comes from William Shakespeare’s

King Richard III—contains a total of 29 different symbols (namely N, o, w, i, s, t, …, t):

Now is the winter of our discontent.

We are going to select a word from this sentence, according to the following process: choose one of the

29 non-space symbols from the sentence with equal likelihood; the selected word is the one in which the

selected symbol appears. (Thus longer words will be chosen more frequently than shorter words, because

longer words contain more symbols—and are therefore more likely to be selected.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-8

10-8 Probability

The sample space is S = {Now, is, the, winter, of, our, discontent}.
There are 3+ 2+ 3+ 6+ 2+ 3+ 10 = 29 total symbols, and thus Pr [Now] = 3

29 , Pr [is] = 2
29 , and

so on, through Pr [discontent] = 10
29 . Again, the conditions for being a probability are satisfied: each

outcome’s probability is nonnegative, and
∑

w∈S Pr [w] = 1.

Examples 10.3 and 10.4 are scenarios of uniform probability, in which each outcome in the sample space

is chosen with equal likelihood. (Specifically, each s ∈ S has probability Pr [s] = 1
|S| .) Example 10.5

illustrates nonuniform probability, in which some outcomes occur more frequently than others.

Note that for a single sample space S, we can have many different distinct processes by which we choose

an outcome from S. For example:

Example 10.6: Two ways of choosing from S = {0, 1, 2, . . . , 7}.
One process for selecting an element of S = {0, 1, 2, . . . , 7} is to flip three fair coins and treat their results

as a binary number (HHH = 111 → 7, HHT = 110 → 6, …, TTT = 000 → 0). This process gives a

uniform distribution over S: each sequence of coin flips occurs with the same probability. For example,

Pr [4] = 1
8 = 0.125 and Pr [7] = 1

8 = 0.125.

A second process for selecting an element of S is to flip 7 fair coins and to let the outcome be the

number of heads that we see in those 7 flips (HHHHHHH→ 7, HHHHHHT→ 6, HHHHHTH→ 6, …,

TTTTTTT→ 0). This process gives a nonuniform distribution over S, because the number of sequences

that have k heads is different for different values of k. For example:

Pr [4] =

(7
4

)

27
= 35

128 ≈ 0.2734, but Pr [7] =

(7
7

)

27
= 1

128 ≈ 0.0078.

As a word of warning, notice that probabilistic statements about a particular realization don’t make sense;

the only kind of probabilistic statement that makes sense is a statement about a probabilistic process. If

you happen to be one of the ≈ 10% of the population that’s red–green colorblind, and a friend says “what

are the odds that you’re colorblind!?”, the correct answer is: the probability is 1 (because it happened!).

10.2.2 Events

Many of the probabilistic questions that we’ll ask are about whether the realization has some particular

property, rather than whether a single particular outcome occurs. For example, we might ask for the prob-

ability of getting more heads than tails in 1000 flips of a fair coin. Or we might ask for the probability

that a hand of seven cards (dealt from a perfectly shuffled deck) contains at least two pairs. There may be

many different outcomes in the sample space that have the property in question. Thus, often we will be

interested in the probability of a set of outcomes, rather than the probability of a single outcome. Such a

set of outcomes is called an event:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-9

10.2 Probability, Outcomes, and Events 10-9

Definition 10.3: Event.
Let S be a sample space with probability function Pr. An event is a subset of S. The probability of an

event E is the sum of the probabilities of the outcomes in E, and it is written Pr [E] =
∑

s∈E Pr [s].

The notation in Definition 10.3 generalizes the function Pr by allowing us to write either elements of S or

subsets of S as inputs to Pr. The probability of an event E ⊆ S follows by a probabilistic version of the

Sum Rule, from counting: because one (and only one) outcome is chosen in a particular realization, the

probability of either outcome x or y occurring is Pr [x] + Pr [y].

Taking it further: What does it mean to extend the Pr notation to either events or outcomes? Previously we considered a function

Pr : S → [0, 1]; we have now “extended” our notation so that it’s a function Pr : P(S) → [0, 1]. (To be more precise, we’re

actually extending the notation to be a function Pr : (S ∪ P(S)) → [0, 1], because we’re still letting ourselves write outcomes

as arguments too.) Our mixture of Pr [outcome] and Pr [event] is an abuse of notation; we’re mixing the type of input willy nilly.

But, because Pr [x] for an outcome x and Pr [{x}] for the singleton event {x} are identical, we can write probabilities this way

without risk of confusion.

A few examples: coins, cards, and roulette

Here are a few examples of events and their probabilities:

Example 10.7: At least one head.

You and Margaret Thatcher each flip fair coins, as in Example 10.4. Define the event “at least one coin

comes up heads” asH = {⟨Heads,Heads⟩, ⟨Heads,Tails⟩, ⟨Tails,Heads⟩}. Then Pr [H] = 0.25+0.25+

0.25 = 0.75.

Example 10.8: Aces up.

Suppose that you draw one card from a perfectly shuffled deck, as in Example 10.3.What is the probability

that you draw an ace?

Solution. The event in question is E = {A♣,A♢,A♡,A♠}. Each of these four outcomes has a

probability of 1
52 , so Pr [E] =

1
52 +

1
52 +

1
52 +

1
52 = 4

52 = 1
13 .

Example 10.9: Full house.

You’re dealt 5 cards from a shuffled deck, so that each set of 5 cards is equally likely to be your hand. A

hand is a full house if 3 cards share one rank, and the other 2 cards share a second rank. (For example,

the hand 3♡, 3♠, 9♡, 9♣, 3♣ is a full house.) What’s the probability of being dealt a full house?

Solution. There are
(52

5

)
possible hands, each of which is dealt with probability 1/

(52
5

)
. Thus the key

question is a counting question: how many full houses are there? We can compute this number using the

Generalized Product Rule; specifically, we can view a full house as the result of the following sequence

of selections:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-10

10-10 Probability

• we choose the rank of which to have three of a kind;

• we choose which 3 of the 4 cards of that rank are in the hand;

• we choose the rank of the pair (any of the 12 remaining ranks); and

• we choose which 2 of the 4 cards of that rank are in the hand.

Thus there are
(13

1

)
·
(4
3

)
·
(12

1

)
·
(4
2

)
full houses, and the probability of a full house is

(13
1

)
·
(4
3

)
·
(12

1

)
·
(4
2

)
(52

5

) =
3744

2598960
≈ 0.00144.

Here’s a slightly more complex example, with multiple events of interest:

Example 10.10: Roulette.

In the casino game of roulette (French: “little wheel”), a wheel is spun, and a metal ball comes to rest in

one of the wheel’s 38 segments. The segments are numbered 1–36 (each colored red or black), and there

are two more segments labeled 0 and 00 (both colored green). See Figure 10.3a. Assume that the ball is

equally likely to land in each segment, and that the sample space consists of {00, 0, 1, 2, . . . , 36}. There
are 38 outcomes in the sample space.

A roulette player can bet on a particular outcome, or on an event that corresponds to a pair, triple,

quadruple, or sextuple of outcomes whose numbered squares are adjacent in the board in Figure 10.3a.

(For example, you can bet on 32 or {22, 23} or {4, 5, 6} or {17, 18, 20, 21} or {7, 8, 9, 10, 11, 12}.)
Roulette players can also bet on a number of different events defined by the twelve panels along the sides

of the grid. These events, and their probabilities, are shown in Figure 10.3b.

The details of the particular roulette events in Example 10.10 aren’t particularly important, but the distinc-

tion between outcomes and events—which this example should make starkly (it’s the difference between

“the ball stops on number 17” and “the ball stops on an odd number”)—is crucial in probability.

It is often useful to visualize a sample space using a Venn diagram–like representation, particularly if

we draw the subsets/events so that their area corresponds to their probability. See Figure 10.3c, which also

shows a few intersections of pairs of events: because an event is just a subset of the sample space, the

intersection of two events is still a subset of the sample space, and therefore is also an event.

A few useful properties

Here are a few useful general properties of the probability of events:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-11

10.2 Probability, Outcomes, and Events 10-11

0
2

14
35

23

4
16

332161831198

12
29

25
10

27
00

1
13

36
24

3
15 34 22 5 17 32

20
7

11
30

26
9

28

1 3

5

7 9

12

14

16 18

19 21

23

25 27

30

32

34 36

2

4 6

8

10 11

13 15

17

20

22 24

26

28 29

31 33

35

0 00

2 to 1 2 to 1 2 to 1

fi
rst12

second
12

third
12

1–18
even

black
red

odd
19–36

(a) The roulette wheel and the roulette board.

Note: for the purposes of this
game, the numbers 0 and 00
count as neither even nor
odd—for reasons related only to
casinos’ business models, and
not to the value of 0 mod 2.
Similarly, 0 and 00 are neither
black nor red, and so forth.

(This figure shows the American
roulette wheel; the European
wheel has only one green
segment (including 0, but not 00)
and there are only 37 outcomes.
The player in the European
version does better on average.)

event outcomes probability
1–18 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 18/38
even {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36} 18/38
1st 12 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 12/38
black {2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35} 18/38
red {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36} 18/38
2nd 12 {13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24} 12/38
odd {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35} 18/38
19–36 {19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36} 18/38
3rd 12 {25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36} 12/38
“2 to 1” A {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34} 12/38
“2 to 1” B {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35} 12/38
“2 to 1” C {3, 6, 9, 12, 15, 18, 21, 24, 27, 39, 33, 36} 12/38

(b) Some events and their probabilities.

Even:
1 3 5 7 9 19 21 23 25 27

11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36

2 4 6 8 10 20 22 24 26 28

0

00

Black:
1 3 5 7 9 19 21 23 25 27

11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36

2 4 6 8 10 20 22 24 26 28

0

00 Black & Even:
1 3 5 7 9 19 21 23 25 27

11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36

2 4 6 8 10 20 22 24 26 28

0

00

Red:
1 3 5 7 9 19 21 23 25 27

11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36

2 4 6 8 10 20 22 24 26 28

0

00 Red & Even:
1 3 5 7 9 19 21 23 25 27

11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36

2 4 6 8 10 20 22 24 26 28

0

00

(c) A few events in roulette, visualized in a Venn diagram–like way.

Figure 10.3 The game of roulette.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-12

10-12 Probability

Theorem 10.4: Some properties of event probabilities.

Let S be a sample space, and let A ⊆ S and B ⊆ S be events. Then, writing A = S − A to denote the

complement of the event A, we have:

Pr [S] = 1 (10.4.1)

Pr [∅] = 0 (10.4.2)

Pr
[
A
]
= 1− Pr [A] (10.4.3)

Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B] . (10.4.4)

These properties all follow directly from the definition of the probability of an event.

10.2.3 Tree Diagrams in Probability

Many probabilistic processes involve a sequence of randomly determined quantities, rather than just a

single random choice. Much like in counting, we can use a tree diagram to represent the sequence of

random choices—and then we can look for the probability of a particular outcome as reflected in the

sequence of choices in the tree.

In a tree diagram for a probabilistic sequence of choices, every internal node in the tree corresponds

to a random decision; every edge leaving that internal node is labeled with the probability of a particular

decision. The probability labels of all edges leaving any particular internal node u must add up to 1. (The

interpretation is: if the probabilistic process reaches node u, then each branch leaving u is chosen with

frequency in proportion to its label.) Every leaf in the tree corresponds to an outcome. The probability of

reaching a particular leaf is precisely equal to the product of the labels on the edges leading from the root

to that leaf. As usual, the probability of an event is the sum of the probabilities of the outcomes contained

in that event.

Problem-solving tip: Tree diagrams are generally a very good way to solve probability questions; they force you to systematically

think about all of the steps of a probabilistic process (and also about all of the steps of solving probability problems!).

Here is a first small example:

Example 10.11: Rolling two dice.

The probability tree for rolling two fair dice, one after the other, is shown in Figure 10.4.

• All edges have probability 1
6 ; thus each outcome’s probability is 1

6 · 16 = 1
36 .

• The event “doubles are rolled” has probability 6 · 1
36 = 1

6 .

• The event “a 7 is rolled” has probability 6 · 1
36 = 1

6 .

• The event “an 11 is rolled”has probability 2 · 1
36 = 1

18 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-13

10.2 Probability, Outcomes, and Events 10-13

⟨1
,
1⟩

⟨1
,
2⟩

⟨1
,
3⟩

⟨1
,
4⟩

⟨1
,
5⟩

⟨1
,
6⟩

1
6

1
6

1
6

1
6

1
6

1
6

⟨2
,
1⟩

⟨2
,
2⟩

⟨2
,
3⟩

⟨2
,
4⟩

⟨2
,
5⟩

⟨2
,
6⟩

1
6

1
6

1
6

1
6

1
6

1
6

⟨3
,
1⟩

⟨3
,
2⟩

⟨3
,
3⟩

⟨3
,
4⟩

⟨3
,
5⟩

⟨3
,
6⟩

1
6

1
6

1
6

1
6

1
6

1
6

⟨4
,
1⟩

⟨4
,
2⟩

⟨4
,
3⟩

⟨4
,
4⟩

⟨4
,
5⟩

⟨4
,
6⟩

1
6

1
6

1
6

1
6

1
6

1
6

⟨5
,
1⟩

⟨5
,
2⟩

⟨5
,
3⟩

⟨5
,
4⟩

⟨5
,
5⟩

⟨5
,
6⟩

1
6

1
6

1
6

1
6

1
6

1
6

⟨6
,
1⟩

⟨6
,
2⟩

⟨6
,
3⟩

⟨6
,
4⟩

⟨6
,
5⟩

⟨6
,
6⟩

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

Figure 10.4 The probability tree for rolling two fair dice, one after the other. Three events are highlighted: “doubles are
rolled” (marked) “a 7 is rolled” (marked); and “an 11 is rolled” (marked).

Incidentally, one of the calculations from Example 10.11 can also be rephrased to address a question about

hashing. Suppose that we hash two elements into a hash table with 6 slots using a uniform random hash

function. (See Section 10.1.1.) What is the probability that we have a collision? This question is precisely

the same as asking for the probability of rolling doubles with two fair dice—that is, 1
6 , by Example 10.11.

When we introduced hash tables in Section 10.1.1, we described resolving collisions by chaining: an

element x is stored in cell T[h(x)]; if that cell is already occupied, then we simply add x to a list of elements

in cell T[h(x)]. But there are several other strategies for resolving collisions in a hash table, the simplest of

which is called linear probing. In linear probing, when we insert an element x into the table, we put x in

the first unoccupied cell, moving from left to right, starting at cell h(x). See Figure 10.5 for an example.

Example 10.12: Hashing with linear probing.

Suppose that we hash 2 elements into a hash table with 6 slots using a uniform random hash function h,

where we resolve collisions by linear probing. What is the probability that we end up with 2 consecutive

slots of the hash table filled?

Solution. The sample space is S = {1, 2, . . . , 6} × {1, 2, . . . , 6}: we first randomly choose a value for

h(A), and then randomly choose a value for h(B). We’ll build a tree diagram to represent these choices,

as shown (in part) in Figure 10.6. The highlighted outcomes have A and B hashed to adjacent cells. (The

remainder of the tree is analogous; it’s good practice to try drawing the other branches.)

Each branch of the tree is equally likely, so each outcome occurs with probability 1
36 . How many

different outcomes result in A and B being stored in adjacent cells? For each of the 6 possible hash values

for A, there are 3 hash values for B that cause A and B to be adjacent, when h(B) is one of h(A)− 1, h(A),

and h(A) + 1. So the final probability of a cluster forming is (6 · 3) · 1
36 = 18

36 = 1
2 .

Taking it further: One of the downsides of resolving collisions in a hash table using linear probing is a phenomenon called

“clustering”: contiguous blocks of filled cells develop, and these filled blocks tend to get longer and longer as more and more

elements are added to the table. (This problem is beginning to occur in Figure 10.5.) Other collision-resolution schemes can

mitigate this problem; see Exercises 10.45–10.50.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-14

10-14 Probability

A B
1 2 3 4 5 6 7 8 9 10

(a)

Suppose A and B, with
h(A) = 4 and h(B) = 8, are
stored initially.

A BC
1 2 3 4 5 6 7 8 9 10

(b)

Suppose h(C) = 3. T[3] is
empty, so we store C in T[3].

A BC D
1 2 3 4 5 6 7 8 9 10

(c)

Suppose h(D) = 4. T[4] is
full, but T[5] is empty, so we
store D in T[5].

A BC D E
1 2 3 4 5 6 7 8 9 10

(d)

Suppose h(E) = 3. T[3] and T[4]
and T[5] are all full, but T[6] is
empty, so we store E in T[6].

Figure 10.5 Linear probing: we try to put x in cell T[h(x)], but if that cell is already full, then we try cell T[h(x) + 1],
and then cell T[h(x) + 2], and so on. We wrap around to T[1] after we reach the right edge of T.

h(A)=1
A

h(B)=1
AB

1
6

h(B)=2
AB

1
6

h(B)=3
A B

1
6

h(B)=4
A B

1
6

h(B)=5
A B

1
6

h(B)=6
A B

1
6

1
6

h(A)=2
A

h(B)=1
BA

1
6

h(B)=2
AB

1
6

h(B)=3
AB

1
6

h(B)=4
A B

1
6

h(B)=5
A B

1
6

h(B)=6
A B

1
6

1
6

h(A)=3
A

1
6

h(A)=4
A

1
6

h(A)=5
A

1
6

h(A)=6
A

1
6

Figure 10.6 The tree diagram for hashing 2 elements into 6 slots using a uniform random hash function h, resolving
collisions by linear probing.

Here’s another (by now famous) example, called the Monty Hall Problem, in which using a probability

tree helps resolve a potentially confusing probability question. This problem is named after Monty Hall,

the host of the television game show Let’s Make A Deal in the 1960s–1980s. (The problem became famous

after a kerfuffle involving Marilyn vos Savant, in Parademagazine, in which answered a reader’s question

about theMonty Hall Problem. Her answer was 100% right, andmany of the Ph.D.-holdingmathematicians

who wrote angry letters to the editor were 100% wrong [127, 128].)

Problem-solving tip: It is usually worth the time to make the probabilistic process concrete, and to make explicit any hidden

assumptions about the process, before solving the problem. (That’s how we’ll solve Example 10.13.)

Example 10.13: Monty Hall Problem.

Here is the problem (based on the Let’s Make a Deal setup):

You are given the choice of three doors, behind which are a car, a goat, and another goat. You choose a door. Monty

Hall opens one of the doors that you didn’t choose to reveal a goat. He then offers you the chance to switch to the other

(unopened) door that you didn’t initially choose. Should you switch?

(To make this question concrete, assume that the car is initially placed randomly; you choose an initial

door randomly; the host always opens one of the two doors you didn’t choose to reveal a goat, choosing

a goat at random if there are two unchosen goats; and the host will always give you an opportunity to

switch.)

Solution. There are three randomly chosen quantities: where the car is placed, which door you choose,

and which goat is revealed (if there are two possibilities). We can express the process using the probability

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-15

10.2 Probability, Outcomes, and Events 10-15

car placed at A

you pick A
B revealed1/2

C revealed1/2
1/3

you pick B C revealed11/3

you pick C B revealed1
1/3

1/3

car placed at B

you pick A C revealed1
1/3

you pick B
A revealed1/2

C revealed1/2
1/3

you pick C A revealed1
1/3

1/3

car placed at C

you pick A B revealed1
1/3

you pick B A revealed11/3

you pick C
A revealed1/2

B revealed1/2

1/2

1/3

1
3 · 1

3 · 1
2 = 1

18

1
3 · 1

3 · 1
2 = 1

18

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
1 = 1

9

1
3 · 1

3 · 1
2 = 1

18

1
3 · 1

3 · 1
2 = 1

18

(a) The probability tree.

ca
r

yo
ur

ch
oi
ce

re
ve
al
ed

go
at

pr
ob

ab
il
it
y

A A B 1/18
A A C 1/18
A B C 1/9
A C B 1/9
B A C 1/9
B B A 1/18
B B C 1/18
B C A 1/9
C A B 1/9
C B A 1/9
C A B 1/18
C B A 1/18

(b) A table of the
outcomes.

Figure 10.7 The Monty Hall problem. The shaded outcomes are those where you win by switching.

tree in Figure 10.7a. The thick-outlined, shaded outcomes are those in which switching from your initially

chosen door causes your new door to hide a car; the thin-lined, unshaded outcomes are those in which

not switching causes you to win. All of the outcomes and their associated probabilities are also shown in

Figure 10.7b.

There are six outcomes in which switching causes you to win the car. Each of these outcomes has

probability 1
9 , so the probability of winning a car by switching is 6 · 19 = 2

3 . The other six outcomes are

those in which not switching causes you to get a car (and switching gets you a goat); these outcomes each

have probability 1
18 , and so the probability of winning by not switching is 6 · 1

18 = 1
3 . You should switch.

Taking it further: Section 10.2.3 has been devoted to tree diagrams—a systematic way of analyzing probabilistic settings in

which a sequence of random choices is made. Typically we think of—or at least model—these random choices as being made “by

nature”: if you flip a coin, you act as though the universe “chooses” (via microdrafts of wind, the precise topology of the ground

where the coin bounces, etc.) whether the coin will come up Heads or Tails. But, in many scenarios in computer science, we

want to generate the randomness ourselves, perhaps in a program: choose a random element of the set A; go left with probability
1
2 and go right with probability 1

2 ; generate a random 8-symbol password. The process of actually generating a sequence of

“random” numbers on a computer is difficult, and (perhaps surprisingly) very closely tied to notions of cryptographic security. A

pseudorandom generator is an algorithm that produces a sequence of bits that seem to be random, at least to someone examining

the sequence of generated bits with limited computational power. It turns out that building a difficult-to-break encryption system is

in a sense equivalent to building a difficult-to-distinguish-from-random pseudorandom generator. For more, see a good textbook

on cryptography, such as [52, 69, 108].

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-16

10-16 Probability

10.2.4 Some Common Probability Distributions

We’ll end this section with some of the common probabilistic processes (and therefore some common

probability distributions) that arise in computer science applications.

Uniform distribution

Under the uniform distribution, every outcome is equally likely. We can define a uniform distribution for

any finite sample space S:

Definition 10.5: Uniform distribution.
Let S be a finite sample space. Under the uniform distribution, the probability of any particular outcome

s ∈ S is given by Pr [s] = 1
|S| .

Some familiar examples of the uniform distribution include:

• flipping a fair coin (Pr [Heads] = Pr [Tails] = 1
2).

• rolling a fair 6-sided die (Pr [1] = Pr [2] = Pr [3] = Pr [4] = Pr [5] = Pr [6] = 1
6).

• choosing one card from a shuffled deck (Pr [c] = 1
52 for any card c).

If outcomes are chosen uniformly at random, then the probability of an event is simply its fraction of the

sample space. That is, for any event E ⊆ S, we have Pr [E] = |E|
|S| .

Taking it further: We often make use of a uniform distribution in randomized algorithms. For example, in randomized quicksort

or randomized select applied to an array A[1 . . . n], a key step is to choose a “pivot” value uniformly at random from A, and then

use the chosen value to guide subsequent operation of the algorithm. (See Exercises 10.24–10.27.)

Another algorithmic use of randomization is in mechanisms to allow scientific study of sensitive data while preserving the privacy

of the individuals whose data is being studied. The basic idea is to “fuzz” the data by adding random noise to the true data points,

and then release only the fuzzed dataset. To maximize the usefulness of the data for scientific study, we should minimize the

amount of noise added to the data (“how blurry” to make it). The insight of theoretical computer scientists has been in precisely

characterizing howmuch noisemust be added so as to provably preserve the privacy of individual data values. For more, including

a highly successful approach called differential privacy, see p. 10-20.

Bernoulli distribution

The next several distributions are related to “flipping coins” in various ways. “Coin flipping” is a common

informal way to refer to any probabilistic process in which we have one or more trials, where each trial has

the same “success probability,” also known as “getting heads.” We will refer to flipping an actual coin as

a coin flip, but we will also refer to other probabilistic processes that succeed with some fixed probability

as a coin flip. We consider a (possibly) biased coin—that is, a coin that comes up heads with probability

p, and tails with probability 1 − p. The coin is called fair if p = 1
2 ; that is, if the probability distribution

is uniform. We can call the coin p-biased when Pr [heads] = p. It’s important that the result of one trial

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-17

10.2 Probability, Outcomes, and Events 10-17

has no effect on the success probability of any subsequent trial. (That is, these flips are independent; see

Section 10.3.) The first coin-related distribution is simply the one associated with a single trial:

Definition 10.6: Bernoulli distribution.
The Bernoulli distribution with parameter p is the probability distribution that results from flipping one

p-biased coin. Thus the sample space is {H,T}, where Pr [H] = p and Pr [T] = 1− p.

(The Bernoulli distribution is named after Jacob Bernoulli (1655–1705), a Swiss mathematician.)

Taking it further: Imagine a sequence of Bernoulli trials performed with p = 0.01, and another sequence of Bernoulli trials

performed with p = 0.48. The former sequence will consist almost entirely of zeros; the latter will be about half zeros and about

half ones. There’s a precise technical sense in which the second sequence contains more information than the first, measured in

terms of the entropy of the sequence. See p. 10-24.

Binomial distribution

A somewhat more interesting distribution results from considering a sequence of flips of a biased coin.

Consider the following probabilistic process: perform n flips of a p-biased coin, and then count the number

of heads in those flips. The binomial distribution with parameters n and p is a distribution over the sample

space {0, 1, . . . , n}, where Pr [k] denotes the probability of getting precisely k heads in those flips. Fig-

ure 10.8 shows several examples of binomial distributions, for different settings of the parameters n and

0 2 4 6 8 10

0.1

0.2

0.3

k

Pr [k]
n = 10, p = 0.5

0 5 10 15

0.1

0.2

0.3

k

Pr [k]
n = 15, p = 0.5

0 5 10 15 20

0.1

0.2

0.3

k

Pr [k]
n = 20, p = 0.5

0 2 4 6 8 10

0.1

0.2

0.3

k

Pr [k]
n = 10, p = 0.25

0 2 4 6 8 10

0.1

0.2

0.3 Pr [k]
n = 10, p = 0.75

0 2 4 6 8 10

0.1

0.2

0.3 Pr [k]
n = 10, p = 0.85

Figure 10.8 Several binomial distributions, for different values of n and p.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-18

10-18 Probability

p. Each panel of Figure 10.8 shows the probability P[k] of getting precisely k heads in n flips of a p-biased

coin, for each k in the sample space.

If we flip a p-biased coin n times, what is the probability of the event of getting exactly k heads? For

example, consider the outcome

H H · · · H
k times

T T · · · T
n − k times

.

The probability of this outcome is pk · (1− p)n−k: the first k flips must come up heads, and the next n− k

flips must come up tails. In fact, any ordering of k heads and n− k tails has probability pk · (1− p)n−k. One

way to see this fact is by imagining the probability tree, which is a binary tree with left branches (heads)

having probability p and right branches (tails) having probability 1− p. The outcomes in question have k

left branches and n − k right branches, and thus have probability pk · (1 − p)n−k. There are
(n
k

)
different

outcomes with k heads—a sequence of n flips, out of which we choose which k come up heads. Therefore:

Definition 10.7: Binomial distribution.
The binomial distribution with parameters n and p is a distribution over the sample space {0, 1, . . . , n},
where for each k ∈ {0, 1, . . . , n} we have

Pr [k] =
(n
k

)
· pk · (1− p)n−k.

For an unbiased coin—that is, when p = 1
2—the expression for Pr [k] from Definition 10.7 simplifies to

Pr [k] =
(n
k

)
/2n, because (12)

k · (1− 1
2)

n−k = (12)
k · (12)n−k = (12)

n.

Geometric distribution

Another interesting coin-derived distribution comes from the “waiting time” before we see heads for the

first time. Consider a p-biased coin, and continue to flip it until we get a heads. The output of this prob-

abilistic process is the number of flips that were required, and the geometric distribution with parameter

p is defined by this process. (The name “geometric” comes from the fact that the probability of needing k

flips looks a lot like a geometric series, from Chapter 5.) See Figure 10.9 for a few such distributions.

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

k

Pr [k]
p = 0.3

1 2 3 4 5 6 7 8 9 10

k

p = 0.5

1 2 3 4 5 6 7 8 9 10

k

p = 0.7

Figure 10.9 Several geometric distributions, for different values of p. Although these plots are truncated at k = 10, the
distribution continues infinitely: Pr [k] > 0 for all positive integers k.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-19

10.2 Probability, Outcomes, and Events 10-19

What is the probability of needing precisely k flips to get heads for the first time?We would have to have

k − 1 initial flips come up tails, and then one flip come up heads. As with the binomial distribution, one

nice way to think about the probability of this outcome uses the probability tree. This tree has left branches

(heads) having probability p and right branches (tails) having probability 1−p; the outcome k follows k−1

right branches and one left branch, and thus has probability (1− p)k−1 · p. Therefore:

Definition 10.8: Geometric distribution.
Let p be a real number satisfying 0 < p ≤ 1. The geometric distribution with parameter p is a distribution

over the sample space Z≥1 = {1, 2, 3, . . .}, where for each k we have

Pr [k] = (1− p)k−1 · p.

Notice that the geometric distribution is our first example of an infinite sample space: every positive integer

is a possible result.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-20

10-20 Probability

Computer Science Connections

Using Randomness to Protect Privacy

A
fr
ic
an

a
S
tu
di
es

A
m
er
ic
an

S
tu
di
es

A
rt
H
is
to
ry

A
rt

A
si
an

S
tu
di
es

B
io
lo
gy

C
he

m
is
tr
y

C
in
em

a
&

M
ed

ia
S
tu
di
es

C
la
ss
ic
s

C
og

ni
tiv

e
S
ci
en

ce

C
om

pu
te
r
S
ci
en

ce

E
co

no
m
ic
s

E
ng

li
sh

(a) The true data on majors.

(b) Random noise (from the so-called Laplace distribution).

A
fr
ic
an

a
S
tu
di
es

A
m
er
ic
an

S
tu
di
es

A
rt
H
is
to
ry

A
rt

A
si
an

S
tu
di
es

B
io
lo
gy

C
he

m
is
tr
y

C
in
em

a
&

M
ed

ia
S
tu
di
es

C
la
ss
ic
s

C
og

ni
tiv

e
S
ci
en

ce

C
om

pu
te
r
S
ci
en

ce

E
co

no
m
ic
s

E
ng

li
sh

(c) The adjusted counts for release.

Figure 10.10 Differentially private release of data. Starting
from sensitive data (say, how many first-generation students
declared each major), we add random noise before releasing
the adjusted counts. Theorems have established how much
noise must be added to ensure a given level of privacy
protection. The released counts aren’t too far from the
originals, but they protect each individual’s privacy.

It’s not hard to think of research topics that could lead

to clear positive impacts at a societal level, but where

the individual-level data of people being studied might

be extremely sensitive. Is having a particular underly-

ing health condition (like having asthma, say, or being

HIV positive) a counterindicator for a particular steroid

treatment for COVID-19? What is the magnitude of

income and wealth disparities across race and gender

for people doing the same jobs in the same locations?

(It’s harder to formulate and advocate for the most

effective policies without quantitative understanding

of the problems!) There are major potential societal

benefits of a thorough understanding of these kinds of

questions—but, at the same time, I certainly don’t want

my HIV status or my full financial records being made

public. So what do we do?

A first answer is to rely on the ethical standards

of researchers (and research oversight boards), and

promise all participants in research that their individual

data will never be released. (The U.S. first mandated

Institutional Review Boards (“IRBs”) in 1974, after

some prominent and egregious ethical lapses in med-

ical and behavioral research; see [121].) Alongside the

risk of unintentional data breaches, though, a major

downside of this approach is that scientific progress rests on sharing of data, so that others can reproduce and extend

existing work. So might we permit sharing of anonymized data, with personal identifiers stripped out? Tempting as it

is, this idea isn’t enough: anonymization is hard. For example, a pioneering study by Latanya Sweeney showed that

more than 85% of U.S. residents were uniquely identifiable by their 5-digit ZIP code, gender, and day/month/year of

birth [123]. So releasing an anonymized sensitive dataset that includes these three fields is tantamount to releasing

the names; a malicious actor with an external data source could “deanonymize” it. (Other famous cases of published

anonymous datasets later being deanonymized include AOL search logs and Netflix movie ratings.)

Instead, a long line of computer scientists have worked to develop algorithms to “fuzz” data, releasing a dataset

that has been slightly, and randomly, altered from the original values. The idea is to alter the data as much as necessary

protect individual privacy. But we also alter it as little as possible, so that group-level statistics will remain close to

their original values. In differential privacy, the most prominent and successful approach, the biggest breakthrough

was not a new algorithm but rather a new definition—one that, like safemechanisms for releasing data, is probabilistic.

Consider an algorithmA(S) for releasing a privatized version of data from a set S of people, and consider a particular

person x. The key definition of differential privacy (informally stated) is that the probability of a particular dataset

being released is nearly identical whether A is run on S or A is run on S ∪ {x}. (This definition does not mean

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-21

10.2 Probability, Outcomes, and Events 10-21

that someone looking at the released dataset can’t learn something about x based on correlations—if you can’t learn

something about people from research then there’s not much point in research about people—but rather that the

analyst doesn’t learn more about a participant x than if x had not participated in the study.) Mechanisms to achieve

differential privacy add random noise to the input data, with the amount of noise carefully tuned to be as small as

possible while still obscuring individual data points. See Figure 10.10. (Only some kinds of queries are known to be

achievable under this definition.) And these results are not purely theoretical: as of the 2020 U.S. Census, individuals

are protected by differentially private release of census data. (For more on differential privacy, see [41] or [42].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-22

10-22 Probability

Computer Science Connections

Quantum Computing

As the 20th-century revolution in physics brought about by the discovery of quantummechanics unfolded, researchers

at the boundary of physics and computer science started thinking about computation based on these quantum ideas.

This model of quantum computation relies on some very deep physics, so what follows is only a brief summary—

omitting the details of the physics (which I must admit I do not understand). (As the line attributed to the Danish

physicist and quantum theorist Niels Bohr (1885–1962) goes: “Anyone who is not shocked by quantum theory has

not understood it.”)

|0
00

0⟩
|0
00

1⟩
|0
01

0⟩
|0
01

1⟩
|0
10

0⟩
|0
10

1⟩
|0
11

0⟩
|0
11

1⟩
|1
00

0⟩
|1
00

1⟩
|1
01

0⟩
|1
01

1⟩
|1
10

0⟩
|1
10

1⟩
|1
11

0⟩
|1
11

1⟩

sequence of quantum gates

(a.k.a. a quantum algorithm)

measurement

|0
00

0⟩
|0
00

1⟩
|0
01

0⟩
|0
01

1⟩
|0
10

0⟩
|0
10

1⟩
|0
11

0⟩
|0
11

1⟩
|1
00

0⟩
|1
00

1⟩
|1
01

0⟩
|1
01

1⟩
|1
10

0⟩
|1
10

1⟩
|1
11

0⟩
|1
11

1⟩
0101

The input is a “trivial”

superposition in which all

of the weight is on the input

value—here, 1001. The

superposition resulting

from the quantum

algorithm may spread the

weight across all 2n states.

The final output of the

algorithm is a single n-bit

sequence resulting from a

measurement (with the

probability of a particular

output corresponding to the

coefficient of that state in

the superposition)—here,

0101.

Figure 10.11 A rough schematic of a quantum algorithm.

The basic element of data in a quantum

computer is a quantum bit, or qubit. Like a

bit (the basic element of data on a classical

computer), a qubit can be in one of two basic

states, which are written as |0⟩ and |1⟩. (A
classical bit is in state 0 or 1). The quantum

magic is that a qubit can be in both states

simultaneously, in what’s called a superpo-

sition of these basic states. A qubit’s state is

α|0⟩ + β|1⟩, where α and β are “weights”

with |α|2+|β|2 = 1. (Actually, the weightsα

andβ are complex numbers, but the basic idea

will come across if we think of them as real

numbers instead.) Thus, while there are only

two states of a bit, there are infinitely many

states that a qubit can be in. So a qubit’s state

contains a huge amount of information. But,

by the laws of quantum physics, we are lim-

ited in how we can extract that information

from a qubit. Specifically, we can measure a

qubit, but we only see 0 or 1 as the output. When we measure a qubit α|0⟩+ β|1⟩, the probability that we see 0 is

|α|2; the probability that we see 1 is |β|2. For example, we might have a qubit in the state

1
2 |0⟩+

√
3

2 |1⟩. (Note
(1
2

)2
+
(√

3
2

)2
= 1

4 + 3
4 = 1.)

If we measure it, we see a 0 with probability 25% (and otherwise we see a 1). See Figure 10.11.

There are two more crucial points. First, when there are multiple qubits—say n of them—the qubits’ state is a

superposition of 2n basic states. (For example, in the same way that two-bit classical system can be in state 00, 01, 10,

or 11, a two-qubit system is in state α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩.) Second, even though we only see one

value when we measure qubits, there can be “cancellation” (or interference) among coefficients. There are notable

restrictions on how we can operate on qubits, based on constraints of physics, but at a very rough level, we can run

an operation on an n-qubit quantum computer in parallel in each of the 2n basic states and, if the process is designed

properly, still read something useful from our single measurement.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-23

10.2 Probability, Outcomes, and Events 10-23

Why does anyone care? Much of the interest in quantum computation stems from a major breakthrough, Shor’s

algorithm, a quantum algorithm that efficiently solves the factoring problem—given a large integer n, determine n’s

prime factorization. Efficient factoring is deeply problematic for most currently deployed cryptographic systems (see

Chapter 7), so a functional quantum computer would be a big deal. And there are other important quantum algorithms,

in cryptography and in other areas, too. Building a practical quantum computer of appreciable size remains a major

engineering effort; at the moment, it’s a largely theoretical device—but there’s active research both on the physics

side (can we actually build one?) and on the algorithmic side (what else could we do if we did build one?).

(For much more about how quantum computers work, or what they would be able to do, see [86]. The efficient

quantum factoring algorithm is due to Peter Shor (b. 1959) [116]. Quantum computers with 53 qubits were first built

in 2019, by Google and IBM; that’s the same year that Google claimed to have shown a quantum computer that can

perform tasks beyond the reach of classical computers (though there is scholarly debate about this claim) [11].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-24

10-24 Probability

Computer Science Connections

Information, Charles Dickens, and the Entropy of English

Consider the following two (identical-length) sequences of letters and spaces—one from Charles Dickens’s A Tale

of Two Cities and one generated by uniformly randomly choosing a sequence of elements of {A, . . . , Z, }:

IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES, IT WAS THE AGE OF WISDOM, IT WAS THE AGE OF

FOOLISHNESS, IT WAS THE EPOCH OF BELIEF, IT WAS THE EPOCH OF INCREDULITY.

TUYSSUWWYVOZULF XZQBSFS AFNBMAOOGWZPAHGREAYC SUSCMBOWDCNCYEJBHPVCRO MLVTGVHTVCZXHSCQFULCMBO

CDIWTXOCUPKTFZVNBHRGDWAKZSZPFTZKEWKWIH O QFIUWTCDKUBTQSPLXSYXGQZA DLXBHKFILFPZ.

Which sequence contains more information? It is very tempting to choose the first (information about contrast, and

irony—and liberty, equality, and fraternity!), but, in a precise technical sense, Random contains far more information

than Dickens. The basic reason is that, in Dickens, certain letters occur far more frequently than others—E occurs

17 times and there are six letters that don’t appear at all. (In Random, all 26 letters appear.) With such a lopsided

distribution, you already know a lot about what letter is (probably) going to come next, and so there’s less new

information conveyed by a typical letter.

p = 0.25 p = 0.5 p = 0.9

Figure 10.12 A sequence of bits, produced independently
at random with probability p ∈ {0.25, 0.5, 0.9} of a .
These sequences’ entropies are, respectively, 0.8113,
1.0000, and 0.4690.

Formally, the entropy of a sequence of letters (or

bits, or whatever) is a measure of “how surprising”

each element of the sequence is, averaged over the

sequence. We’ll convert the “unit of surprise” into a

real number between zero and one, where zero corre-

sponds to the next letter is 100% predictable and one

corresponds to we have absolutely no idea what the

next letter will be. Mathematically, the entropy H of

a probability distribution over S is defined as

−
∑

x∈S

Pr [x] · log(Pr [x]).

For example, if we produce a sequence of coin flips where each flip comes up heads with probability p (see

Figure 10.12), then the entropy of the sequence will be − (p log p+ (1− p) log(1− p)), as shown in Figure 10.13.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

probability p

en
tr
op

y

Figure 10.13 The entropy of a biased coin whose heads
probability is p.

This definition of entropy comes from the 1940s, in

a paper by Claude Shannon [114], and has found all

sorts of useful applications since. Here is one example:

the entropy of a sequence of bits expresses a theoretical

limit on the compressibility of that sequence. (And that

theoretical limit is, in fact, achievable.) That is, if the

entropy of a string of n bits is very low—say around

0.25—then with some clever algorithms we can repre-

sent that string (without any error) using only about n
4

bits. But we can’t represent it in fewer bits with perfect

fidelity (“lossless” compression; see p. 9-48).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-25

10.2 Probability, Outcomes, and Events 10-25

There is significant redundancy in English text, as

we’ve already mentioned, based on the nonuniformity

in the probability distribution of individual letters. But

there’s even more redundancy based on the fact that the

probability that the ith character of an English document is an H is affected by whether the (i−1)st character was a T.
(In the language of Section 10.3, these events are not independent.) If you’ve seen the letters ␣TH in succession, you

can make a very good bet that E is coming next. Compression schemes for English make use of this phenomenon.

(For more on entropy, compressibility, and information theory generally, a great classic reference is [34].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-26

10-26 Probability

EXERCISES

10.1 Philippe flips a fair coin 100 times. Let the outcome be the number of heads that he sees. What is the sample space?

10.2 For Philippe’s 100 flips, what is Pr [0]?

10.3 For Philippe’s 100 flips, what is Pr [50]?

10.4 For Philippe’s 100 flips, what is Pr [64]?

10.5 Philippe now flips his fair coin n times. What’s the probability of the event “there are (strictly) more heads than tails” if n = 2?

10.6 Repeat Exercise 10.5 for n = 3.

10.7 Repeat Exercise 10.5 for n = 1001. (Hint: Pr [k] = Pr [1001− k].)

10.8 Repeat Exercise 10.5 for an arbitrary positive integer n.

10.9 Bridget plays Bridge. Bridge is a card game played with a standard 52-card deck. Each player is initially dealt a hand of 13 cards;

assume a fair deal in which each of the
(52
13

)
hands is equally likely. What is the probability of being dealt both A♣ and A♢?

10.10 Suppose Bridget receives a uniformly drawn hand of 13 cards, in a uniformly random order. Because your ex-friend Peter was

trying to cheat at poker with this deck, the A♣ card is marked. You observe that the card the fourth-from-the-right position in

Bridget’s hand is A♣. What is the probability that Bridget also has the A♢ in her hand?

10.11 Most casual bridge players sort their hands by suit (♠,♡,♣,♢ from left to right), and decreasing from left to right by rank within

each suit. (So your hand might be ♠AK4 ♡983 ♣AKQ ♢AJ98, reading from left to right.) Professional players are taught not to

sort their hands, because doing so causes which card they play to leak information about the rest of their hand to the other players.

Suppose Bridget receives a uniformly drawn hand of 13 cards, and sorts the cards in her hand. Peter’s card marking is still present,

and you observe the A♣ in the fourth-from-the-right (that is, fourth-from-the-lowest) card in Bridget’s hand.What is the probability

that Bridget also has the A♢ in her hand? (That is: out of all hands for which A♣ is fourth-from-the-lowest card, what fraction

also have the A♢?)

10.12 Suppose A♣ is the rightmost (that is, lowest) card in Bridget’s hand. What is the probability that Bridget also has the A♢?

10.13 Suppose A♣ is the leftmost (that is, highest) card in Bridget’s hand. What is the probability that Bridget also has the A♢?

Chrissie plays Cribbage. Cribbage is a card game played with a standard 52-card deck. For the purposes of these questions, assume

that a player is dealt one of the
(52

4

)
different 4-card hands, chosen uniformly at random. Cribbage hands are awarded points for

having a variety of special configurations:

• A flush is a hand with all four cards from the same suit.

• A run is a set of at least 3 cards with consecutive rank. (For example, the hand 3♡, 9♣, 10♢, J♣ contains a run.)

• A pair is a set of two cards with identical rank.

Aces are low in Cribbage, so A, 2, 3 is a valid run, but Q,K,A is not.

10.14 What’s the probability that Chrissie is dealt a flush?

10.15 What’s the probability that Chrissie is dealt a run of length 4?

10.16 What’s the probability that Chrissie is dealt two runs of length 3 that is not a run of 4? (For example, the hand 9♡, 9♣, 10♢, J♣
contains two runs of length 3: the first is 9♡, 10♢, J♣ and the second is 9♣, 10♢, J♣.)

10.17 What’s the probability that Chrissie is dealt one (and only one) run of length 3 (and not a run of length 4)?

10.18 What’s the probability that Chrissie is dealt at least one pair? (Hint: Pr [getting a pair] = 1− Pr [getting no pair].)

10.19 What’s the probability that Chrissie is dealt two or more pairs? (In cribbage, any two cards with the same rank count as a pair; for

example, the hand 2♡2♢2♠8♣ has three pairs: 2♡2♢ and 2♡2♠ and 2♢2♠.)

10.20 (programming required.) Write a program to approximately verify your calculations from these Cribbage exercises, as follows:

generate 1,000,000 random hands from a standard deck, and count the number of those samples in which there’s a flush, run (of

the three flavors), pair, or multiple pairs.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-27

Exercises 10-27

10.21 (programming required.) Modify your program to exactly verify your calculations: exhaustively generate all 4-card hands, and

count the number of hands with the various features (flushes, runs, pairs).

10.22 A fifteen is a subset of cards whose ranks sum to 15, where an A counts as 1 and each of {10, J,Q,K} counts as 10. (For example,

the hand 3♡, 2♣, 5♢, J♣ contains two fifteens: 3♡ + 2♣ + J♣ = 15 and 5♢ + J♣ = 15.) What’s the probability a 4-card hand

contains at least one fifteen? (Hint: use a program.)

10.23 A bitstring x ∈ {0, 1}5 is stored in vulnerable memory, subject to corruption—for example, on a spacecraft. An α-ray strikes the

memory and resets one bit to a random value (both the new value and which bit is affected are chosen uniformly at random). A

second α-ray strikes the memory and resets one bit (again chosen uniformly at random). What’s the probability that the resulting

bitstring is identical to x?

10.24 Recall the quick sort algorithm for sorting an array A, shown in Figure 10.14. (Assume that the elements of A are all distinct.) Quick

Sort is efficient if the two sublists are close to equal in size, and the Random strategy is a common (and good!) way to (usually)

produce two sublists of roughly equal size. Suppose we select pivot in Line 4 uniformly at random from the set {1, . . . , n}. As a

function of n, what is the probability that |L| ≤ 3n/4 and |R| ≤ 3n/4? (You may assume that n is divisible by 4.)

10.25 Under the Random strategy, as a function of n and α ∈ [0, 1], what is the probability |L| ≤ αn and |R| ≤ αn? (You may neglect

issues of integrality: assume αn is an integer.)

10.26 Under the Median of Three strategy, what is the probability that |L| ≤ 3n/4 and |R| ≤ 3n/4? Assume n is large; for ease, you may

neglect issues of integrality in your answer.

10.27 Under the Median of Three strategy, as a function of α ∈ [0, 1], what is the probability |L| ≤ αn and |R| ≤ αn? Again, you may

assume that n is large, and you may neglect issues of integrality in your answer.

10.28 Suppose that Team Emacs and Team VI play a best-of-five series of softball games. Emacs, being better than VI, wins each game

with probability 60%. (“Emacs” rhymes with “ski wax”; “VI” rhymes with “knee-high.” The teams are named after two text editors

popular among some computer scientists.) Use a tree diagram to compute the probability that Team Emacs wins the series.

10.29 For the scenario in Exercise 10.28, what is the probability that the series goes five games? (That is, what is the probability that

neither team wins 3 of the first 4 games?)

10.30 Update your last two answers if Team Emacs wins each game with probability 70%.

10.31 (Calculus required.)Now assume that Team Emacs wins each game with probability p, for an arbitrary value p ∈ [0, 1]. Write down

a formula expressing the probability that there is a fifth game in the series. Also find the value of p that maximizes the probability,

and the probability of the specified event for this maximizing p.

10.32 (Calculus required.) Repeat Exercise 10.31 for the event that there is a fourth game in the series.

10.33 (Calculus required.) Repeat for the event that there is a fourth game of the series and Team Emacs wins that fourth game.

Let S be a sample space, and let Pr : S → [0, 1] be an arbitrary function satisfying the requirements of being a probability function

(Definition 10.2). Argue briefly that the following properties hold.

10.34 For any outcome s ∈ S, we have Pr [s] ≤ 1.

quickSort(A[1 . . . n]):

1 if n ≤ 1 then
2 return A

3 else
4 choose pivot ∈ {1, . . . , n}, somehow.
5 L := list of all A[i] where A[i] < A[pivot].
6 R := list of all A[i] where A[i] > A[pivot].
7 return quickSort(L) + ⟨A[pivot]⟩ + quickSort(R)

Two strategies for choosing a pivot in Line 4:

Random: choose pivot uniformly at random from A.

Median of Three: choose three elements p1, p2, p3 uniformly at random from
the set {1, . . . , n}. Then choose pivot as the pi whose corresponding element
of A is the median of the three. (The same index can be chosen more than
once—for example, p1 = p3 is allowed.) For example, for the array
A = ⟨94, 32, 29, 85, 64, 8, 12, 99⟩, we might randomly choose p1 = 1,
p2 = 7, and p3 = 2. Then the pivot will be p3 because A[p3] = 32 is between
A[p2] = 12 and A[p1] = 94.

Figure 10.14 Quick Sort, briefly. (See Figure 5.19a for more detail.) Assume that the elements of A are all distinct.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-28

10-28 Probability

10.35 For any event A ⊆ S, we have Pr
[
A
]
= 1− Pr [A]. (Recall that A = S− A.)

10.36 For any events A,B ⊆ S, we have Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].

10.37 The Union Bound: for any events A1,A2, . . . ,An, we have Pr
[⋃

i Ai
]
≤

∑
i Pr [Ai].

Imagine n identical computers that share a single radio frequency for use as a network connection. Each of the n computers would

like to send a packet of information out across the network, but if two or more different computers simultaneously try to send a

message, no message gets through. Here you’ll explore another use of randomization: using randomness for symmetry breaking.

10.38 Each computer flips a coin that comes up heads with probability p. What is the probability that exactly one of the nmachines’ coins

comes up heads (and thus that machine can send its message)? Your answer should be a formula that’s in terms of n and p.

10.39 (Calculus required.) Given the formula you found in Exercise 10.38, what p should you choose to maximize the probability of a

message being successfully sent?

10.40 (Calculus required.) What is the probability of success if you choose p as in Exercise 10.39? What is the limit of this quantity as n

grows large? (You may use the following fact: (1− 1
m)m → e−1 as m → ∞.)

10.41 Suppose that we hash items into a 10-slot hash table using a hash function h that uniformly assigns elements to {1, . . . , 10}. If we

hash 3 elements into an 10-slot table, what’s the probability that no collisions occur?

10.42 If we hash 3 elements into an 10-slot table, what’s the probability that all 3 elements have the same hash value?

10.43 If we hash 3 elements into an 10-slot table using linear probing, what’s the probability that at least 2 adjacent slots are filled? Count

slot #10 as adjacent to #1. (In linear probing, an element x that hashes to an occupied cell h(x) is placed in the first unoccupied cell

after h(x), wrapping around to the beginning of the table if necessary. See Figure 10.15a for a reminder.)

10.44 If we hash 3 elements into an 10-slot table using linear probing, what’s the probability that 3 adjacent slots are filled?

One issue with resolving collisions by linear probing is called clustering: if there’s a large block of occupied slots in the hash

table, then there’s a relatively high chance that the next element placed into the table extends that block. Because linear probing

suffers from this clustering issue, other mechanisms for resolving collisions are sometimes used. Another choice is called quadratic

probing: we change the cell number we try by an increasing step size at every stage, instead of by one every time. Specifically, to

hash x into an n-slot table, first try to store x in h(x); if that cell is full, try putting x into h(x) + i2, wrapping back around to the

beginning of the table as usual, for i = 1, 2, (Linear probing tried slot h(x) + i instead.) See Figure 10.15b.

10.45 Suppose that we currently have a single block of k adjacent slots full in an n-slot hash table, and all other slots are empty. If we

use linear probing, what’s the probability that the next element inserted into the hash table extends that block (that is, leaves k+ 1

adjacent slots full)?

10.46 (programming required.) Write a program to hash 5000 elements into a 10,007-slot hash table using linear probing. Record which

cell x5000 ends up occupying—that is, how many hops from h(x5000) is x5000? Run your program 2048 times, and report how far,

on average, x5000 moved from h(x5000). Also report the maximum distance that x5000 moved.

1 2 3 4 5 6 7 8 9 10

(a)

A reminder of linear probing: we try to put
x into h(x), then h(x) + 1, then h(x) + 2,
etc., wrapping around to the beginning of
the table after the 10th slot.

1 2 3 4 5 6 7 8 9 10

(b)

Quadratic probing: we try to store x in slot
h(x), then h(x) + 12, then h(x) + 22, etc.

h(x) = 4
g(x) = 1

(c)

h(y) = 4
g(y) = 3

1 2 3 4 5 6 7 8 9 10

Double hashing: we try to store x in slot
h(x), then h(x) + g(x), then h(x) + 2g(x),
etc. (wrapping around the table as
necessary).

Figure 10.15 Handling collisions in hash tables: (a) linear probing; (b) quadratic probing; and (c) double hashing.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-29

Exercises 10-29

10.47 (programming required.)Modify your program from Exercise 10.46 to use quadratic probing instead, and report the same statistics:

the mean and maximum number of cells probed for x5000.

10.48 In about one paragraph, explain the differences that you observed between linear and quadratic probing. A concern called secondary

clustering arises in quadratic probing: if h(x) = h(y) for two elements x and y, then the sequence of cells probed for x and y is

identical. These sequences were also identical for linear probing. In your answer, explain why secondary clustering from quadratic

probing is less of a concern than the clustering from linear probing.

10.49 (programming required.) A fourth way of handling collisions in hash tables (after chaining, linear probing, and quadratic probing)

is what’s called double hashing: we move forward by the same number of slots at every stage, but that number is randomly chosen,

as the output of a different hash function. Specifically, to hash x into an n-slot table, first try to store x in h(x); if that cell is full, try

putting x into h(x) + i · g(x), wrapping back around to the beginning of the table as usual, for i = 1, 2, (Here g is a different

hash function, crucially one whose output is never zero.) See Figure 10.15c. Modify your program from Exercises 10.46 and 10.47

to use double hashing. Again report the mean and maximum number of cells probed for x5000.

10.50 In about one paragraph, explain the differences you observe among chaining, linear probing, quadratic probing, and double hashing.

Is there any reason you wouldn’t always use double hashing?

Consider a randomized algorithm that solves a problem on a particular input correctly with probability p, and it’s wrong with

probability 1 − p. Assume that each run of the algorithm is independent of every other run, so that we can think of each run

as being an (independent) coin flip of a p-biased coin (where heads means “correct answer”). Suppose that the probability p is

unknown to you.

10.51 (Calculus required.)You observe that exactly k out of n trials gave the correct answer. Then the number k of correct answers follows

a binomial distribution with parameters n and p: that is, the probability that exactly k runs give the correct answer is

(n
k

)
· pk · (1− p)n−k. (∗)

Prove that the maximum likelihood estimate of p is p = k
n—that is, prove that (∗) is maximized by p = k

n .

10.52 (Calculus required.) You observe that it takes n trials before the first time you get a correct answer. Then n follows a geometric

distribution with parameter p: that is, the probability that n runs were required is given by

(1− p)n−1p. (†)

Prove that the maximum likelihood estimate of p is p = 1
n—that is, prove that (†) is maximized by p = 1

n .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-30

10-30 Probability

10.3 Independence and Conditional Probability

Things don’t happen because they’re bad or good, else all eggs would be addled or none at
all, and at the most it is but six to the dozen. There’s good chances and bad chances, and
nobody’s luck is pulled only by one string.

George Eliot (1819–1880)
Felix Holt, the Radical (1866)

Imagine that you’re interviewing to be a consultant for Premier Passenger Pigeon Purveyors, a com-

pany that pitches its products to prospective pigeon purchasers using online advertising—specifically, by

displaying ads to users of a particular search engine on the web. PPPP makes $50 profit from each sale,

and, from historical data, they have determined that 0.02% of searchers who see an ad buy a pigeon. The

interviewer asks you how much PPPP should be willing to pay to advertise to a searcher. A good answer

is $0.01: on average, PPPP earns $50 · 0.0002 = $0.01 per ad, so paying anything up to a penny per ad

yields a profit, on average. But you realize that there’s a better answer (and, by giving it, you get the job):

it depends on what the user is searching for! A user who searches for BIRD or PIGEON or BUYING A PET
TO COMBAT LONELINESS is far more likely to respond to a PPPP ad than an average user, while a user

who searches for ORNITHOPHOBIA is much less likely to respond to an ad.

It is a general phenomenon in probability that knowing that event A has occurred may tell you that an

event B is muchmore likely (or much less likely) to occur than you’d previously known. In this section, we’ll

discuss when knowing that an event A has occurred does or does not affect the probability that B occurs

(that is, whether A and B are dependent or independent, respectively). We’ll then introduce conditional

probability, which allows us to state and manipulate quantities like “the probability that B happens given

that A happens.”

10.3.1 Independence and Dependence of Events

We’ll start with independence and dependence of events. Intuitively, two events A and B are dependent if

A’s occurrence/nonoccurrence gives us some information about whether B occurs; in contrast, A and B are

independent when A occurs with the same probability when B occurs as it does when B does not occur:

Definition 10.9: Independent and dependent events.

Two events A and B are independent if and only if Pr [A ∩ B] = Pr [A] · Pr [B]. The events A and B are

called dependent if they are not independent.

If A and B are dependent events, then we can also say that A and B are correlated; independent events are

called uncorrelated.A visual representation of independent and dependent events is shown in Figure 10.16.

A little manipulation of the equation from Definition 10.9 may help to make the connection to the above

intuition clearer. Assume for now that Pr [B] ̸= 0. (Exercise 10.71 addresses the case of Pr [B] = 0.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-31

10.3 Independence and Conditional Probability 10-31

A

A

B B

A

A

B B

(a) Independent events. First, an event A in a sample space S (the shaded rectangle has area Pr [A]). Second, an event B
with Pr [B] = 0.5 (the shaded region has area 0.5). A and B are independent, because A ∩ B has area equal to
0.5 · Pr [A].

A

A

C

C A

A

C

C

(b) Dependent events. First, the event A, repeated. Second, an event C, again with Pr [C] = 0.5 (the shaded region has
area 0.5). A and C are not independent, because A ∩ C has area different from (much bigger than) 0.5 · Pr [A].

Figure 10.16 Independent and dependent events. (A region’s area represents its probability; the sample space—the
enclosing rectangle—has area 1.)

Considering the equality Pr [A] ·Pr [B] = Pr [A ∩ B] from the definition, and dividing both sides by Pr [B],

we see that the events A and B are independent if and only if

Pr [A] =
Pr [A ∩ B]
Pr [B]

.

The left-hand side of this equation, Pr [A], denotes the fraction of the time that A occurs. The right-hand

side, Pr [A ∩ B] /Pr [B], denotes the fraction of the time when B occurs that A occurs too. If these two

fractions are equal, then A occurs with the same probability when B occurs as it does when B does not

occur. (And if these two fractions are equal, then both when B occurs and when B does not occur, A occurs

with probability Pr [A]—that is, the probability of A without reference to B.)

Examples of independent and dependent events

To establish that two events A and B are independent, we can simply compute Pr [A], Pr [B], and Pr [A ∩ B],

and show that the product of the first two quantities is equal to the third. Here are a few examples:

Example 10.14: Some independent events.

The following pairs of events are independent:

Coin flips. I flip a fair penny and a fair nickel. Define the following events:

Event A: The penny is heads. Event B: The nickel is heads.

Then Pr [A] = 0.5 and Pr [B] = 0.5 and Pr [A ∩ B] = 0.25 = 0.5 · 0.5.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-32

10-32 Probability

Cards. I draw a card from a randomly shuffled deck. Define the following events:

Event A: I draw an ace. Event B: I draw a heart.

For these events, we have

Pr [A] = Pr [{A♣,A♢,A♡,A♠}] = 1
13

Pr [B] = Pr [{A♡, 2♡, . . . ,K♡}] = 1
4

Pr [A ∩ B] = Pr [{A♡}] = 1
52 = 1

4 · 1
13 .

Dice. I roll a fair red die and a fair blue die. Define the following events:

Event A: The red die is odd. Event B: The sum of the rolled numbers is odd.

Then, writing outcomes as ⟨the red roll, the blue roll⟩, we have

Pr [A] = Pr [{1, 3, 5} × {1, 2, 3, 4, 5, 6}] = 18
36 = 0.5

Pr [B] = Pr [{1, 3, 5} × {2, 4, 6}
red odd, blue even

∪ {2, 4, 6} × {1, 3, 5}
red even, blue odd

] = 18
36 = 0.5

Observe that A ∩ B = {1, 3, 5} × {2, 4, 6}, and so Pr [A ∩ B] = 9
36 = (0.5) · (0.5).

Any time the processes by which A and B come to happen are completely unrelated, it’s certainly true that

A and B are independent. But events can also be independent in other circumstances, as we saw in the dice

scenario in Example 10.14: both events in some way incorporated the result of the value rolled on the red

die, but the stated events themselves are independent anyway.

Example 10.14 showed that pairs of events are independent by showing that Pr [A ∩ B] = Pr [A] · Pr [B].
Similarly, we can establish that two events are not independent—that is, they are dependent—directly from

the definition by showing that Pr [A ∩ B] is not equal to Pr [A] · Pr [B]. Here are a few examples:

Example 10.15: Some dependent events.

The following pairs of events are not independent:

Dice. I roll a fair die. Define the following events:

Event A: I roll an odd number. Event B: I roll a prime number.

Then we have

Pr [A] = Pr [{1, 3, 5}] = 1
2

Pr [B] = Pr [{2, 3, 5}] = 1
2

Pr [A ∩ B] = Pr [{3, 5}] = 2
6 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-33

10.3 Independence and Conditional Probability 10-33

Because Pr [A ∩ B] is 2
6 = 1

3 , but Pr [A] · Pr [B] = 1
2 · 12 = 1

4 ̸= 1
3 , the events A and B are dependent.

Similarly, define Event C as “I roll an even number.” Because Pr [B] = Pr [C] = 1
2 and Pr [C ∩ B] =

Pr [{2}] = 1
6 ̸= 1

2 · 12 , the events B and C are dependent too.

Cards. I draw a card from a randomly shuffled deck. Define the following events:

Event A: I draw an heart. Event B: I draw a spade.

For these events, we have

Pr [A] = Pr [{A♡, 2♡, . . . ,K♡}] = 1
4

Pr [B] = Pr [{A♠, 2♠, . . . ,K♠}] = 1
4

Pr [A ∩ B] = Pr [∅] = 0,

where A ∩ B = ∅ because no cards are simultaneously a heart and a spade. Because 0 ̸= 1
16 = 1

4 · 14 , we

have Pr [A ∩ B] ̸= Pr [A] · Pr [B]. These events are dependent.

Coin flips. I flip a fair penny and a fair nickel. Define the following events:

Event A: The penny is heads. Event B: Both coins are heads.

So Pr [A] = 0.5 and Pr [B] = 0.25 and Pr [A ∩ B] = 0.25 = Pr [B] ̸= Pr [A] · Pr [B].

Correlation of events

The pairs of dependent events from Example 10.15 are of two different qualitative types. Knowing that

the first event occurred can make the second event more likely to occur (“rolling an odd number” and

“rolling a prime number” for the dice) or less likely to occur (“rolling an even number” and “rolling a

prime number”):

Definition 10.10: Positive and negative correlation.

When two events A and B satisfy Pr [A ∩ B] > Pr [A] · Pr [B], we say that A and B are positively cor-

related. When Pr [A ∩ B] < Pr [A] · Pr [B], we say that A and B are negatively correlated. (And if

Pr [A ∩ B] = Pr [A] · Pr [B], then we say that A and B are uncorrelated.)

At the extremes, knowing that the first event occurred can ensure that the second event definitely does not

occur (“drawing a heart” and “drawing a spade” from Example 10.15) or can ensure that the second event

definitely does occur (“both coins are heads” and “the first coin is heads” from Example 10.15).

Here are some examples in which you’re asked to figure out whether certain events are correlated:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-34

10-34 Probability

Example 10.16: Encryption by random substitution.

One simple form of encryption for text is a substitution cipher, in which (in the simplest version) we

choose a permutation of the alphabet, and then replace each letter with its permuted variant. (For example,

we might permute the letters as ABCDE· · · → XENBG· · · ; thus DECADE would be written as BGNXBG.)
Suppose we choose a random permutation for this mapping, so that each of the 26! orderings of the

alphabet is equally likely. Are the following events Q and Z independent or dependent?

Event Q = “the letter Q is mapped to itself (that is, Q is ‘rewritten’ as Q).”

Event Z = “the letter Z is mapped to itself.”

Solution.We must compute Pr [Q], Pr [Z], and Pr [Q ∩ Z]. Because each permutation is equally likely to

be chosen, we have

Pr [Q] =
number of permutations π1,2,...,26 where π17 = 17

number of permutations π1,2,...,26
=

25!
26!

=
1
26

because we can choose any of 25! orderings of all non-Q letters. Similarly,

Pr [Z] =
number of permutations π1,2,...,26 where π26 = 26

number of permutations π1,2,...,26
=

25!
26!

=
1
26

.

To compute Pr [Q ∩ Z], we need to count the number of permutations π1...26 with both π17 = 17 and

π26 = 26. Any of the 24 other letters can go into any of the remaining 24 slots of the permutation, so

there are 24! such permutations. Thus

Pr [Q ∩ Z] =
number of permutations π1,2,...,26 where π17 = 17 and π26 = 26

number of permutations π1,2,...,26
=

24!
26!

=
1

25 · 26 .

Thus we have

Pr [Q ∩ Z] = 1
25·26 and Pr [Q] · Pr [Z] = 1

26 · 1
26 = 1

26·26 .

There’s only a small difference between 1
26·26 ≈ 0.00148 and 1

25·26 ≈ 0.00154, but they’re indubitably

different, and thus Q and Z are not independent.

(Incidentally, substitution ciphers are susceptible to frequency analysis: the most common letters in

English-language texts are ETAOIN—almost universally in texts of reasonable length—and the frequencies

of various letters is surprisingly consistent. See Exercises 10.73–10.77.)

Example 10.17: Matched flips of two fair coins.

I flip two fair coins (independently). Consider the following events:

Event A = the first flip comes up heads.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-35

10.3 Independence and Conditional Probability 10-35

HT TH

HH

TT

A B

C

Event A = the first flip comes up heads.
Event B = the second flip comes up heads.
Event C = the two flips match (are both heads or are both tails).

Figure 10.17 Two coin flips and three events.

Event B = the second flip comes up heads.

Event C = the two flips match (are both heads or are both tails).

Which pairs of these events are independent, if any?

Solution. The sample space is {HH,HT,TH,TT}, and the events from the problem statement are

A = {HH,HT}, B = {HH,TH}, and C = {HH,TT}. Thus A ∩ B = A ∩ C = B ∩ C = {HH}—that

is, HH is the only outcome that results in more than one of these events being true. (See Figure 10.17.)

Because the coins are fair, every outcome in this sample space has probability 1
4 . Focusing on the

events A and B, we have

Pr [A] = Pr [{HH,HT}] = 1
2

Pr [B] = Pr [{HH,TH}] = 1
2

Pr [A ∩ B] = Pr [{HH}] = 1
4 .

Thus Pr [A] · Pr [B] = 1
2 · 1

2 = 1
4 , and Pr [A ∩ B] = 1

4 . Because Pr [A] · Pr [B] = Pr [A ∩ B], the two

events are independent. The calculation is identical for the other two pairs of events, and so A and B are

independent; A and C are independent; and B and C are independent.

Example 10.18: Matched flips of two biased coins.

How would your answers to Example 10.17 change if the coins are p-biased instead of fair?

Solution. The sample space and events remain as in Example 10.17 (and Figure 10.17), but the outcomes

now have different probabilities:

Pr [HH] = p · p Pr [HT] = p · (1− p) Pr [TH] = (1− p) · p Pr [TT] = (1− p) · (1− p)

Using these outcome probabilities, we compute the event probabilities as follows:

Pr [A] = Pr [{HH,HT}] = p · p+ p · (1− p) = p (1)

Pr [B] = Pr [{HH,TH}] = p · p+ (1− p) · p = p (2)

Pr [C] = Pr [{HH,TT}] = p · p+ (1− p) · (1− p) = p2 + (1− p)2. (3)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-36

10-36 Probability

Because A ∩ B = B ∩ C = A ∩ C = {HH}, we also have

Pr [A ∩ B] = Pr [B ∩ C] = Pr [A ∩ C] = Pr [HH] = p2. (4)

Thus A and B are still independent, because Pr [A] · Pr [B] = p · p = p2 = Pr [A ∩ B] by (1), (2), and (4).

But what about events A and C? By (1), (3), and (4), we have

Pr [A] · Pr [C] = p ·
[
p2 + (1− p)2

]
and Pr [A ∩ C] = p2.

By a bit of algebra, we see that Pr [A ∩ C] = Pr [A] · Pr [C] if and only if

p2 = p(p2 + (1− p)2)⇔ 0 = p(p2 + (1− p)2)− p2

⇔ 0 = 2p3 − 3p2 + p

⇔ 0 = p(2p− 1)(p− 1).

So the events A and C are independent—that is, Pr [A ∩ C] = Pr [A] ·Pr [C]—if and only if p ∈ {0, 1
2 , 1}.

Thus events A and B are independent for any value of p, while events A and C (and similarly B and C)

are independent if and only if p ∈ {0, 1
2 , 1}.

Taking it further: While any two of the events from Example 10.17 (or Example 10.18 with p = 1
2) are independent, the

third event is not independent of the other two. Another way to describe this situation is that the events A and B ∩ C are not

independent: in particular, Pr [A ∩ (B ∩ C)] /Pr [B ∩ C] = 1 ̸= Pr [A]. A set of events A1,A2, . . . ,An is said to be pairwise

independent if, for any two indices i and j ̸= i, the events Ai and Aj are independent. More generally, these events are said to be

k-wise independent if, for any subset S of up to k of these events, the events in S are all independent. (And we say that the set of

events is fully independent if every subset of any size satisfies this property.) Sometimes it will turn out that we “really” care only

about pairwise independence. For example, if we think about a hash table that uses a “random” hash function, we’re usually only

concerned with the question “do elements x and y collide?”—which is a question about just one pair of events. Generally, we

can create a pairwise-independent random hash function more cheaply than creating a fully independent random hash function.

If we view random bits as a scarce resource (like time and space, in the style of Chapter 6), then this savings is valuable.

10.3.2 Conditional Probability

In Section 10.3.1, we discussed the black-and-white distinction between pairs of independent events and

dependent events: if A and B are independent, then knowing whether or not B happened gives you no

information about whether A happened; if A and B are dependent, then the probability that A happens if

B happened is different from the probability that A happens if B did not happen. But how does knowing

that B occurred change your estimate of the probability of A? Think about events like “the sky is clear”

and “it is very windy” and “it will rain today”: sometimes Bmeans that A is less likely or even impossible;

sometimes B means that A is more likely or even certain. Here we will discuss quantitatively how one

event’s probability is affected by the knowledge of another event. The conditional probability of A given B

represents the probability of A occurring if we know that B occurred:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-37

10.3 Independence and Conditional Probability 10-37

Figure 10.18 Some dominoes.

Definition 10.11: Conditional probability.

The conditional probability of A given B, written Pr [A|B], is given by Pr [A|B] = Pr [A ∩ B]
Pr [B]

.

(The quantity Pr [A|B] is also sometimes called the probability of A conditioned on B.)Wewill treat Pr [A|B]
as undefined when Pr [B] = 0. Here are a few examples:

Example 10.19: Odds and primes.

I choose a number uniformly at random from {1, 2, . . . , 10}. Define these two events:

Event A: The chosen number is odd. Event B: The chosen number is prime.

For these events, we have

Pr [A|B] = Pr[A∩B]
Pr[B] = Pr[{3,5,7}]

Pr[{2,3,5,7}] =
3
4 and Pr [B|A] = Pr[A∩B]

Pr[A] = Pr[{3,5,7}]
Pr[{1,3,5,7,9}] =

3
5 .

Example 10.20: Dominoes.

Shuffle the dominoes in Figure 10.18, and draw one uniformly at random.

• What is the probability that you draw a domino with a 2 () on it?

• You make a draw and see the domino . (Imagine the shaded side of the domino is covered by

your hand.) What’s the probability your domino has a 2?

• You draw and see that the domino is . What is the probability that you drew a domino with a 2?

Solution. For the first question, we are asked for the probability of drawing a domino with a 2:

contain a 2 do not contain a 2

Thus 3 of the 7 dominoes have a 2, so Pr [] = 3
7 .

For the second question, we observe on our drawn domino. We’re asked for the probability of a 2:

contains a 2 does not contain a 2 impossible (do not contain a 1)

We know that the domino you drew must have been either or . These two dominoes were equally

likely to be drawn, and one of these two has a , so there’s a 1
2 probability that you drew a 2. Using

conditional probability notation, we can write this quantity as Pr [|] = 1
2 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-38

10-38 Probability

Finally, wemust compute Pr [|], the probability of a given thatwe observed a . By the definition

of conditional probability, we have

Pr [|] =
Pr [∩]

Pr []
=

0
1
7

= 0.

(A less notationally heavy way to write this argument: we see a , so we know that the domino you drew

must have been . This domino doesn’t have a , and so there’s zero chance that we observe a .)

Conditional probability as “zooming in” (and another example)

Intuitively, we can think of Pr [A|B] as “zooming” the universe down to the set B. The basic idea that we

used in Example 10.20 was to narrow the set of possible outcomes to those consistent with the observed

partial data about the drawn domino, and then compute the fraction of the narrowed sample space for which

A occurs. This view of conditional probability is illustrated in Figure 10.19.

Here’s one more example, where we condition on slightly more complex events.

Example 10.21: Coin flips.

Flip a fair coin 10 times (with all flips independent: the ith flip has no effect on the jth flip for j ̸= i).

Write H to denote the event of getting at least 9 heads.

1 What is Pr [H]?

2 Let A be the event “the first flip comes up heads.” What is Pr [H|A]?
3 Let B be the event “the first flip comes up tails.” What is Pr [H|B]?
4 Let C be the event “the first three flips come up heads.” What is Pr [H|C]?
5 Let D be the event “we get at least 8 heads.” What is Pr [H|D]?

Solution. Every outcome—every element of {H,T}10—is equally likely, each with probability 1/210.

1 The number of outcomeswith 9 or 10 heads is
(10

9

)
+
(10
10

)
= 10+1 = 11, so Pr [H] = 11/210 ≈ 0.0107.

For the conditional probabilities, we will compute Pr [H ∩ X] and Pr [X] for each of the stated events

X. The final answer is their ratio. Because each outcome is equally likely, we only have to compute the

cardinality of the given events (and the cardinality of their intersection with H) to answer the questions.

2 For A (the first flip comes up H), we have |A ∩H| = 10: there are 9 outcomes with one Tails that start

with a Heads (HTHHHHHHHH, HHTHHHHHHH, . . ., HHHHHHHHHT) and 1 outcome with zero

Tails (HHHHHHHHHH). Thus Pr [A ∩ H] = 10/210. Clearly Pr [A] = 1
2 . Thus

Pr [H|A] = Pr [A ∩ H]
Pr [A]

=
10/210

1/2
=

10
29
≈ 0.01953.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-39

10.3 Independence and Conditional Probability 10-39

S

A

B

(a) A sample space S and two events A
and B. Any outcome in S can be chosen,
and so in this example Pr [A] ≈ 0.4 and
Pr [B] ≈ 0.1.

A

B

(b) Conditioning on the event B.
Any outcome in B can be chosen,
and so Pr [A|B] is the fraction of
those outcomes for which A
occurs, so here Pr [A|B] ≈ 0.8.

A

B

(c) Conditioning on the event A.
Any outcome in A can be chosen,
and so Pr [B|A] is the fraction of
those outcomes for which B
occurs, so here Pr [B|A] ≈ 0.2.

Figure 10.19 A view of conditional probability. (Think of an event’s probability as being represented by its area.)

3 For B (the first flip comes up T), we’ve already “used up” the single permitted non-heads in the first

flip, so there’s only one outcome in B ∩ H, namely THHHHHHHHH. Again, Pr [B] = 1
2 . Therefore

Pr [H|B] = Pr [B ∩ H]
Pr [B]

=
1/210

1/2
=

1
29
≈ 0.00195.

4 For C (the first three flips come up H), we have Pr [C] = 1
8 . The outcomes in C∩H are start with HHH

followed by 6+ heads in the last 7 flips. There are
(7
7

)
+
(7
6

)
= 8 such outcomes. Thus

Pr [H|C] = Pr [C ∩ H]
Pr [C]

=
8/210

1/8
=

64
210
≈ 0.0625.

5 For D (there are at least 8 heads), we have Pr [H ∩ D] = Pr [H] = 11/210. (There are no outcomes in

which we get 9+ heads but fail to get 8+ heads!) The probability of getting 8+ heads in 10 fair flips is

Pr [D] =

(10
8

)
+
(10

9

)
+
(10
10

)

210
=

45+ 10+ 1
210

=
56
210

.

And therefore

Pr [H|D] = Pr [D ∩ H]
Pr [D]

=
11/210

56/210
=

11
56
≈ 0.1964.

To repeat the word of warning from early in this chapter: it can be very difficult to have good intuition

about probability questions. For example, the last problem in Example 10.21 asked for the probability of

getting 9+ heads in 10 flips conditioned on getting 8+ heads. It may be easy to talk yourself into believing

that, of the times that we get 8+ heads, there’s a ≈ 50% chance of getting 9 or more heads. (“Put aside

the first 8 heads, and look at one of the other flips—it’s heads with probability 1
2 , so we get a 9th heads

with probability 1
2 .”) But this intuition is blatantly wrong. Another way of thinking about the calculation

in the last part of Example 10.21 is to observe that there are 56 outcomes with 8, 9, or 10 heads. Only 11

of these outcomes have 9 or 10 heads. Each outcome is equally likely. So if we’re promised that one of the

56 outcomes occurred, then there’s an 11
56 chance that one of the 11 occurred.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-40

10-40 Probability

Taking it further: So far, we have considered only random processes in which each outcome that can occur does so with proba-

bility ϵ > 0—that is, there have been no infinitesimal probabilities. The restriction to non-infinitesimal probabilities is generally a

reasonable one to make for CS applications, but it is a genuine restriction. (It’s worth noting that we have encountered an infinite

sample space before—just one that didn’t have any infinitesimal probabilities. In a geometric distribution with parameter 1
2 , for

example, any positive integer k is a possible outcome, with Pr [k] = 1/2k, which is a finite, albeit very small, probability for any

positive integer k.) But we can imagine scenarios in which infinitesimal probabilities make sense.

For example, imagine a probabilistic process that chooses a real number x between 0 and 1, where each element of the sample

space S = {x : 0 ≤ x ≤ 1} is equally likely to be chosen. We can make probabilistic statements like Pr [x ≤ 0.5] = 1
2—half the

time, we end up with x ≤ 0.5, half the time we end up with x ≥ 0.5—but for any particular value c, the probability that x = c

is zero! (Perhaps bizarrely, Pr [x ≤ 0.5] = Pr [x < 0.5]. Indeed, Pr [x = 0.5] cannot be ϵ > 0, for any ϵ. Every possible outcome

has to have that same probability ϵ of occurring, and for any ϵ > 0 there are more than 1
ϵ real numbers between 0 and 1. So we’d

violate (10.2.1) if we had Pr [x = 0.5] > 0.)

To handle infinitesimal probabilities, we need calculus. We can describe the above circumstance with a probability density func-

tion p : S → [0, 1], so that, in place of (10.2.1), we require
∫
x∈S p(x)dx = 1. (For a uniformly chosen x ∈ [0, 1], we have p(x) = 1;

for a uniformly chosen x ∈ [0, 100], we have p(x) = 1
100 .) Some of the statements that we’ve made in this chapter don’t apply in

the infinitesimal case. For example, the “zooming in” view of conditional probability from Figure 10.19 doesn’t quite work in

the infinitesimal case. In fact, we can consider questions about Pr [A|B] even when Pr [B] = 0, like what is the probability that

a uniformly chosen x ∈ [0, 100] is an integer, conditioned on x being a rational number?. (And Exercise 10.71—if Pr [B] = 0,

then A and B are independent—isn’t true with infinitesimal probabilities.) But details of this infinitesimal version of probability

theory are generally outside of our concern here, and are best left to a calculus/analysis-based textbook on probability.

Relating independence of events and conditional probability

Consider two events A and B for which Pr [B] ̸= 0. Observe that A and B are independent if and only if

Pr [A|B] = Pr [A]:

A and B are independent⇔ Pr [A] · Pr [B] = Pr [A ∩ B] definition of independence

⇔ Pr [A] = Pr[A∩B]
Pr[B] dividing both sides by Pr [B]

⇔ Pr [A] = Pr [A|B] . definition of Pr [A|B]

(This calculation doesn’t work when Pr [B] = 0—we can’t divide by 0, and Pr [A|B] is undefined—but see

Exercise 10.71.) Notice again that this relationship is an if-and-only-if relationship: when A and B are not

independent, then Pr [A] and Pr [A|B] must be different. Here is a small example:

Example 10.22: Self-mapped letters in substitution ciphers.

Example 10.16 showed that, for a random permutation π of the alphabet, the events Q (Q is mapped to

itself by π) and Z (Z is mapped to itself by π) were not independent: specifically, Pr [Q] = 1
26 , Pr [Z] =

1
26 ,

and Pr [Q ∩ Z] = 1
25·26 . Thus Pr [Q|Z] =

Pr[Q∩Z]
Pr[Z] = 1/(25·26)

1/26 = 1
25 . Compare Pr [Q|Z] = 1

25 = 0.04 to

Pr [Q] = 1
26 ≈ 0.03846: knowing that Z is mapped to itself makes it slightly more likely that Q is also

mapped to itself. Event Z makes Q slightly more probable because, when Z occurs, Z cannot be mapped

to Q, so there are only 25 letters “competing” to be mapped to Q instead of 26.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-41

10.3 Independence and Conditional Probability 10-41

Problem-solving tip: Often it is easier to get intuition about a probabilistic statement by imagining an absurdly small variant

of the problem. Here, for example, imagine a 2-letter alphabet Q,Z. Then if Z is mapped to itself then Q must also be mapped to

itself. So Pr [Q] = 1
2 , but Pr [Q|Z] = 1.

Another example (and conditional independence)

In Example 9.22, we considered the scenario of two teams playing a best-of-five series (two teams keep

playing games until one team has won three). Suppose that the teams are perfectly evenly matched—that

is, each team wins each game with probability 0.5—and that each game’s result is independent of all other

games. See Figure 10.20 for the probability tree. Let’s look at a few examples of events in this scenario:

Example 10.23: Playing ball.

Define the following events: Event C = team A wins the series

Event D = team A wins the first game of the series

Event E = team A wins the second game of the series, and

Event F = the series lasts five games.

There’s a shortcut to calculating the probability of three of these individual events: the two teams are

completely symmetric in this scenario, and thus Pr [C] = Pr [D] = Pr [E] = 0.5. To calculate Pr [F], we

can note that there are
(4
2

)
= 6 ways for the teams to split the first four games (by winning two games

each); each of these “split” cases happens with probability 1/24 = 1
16 , so Pr [F] =

6
16 = 3

8 . Let’s calculate

a few conditional probabilities using pairs of these events:

Pr [C|D] = Pr[C∩D]
Pr[D] = Pr[{AAA,AABA,ABAA,AABBA,ABABA,ABBAA}]

Pr[{AAA,AABA,ABAA,ABBB,AABBA,AABBB,ABABA,ABABB,ABBAA,ABBAB}] =
11/32
1/2 = 11

16

Pr [C|E] = Pr[C∩E]
Pr[E] = Pr[{AAA,AABA,BAAA,AABBA,BAABA,BABAA}]

Pr[{AAA,AABA,BAAA,BABB,AABBA,AABBB,BAABA,BAABB,BABAA,BABAB}] =
11/32
1/2 = 11

16

Pr [C|F] = Pr[C∩F]
Pr[F] = Pr[{AABBA,ABABA,ABBAA,BAABA,BABAA,BBAAA}]

3/8 = 6/32
3/8 = 1

2 .

Similarly, we have

Pr [D|E] = Pr[A wins both of the first two games of the series]
Pr[A wins the second game] = 1/4

1/2 = 1
2 , and

Pr [D|F] = Pr[A wins the first game of the series and the series lasts five games]
Pr[the series lasts five games] = 6/32

6/16 = 1
2 .

BBB

BBAB

BBAABBBAAA

BABB

BABABBABAABAABBBAABA

BAAAABBB

ABBABABBAAABABBABABA

ABAA

AABBBAABBA

AABA

AAA1
8

1
16

1
32

Figure 10.20 A best-of-five series of games between teams A and B. The two 3-game outcomes each occur with
probability 1

8 ; the six 4-game outcomes with probability 1
16 ; and the twelve 5-game outcomes with probability 1

32 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-42

10-42 Probability

Because Pr [C] = Pr [C|F] and Pr [D] = Pr [D|E] and Pr [D] = Pr [D|F], these three pairs of events—

that is, the pairs {C,F} and {D,E} and {D,F}—are all independent. But Pr [C|D] = 11
16 ̸= 1

2 = Pr [C],

and similarly Pr [C|E] ̸= Pr [C], so neither C and D, nor C and E, are independent.

There’s another potentially interesting aspect of conditional probability lurking in Example 10.23. We’ve

shown that Team A winning the first game of the series makes it more likely that Team A wins the series—

in other words, we’ve shown that 11
16 = Pr [C|D] > Pr [C] = 1

2 . But now suppose that you know that A and

B each win two of the first four games. Once you know that the series lasts five games, then team A has no

remaining advantage from having won the first game; in other words, given that Event F occurred, then A

winning the first game and A winning the series are now independent events. This phenomenon is called

conditional independence:

Definition 10.12: Conditional independence.

Let A, B, and C be three events. The events A and B are said to be conditionally independent given C if

Pr [A|B ∩ C] = Pr [A|C].

Note that there can be events that are not independent—but that are conditionally independent given the

appropriate third event. (Example 10.23 includes this situation: C and D are dependent events, but they

are conditionally independent given F.) The opposite is also possible; there can be two events that are

independent, but that are not conditionally independent given some third event:

Example 10.24: Independent events aren’t always conditionally independent.

Recall Event D (Team A wins the first game), Event E (Team A wins the second game), and Event F (the

series lasts five games) from Example 10.23. We already showed that D and E are independent: knowing

whowon the first game doesn’t change the fact that there’s a 50/50 chance for each team to win the second

game. But if you know that the series lasts five games, then D and E are no longer independent:

Pr [D|E ∩ F] = Pr[D∩E∩F]
Pr[E∩F] = Pr[the series lasts 5 games and team A wins the first two games]

Pr[the series lasts 5 games and team A wins the second game]

= Pr[{AABBA,AABBB}]
Pr[{AABBA,AABBB,BAABA,BAABB,BABAA,BABAB}] =

2/32
6/32 = 1

3 .

Because Pr [D|E ∩ F] = 1
3 and Pr [D|E] = 1

2 are different, events D and E are not conditionally indepen-

dent given F. (Intuitively, knowing that series lasted five games makes it much likelier that a different

team won game #1 as won game #2. This calculation shows how much more likely it is.)

10.3.3 Bayes’ Rule and Calculating with Conditional Probability

Here, we’ll introduce a few ways of thinking about plain (unconditional) probability using conditional

probability, and Bayes’ Rule, a tremendously useful formula that relates Pr [A|B] and Pr [B|A].

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-43

10.3 Independence and Conditional Probability 10-43

Intersections and conditional probability

The definition of conditional probability (Definition 10.11) states that Pr [A|B] = Pr[A∩B]
Pr[B] .Multiplying both

sides of this equality by Pr [B] yields a useful way of thinking about the probability of intersections:

Theorem 10.13: The Chain Rule.
Let A and B be arbitrary events. Then Pr [A ∩ B] = Pr [B] · Pr [A|B] . More generally, for a collection of

events A1,A2, . . . ,Ak, we have

Pr [A1 ∩ A2 ∩ · · · ∩ Ak] = Pr [A1] · Pr [A2|A1] · Pr [A3|A1 ∩ A2] · · · Pr [Ak|A1 ∩ · · · ∩ Ak−1] .

If we’re interested in the probability that A and B occur, then we need it to be the case that A occurs—and

then, knowing that A occurred, B must occur too. Here’s a small example regarding hands of cards:

Example 10.25: Drawing a heart flush in poker.

A flush in poker is a 5-card hand, all of which are the same suit. What is the probability of drawing a

heart flush from a randomly shuffled deck?

Solution. We can draw any heart first. We have to keep drawing hearts to get a flush, so for 2 ≤ k ≤ 5,

the kth card we draw must be one of the remaining 14− k hearts from the 53− k cards left in the deck.

That is, writing Hi to denote the event that the ith card drawn is a heart:

Pr [H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5]

= Pr [H1]
13
52

· Pr [H2|H1]
12
51

· Pr [H3|H1,2]
11
50

· Pr [H4|H1,2,3]
10
49

· Pr [H5|H1,2,3,4]
9
48

= 13
52 · 1251 · 1150 · 1049 · 9

48 ≈ 0.0004952.

(We could also have directly computed this quantity via counting: there are
(13

5

)
hands containing 5 hearts,

and
(52

5

)
total hands. Thus the fraction of all hands that are heart flushes is

(13
5

)
(52

5

) =
13!
5!·8!
52!

5!·47!
=

13! · 47!
8! · 52! =

13 · 12 · 11 · 10 · 9
52 · 51 · 50 · 49 · 48 ,

which is the same quantity that we found above.)

We can use the chain rule to compute the probability of an event A by making the (admittedly fairly

obvious!) observation that another event B either occurs or doesn’t occur:

Theorem 10.14: The Law of Total Probability.

Let A and B be arbitrary events. Then Pr [A] = Pr [A|B] · Pr [B] + Pr [A| B] · Pr [B] .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-44

10-44 Probability

Proof. We’ll proceed by splitting A into two disjoint subsets, A ∩ B and A− B (the latter of which is

otherwise known as A ∩ B):

Pr [A] = Pr
[
(A ∩ B) ∪ (A ∩ B)

]
A = (A ∩ B) ∪ (A ∩ B)

= Pr [A ∩ B] + Pr [A ∩ B] A ∩ B and A ∩ B are disjoint

= Pr [A|B] · Pr [B] + Pr [A| B] · Pr [B] . the chain rule

Thus the theorem follows.

Here’s a small example of using the law of total probability:

Example 10.26: Binary Symmetric Channel.

Wewish to transmit a 1-bit message from a sender to a receiver. The sender’s message is 0 with probability

0.3, and it’s 1with probability 0.7. The sender sends this data using a communication channel that corrupts

(that is, flips) every transmitted bit with probability 0.25. (See Figure 10.21, where p = 0.75 and thus

where 1− p = 0.25.) Then the probability that the receiver receives a “1” message is

Pr [receive 1] = Pr [receive 1|send 1] · Pr [send 1]
0.75 · 0.7 = 0.525

+ Pr [receive 1|send 0] · Pr [send 0]
0.25 · 0.3 = 0.075

= 0.6.

Taking it further: The binary symmetric channel has its name because it transmits a bit (it’s binary) and it corrupts a 0 with

the same probability as it corrupts a 1 (it’s symmetric). (See Figure 10.21; view each arrow as transforming a particular input

bit to a particular output bit, with the indicated probability.) The binary symmetric channel is one of the most basic forms of

a noisy communication channel—that is, a channel that does not perfectly transmit its input without any chance of corruption.

The subfield of information theory is devoted to analyzing topics like the (theoretical) efficiency of communication channels,

including the binary symmetric channel. For much more on the binary symmetric channel and information theory more generally,

see [34, 83], or the 1948 paper by Claude Shannon (1916–2001) that’s generally thought to have launched the field [114].

Bayes’ Rule

Bayes’ Rule is a simple—but tremendously useful—rule for “flipping around” a conditional probability

statement. (Bayes’ Rule is named after Thomas Bayes (1702–1761), an English mathematician who also

happened to be a Presbyterian minister.) It allows us to express the conditional probability of A given B in

terms of the conditional probability of B given A:

Theorem 10.15: Bayes’ Rule.

For any two events A and B, we have Pr [A|B] = Pr [B|A] · Pr [A]
Pr [B]

.

Proof. Let’s start by thinking about the intersection of the events A and B. Applying the chain rule to

break apart Pr [A ∩ B] “in both orders,” we have

Pr [A ∩ B] = Pr [A|B] · Pr [B] and Pr [B ∩ A] = Pr [B|A] · Pr [A] .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-45

10.3 Independence and Conditional Probability 10-45

0

1

0

1

p

1− p

1− p
p

input output

Figure 10.21 The binary symmetric channel.

The left-hand sides of these equations are equal because A ∩ B = B ∩ A (and so Pr [A ∩ B] = Pr [B ∩ A]),

and thus their right-hand sides are identical, too:

Pr [A|B] · Pr [B] = Pr [B|A] · Pr [A] .

Dividing both sides of this equality by Pr [B] yields the desired equation:

Pr [A|B] = Pr [B|A] · Pr [A]
Pr [B]

.

Here are a couple of small examples of using Bayes’ Rule:

Example 10.27: Binary Symmetric Channel, again.

As in Example 10.26, assume a sender transmits a 0 with probability 0.3 and a 1 with probability

0.7 across a channel that corrupts every bit with probability 0.25. We showed in Example 10.26 that

Pr [receive 1] = 0.6 and thus Pr [receive 0] = 0.4. Then the probability that the receiver receiving a “1”

message was indeed sent a 1 is

Pr [message sent was 1|receive 1] =

by Bayes’ Rule

Pr [receive 1|send 1] · Pr [send 1]
Pr [receive 1]

=
0.75 · 0.7

0.6
= 0.875.

And the probability that the receiver receiving a “0” message was indeed sent a 0 is

Pr [message sent was 0|receive 0] =
Pr [receive 0|send 0] · Pr [send 0]

Pr [receive 0]
=

0.75 · 0.3
0.4

= 0.5625.

(Qualitatively, these numbers tell us that most of received ones were actually sent as ones, but barely

more than half of the received zeros were actually sent as zeros.)

Example 10.28: 9+ heads, again.

We flip a fair coin 10 times. As in Example 10.21, let A denote the event that the first flip comes up

heads and let H denote the event that there are 9 or more heads in the 10 flips. (There we showed that

Pr [H] = 11/210, Pr [A] = 1
2 , and Pr [H|A] = 10/29.) Then

Pr [A|H] = Pr [H|A] · Pr [A]
Pr [H]

=
(10/29) · 12
11/210

=
10
11

.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-46

10-46 Probability

Taking it further: A speech recognition system is supposed to “listen” to speech in a language like English, and recognize the

words that are being spoken. Bayes’ Rule allows us to think about two different types of evidence that such a system uses in

deciding what words it “thinks” are being said; see p. 10-48.

A particularly important application of Bayes’ Rule is in “updating” one’s beliefs about the world by

observing new information. (Here “beliefs” take the form of a probability distribution.) One starts with a

prior distributionwhich one then updates based on evidence to produce a posterior distribution. (The prior

(pre = before) is your best guess of the probability of the event prior to seeing the produced evidence; the

posterior (post = after) is your best guess after seeing the evidence.) Here are two examples:

Example 10.29: Alice the CS major.

We are interested in whether a student (let’s call her Alice) is a computer science major. Our prior for

Alice might be Pr [CS major] = 0.05 because 5% of students are CS majors. We learn that Alice took

Ancient Philosophy. If we know that 10% of students as a whole take Ancient Philosophy, and 50% of

CS majors do, then

Pr [CS major|took philosophy] =
Pr [took philosophy|CS major] · Pr [CS major]

Pr [took philosophy]
=

0.5 · 0.05
0.10

= 0.25.

Our posterior distribution (the updated guess) is that there is now a 25% chance that Alice is a CS major.

Example 10.30: Flipping a coin to decide which coin to flip.

I have two coins in an opaque bag. The coins are visually indistinguishable, but one coin is fair

(Pr [H] = 0.5); the other coin is 0.75-biased (Pr [H] = 0.75). I pull one of the two coins out at random.

• My prior distribution is that there is a 50% chance I’m holding the fair coin, and a 50% chance I’m

holding the biased coin. (That is, Pr [biased] = Pr [fair] = 0.5.)

I flip the coin that I’m holding. It comes up heads.

• The evidence is the Heads flip.

Because the biased coin is more likely to produce Heads flips than the fair coin is (and we saw Heads),

this evidence should make us view it as more likely that the coin that I’m holding is the biased coin. Let’s

compute my posterior probability:

• The posterior probability of an event is the probability of that event conditioned on the observed

evidence. So we wish to compute Pr [biased|H]:

Pr [biased|H] = Pr [H|biased] · Pr [biased]
Pr [H]

Bayes’ Rule

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-47

10.3 Independence and Conditional Probability 10-47

=
Pr [H|biased] · Pr [biased]

Pr [H|biased] · Pr [biased] + Pr [H|fair] · Pr [fair] Law of Total Probability

=
0.75 · Pr [biased]

(0.75 · Pr [biased]) + (0.5 · Pr [fair])
the given biases of the coins:

0.75 for biased, 0.5 for fair

=
0.75 · 0.5

(0.75 · 0.5) + (0.5 · 0.5) Pr [biased] = Pr [fair] = 0.5, as defined by the prior

=
0.375

0.375+ 0.25
= 0.6.

So the posterior probability is Pr [biased|H] = 0.6 and Pr [fair|H] = 0.4.

Taking it further: The idea of Bayesian reasoning is used frequently in many applications of computer science—any time a

computational system weighs various pieces of evidence in deciding what kind of action to take in a particular situation. One of

the most noticeable examples of this type of reasoning occurs in Bayesian spam filters; see p. 10-50.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-48

10-48 Probability

Computer Science Connections

Speech Recognition, Bayes’ Rule, and Language Models

A software system for speech recognition must solve the following problem: given an audio stream S of spoken

English as input, produce as output a transcriptW of the words inS. (See Figure 10.22.) There will bemany candidate

transcripts of S, and generally the task of the system is to produce the most likely sequence of words given the audio

stream—that is, to find the W∗ maximizing Pr [W∗|S]. Using Bayes’ Rule, we can rephrase Pr [W∗|S] into an

expression that’s easier to understand:

the W∗ maximizing Pr
[
W∗|S

]
= the W∗ maximizing

Pr [S|W∗] · Pr [W∗]
Pr [S] Bayes’ Rule

= the W∗ maximizing Pr
[
S|W∗] · Pr

[
W∗] . Pr [S] is the same for each W∗

S
pe

ct
ro
gr
am

ge
ne

ra
te
d
by

P
ra
at

[1
6]

Figure 10.22 A spectrogram representation of an audio
stream: the x-axis represents time, the y-axis represents
frequency, and the darkness of the shading denotes the
intensity of sound at that particular frequency at that
particular time. (See p. 2-42.) The task is to turn this
representation into its most probable sequence of words—in
this case, the sentence “I prefer agglomerative clustering.”

Thus there are two valuable sources of data for eval-

uating a candidate W . First, there’s Pr [S|W], the

likelihood of the observation: the probability that this

sound stream would have been produced ifW were the

sequence of words. Second, there’s Pr [W], the proba-

bility of this output: the probability of this sequence of

words being uttered at all.

For example, even if the audio stream is a bet-

ter acoustic match for the phrase whirled Siri string,

you’d want your system to prefer the phrase World

Series ring—because an English speaker is far more

likely to say the latter phrase than the former.

(That is, Pr [World Series ring] is much higher than

Pr [whirled Siri string].) Of course, we still must take

into account the audio stream S—otherwise, regard-

less of the audio, we’d end up with a system that produced precisely the same output sentence (the most common

sentence in English: I’m sorry!, or whatever it is) for any input sound stream.

Generally speaking, the quantity Pr [S|W] would be estimated by an acoustic model of the vocal tract: if I’m

trying to say Camp Utah seance, what is the probability that I produce a particular stream S of sounds?

SS OQ UU AA RR EE AA RR OQ UU SS EE
Figure 10.23 Two noisily presented words. You are very
likely to be able to read these words without significant
difficulty—but you’re using your (implicit) language model
to do so, not actually “simply” recognizing the characters:
the (noisy) characters in the two words are precisely
identical, just in a different order, even though you read the
second letter of the left-hand word as a Q and the third letter
of the right-hand word as a O. (You’ll be relieved to realize
that the language model hanging out inside your head is
more sophisticated than the unigram model.)

The quantity Pr [W] is estimated by what’s called

a language model. We would acquire a large collec-

tion of English text, and then try to use that data to

estimate how likely a particular sequence is. The sim-

plest language model is the unigram model: from a

giant data set with N total words, for each word w we

count up the number of times n(w) that w appears;

then, if W = w1,w2, . . . ,wk, we estimate Pr [W] as
n(w1)
N · n(w2)

N · · · · · n(wk)
N .

A more complex language model might use

bigrams—two-word sequences—instead; we count the

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-49

10.3 Independence and Conditional Probability 10-49

number of occurrences of wi,wi+1 consecutively in

the giant data set, and estimate Pr [W] based on these

counts. Other more complex language models are used

in real systems. (See Figure 10.23.) There’s also a great deal of complication with avoiding overfitting of the language

model to the training data. (In addition to speech recognition, a variety of other natural language processing problems

are generally solved with the same general approach. For much more, see a good NLP textbook, like [45] or [66].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-50

10-50 Probability

Computer Science Connections

Bayesian Modeling and Spam Filtering not spam (5%)spam (95%)

incorrectly classified (10%)

correctly classified (90%)

true positives:

correctly

marked as spam

false negatives:

incorrectly marked

as nonspam

true negatives:

correctly marked

as nonspam

false positives:

incorrectly

marked as spam

inbox contents

By Bayes’ Rule, the fraction of your inbox that is nonspam is:

Pr [nonspam|inbox]

=
Pr [inbox|nonspam] Pr [nonspam]

Pr [inbox|nonspam] Pr [nonspam] + Pr [inbox|spam] Pr [spam]

=
0.9 · 0.05

0.9 · 0.05 + 0.1 · 0.95 =
0.045

0.045 + .095
= 0.3214 · · · .

In other words, a full two thirds of your inbox would be spam!

Figure 10.24 A test of your probabilistic intuition: if we
have a spam filter that correctly classifies 90% of email
messages as spam/nonspam, and 95% of email messages
are spam, what fraction of email in your inbox is nonspam?

There are, it’s estimated, a few hundred billion email

messages sent on earth per day. Of those, a significant

fraction of those messages are unsolicited, unwanted

bulk messages—that is, what’s commonly known as

spam. Somewhere between 50% and 95% of emails are

currently spam. (It’s hard to be precise; statistics and

definitions of spam vary, and there’s change over time

as certain spammers are shut down, or not.) The basic

idea of a spam filter is to estimate the probability that a

particular messagem is spam. The email client, or pos-

sibly the individual user, can choose a threshold p; a

messagem for which Pr [m is spam] ≥ p is placed into

a spam folder. The choice of p depends on the user’s

relative concern about false positives (nonspam mes-

sages that end up being incorrectly treated as spam)

versus false negatives (spam messages that end up

being incorrectly left in the inbox). See Figure 10.24.

So, how might a spam filter actually make its

decisions? Here’s one approach, based fundamen-

tally on Bayes’ Rule. Consider a message con-

sisting of words w1,w2, . . . ,wn; we must compute

Pr [spam|w1,w2, . . .wn]. Using Bayes’ Rule, we turn

around this probability:

Pr [spam|w1,w2, . . .wn]

=
Pr [w1,w2, . . .wn|spam] · Pr [spam]

Pr [w1,w2, . . .wn]

By the law of total probability (every message is either spam or not spam), we can rewrite this probability as

Pr [spam|w1,w2, . . .wn] =
Pr [w1,w2, . . .wn|spam] · Pr [spam]

Pr [w1,w2, . . .wn|spam] Pr [spam] + Pr [w1,w2, . . .wn|not spam] Pr [not spam]
.

That is, we want to know: what is the probability that the sequence of words w1, . . . ,wn would have been generated

in a spam message, relative to the probability that w1, . . . ,wn would have been generated in any message at all

(in a spam or nonspam message)? (These “relative probabilities” are weighted by the background probability of

spam-vs.-nonspam messages.)

A naïve Bayes classifier uses an additional assumption: that the appearance of every word in an email is an

independent event. That is, we’re going to estimate Pr [w1,w2, . . .wn] as if the probability of each wi appearing

does not depend on any other word appearing. (Obviously that assumption isn’t right: the probability of the word

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-51

10.3 Independence and Conditional Probability 10-51

MORTGAGE appearing is not independent of the probability of the word RATE appearing, in either spam or nonspam.)

Pr [w1,w2, . . .wn|spam] ≈ Pr [w1|spam] · Pr [w2|spam] · · · · · Pr [wn|spam] .

Thus a naïve Bayes classifier estimates the probability of amessage being generated as spam bymultiplying ameasure

of “how spammy” each word is. A spam filter would still need to have two numbers associated with each word wi—

namely Pr [wi|spam] and Pr [wi|nonspam]. We can estimate these numbers from a training set of spam/nonspam

emails, with some sort of “smoothing” mechanism to improve our estimate of the spamminess of a word that doesn’t

appear in any of the training emails. (For more about the training of these estimates, and about text classification—

the broader version of the problem that we’re trying to solve in spam filtering—again see any good book on natural

language processing, like [45] or [66]. For more about spam in particular, you may be interested in the statistics on

email and spam that are regularly calculated by the Radicati Group, for example: www.radicati.com.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-52

10-52 Probability

EXERCISES

Choose one of the 12 months of the year uniformly at random. (That is, choose a number uniformly from the set {1, 2, . . . , 12}.)
Indicate whether the following pairs of events are independent or dependent. Justify your answers.

10.53 “The month number is even” and “the month number is divisible by 3.”

10.54 “The month number is even” and “the month number is divisible by 5.”

10.55 “The month number is even” and “the month number is divisible by 6.”

10.56 “The month number is even” and “the month number is divisible by 7.”

10.57 “The month’s name contains an ’R’ ” and “the month contains an odd number of days in a leap year.”

We flip a fair coin 6 times. Which of these pairs of events are independent or dependent? Justify your answers.

10.58 “The number of heads is even” and “the number of heads is divisible by 3.”

10.59 “The number of heads is even” and “the number of heads is divisible by 4.”

10.60 “The number of heads is even” and “the number of heads is divisible by 5.”

10.61 We flip three fair coins, called a, b, and c. Are the events “The number of heads in {a, b} is odd” and “The number of heads in

{b, c} is odd” independent or dependent?

10.62 How (if at all) would your answer to the previous exercise change if the three coins are p-biased? (That is, assume Pr [a = H],

Pr [b = H], and Pr [c = H] are all equal to p, where p is not necessarily 1
2 .)

Consider the list of words and the events in Figure 10.25. Choose a word at random from this list. Which of these pairs of events

are independent? For the pairs that are dependent, indicate whether the events are positively or negatively correlated. Justify.

10.63 A and B

10.64 A and C

10.65 B and C

10.66 A and D

10.67 A and E

10.68 A ∩ B and E

10.69 A ∩ C and E

10.70 A ∩ D and E

10.71 Let A and B be arbitrary events in a finite sample space. Prove that if Pr [B] = 0, then A and B are independent.

10.72 Let A and B be arbitrary events in a finite sample space. Prove that A and B are independent if and only if A and B are independent.

A substitution cipher (see Example 10.16) is a cryptographic scheme in which we choose a permutation π of the alphabet, and

replace each letter i with πi. (Decryption is the same process, but backward: replace πi by i.) However, substitution ciphers are

susceptible to frequency analysis, in which an eavesdropper who observes the encrypted message (the ciphertext) infers that the

most common letter in the ciphertext probably corresponds to the most common letter in English text (the letter E), the second-most

common to the second-most common (T), and so on.

10.73 (programming required.) Write a program that generates a random permutation π of the alphabet, and encrypts a given input text

using π. (Leave all non-alphabetic characters unchanged.)

10.74 (programming required.)Write a program that takes a text as input, converts it to upper case, and produces a vector ⟨fA, fB, . . . , fZ⟩,
where f• is the fraction of letters in the input text that are the letter •. (So f will be a probability distribution over the alphabet.)

ABIDES
BASES
CAJOLED
DATIVE

EXUDE
FEDORA
GASOLINES
HABANERO

A : “the first letter of the word is a consonant.”
B : “the second letter of the word is a consonant.”
C : “the second letter of the word is a vowel.”
D : “the last letter of the word is a consonant.”
E : “the word has even length.”

Figure 10.25 A word list from which we choose a random word, and some events.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-53

Exercises 10-53

10.75 (programming required.) Write a program that, given a reference text and a text encrypted with an unknown substitution cipher,

attempts to decrypt by mapping the most common encrypted letters, in order, to the most common reference letters. You can find

useful reference files (the complete works of Shakespeare, say) from Project Gutenberg, http://www.gutenberg.org/.

10.76 (programming required.) A Caesar cipher is a special kind of substitution cipher in which the permutation π is generated by

choosing a numerical shift s and moving all letters s steps forward in the alphabet, wrapping back to the beginning of the alphabet

as necessary. (For example, with a shift of 5, A → F and W → B.) Write a Caesar cipher encryption program that encrypts a given

input text file with a randomly chosen shift in {0, 1, . . . , 25}.
10.77 (programming required.) If you run your decryption program from Exercise 10.75 on Caesar-ciphered text, you’ll find that your

program generally doesn’t work perfectly. Write a Caesar-cipher-decrypting program that takes advantage of the fact that every

letter is shifted by the same amount. Find the most probable s—the s that minimizes the difference in the probabilities of each letter

from the reference text and the deciphered text. That is, minimize
∑

i |f′i − fi+s|, where f comes from the ciphertext and f′ comes

from the reference text.

Flip n fair coins. For any two distinct indices i and j with 1 ≤ i < j ≤ n, define the event Ai,j as

Ai,j = (the ith coin flip came up heads) XOR (the jth coin flip came up heads).

For example, for n = 4 and the outcome ⟨T,T,H,H⟩, the events A1,3, A1,4, A2,3, and A2,4 all occur; A1,2 and A3,4 do not. Thus,

from n independent coin flips, we’ve defined
(n
2

)
different events. In the next few exercises, you’ll show that these

(n
2

)
events are

pairwise independent, but not fully independent.

10.78 Let i and j > i be arbitrary. Show that Pr [Ai,j] =
1
2 .

10.79 Let i and j > i be arbitrary, and let i′ and j′ > i′ be arbitrary. Show that any two distinct events Ai,j and Ai′,j′ are independent. That

is, show that Pr [Ai,j|Ai′,j′] = Pr [Ai,j|Ai′,j′] =
1
2 if {i, j} ̸= {i′, j′}.

10.80 Show that there is a set of three distinct A events that are not mutually independent. That is, identify three events Ai,j, Ai′,j′ , and

Ai′′,j′′ where the sets {i, j}, {i′, j′}, and {i′′, j′′} are all different (though not necessarily disjoint). Then show that if you know the

value of Ai,j and Ai′,j′ , the probability of Ai′′,j′′ ̸= 1
2 .

Consider the dominoes in Figure 10.26. Suppose you shuffle them and draw one domino uniformly at random. (More specifically,

you choose any particular domino with probability 1
12 . After you’ve chosen the domino, you choose an orientation, with a 50–50

chance of either side pointing to the left.) What are the following conditional probabilities? (“Even total” means that the sum of

the two halves of the domino is even. “Doubles” means that the two halves are the same.)

10.81 Pr [even total|doubles]
10.82 Pr [doubles|even total]

10.83 Pr [doubles|at least one]

10.84 Pr [at least one |doubles]
10.85 Pr [total ≥ 7|doubles]
10.86 Pr [doubles|total ≥ 7]

10.87 Pr [even total|total ≥ 7]

Figure 10.26 Some dominoes.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-54

10-54 Probability

10.88 Pr [doubles|left half of drawn domino is]

10.89 Suppose A and B are mutually exclusive events—that is, A ∩ B = ∅. Prove or disprove the following claim: A and B cannot be

independent.

10.90 Let A and B be two events such that Pr [A|B] = Pr [B|A]. Which of the following is true? (a) A and B must be independent; (b) A

and Bmust not be independent; or (c) A and Bmay or may not be independent (there’s not enough information to tell). Justify your

answer briefly.

Suppose, as we have done throughout the chapter, that h : K → {1, . . . , n} is a random hash function.

10.91 Suppose that there are currently k cells in the array that are occupied. Consider a key x ∈ K not currently stored in the hash table.

What is the probability that the cell h(x) into which x hashes is empty?

10.92 Suppose that you insert n distinct values x1, x2, . . . , xn into an initially empty n-slot hash table. What is the probability that there

are no collisions? (Hint: if the first i elements have had no collisions, what is the probability that the (i+ 1)st hashed element does

not cause a collision? Use Theorem 10.13 and Exercise 10.91.)

10.93 Imagine a disease that afflicts a small fraction of the population; one in a thousand people in the population have the disease. Doctor

Genius has invented a disease-detection test. Her test, though, isn’t perfect:

• it has false negatives: if you do have the disease, then her test says that you’re not sick with probability 0.01.

• it has false positives: if you don’t have the disease, then her test says that you’re sick with probability 0.03.

What is the probability p that Dr. Genius gives a random person x an erroneous diagnosis?

10.94 “Doctor” Quack has invented a disease-detection test, too. He was a little confused by the statement “one in a thousand people

in the population have the disease,” so his test is this: no matter who the patient is, with probability 1
1000 report “sick” and with

probability 999
1000 report “not sick.” What is p now?

Alice wishes to send a 3-bit message 011 to Bob, over a noisy channel that corrupts (flips) each transmitted bit independently with

some probability. To combat the possibility of her transmitted message differing from the received message, she adds a parity bit

to the end of her message (so that the transmitted message is 0110). [Bob checks that he receives a message with an even number

of 1s, and if so interprets the first three received bits as the message.]

10.95 Assume that each bit is flipped with probability 1%. Conditioned on receiving a message with an even number of 1s, what is the

probability that the message Bob received is the message that Alice sent?

10.96 What if the probability of error is 10% per bit?

Suppose, as in Example 10.30, I have two coins—one fair and one p-biased. I pull one uniformly at random from an opaque bag,

and flip it. What is Pr [I pulled the biased coin|the following observed flips]? Justify your answers.
10.97 p = 2/3, and I observe a single Heads flip.

10.98 p = 3/4, and I observe the flip sequence HHHT.

10.99 p = 3/4, and I observe the flip sequence HTTTHT.

A Bloom filter is a probabilistic data structure designed to store a set of elements from a universe U, allowing very quick query

operations to determine whether a particular element has been stored [15]. Specifically, it supports the operations Insert(x), which

adds x to the stored set, and Lookup(x), which reports whether x was previously stored. But, unlike most data structures for this

problem, we will allow ourselves to (occasionally) make mistakes in lookups, in exchange for making these operations fast.

Here’s how a Bloom filter works. We will choose k different hash functions h1, . . . , hk : U → {1, . . . ,m}, and we will maintain
an array of m bits, all initially set to zero. The operations are implemented as follows:

• To insert x into the data structure, we set the k slots h1(x), h2(x), . . . , hk(x) of the array to 1. (If any of these slots was already

set to 1, we leave it as a 1.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-55

Exercises 10-55

• To look up x in the data structure, we check that the k slots h1(x), h2(x), . . . , hk(x) of the array are all set to 1. If they’re all 1s,

we report “yes”; if any one of them is a 0, we report “no.”

For an example, see Figure 10.27. Note that there can be a false positive in a lookup: if all k slots corresponding to a query element

x happen to have been set to 1 because of other insertions, then x will incorrectly be reported to be present.

As usual, we treat each of the k hash functions as independently assigning each element of U to a uniformly chosen slot of

the array. Suppose that we have an m-slot Bloom filter, with k independent hash functions, and we insert n elements into the data

structure.

10.100 Suppose we have k = 1 hash functions, and we’ve inserted n = 1 element into the Bloom filter. Consider any particular slot of the

m-slot table. What is the probability that this particular slot is still set to 0? (That is, what is the probability that this slot is not the

slot set to 1 when the single element was inserted?)

10.101 Let the number k of hash functions be an arbitrary number k ≥ 1, but continue to suppose that we’ve inserted only n = 1 element

in the Bloom filter. What is the probability a particular slot is still set to 0 after this insertion?

10.102 Let the number k of hash functions be an arbitrary number k ≥ 1, and suppose that we’ve inserted an arbitrary number n ≥ 1 of

elements into the Bloom filter. What is the probability a particular slot is still set to 0 after these insertions?

Define the false-positive rate of a Bloom filter (with m slots, k hash functions, and n inserted elements) to be the probability that

we incorrectly report that y is in the table when we query for an uninserted element y.

For many years (starting with Bloom’s original paper about Bloom filters), people in computer science believed that the false

positive rate was precisely pk, where p = (1− [your answer to Exercise 10.102]). The justification was the following. Let Bi denote

the event “slot hi(y) is occupied.” We have a false positive if and only if B1,B2, . . . ,Bk are all true. Thus

the false positive rate = Pr [B1 and B2 and · · · and Bk] .

You showed in the previous exercise that Pr [Bi] = p. Everything up until here is correct; the next step in the argument,

however, was not! Therefore, because the Bi events are independent,

the false positive rate = Pr [B1 and B2 and · · · and Bk] = Pr [B1] · Pr [B2] · · · Pr [Bk] = pk.

But it turns out that Bi and Bj are not independent [20, 29]! (This error is a prime example of how hard it is to have perfect intuition

about probability!)

10.103 Let m = 2, k = 2, and n = 1. Compute by hand the false-positive rate. (Hint: there are “only” 16 different outcomes, each of

which is equally likely: the random hash functions assign values in {1, 2} to h1(x), h2(x), h1(y), and h2(y). In each of these 16

cases, determine whether a false positive occurred.)

10.104 Compute p2—the answer you would have gotten by using

false-positive rate = (1− [your answer to Exercise 10.102])2.

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

11
0

12
0

13
0

0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 1 1 0 0

(a) The table initially; after inserting 3; and after
inserting 7. Note h1(3) = 4, h2(3) = 10, h1(7) = 8,
and h2(7) = 11.

1
0

2
0

3
0

4
1

5
0

6
0

7
0

8
1

9
0

10
1

11
1

12
0

13
0

0 0 0 1 0 0 0 1 0 1 1 0 0

0 0 0 1 0 0 0 1 0 1 1 0 0

(b) Testing for 3 (yes!), 15 (no!), and 10 (yes!?!). Note
h1(15) = 3, h2(15) = 5, h1(10) = 11, and
h2(10) = 10—so 10 is a false positive.

Figure 10.27 A Bloom filter with k = 2 hash functions: h1(x) = x mod 13+ 1 and h2(x) = x2 mod 13+ 1.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-56

10-56 Probability

Which is bigger—p2 or [your answer to Exercise 10.103]? In approximately one paragraph, explain the difference, including an

explanation of why the events B1 and B2 are not independent.

10.105 (programming required.) While the actual false-positive rate is not exactly pk, it turns out that pk is a very good approximation

to the false-positive rate as long as m is sufficiently big and k is sufficiently small. Write a program that creates a Bloom filter

with m = 1,000,000 slots and k = 20 hash functions. Insert n = 100,000 elements, and estimate the false positive probability by

querying for n additional uninserted elements y /∈ X. What is the false-positive rate that you observe in your experiment? How does

it compare to pk?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-57

10.4 Random Variables and Expectation 10-57

10.4 Random Variables and Expectation

I’m from New Jersey, I don’t expect too much
If the world ended today, I would adjust.

John Gorka (b. 1958)
“I’m From New Jersey,” from the recording Jack’s Crows (1991)

Thus far, we have been considering whether or not something occurs—that is, using the language of

probability, we have been interested in events. But often we will also be interested in how many? questions

and not just did it or did it not? questions. How many heads came up in 1000 coin flips? How many times

do we have to flip a coin before it comes up heads for the 1000th time? For a randomly ordered array

A[1 . . . n] of the integers {1, . . . , n}, for how many indices i is A[i] < A[i + 1]? To address these types of

questions, we will introduce the concept of a random variable, which measures some numerical quantity

that varies from outcome to outcome. We will also consider the expectation of a random variable, which is

the value of that variable averaged over all of the outcomes in the sample space.

10.4.1 Random Variables

We begin with the definition of a random variable itself:

Definition 10.16: Random variable.
A random variable X assigns a numerical value to every outcome in the sample space S. (In other words,

a random variable is a function X : S→ R.)

Warning! A “random variable” is a pretty weirdly named concept. A random variable is not a variable—rather, it’s a function

that maps each outcome to a numerical value. But everyone calls it a random variable, so that’s what we’ll call it, too.

Here are a few small examples:

Example 10.31: Counting heads in 3 flips.

Suppose that we flip a fair coin independently, three times. (Then the sample space is S = {H,T}3, and
Pr [x] = 1

8 for any x ∈ S.) Define the random variables

X = the number of heads and Y = the number of initial consecutive tails.

These random variables take on the following values shown in Figure 10.28.

Example 10.32: Word length, and number of vowels.

Select a word from the sample space {Now, is, the, winter, of, our, discontent} by choosing wordw

with probability proportional to the number of letters in w, as in Example 10.5. Define a random variable

L to denote the number of letters in the word chosen. Thus L(discontent) = 10 and L(winter) = 6,

for example. We can also define a random variable V to denote the number of vowels in the word chosen.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-58

10-58 Probability

X(HHH) = 3 X(HHT) = 2 X(HTH) = 2 X(HTT) = 1 X(THH) = 2 X(THT) = 1 X(TTH) = 1 X(TTT) = 0
Y(HHH) = 0 Y(HHT) = 0 Y(HTH) = 0 Y(HTT) = 0 Y(THH) = 1 Y(THT) = 1 Y(TTH) = 2 Y(TTT) = 3

Figure 10.28 The random variables X, representing the number of heads, and Y, representing the number of initial
consecutive tails, in three fair coin flips.

Thus V(discontent) = 3 and V(winter) = 2, for example. The values for these two random variables

for each outcome in the sample space are shown in Figure 10.29.

Although it’s an abuse of notation, often we just write X to denote the value of a random variable X for a

realization chosen according to the probability distribution Pr. (So wemight write “X = 3 with probability
1
8” or “there are L letters in the chosen word.”) Using this notation, we can state probability questions about

events based on random variables, as the following example illustrates:

Example 10.33: More word length and vowel counts.

Choose a word as in Example 10.32. Define L as the number of letters in the word, and define V as the

number of vowels in the word. Then Pr [L = 3] denotes the probability that we choose an outcome w for

which L(w) = 3. (In other words, L = 3 denotes the event {w : L(w) = 3}.) Thus (see Figure 10.29)

Pr [L = 3] = Pr [{Now, the, our}] = 9
29 and Pr [V = 3] = Pr [{discontent}] = 10

29 .

We will also abuse notation by performing arithmetic on random variables (remember, these are func-

tions!): for two random variables X and Y, we write X+ Y as a new random variable that, for any outcome

x, denotes the sum of X(x) and Y(x). We will interpret similarly any other arithmetic expression that

involves random variables. (The notational analogue here is writing “sin+ cos” to denote the function

f(x) = sin(x) + cos(x).) Here’s a small example:

Example 10.34: Number of consonants.

We can express the number of consonants in the randomly chosen word from our running example (see

Example 10.32) as L − V. For example, L − V = 1 when the chosen word is our, and L − V = 4 when

the chosen word is winter.

N o w i s t h e o f
o u r w i n t e r
d i s c o n t e n t

Choose a letter from these 29 options uniformly at random. The number of letters in
the box of your chosen letter is L, and the number of vowels in it is V. The values of L
and V for each outcome in the sample space are shown at right.

w Pr [w] L(w) V(w)

Now 3/29 3 1
is 2/29 2 1
the 3/29 3 1
winter 6/29 6 2
of 2/29 2 1
our 3/29 3 2
discontent 10/29 10 3

Figure 10.29 Choosing a word from Now is the winter of our discontent with probability proportional to the
length of each word. The number of letters in your chosen word is L, and the number of vowels in it is V.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-59

10.4 Random Variables and Expectation 10-59

Indicator random variables

One special type of random variable that will come up frequently is an indicator random variable, which

only takes on the values 0 and 1. (Such a random variable “indicates” whether a particular event has

occurred.) Here’s a small example:

Example 10.35: Indicator random variables in coin flips.

Suppose that we flip three fair coins independently. Let X1 be an indicator random variable that reports

whether the first flip came up heads. Similarly, let X2 and X3 be indicator random variables for the second

and third flips. See Figure 10.30. The total number of heads is given by the random variable X1+X2+X3.

Independence of random variables

Just as with independence for events, we will often be concerned with whether knowing the value of one

random variable tells us something about the value of another. Two random variables X and Y are indepen-

dent if every two events of the form “X = x” and “Y = y” are independent: for every value x and y, it must

be the case that Pr [X = x and Y = y] = Pr [X = x] · Pr [Y = y]. For example:

Example 10.36: Some independent/dependent random variables.

The random variables X2 and X3 from Example 10.35—we flip 3 fair coins independently; X2 and X3

indicate whether the 2nd and 3rd flips are heads—are independent. You can check all four possibilities;

for example,

Pr [X2 = 1 and X3 = 1] = 1
4 = 1

2 · 12 = Pr [X2 = 1] · Pr [X3 = 1] and

Pr [X2 = 1 and X3 = 0] = 1
4 = 1

2 · 12 = Pr [X2 = 1] · Pr [X3 = 0] .

On the other hand, the random variables X and Y from Example 10.31—we flip 3 fair coins indepen-

dently; X is the number of heads and Y is the number of consecutive initial tails—are not independent;

for example,

Pr [X = 3] · Pr [Y = 3] = 1
8 · 18 but Pr [X = 3 and Y = 3] = 0.

outcome X1 X2 X3 X1 + X2 + X3

HHH 1 1 1 3
HHT 1 1 0 2
HTH 1 0 1 2
HTT 1 0 0 1
THH 0 1 1 2
THT 0 1 0 1
TTH 0 0 1 1
TTT 0 0 0 0

Figure 10.30 Three coin flips; Xi is an indicator random variable representing whether the ith flip was heads.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-60

10-60 Probability

10.4.2 Expectation

A random variableXmeasures a numerical quantity that varies from realization to realization.Wewill often

be interested in the “average” value of X, which is otherwise known as the random variable’s expectation:

Definition 10.17: Expectation.

The expectation of a random variable X, denoted E [X], is the average value of X, defined as

E [X] =
∑

x∈S

X(x) · Pr [x] .

The expectation of X is also sometimes called the mean of X.

We can equivalently write E [X] =
∑

y (y · Pr [X = y]) by summing over each possible value y that X

can take on, rather than by summing over outcomes.

In other words, E [X] is the average value of X over all outcomes (where the average is weighted, with

weights defined by the probability function). For example:

Example 10.37: Expectation of a Bernoulli random variable.

Let X be an indicator random variable for a Bernoulli trial with parameter p—that is, X = 1 with

probability p and X = 0 with probability 1− p. Then E [X] is precisely

E [X] = 1 · Pr [X = 1] + 0 · Pr [X = 0] definition of expectation (alternative version)

= 1 · p + 0 · (1− p) definition of a Bernoulli trial with parameter p

= p.

Example 10.38: Counting heads in 3 flips, again.

Recall Example 10.31, where the random variable X denotes the number of heads in three independent

flips of a fair coin. (The sample space was S = {H,T}3, and Pr [x] = 1
8 for any x ∈ S.) What is E [X]?

Solution. By definition, the expectation of X is

∑

x∈{H,T}3

Pr [x] · X(x)

= 1
8X(HHH) + 1

8X(HHT) + 1
8X(HTH) + 1

8X(HTT) + 1
8X(THH) + 1

8X(THT) + 1
8X(TTH) +

1
8X(TTT)

= 1
8 ·
[
3+ 2+ 2+ 1+ 2+ 1+ 1+ 0

]
= 12

8 .

In other words, in three flips of a fair coin, we expect 12
8 = 1.5 flips to come up Heads.

Warning! Just because E [X] = 1.5 doesn’t mean that Pr [X = 1.5] is big! (If you ever flip three fair coins and see exactly 1.5

heads, it might be a sign that the world is ending.) Remember that “average” and “typical” aren’t the same thing!

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-61

10.4 Random Variables and Expectation 10-61

Example 10.39: Counting letters and vowels, again.

Recall the probabilistic process of choosing a word from the sentence Now is the winter of our
discontent in proportion to word length. Recall also the random variables from Example 10.32: L

denotes the chosen word’s length, and V the number of vowels in the chosen word. Then we have

E [L] = 3 · 3
29 + 2 · 2

29 + 3 · 3
29 + 6 · 6

29 + 2 · 2
29 + 3 · 3

29 + 10 · 1029= 171
29 ≈ 5.8966.

E [V] = 1 · 3
29 + 1 · 2

29 + 1 · 3
29 + 2 · 6

29 + 1 · 2
29 + 2 · 3

29 + 3 · 1029 = 57
29 ≈ 1.9656.

Taking it further: If we think about it without a great deal of care, there’s something apparently curious about the result

from Example 10.39. We’ve plopped down our thumb on a random letter in the sentence Now is the winter of our

discontent, and we’ve computed that the word that our thumb lands on has an average length of about 5.9 letters. That seems a

little puzzling, because there are 7 words in the sentence, with an average word length of 29
7 = 4.1428 letters. But there’s a good

reason for this discrepancy: longer words are more likely to be chosen because they have more letters, and therefore the average

word that’s chosen has more letters than average. An analogous phenomenon occurs in many other settings, too. When you’re

driving, you spend most of your time on longer-than-average trips. Most people in Canada live in a larger-than-average-sized

Canadian city. Most 3rd-grade students in California are in a larger-than-average-size 3rd-grade class. (In fact, this broader phe-

nomenon is sometimes called the class-size paradox.) Perhaps even more jarringly, a random person x knows fewer people than

the average number of people known by someone x knows—that is, on average, your friends are more popular than you are [46].

(Why? A very popular person—call her Oprah—is, by definition, the friend of many people, and therefore Oprah’s astronomical

popularity is averaged into the popularity of many people x. In computing the popularity of a randomly chosen person x, Oprah

only contributes her popularity once for x = Oprah—but she contributes it many times to the popularity of x’s friends.)

This phenomenon may illustrate an example of a sampling bias, in which we try to draw a uniform sample from a population but

we end up with some kind of bias that overweights some members of the population at the expense of others. Sampling biases

are a widespread concern in any statistical approach to understanding a population. For example, consider a telephone-based

political poll that collects voters’ preferences for candidates one evening by randomly dialing phone numbers until somebody

answers, and records the answerer’s preference. This poll will overweight those people who are sitting around at home during

the evening—which correlates with the voter’s age, which correlates with the voter’s political affiliation.

Example 10.40: Number of aces in a bridge hand.

What is the expected number of aces in a 13-card hand dealt from a standard 52-card deck?

Solution. Let’s compute the probability of getting 0, 1, …, 4 aces. In total, there are
(52
13

)
different hands.

Of them, there are
(4
k

)
·
(48
13−k

)
hands with exactly k aces. (We have to pick k ace cards from the 4 aces in

the deck, and 13− k non-ace cards from the 48 non-aces.) Each hand is equally likely to be chosen, so

Pr [drawing exactly k aces] =

(4
k

)
·
(48
13−k

)
(52
13

) .

And thus, letting A be a random variable denoting the number of aces, we have

E [A] =
4∑

i=0

i · Pr [A = i] (using the value-based definition of expectation)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-62

10-62 Probability

=
0 ·
(4
0

)
·
(48
13

)0 · Pr [A= 0]

+ 1 ·
(4
1

)
·
(48
12

)1 · Pr [A= 1]

+ 2 ·
(4
2

)
·
(48
11

)2 · Pr [A= 2]

+ 3 ·
(4
3

)
·
(48
10

)3 · Pr [A= 3]

+ 4 ·
(4
4

)
·
(48

9

)4 · Pr [A= 4]

(52
13

)

=
0 + 278,674,137,872 + 271,142,404,416 + 78,488,590,752 + 6,708,426,560

635,013,559,600

=
635,013,559,600
635,013,559,600

.

That is, the expected number of aces in a 13-card hand is precisely 1. (The fact that this calculation came

out to be exactly one may look like magic, but it’s not! We’ll see a different—and much easier!—way of

thinking about this problem in Example 10.43 that will demystify any apparent magic.)

A useful property of expectation

We’ve now seen several examples of computing the expectation of random variables by directly follow-

ing the definition of expectation. Here we’ll introduce a transformation that can often make expectation

calculations easier, at least for positive integer–valued random variables:

Theorem 10.18: Another formula for expectation, for nonnegative integers.

Let X : S→ Z≥0 be a random variable. Then E [X] =
∑∞

i=1 Pr [X ≥ i].

(Note that by definition E [X] =
∑∞

i=0 i · Pr [X = i], so we’re trading the multiplication of i for the

replacement of = by ≥.)

Proof of Theorem 10.18. The theorem follows by changing the order of summation in the expectation

formula. Here is an algebraic proof:

E [X] =
∞∑

i=0

i · Pr [X = i] definition of expectation

=
∞∑

i=0

i∑

j=1

Pr [X = i] i =
∑i

j=1 1

=
∞∑

j=1

∞∑

i=j

Pr [X = i] changing the order of summation (see Figure 10.31)

=
∞∑

j=1

Pr [X ≥ j] . Pr [X ≥ j] =
∑∞

i=j Pr [X = i]

It may be easier to follow the idea by looking at a visualization instead of algebra; see Figure 10.31.

We can use this theorem to find the expected value of a geometric random variable, for example:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-63

10.4 Random Variables and Expectation 10-63

Pr [X = 1]

...

= 1 · Pr [X = 1]

Pr [X = 2] Pr [X = 2]

...

= 2 · Pr [X = 2]

Pr [X = 3] Pr [X = 3] Pr [X = 3]

...

= 3 · Pr [X = 3]

Pr [X = 4] Pr [X = 4] Pr [X = 4] Pr [X = 4]

...

= 4 · Pr [X = 4]

Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5]

...

= 5 · Pr [X = 5]

Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6]

...

= 6 · Pr [X = 6]

Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7]

...

= 7 · Pr [X = 7]

Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8]

...

= 8 · Pr [X = 8]

Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9]

...

= 9 · Pr [X = 9]

...
= Pr [X ≥ 1] = Pr [X ≥ 2] = Pr [X ≥ 3] = Pr [X ≥ 4] = Pr [X ≥ 5] = Pr [X ≥ 6] = Pr [X ≥ 7] = Pr [X ≥ 8] = Pr [X ≥ 9] · · ·
(a) The sum

∑∞
i=0 i · Pr [X = i] can be visualized as adding up i copies of Pr [X = i] one row at a time.

Pr [X = 1]

...

= 1 · Pr [X = 1]

Pr [X = 2] Pr [X = 2]

...

= 2 · Pr [X = 2]

Pr [X = 3] Pr [X = 3] Pr [X = 3]

...

= 3 · Pr [X = 3]

Pr [X = 4] Pr [X = 4] Pr [X = 4] Pr [X = 4]

...

= 4 · Pr [X = 4]

Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5]

...

= 5 · Pr [X = 5]

Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6]

...

= 6 · Pr [X = 6]

Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7]

...

= 7 · Pr [X = 7]

Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8]

...

= 8 · Pr [X = 8]

Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9]

...

= 9 · Pr [X = 9]

...
= Pr [X ≥ 1] = Pr [X ≥ 2] = Pr [X ≥ 3] = Pr [X ≥ 4] = Pr [X ≥ 5] = Pr [X ≥ 6] = Pr [X ≥ 7] = Pr [X ≥ 8] = Pr [X ≥ 9] · · ·

(b) Alternatively, the same sum can be visualized as adding up one column at a time. The jth column contains a copy of
Pr [X = i] for every i greater than or equal to j, so the value of the sum of the jth column is Pr [X ≥ j].

Figure 10.31 A change of summation. View E[X] =
∑∞

i=0 i · Pr [X = i] as the sum of the entries of an infinite table,
where the ith row of the table contains i copies of Pr [X = i]. We can compute the infinite sum of the table either by
summing up all of the row sums, or by summing up all of the column sums.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-64

10-64 Probability

Example 10.41: Expectation of a geometric random variable.

Let X be a geometric random variable with parameter p. (That is, X measures the number of flips of a

p-biased coin before we get Heads for the first time.) Then E [X] is precisely 1
p :

E [X] =
∞∑
i=1

Pr [X ≥ i] Theorem 10.18 (E [X] =
∑∞

i=1 Pr [X ≥ i])

=
∞∑
i=1

Pr [fail to get heads in i− 1 flips] definition of geometric random variable

=
∞∑
i=1

(1− p)i−1 need i− 1 consecutive tails flips

=
∞∑
i=0

(1− p)i changing index of summation

= 1
1−(1−p) =

1
p . formula for geometric summations

For example, we expect to flip a fair coin (with p = 1
2) twice before we get heads.

10.4.3 Linearity of Expectation

Here’s a very useful general property of expectation, called linearity of expectation: the expectation of a

sum is the sum of the expectations. (A linear function is a function f that satisfies f(a+b) = f(a)+f(b)—for

example, f(x) = 3x or f(x) = 0.) The usefulness of Linearity of Expectation will come from the way in

which it lets us “break down” a complicated random variable into the sum of a collection of simple random

variables. (We can then compute E [Complicated] = E
[∑

i Simplei
]
=
∑

i E [Simplei].)

We’ll see several useful examples soon, but let’s start with the proof:

Theorem 10.19: Linearity of Expectation.

Consider a sample space S, and let X : S → R and Y : S → R be any two random variables. Then

E [X+ Y] = E [X] + E [Y].

Proof. We’ll be able to prove this theorem by just invoking the definition of expectation and following

our algebraic noses:

E [X+ Y] =
∑

s∈S

(X+ Y)(s) · Pr [s] definition of expectation

=
∑

s∈S

[
X(s) + Y(s)

]
· Pr [s] definition of the random variable X+ Y

=
[∑

s∈S

X(s) · Pr [s]
]
+
[∑

s∈S

Y(s) · Pr [s]
]

distributing the multiplication; rearranging

= E[X] + E[Y]. definition of expectation

Therefore E [X+ Y] = E [X] + E [Y], as desired.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-65

10.4 Random Variables and Expectation 10-65

Notice that Theorem 10.19 does not impose any requirement of independence on the random variables X

and Y: even if X and Y are highly correlated (positively or negatively), we still can use linearity of expecta-

tion to conclude that E [X+ Y] = E [X] + E [Y]. There are many apparently complicated problems in which

using linearity of expectation makes a solution surprisingly straightforward. Here are a few examples:

Problem-solving tip: Often, the easiest way to compute an expectation is by finding a way to express the quantity of interest in

terms of a sum of indicator random variables.

Example 10.42: Expectation of a binomial random variable.

We have a p-biased coin (that is, Pr [heads] = p) that we flip 1000 times. What is the expected number

of heads that come up in these 1000 flips?

Solution. The intuition is fairly straightforward: a p-fraction of flips are heads, so we should expect 1000p

heads in 1000 flips. But doing the math requires a bit of work.

An abandoned first attempt. Let’s compute the probability that there are exactly k heads in a sequence of

1000 flips, and then apply the definition of expectation directly. There are
(1000

k

)
sequences of 1000 flips

that have exactly k heads, and the probability of any one of these sequences is pk(1− p)1000−k, so

E [number of heads] =
1000∑

k=0

k · Pr [number of heads = k] definition of expectation

=
1000∑

k=0

k ·
(1000

k

)
· pk · (1− p)1000−k. above analysis of Pr [number of heads = k]

We could try to simplify this expression (but it turns out to be pretty hard!). Instead, let’s start over with

a different approach.

A second try. Here’s a different strategy that ends up being much easier. Define 1000 random variables

X1,X2, . . . ,X1000, where Xi is the indicator random variable

Xi =

{
1 if the ith flip of the coin comes up Heads

0 if the ith flip of the coin comes up Tails.

The total number of heads in the 1000 coin flips is given by the random variable

X = X1 + X2 + · · ·+ X1000.

We can now use linearity of expectation to compute the expected number of heads much more easily:

E [number of heads] = E [X] =

definition of X

E

[
1000∑

i=1

Xi

]
=

linearity of expectation

1000∑

i=1

E [Xi] =

Example 10.37

(expectation of a Bernoulli variable)

1000∑

i=1

p = 1000p.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-66

10-66 Probability

Example 10.43: Number of aces in a bridge hand, better.

Recall Example 10.40, where we showed that the number A of aces in a randomly chosen 13-card hand

from a standard 52-card deck has E [A] = 1. Here is a much easier way of solving that problem:

Number your cards from 1 to 13. Let Ai be an indicator random variable that reports whether the ith

card in your hand is an ace. Then A = A1+A2+ . . .+A13. Note that Pr [Ai = 1] = 1
13 (there are 4

52 = 1
13

aces in the deck), so

E [A] = E [A1 + A2 + · · ·+ A13]

= E [A1] + E [A2] + · · ·+ E [A13] linearity of expectation

= 13 · 1
13 Pr [Ai = 1] = 1

13 as above, and so E [Ai] =
1
13 (Example 10.37)

= 1.

(The random variables Ai and Aj are correlated—but, again, linearity of expectation doesn’t care! We can

still use it to conclude that E [Ai + Aj] = E [Ai] + E [Aj].)

Some examples about hashing

Here are two more problems about expectation, both involving hashing:

Example 10.44: Empty slots in a hash table.

Suppose that we hash 1000 elements into a 1000-slot hash table, using a completely randomhash function,

resolving collisions by chaining. (See Section 10.1.1.) How many empty slots do we expect?

Solution. Let’s compute the probability that some particular slot is empty:

Pr [slot i is empty]

= Pr [none of the 1000 elements hash to slot i]

= Pr [every element j ∈ {1, 2, . . . , 1000} hashes to a slot other than i]

=
1000∏
j=1

Pr [element j hashes to a slot other than i] elements are hashed independently

=
1000∏
j=1

999
1000 elements are hashed uniformly, and there are 999 other slots

=
(

999
1000

)1000
= 0.3677 · · · .

We’ll finish with the by-now-familiar calculation that also concluded the last two examples: we define a

collection of indicator random variables and use linearity of expectation. Let Xi be an indicator random

variable that’s 1 if slot i is empty and 0 if slot i is full. Then the expected number of empty slots is

E

[
1000∑
i=1

Xi

]
=

1000∑
i=1

E [Xi] = 1000 ·
(

999
1000

)1000 ≈ 367.7.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-67

10.4 Random Variables and Expectation 10-67

Taking it further: If we stated the question from Example 10.44 in full generality, we would ask: if we hash n elements into n

slots, how many empty slots are there in expectation? Using the same approach as in Example 10.44, we’d find that the fraction

of empty slots is, in expectation, (1−1/n)n. Using calculus, it’s possible to show that (1−1/n)n approaches 1/e ≈ 0.367879 as

n → ∞. So, for large n, we’d expect to have n
e empty slots when we hash n elements into n slots. We can also turn this hashing

problem on its head: we’ve been asking “if we hash n elements into n slots, how many slots do we expect to find empty?” Instead

we can ask “how many elements do we expect have to hash into n slots before all n slots are full?” This problem is called the

coupon-collector problem; see Exercises 10.138–10.139 for more.

Let’s also consider a second example about hashing—this time counting the (expected) number of

collisions, rather than the (expected) number of empty slots:

Example 10.45: Expected collisions in a hash table.

Hash n elements A = {x1, . . . , xn} into anm-slot hash table. Recall that a collision between two elements

xi and xj (for i ̸= j) occurs when h(xi) = h(xj).

1 Consider two elements xi ̸= xj. What’s Pr [there’s a collision between xi and xj]?

2 What is the expected number of collisions among the elements of A?

Solution. For the first question, note that a collision between xi and xj occurs precisely when, for some

index k, we have h(xi) = k and h(xj) = k. Thus:

Pr [collision between xi and xj]

= Pr
[[
h(xi) = h(xj) = 1

]
or
[
h(xi) = h(xj) = 2

]
or · · · or

[
h(xi) = h(xj) = m

]]

=
m∑

k=1

Pr [h(xi) = k and h(xj) = k] by the sum rule; these events are disjoint

=

m∑

k=1

Pr [h(xi) = k] · Pr [h(xj) = k] hashing assumption: hash values are independent

=

m∑

k=1

1
m · 1

m hashing assumption: hash values are uniform

=
m
m2

=
1
m
.

So the probability that a particular pair of elements collides is precisely 1
m .

Given this calculation, we can solve the second question by again computing the expected number of

collisions using indicator random variables and linearity of expectation. The number of collisions between

elements of A is precisely the number of unordered pairs {xi, xj} that collide. For indices i and j > i, then,

define Xi,j as the indicator random variable

Xi,j =





1 if xi and xj collide

0 if they do not.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-68

10-68 Probability

Thus the expected number of collisions among the elements of A is given by

E
[∑

1≤i<j≤n

Xi,j

]
summing over all unordered pairs of elements

=
∑

1≤i<j≤n

E [Xi,j] linearity of expectation

=
∑

1≤i<j≤n

1
m part 1 of this example: we showed E [Xi,j] = Pr [Xi,j = 1] = 1

m

=

(n
2

)

m
=

n(n− 1)
2m

. there are
(n
2

)
= n(n−1)

2 unordered pairs of elements

Taking it further: Example 10.45 also explains the so-called birthday paradox. We showed that the expected number of colli-

sions when we hash n elements into an m-slot hash table is n(n−1)
m . This formula suggests that we’d expect the first collision in

anm-slot hash table to occur when the number n of hashed elements reaches approximately
√
2m: for n =

√
2m+1, the expected

number of collisions would be

n(n− 1)
2m

=
(
√
2m+ 1) ·

√
2m

2m
≈ 2m

2m
= 1.

Assume that a person’s birthday is uniformly and independently chosen from the m = 365 days in the year. (Close, but not quite

true; certain parts of the year are nine months before days whose probabilities are notably more than 1
365 .) Under this assumption,

you can think of “birthday” as a random hash function mapping people to {1, 2, . . . , 365}. By Example 10.45, if you’re in a room

with more than
√
2 · 365 = 27.018 people, you’d expect to find a pair that shares a birthday. (It’s called a “paradox” because

most people’s intuition is that you’d need way more than 28 people in a room before you’d find a shared birthday.)

Two more examples of expectation: breaking PINs and Insertion Sort

Here’s another example of expectation, in a simple security context:

Example 10.46: Brute-force breaking of PINs.

I steal a debit card from a (former) friend. The card has a 4-digit PIN, between 0000 and 9999, that I need

to know to get all my friend’s money. Here are two strategies:

1 every day, I try a random PIN.

2 every day, I try a random PIN that I haven’t tried before.

How many days would I expect to wait before I get into my friend’s account?

Solution. If I’m trying a random PIN (without avoiding repeated guesses), then my probability of getting

the correct PIN on a particular day is 1
10000 . Thus we have a geometric random variable with parameter

1
10000 , so by Example 10.41 we expect to need 10000 days to break the PIN.

If I do avoid guessing the same PIN twice, I’ll be quicker. As usual, there are multiple ways to solve this

problem—and, for illustrative purposes, we’ll describe two of them, using fairly different approaches.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-69

10.4 Random Variables and Expectation 10-69

Solution A: what’s Pr [winning on the ith day]? The key will be to find the probability of breaking the

code on day i. Because we make i− 1 guesses on the i− 1 days before day i, we know

Pr [getting the PIN before day i] = i−1
10000 (1)

Pr [not getting the PIN before day i] = 1− i−1
10000 = 10001−i

10000 . (2)

Furthermore, on day i there are 10000− (i− 1) untried guesses, and so

Pr [getting the PIN on day i| not getting it before day i] = 1
10000−(i−1) =

1
10001−i . (3)

Thus the expected number of days that we have to guess is:

10000∑
i=1

i · Pr [we break the code on the ith day] definition of expectation

=
10000∑
i=1

i · Pr [wrong on days 1, . . . , i− 1] · Pr [right on day i|wrong on days 1, . . . , i− 1]

Chain Rule

=
10000∑
i=1

i · 10001−i
10000 · 1

10001−i (2) and (3), as argued above

= 1
10000 ·

10000∑
i=1

i algebra

= 1
10000 · 10000·100012 = 5000.5. arithmetic summation (Theorem 5.3)

(Another way to view this solution: our PIN-guessing strategy corresponds to choosing a permutation

of {0000, . . . , 9999} uniformly at random, and guessing in the chosen order. The correct PIN is equally

likely to be at any position in the permutation so, for any i, we require exactly i days with probability

precisely 1
10000 .)

Solution B: what’s Pr [have to guess on the ith day]? Define an indicator random variable Xi with Xi = 1

if we have to make a guess on the ith day, and Xi = 0 if we do not. Thus the number of days that we

have to guess is precisely X =
∑10000

i=1 Xi. Observe that

E [Xi] = Pr [Xi] = Pr [we guess incorrectly on all days 1, . . . , i− 1] = 10001−i
10000

by the same reasoning as in Solution A. Thus

E [X] =
10000∑
i=1

E [Xi] linearity of expectation

=
10000∑
i=1

10001−i
10000 the above argument

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-70

10-70 Probability

=
10000∑
j=1

j
10000 change of variables j = 10001− i

= 5000.5. just as in Solution A

So avoiding duplication of guesses saves, in expectation, just less than half of the days: we expect to

use 10000 days if we allow duplication, and 5000.5 days if we avoid it. (Incidentally, the argument in

Solution B is just another way of viewing the transformation from Theorem 10.18: instead of calculating

the value of
∑

i i · Pr [exactly i days], we calculated
∑

i Pr [at least i days].)

Let’s conclude with one last example of another type: analyzing the expected performance of an algo-

rithm on a randomly chosen input. In Example 6.13, we gave a brief intuition for the average-case

(expected) performance of Insertion Sort. (See Figure 10.32 for a reminder of the algorithm.) Here is a

somewhat different version of the analysis, which comes out with the same result:

Example 10.47: Expected performance of Insertion Sort.

Let the array A be a permutation of {1, . . . , n} chosen uniformly at random. What is the expected number

of swaps performed by insertionSort(A[1 . . . n])?

Solution. Define an indicator random variable Xj,i for indices j < i:

Xj,i =

{
1 if the (original) elements A[j] and A[i] are swapped by insertionSort

0 if not.

Note that E [Xj,i] = Pr [Xj,i = 1] = 1
2 : precisely half of permutations have their ith element larger than

their jth element. (There’s a bijection between the set of permutations with their ith element larger than

their jth element and the set of permutations with their ith element smaller than their jth element. Because

these sets have the same size, the probability of choosing one of the former is 1
2 .)

Because insertionSort correctly sorts its input and only swaps out-of-order pairs once per pair, the

total number of swaps done is precisely

X =

n∑

i=2

i−1∑

j=1

Xi,j.

Note that the number of indicator random variables in this sum is

n∑

i=2

i−1∑

j=1

1 =

n∑

i=2

(i− 1) =

n−1∑

i=1

i = (n−1)·n
2 =

(n
2

)
.

Thus by linearity of expectation we have E [X] =
(n
2

)
· E [Xi,j] =

(n
2

)
· 12 = n(n−1)

4 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-71

10.4 Random Variables and Expectation 10-71

insertionSort(A[1 . . . n]):

1 for i := 2 to n:
2 j := i

3 while j > 1 and A[j] < A[j− 1]:
4 swap A[j] and A[j− 1]
5 j := j− 1

Figure 10.32 A reminder of Insertion Sort.

10.4.4 Conditional Expectation

Just as we did with conditional probability in Section 10.3, we can define a notion of conditional

expectation: that is, the average value of a random variable X when a particular event occurs.

Definition 10.20: Conditional expectation.

The conditional expectation of a random variable X given an event E, denoted E [X|E], is the average

value of X over all outcomes where E occurs:

E [X|E] =
∑

x∈E

X(x) · Pr [x|E] .

In the original definition of expectation, we summed over all x in the whole sample space; here we sum only

over the outcomes in the event E. Furthermore, here we weight the value of X by Pr [x|E] rather than by

Pr [x]. We’ll omit the details, but conditional expectation has analogous properties to those of the original

(nonconditional) version of expectation, including linearity of expectation.

Example 10.48: Hearts in Poker.

In Texas Hold ’Em, a particular variant of poker, after a standard deck of cards is randomly shuffled, you

are dealt two “personal” cards, and then five “community” cards are dealt. Let P denote the number of

your personal cards that are hearts, and let C denote the number of community cards that are hearts.

1 First, some (nonconditional) expectations: what are E [P] and E [C]?

2 Second, some conditional expectations: what are the values of E [C|P = 0] and E [C|P = 2]?

Solution. Each card that’s dealt has a 13
52 = 1

4 chance of being a heart. By linearity of expectation, then,

E [P] = 2
4 = 0.5 and E [C] = 5

4 = 1.25. (Implicitly, we’re defining indicator random variables for “the

ith card is a heart,” so P = P1 + P2 and C = C1 + · · ·+ C5.)

For the conditional expectation E [C|P = 0], we know that 2 of the 39 non-heart cards were dealt as

your personal cards. (You got two personal cards, and because P = 0 neither of them was a heart.)

Thus there are still 13 undealt hearts among the remaining 50 undealt cards, so there is a 13
50 = 0.26

chance that any particular undealt card is a heart. Thus, again by linearity of expectation, we have that

E [C|P = 0] = 5 · 1350 = 1.30.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-72

10-72 Probability

Computing E [C|P = 2] is similar: there are 11 undealt hearts among the remaining 50 undealt cards,

so there is an 11
50 = 0.22 chance that any particular undealt card is a heart, and E [C|P = 2] = 5· 1150 = 1.10.

We’ll omit the proof, but it’s worth noting a useful property that connects expectation to conditional

expectation, an analogy to the law of total probability:

Theorem 10.21: Law of Total Expectation.

For any random variable X and any event E:

E [X] = E [X|E] · Pr [E] + E [X| E] · (1− Pr [E]).

That is, the expectation of X is the (weighted) average of the expectation of X when E occurs and when E

does not occur.

Taking it further: One tremendously valuable use of probability is in randomized algorithms, which flip some coins as part of

solving some problem. There is amassive variety in theways that randomization is used in these algorithms, but one example—the

computation of the median element of an unsorted array of numbers—is discussed on p. 10-78. (We’ll make use of Theo-

rem 10.21.) Median finding is a nice example of problem for which there is a very simple, efficient algorithm that makes random

choices in its solution. (There are deterministic algorithms that solve this problem just as efficiently, but they are much more

complicated than this randomized algorithm.)

10.4.5 Deviation from Expectation

Let X be a random variable. By definition, the value of E [X] is the average value that X takes on, where

we’re averaging over many different realizations. But how far away from E [X] is X, on average? That is,

what is the average difference between (a) X, and (b) the average value of X? We might care about this

quantity in applications like political polling or scientific experimentation, for example. Suppose X is a

random variable defined as follows:

X =





−1 the voter will vote for the Democratic candidate

0 the voter will vote for neither the Democratic nor Republican candidates

+1 the voter will vote for the Republican candidate

for a voter chosen uniformly at random from the population. If E [X] < 0, then the Democrat will beat the

Republican in the election; if E [X] > 0, then the Republican will beat the Democrat. We might estimate

E [X] by calling, say, 500 uniformly chosen voters from the population and averaging their responses. We’d

like to know whether our estimate is accurate (that is, if our estimate is close to E [X]). This kind of question

is the core of statistical reasoning. We’ll only begin to touch on these questions, but here are a few of the

most important concepts.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-73

10.4 Random Variables and Expectation 10-73

Definition 10.22: Variance.
Let X be a random variable. The variance of X is

var (X) = E
[
(X− E [X])2

]
.

The standard deviation is std (X) =
√

var (X).

(Exercise: why didn’t we just define std (X) = E [X− E [X]]?)

Example 10.49: Variance/standard deviation of a Bernoulli random variable.

Let X be the outcome of a flipping a p-biased coin. (That is, X is a Bernoulli random variable.) We

previously showed that E [X] = p, so the variance of X is

var (X) = E [(X− E [X])2] definition of expectation

= E [(X− p)2] expectation of a Bernoulli random variable (Example 10.37)

= Pr [X = 0] · (0− p)2 + Pr [X = 1] · (1− p)2 definition of expectation

= (1− p) · (0− p)2 + p · (1− p)2 definition of Bernoulli random variable

= (1− p)p2 + p(1− p)2

= (1− p)p · (p+ 1− p)

= (1− p)p.

Thus the standard deviation is std (X) =
√

var (X) =
√
(1− p)p.

(For example, for a fair coin, the standard deviation is
√
(1− 0.5)0.5 =

√
0.25 = 0.5: an average coin

flip is 0.5 units away from the mean 0.5. In fact, every coin flip is that far away from the mean!)

Here’s another small example, illustrating the fact that two random variables can have the same mean

but wildly different variances:

Example 10.50: Roulette bets.

Recall the game of roulette (there’s a reminder in Figure 10.33): a number in the set {0, 00, 1, 2, . . . , 36}
is chosen uniformly at random; there are 18 red numbers, 18 black numbers, and 2 numbers (0 and 00)

that are neither red nor black. Here are two bets available to a player in roulette:

Bet $1 on “red”:

You pay $1. If the spin lands on one of the 18 red numbers, you get $2 back; otherwise you get nothing.

Bet $1 on “17”:

You pay $1. If the spin lands on the number 17, you get $36 back; otherwise you get nothing.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-74

10-74 Probability

1
3

5

7
9 12

14

16
18

19
21

23

25
27 30

32

34
36

2

4
6

8

10
11

13
15

17 20

22
24

26

28
29

31
33

35

0
00

Figure 10.33 A reminder of the roulette outcomes. A number in the set {0, 00, 1, 2, . . . , 36} is chosen uniformly at
random by a spinning wheel; there are 18 red numbers {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36}
and 18 black numbers {2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35}; 0 and 00 are neither red nor
black.

Let X denote the payoff from playing the first bet, so X = 0 with probability 20
38 and X = 2 with probability

18
38 . Let Y denote the payoff from playing the second bet, so Y = 0 with probability 37

38 and X = 36 with

probability 1
38 . The expectations match:

E [X] = 20
38 · 0+ 18

38 · 2 = 36
38

and E [Y] = 37
38 · 0+ 1

38 · 36 = 36
38 .

But the variances are very different:

var (X) = 20
38 · (0− 36

38)
2
+ 18

38 · (2− 36
38)

2
= 0.9972 · · ·

var (Y) = 37
38 · (0− 36

38)
2
+ 1

38 · (36− 36
38)

2
= 33.2077 · · · .

Generally speaking, the expectation of a random variable measures “how good it is” (on average), while

the variance measures “how risky it is.”

Variance, the squared expectation, and the expectation of the square

Here’s a useful property of variance, which sometimes helps us avoid tedium in calculations. We can write

var (X) as var (X) = E [X2]− (E [X])2, that is, the difference between the expectation of the square of X and

the square of the expectation of X:

Theorem 10.23: Variance = expectation of the square minus the expectation2.

For any random variable X, we have

var (X) = E
[
X2
]
− (E [X])2 .

Proof. Writing μ = E [X], we have

var (X) = E
[
(X− μ)2

]
definition of expectation

= E
[
X2 − 2Xμ+ μ2

]
multiplying out

= E
[
X2
]
+ E [−2Xμ] + E

[
μ2
]

linearity of expectation

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-75

10.4 Random Variables and Expectation 10-75

= E
[
X2
]
− 2μ · E [X] + μ2 Exercise 10.153

= E
[
X2
]
− 2μ · μ+ μ2 definition of μ = E [X]

= E
[
X2
]
− μ2

= E
[
X2
]
− (E [X])2 .

Here is an example in which Theorem 10.23 eases the computation:

Example 10.51: Variance/standard deviation of a uniform random variable.

Let X be the result of a roll of a fair die. What is var (X)?

Solution. Because Pr [X = k] = 1
6 for all k ∈ {1, . . . , 6}, we have that

E [X] = 1
6 · (1+ 2+ 3+ 4+ 5+ 6)

= 1
6 · 21

= 3.5.

Similarly, we can compute E
[
X2
]
as follows:

E
[
X2
]
= 1

6 · (12 + 22 + 32 + 42 + 52 + 62)

= 1
6 · 91

≈ 15.1666 · · · .

Therefore, by Theorem 10.23,

var (X) = E [X2]− (E [X])2 = 91
6 − 49

4 = 35
12 ≈ 2.9116 · · · ,

and std (X) =
√

35/12 ≈ 1.7078 · · · .
(In Exercise 10.152, you’ll show that the standard deviation of the average result of two independent

dice rolls is much smaller.)

Taking it further: Suppose that we need to estimate the fraction of [very complicated objects] that have [easy-to-verify property]:

would I win a higher fraction of chess games with Opening Move A or B? Roughly how many different truth assignments satisfy

Boolean formula φ? Roughly how many integers in {2, 3, . . . , n− 1} evenly divide n? Is the array A “mostly” sorted?

One nice way to approximate the answer to these questions is the Monte Carlo method, one of the simplest ways to use ran-

domization in computation. The basic idea is to compute many random candidate elements—chess games, truth assignments,

possible divisors, etc.—and test each one; we can then estimate the answer to the question of interest by calculating the fraction

of those random candidates that have the property in question. See p. 10-76.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-76

10-76 Probability

Computer Science Connections

The Monte Carlo Method

If we need to compute some (potentially very complicated) quantity, one way to do so is the Monte Carlo method.

Let’s take a computation of area of a potentially complicated shape as an example. If we identify a bounding box (a

rectangle surrounding the shape) and then generate a sequence of random points in the bounding box, we can count

how many of those points fall into the shape in question.

Figure 10.34 A shape, and an estimate of its area with random points: we
simply estimate the area using the fraction of the chosen points that fall within
the shape. The more points, the more accurate the estimate.

For example, to find the area

of the shape in Figure 10.34, we

can throw a random point into the

bounding box. The probability that

the randomly chosen point is inside

the polygon is precisely the ratio of

the area of the polygon to the area

of the bounding box—and thus the

expected fraction of points that land

inside the shape precisely yields the

area of the shape. Of course, the

more points we throw at the bound-

ing box, the more accurate our esti-

mate of the area will be: the fraction

of heads in n flips of a p-biased coin

has a much lower variance (but the

same expectation) as n gets bigger

and bigger. (See Exercise 10.157.)

There are a few issues compli-

cating this approach. First, we must

find a bounding box for which the

shape in question covers a “large” fraction of the bounding box. (If the probability p of a random point falling into

the shape is tiny, then a little bad luck in sampling—2 points land inside instead of 3?—causes huge relative [mul-

tiplicative] error in our area estimate.) Second, we’ve described this process as choosing a uniform point from the

bounding box—which requires infinitesimal probabilities associated with each of the infinitely many points inside

the bounding box. The handle this, typically we would define a “mesh” of points: we specify a “resolution” ϵ and

choose a coordinate of a random point as k/ϵ for a random k ∈ {0, 1, . . . , 1/ϵ}.

Figure 10.35 Estimating π with a point in the square, or with Buffon’s needle.

The example in Figure 10.34 is a

nice way of being lazy—we could

have calculated the area of the poly-

gon with some tedious algebra—

but there are some other examples

in which this technique is even

more useful. Some of the simplest

methods for estimating the value of

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-77

10.4 Random Variables and Expectation 10-77

π in the last century were based on

Monte Carlo methods. One option

is to throw a point ⟨x, y⟩ into the

unit square [0, 1] × [0, 1] and test

what fraction have x2 + y2 ≤
1. Another is an algorithm called Buffon’s needle—named after an 18th-century French mathematician—in

which we throw unit-length “needles” onto a surface with parallel lines one unit apart; one can show that

Pr [a needle crosses a line] = 2
π . See Figure 10.35.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-78

10-78 Probability

Computer Science Connections

A Randomized Algorithm for Finding Medians

The median element of an array A[1 . . . n] is the item that would appear in the ⌈n/2⌉th slot of the sorted order if we

sorted A. For example, the median of [9, 7, 3, 1, 5] is 5, and the median of [4, 3, 2, 1] is 2. (We arbitrarily chose to find

the ⌈n/2⌉th element instead of the ⌊n/2⌋th.) This description already suggests a solution to the median problem: sort

A, and then return A[⌈n/2⌉]. But we can do better than the sorting-based approach: we’ll give a faster algorithm for

finding the median element of an unsorted array. Our algorithm will be randomized, and the expected running time

of the algorithm will be linear.

Perhaps a little counterintuitively, it will turn out to be easier to solve a generalization of the median problem,

called Select. (Amore general problem seems like it would be harder to solve, not easier, but solving a more general

problem recursively means that we can get more value out of our recursive calls.) Here is the Select problem:

Input: an array A[1 . . . n] and an index k ∈ {1, . . . , n}.
Output: the element x in A such that, if you were to sort A, x would appear in the kth slot of the sorted array.

(We can solve the median problem by setting k = ⌈n/2⌉.)

randSelect(A[1 . . . n], i):

Find the ith-largest

element of A. If

i /∈ {1, 2, . . . , n},
then error.

Build Losers and

Winners by going

through A

element-by-element.

1 if n = 1 then

2 return A[1]. (If i ̸= 1, then error.)

3 choose x ∈ {1, . . . , n} randomly

4 Losers[1 . . . ℓ] := {y ∈ A : y < A[x]}
5 Winners[1 . . .w] := {y ∈ A : y > A[x]}.
6 if i < ℓ+ 1 then

7 return randSelect(Losers, i)

8 else if i = ℓ+ 1 then

9 return A[x]

10 else if i > ℓ+ 1 then

11 return randSelect(Winners, i− ℓ− 1)

pivot #1

pivot #2

pivot #3

(and so forth, until only one element

remains under consideration)

In each call to

randSelect, the
algorithm chooses a

random pivot value,

and divides the other

elements by

comparing them to

the pivot

(maintaining each

group’s order). It

then makes a

recursive call on the

appropriate portion.

With a bit of care in

bookkeeping, we can

always figure out the

rank of the current

pivot in the original

array.

Figure 10.36 Randomized Select: the pseudocode, and a
visualization.

A recursive solution to Select is given in Figure

10.36. A proof of correctness of the algorithm—that

is, a proof that randSelect actually solves the Select

problem—is reasonably straightforward by induction.

(In fact, correctness is guaranteed regardless of how we

choose x in Line 3 of the algorithm.) But we still have

to analyze the running time.

Running time: the big picture. Let’s think about how

fast the algorithm might be. To do so, think about an

invocation of randSelect(A, k), and think about the

array A that it is given as input:

Now imagine the same input array, but in sorted order

and divided into quartiles:

bottom 25% middle 50% top 25%

Here are two crucial observations:

Observation #1: Suppose that the element A[x] cho-

sen in Line 3 of randSelect—call A[x] the pivot—falls

within the middle section of the sorted order above.

Then we know that |Losers| ≤ 3n
4 and |Winners| ≤ 3n

4 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-79

10.4 Random Variables and Expectation 10-79

Observation #2: The middle section of the sorted

order contains half of the elements of A. (More briefly:

half of the elements of A are in the middle half of A.)

So what? Whenever we choose an element from the middle half of the sorted order, the next recursive call is on an

array of size at most 3
4 the size of the original input. Also observe that the running time of any particular call (aside

from the recursive call) is linear in the input size.

(continued)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-80

10-80 Probability

Computer Science Connections

A Randomized Algorithm for Finding Medians, Continued

Thus, if we got lucky every time and unfailingly picked an element from the middle half of the array, we’d have a

recurrence like the following:

T(1) = 1 T(n) ≤ n+ T(3n/4)

That’s a classic divide-and-conquer recurrence with a solution of T(n) = Θ(n). (Actually Theorem 6.21—the theo-

rem that addressed divide-and-conquer recurrences—only says that T(n) = O(n), because we have an inequality in

the recurrence, rather than an equality. But the running time is definitely Ω(n) as well, because just building Losers

and Winners at the root takes Ω(n) time.)

Running time: making it formal.We engaged in a bit of wishful thinking in the above analysis: it’s obviously not true

that we get a pivot in the middle half of the array every time. In fact, it’s only half the time! But this isn’t so bad: even

if we imagine that picking a pivot outside the middle half yields zero progress at all toward the base case, we’d only

double the estimate of the running time! Let’s make this formal. Define

Cn = the number of comparisons performed by randSelect on an input of size n.

Cn is a random variable: the number of comparisons performed depends on which pivots are chosen. But we can

analyze E [Cn]. (Before we start, one quick observation: the expected running time of this algorithm is monotonic in

its input size; that is, E [Cn] ≤ E [Cn′] if n ≤ n′. This fact is tedious to prove rigorously, but is still not too surprising.)

Theorem: The number of comparisons Cn performed by randSelect(A[1 . . . n], k) satisfies E [Cn] ≤ 8n.

Proof (by strong induction on n). For the base case (n = 1), the algorithm goes into the base case of its recursion

when n = 1, and thus performs zero comparisons—and indeed 0 ≤ 8.

For the inductive case (n ≥ 2), we assume the inductive hypothesis, namely that for any n′ < n, we have that

E
[
C′
n

]
≤ 8n′. We must prove that E [Cn] ≤ 8n. Let’s consider the comparisons that are made on an input array of size

n. First, there are n comparisons performed in Lines 4–5, to compute Losers and Winners. Then there are whatever

comparisons are made in the recursive call. Because we’re trying to compute a worst-case bound, we’ll make do

with the following observation: Cn ≤ n+ Cmax(|Losers|,|Winners|). (That is, we can’t do worse than whichever “half” is

larger.) Let M denote the event that our pivot is in the middle half of A’s sorted order. Thus:

E [Cn] ≤ E
[
n + Cmax(|Losers|,|Winners|)

]
the above accounting of the comparisons

= n + E
[
Cmax(|Losers|,|Winners|)

]
linearity of expectation

= n + E
[
Cmax(|Losers|,|Winners|)|M

]
· Pr [M] + E

[
Cmax(|Losers|,|Winners|)| M

]
· Pr

[
M

]

Law of Total Expectation (Theorem 10.21)

= n+ 1
2 ·

[
E
[
Cmax(|Losers|,|Winners|)|M

]
+ E

[
Cmax(|Losers|,|Winners|)| M

]]

Crucial observation #2: Pr [M] = Pr
[
M

]
= 1

2

≤ n+ 1
2 ·

[
E
[
C3n/4

]
+ E [Cn]

]
.

Crucial observation #1: if M occurs, we recurse on ≤ 3n
4 elements; else it’s certainly on ≤ n elements.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-81

10.4 Random Variables and Expectation 10-81

Thus we have argued that

E [Cn] ≤ n+ 1
2 · E

[
C3n/4

]
+ 1

2 · E [Cn] and therefore

E [Cn] ≤ 2n+ E
[
C3n/4

]
. starting with the previous inequality and subtracting 1

2 · E [Cn] from both sides, and then multiplying both sides by 2

The inductive hypothesis says that E
[
C3n/4

]
≤ 8 · 3n

4 = 6n, so we therefore have

E [Cn] ≤ 2n+ 6n = 8n.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-82

10-82 Probability

EXERCISES

Choose a word in S = {Computers, are, useless, They, can, only, give, you, answers} (a quote attributed to Pablo Picasso)
by choosing a word w with probability proportional to the number of letters in w. Let L be a random variable denoting the number

of letters in the chosen word, and let V be a random variable denoting the number of vowels.

10.106 Give a table of outcomes and their probabilities, together with the values of L and V.

10.107 What is Pr [L = 4]? What is E [V|L = 4]?

10.108 Are L and V independent?

10.109 What are E [L] and E [V]?

10.110 What is var (L)?

10.111 What is var (V)?

Flip a fair coin 16 times. Define the following two random variables:

• let H be an indicator random variable that’s 1 if at least one of the 16 flips comes up heads, and 0 otherwise.

• let R be a random variable equal to the length of the longest “run” in the flips. (A run of length k is a sequence of k consecutive

flips that all come up Heads, or k consecutive flips that all come up Tails.)

10.112 What’s E [H]?

10.113 What’s E [R]? (Hint: write a program—not by simulating many sequences of 16 coin flips, but rather by listing exhaustively all

outcomes.)

10.114 Are H and R independent?

In 1975, a physicist named Michael Winkelmann invented a dice-based game with the following three (fair) dice.

Blue die: sides 1, 2, 5, 6, 7, 9 Red die: sides 1, 3, 4, 5, 8, 9 Black die: sides 2, 3, 4, 6, 7, 8

There are some weird properties of these dice, as you’ll see.

10.115 Choose one of the three dice at random, roll it, and call the result X. Show that Pr [X = k] = 1
9 for any k ∈ {1, . . . , 9}.

10.116 Choose one of the three dice at random, roll it, and call the result X. Put that die back in the pile and again (independently) choose

one of the three dice at random, roll it, and call the result Y. Show that Pr [9X− Y = k] = 1
81 for any k ∈ {0, . . . , 80}.

10.117 Roll each die. Call the results B (blue), R (red), and K (black). Compute E [B], E [R], and E [K].

10.118 Define B, R, and K as in the last exercise. Compute Pr [B > R|B ̸= R], Pr [R > K|R ̸= K], and Pr [K > B|K ̸= B]—in particular,

show that all three of these probabilities (strictly) exceed 1
2 .

Exercise 10.118 demonstrates that the red, blue, and black dice are nontransitive, using the language of relations (Chapter 8):

you’d bet on Blue beating Red and you’d bet on Red beating Black, but (surprisingly) you’d want to bet on Black beating Blue.

Here’s another, even weirder, example of nontransitive dice. (And if you’re clever and mildly unscrupulous, you can win some

serious money in bets with your friends using these dice.)

Kelly die: sides 3, 3, 3, 3, 3, 6 Lime die: sides 2, 2, 2, 5, 5, 5 Mint die: sides 1, 4, 4, 4, 4, 4

These dice are fair; each side comes up with probability 1
6 . Roll each die, and call the resulting values K, L, and M.

10.119 Show that the expectation of each of these three random variables is identical.

10.120 Show that Pr [K > L], Pr [L > M], and Pr [M > K] are all strictly greater than 1
2 .

10.121 You can think of Exercise 10.120 as showing that, if you had to bet on which of K or L would roll a higher number, you should bet

on K. (And likewise for L overM, and forM over K.) Now let’s think about rolling each die twice and adding the two rolled values

together. Roll each die twice, and call the resulting values K1, K2, L1, L2, M1, and M2, respectively. Show that the expectation of

the three values K1 + K2, L1 + L2, and M1 +M2 are identical.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-83

Exercises 10-83

10.122 (programming required.)With K1, K2, L1, L2,M1, andM2 defined as in the previous exercise, show that the following probabilities

are all strictly less than 1
2 , by writing a program to check how many of the 64 outcomes cause K1 + K2 > L1 + L2, etc.:

Pr [K1 + K2 > L1 + L2] , Pr [L1 + L2 > M1 +M2] , and Pr [M1 +M2 > K1 + K2] .

(Notice that which die won switched directions—and all we did was go from rolling the dice once to rolling them twice!)

You are dealt a 5-card hand from a standard deck. For the next two exercises, define a pair as any two cards with the same rank—-so

♣A♡A♢A23 contains three pairs (♡A♢A and ♣A♢A and ♣A♡A). Let P denote the number of pairs in your hand.

10.123 Compute E [P] “the hard way,” by computing Pr [P = 0], Pr [P = 1], Pr [P = 2], and so forth. (There can be as many as 6 pairs in

your hand, if you have four-of-a-kind.)

10.124 Compute E [P] “the easy way,” by defining an indicator random variable Ri,j that’s 1 if and only if cards #i and #j are a pair,

computing E
[
Ri,j

]
, and using linearity of expectation.

In bridge, you are dealt a 13-card hand from a standard deck. A hand’s high-card points are awarded for face cards: 4 for an ace,

3 for a king, 2 for a queen, and 1 for a jack. A hand’s distribution points are awarded for having a small number of cards in a

particular suit: 1 point for a “doubleton” (only two cards in a suit), 2 points for a “singleton” (only one card in a suit), and 3

points for a “void” (no cards in a suit).

10.125 What is the expected number of high-card points in a bridge hand? (Hint: define some simple random variables, and use linearity

of expectation.)

10.126 What is the expected number of distribution points for hearts in a bridge hand? (Hint: calculate the probability of having exactly

2 hearts, exactly 1 heart, or no hearts in a hand.)

10.127 Using the results of the last two exercises and linearity of expectation, find the expected number of points (including both high-card

and distribution points) in a bridge hand.

10.128 Consider a random variable X : S → R. Definition 10.17 defined the expectation of X in two different ways:

E [X] =
∑

x∈S

X(x) · Pr [x] and E [X] =
∑

y∈R
(y · Pr [X = y]) .

Argue that these two formulations are equivalent.

10.129 We’ve shown linearity of expectation—the expectation of a sum equals the sum of the expectations—even when the random

variables in question aren’t independent. It turns out that the expectation of a product equals the product of the expectations when

the random variables are independent, but not in general when they’re dependent. Let X and Y be independent random variables.

Prove that E [X · Y] = E [X] · E [Y].
10.130 On the other hand, suppose that X and Y are dependent random variables. Prove that E [X · Y] is not necessarily equal to E [X] · E [Y].
10.131 Suppose that X and Y are dependent random variables. Prove that E [X · Y] is also not necessarily unequal to E [X] · E [Y].

10.132 Example 10.41 showed that the expected number of flips of a p-biased coin before we get Heads is precisely 1
p . How many flips

would you expect to have to make before you see 1000 heads in total (not necessarily consecutive)? (Hint: define a random variable

Xi denoting the number of coin flips after the (i− 1)st Heads before you get another Heads. Then use linearity of expectation.)

10.133 How many flips would you expect to make before you see two consecutive heads?

In Insertion Sort, we showed in Example 10.47 that the expected number of swaps is
(n
2

)
/2 for a randomly sorted input. With respect

to comparisons, it’s fairly easy to see that each element participates in one more comparison than it does swap—with one exception:

those elements that are swapped all the way back to the beginning of the array. Here you’ll precisely analyze the expected number

of comparisons.

10.134 What is the probability that the ith element of the array is swapped all the way back to the beginning of the array?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-84

10-84 Probability

10.135 What’s the expected number of comparisons done by Insertion Sort on a randomly sorted n-element input?

Suppose we hash n elements into an 100,000-slot hash table, resolving collisions by chaining.

10.136 Use Example 10.45 to identify the smallest n for which the expected number of collisions first reaches 1. What the smallest n for

which the expected number of collisions exceeds 100,000?

10.137 (programming required.) Write a program to empirically test your answers from the last exercise, by doing k = 1000 trials of

loading [your first answer from Exercise 10.136] elements into a 100,000-slot hash table. Also do k = 100 trials of loading [your

second answer from Exercise 10.136] elements. On average, how many collisions did you see?

Consider an m-slot hash table that resolves collisions by chaining. In the next few problems, we’ll figure out the expected number

of elements that must be hashed into this table before every slot is “hit”—that is, until every cell of the hash table is full.

(The problem you’ll address in the next two exercises is called the coupon collector problem among computer scientists: imagine,

say, a cereal company that puts one of n coupons into each box of cereal that it sells, choosing which coupon type goes into each

box randomly. How many boxes of cereal must a serial cereal eater buy before he collects a complete set of the n coupons?)

10.138 Suppose that the hash table currently has i − 1 filled slots, for some number i ∈ {1, . . . ,m}. What is the probability that the next

element that’s hashed falls into an unoccupied slot? Let the random variable Xi denote the number of elements that are hashed until

one more cell is filled. What is E [Xi]?

10.139 Argue that the total numberX of elements hashed before the entire hash table is full is given byX =
∑m

i=1 Xi. Using Exercise 10.138

and linearity of expectation, prove that E [X] = m · Hm. (Recall that Hm denotes the mth harmonic number, where Hm =
∑m

i=1
1
i .

See Definition 5.8.)

True story: some nostalgic friends and I were trying to remember all of the possible responses on a Magic 8 Ball, a pseudopsychic

toy that reveals one of 20 answers uniformly at random when it’s shaken—things like {ask again later, signs point to yes, don’t

count on it, . . .}. We found a toy shop with a Magic 8 Ball in stock and started asking it questions. We hoped to have learned all

20 different answers before we got kicked out of the store.

10.140 What is the probability that we’d get 20 different answers in our first 20 trials?

10.141 In expectation, how many trials would we need before we found all 20 answers? (Use the result on coupon collecting from

Exercise 10.139.)

10.142 In Exercise 10.141, you determined the number of trials that, on average, are necessary to get all 20 answers. But how likely are

we to succeed with a certain number of trials? Suppose we perform 200 trials. What is the probability that a particular answer (for

example, “ask again later”) was never revealed in any of those 200 trials?

10.143 Use the Union Bound (Exercise 10.37) and the previous exercise to argue that the probability that we need more than 200 trials to

see all 20 answers is less than 0.1%.

10.144 Suppose that one random bit in a 32-bit number is corrupted (that is, flipped from 0 to 1 or from 1 to 0). What is the expected size

of the error (thinking of the change of the value in binary)? What about for a random bit in an n-bit number?

10.145 Suppose that the numbers {1, . . . , n} are randomly ordered—that is, we choose a random permutation π of {1, . . . , n}. For a

particular index i, what is the probability that πi = i—that is, the ith biggest element is in the ith position?

10.146 Let X be a random variable denoting the number of indices i for which πi = i. What is E [X]? (Hint: define indicator random

variables and use linearity of expectation.)

10.147 Markov’s inequality states that, for a random variable X that is always nonnegative (that is, for any x in the sample space, we have

X(x) ≥ 0), the following statement is true, for any α ≥ 1:

Pr [X ≥ α] ≤ E [X]
α

.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-85

Exercises 10-85

Prove Markov’s inequality. (Hint: use conditional expectation.) (Markov’s inequality is named after Andrey Markov (1856–1922),

a Russianmathematician. A number of other important ideas in probability are also named after him, likeMarkov processes, Hidden

Markov models, and more.)

10.148 The median of a random variable X is a value x such that

Pr [X ≤ x] ≥ 1
2 and Pr [X ≥ x] ≥ 1

2 .

Using Markov’s inequality, prove that the median of a nonnegative random variable X is at most 2 · E [X].

Take a fair coin, and repeatedly flip it until it comes up heads. Let K be a random variable indicating the number of flips performed.

(We’ve already shown that E [K] = 2, in Example 10.41.) You are offered a chance to play a gambling game, for the low low price of

y dollars to enter. A fair coin will be flipped until it comes up heads, and you will be paid (3/2)K dollars if K flips were required. (So

there’s a 1
2 chance that you’ll be paid $1.50 because the first flip comes up heads; a 1

4 chance that you’ll be paid $2.25 = (1.50)2

because the first flip comes up tails and the second comes up heads, and so forth.)

10.149 Assuming that you care only about expected value—that is, you’re willing to play if and only if E [(3/2)K] ≥ y—then what value

of y is the break-even point? (In other words, what is E [(3/2)K]?)

10.150 Let’s sweeten the deal slightly: you’ll be paid 2K dollars if K flips are required. Assuming that you still care only about expected

value, then what value of y is the break-even point? (Be careful!)

10.151 Let X be the number of heads flipped in 4 independent flips of a fair coin. What is var (X)?

10.152 Let Y be the average of two independent rolls of a fair die. What is var (Y)?

10.153 Let a ∈ R, and let X be a random variable. Prove that E [a · X] = a · E [X].
10.154 Let a ∈ R, and let X be a random variable. Prove that var (a · X) = a2 · var (X).
10.155 Prove that var (X+ Y) = var (X) + var (Y) for two independent random variables X and Y. (Hint: use Exercise 10.129.)

10.156 Let X be a random variable following a binomial distribution with parameters n and p. (That is, X is the number of heads found in n

flips of a p-biased coin.) Using Exercise 10.155 and the logic as in Example 10.42, show that E [X] = np and var (X) = np(1− p).

10.157 Flip a p-biased coin n times, and let Y be a random variable denoting the fraction of those n flips that came up heads. What are E [Y]

and var (Y)?

In the next few exercises, you’ll find the variance of a geometric random variable. This derivation will require a little more work

than the result from Exercise 10.156 (about the variance of a binomial random variable); in particular, we’ll need a preliminary

result about summations first:

10.158 (Calculus required.) Prove the following two formulas, for any real number r with 0 ≤ r < 1:

∞∑

i=0

iri =
r

(1− r)2

∞∑

i=0

i2ri =
r(1+ r)
(1− r)3

.

(Hint: use the geometric series formula
∑n

i=0 r
i = rn+1−1

r−1 from Theorem 5.5, differentiate, and take the limit as n grows. Repeat

for the second derivative.)

10.159 Let X be a geometric random variable with parameter p. (That is, X denotes the number of flips of a p-biased coin we need before

we see heads for the first time.) What is var (X)? (Hint: compute both E [X]2 and E
[
X2

]
. The previous exercise will help with at

least one of those computations.)

Recall from Chapter 3 that a proposition is in 3-conjunctive normal form (3CNF) if it is the conjunction of clauses, where each

clause is the disjunction of three different variables/negated variables. For example,

(¬p ∨ q ∨ r) ∧ (¬q ∨ ¬r ∨ x)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-86

10-86 Probability

is in 3CNF. Recall further that a proposition φ is satisfiable if it’s possible to give a truth assignment for the variables of φ to

true/false so that φ itself turns out to be true. We’ve previously discussed that it is believed to be computationally very difficult

to determine whether a proposition φ is satisfiable (see p. 3-32)—and it’s believed to be very hard to determine whether φ is

satisfiable even if φ is in 3CNF. But you’ll show here an easy way to satisfy “most” clauses of a proposition φ in 3CNF, using

randomization.

10.160 Let φ be a proposition in 3CNF. Consider a random truth assignment for φ—that is, each variable is set independently to True

with probability 1
2 . Prove that a particular clause of φ is true under this truth assignment with probability ≥ 7

8 .

10.161 Suppose thatφ has m clauses and n variables. Prove that the expected number of satisfied clauses under a random truth assignment

is at least 7m
8 .

10.162 Prove the following general statement about any random variable: Pr [X ≥ E [X]] > 0. (Hint: use conditional expectation.) Then,

using this general fact and Exercise 10.161, argue that, for any 3CNF proposition φ, there exists a truth assignment that satisfies

at least 7
8 of φ’s clauses.

(Although we won’t prove it here, one can also show that there’s a very good chance—at least 8/m—that a random truth assignment

satisfies at least 7m/8 clauses, and therefore we expect to find such a truth assignment within m/8 random trials. This algorithm

is called Johnson’s algorithm, named after David Johnson (1945–2016). For the details on this algorithm and other approaches to

satisfiability, see a good book on randomized algorithms, like [90] or [93].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-87

10.5 Chapter at a Glance 10-87

10.5 Chapter at a Glance

Probability, Outcomes, and Events

Imagine a process by which some quantities of interest are determined in some random way. An outcome,

or realization, of this probabilistic process is the sequence of results for all randomly determined quantities.

The sample space S is the set of all possible outcomes. A probability function Pr : S → R describes, for

each outcome s ∈ S, the fraction of the time that s occurs. The probability function Pr must satisfy two

conditions: (i)
∑

s∈S Pr [s] = 1, and (ii) Pr [s] ≥ 0 for every s ∈ S.

An event is a subset of S, and the probability of an event E, written Pr [E], is the sum of the probabilities

of all of the individual outcomes contained in E. We have that Pr [S] = 1 and Pr [∅] = 0. For events

A and B, writing A (“not A”) to denote the event A = S − A, we have that Pr [A] = 1 − Pr [A], and

Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].

We can use a tree diagram to represent a sequence of random choices, where internal nodes of the tree

correspond to random decisions made by the probabilistic process and where leaves correspond to the

outcomes in the sample space. Every edge leaving an internal node is labeled with the probability of the

corresponding random decision; the probability of a particular outcome is precisely equal to the product

of the labels on the edges leading from the root to its corresponding leaf.

The uniform distribution is the probability distribution in which all outcomes in the sample space S are

equally likely—that is, when Pr [s] = 1
|S| for each s ∈ S. (Nonuniform probability is when this equality

does not hold.)

The Bernoulli distribution with parameter p is the probability distribution that results from flipping one

coin, where the sample space is {H,T} and Pr [H] = p (and thus Pr [T] = 1 − p). Such a coin is called

p-biased. Each coin flip is called a trial; the flip is called fair if p = 1
2 .

The binomial distribution with parameters n and p is a distribution over the sample space {0, 1, . . . , n}
determined by flipping a p-biased coin n times and counting the number of times the coin comes up heads.

Here Pr [k] =
(n
k

)
· pk · (1− p)n−k denotes the probability that there are precisely k heads in the n flips.

The geometric distribution with parameter p is a distribution over the positive integers, where the out-

put is determined by the number of flips of a p-biased coin required before we first see a heads; thus

Pr [k] = (1− p)k−1 · p for any integer k ≥ 1.

Independence and Conditional Probability

When there are multiple events of interest, then one useful way understanding the relationship between two

events is to understand whether one event’s occurrence changes the likelihood of the other event also occur-

ring. When there’s no change, the events are called independent; when there is a change in the probability,

the events are called dependent. More formally, two events A and B are independent (or uncorrelated) if

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-88

10-88 Probability

and only if Pr [A ∩ B] = Pr [A] ·Pr [B]. Otherwise the events A and B are called dependent (or correlated).

Intuitively, A and B are dependent if A’s occurrence/nonoccurrence tells us something about whether B

occurs. When knowing that A occurred makes B more likely to occur, we say that A and B are positively

correlated; when A makes B less likely to occur, we say that A and B are negatively correlated.

The conditional probability of A given B is

Pr [A|B] = Pr [A ∩ B]
Pr [B]

.

(Treat Pr [A|B] as undefined when Pr [B] = 0.) Intuitively, we can think of Pr [A|B] as “zooming” the

universe down to the set B. Two events A and B for which Pr [B] ̸= 0 are independent if and only if

Pr [A|B] = Pr [A].

Events A and B are called conditionally independent given a third event C if Pr [A|B ∩ C] = Pr [A|C].
There are a few useful equivalences based on conditional probability. For any events A and B, the chain

rule says that Pr [A ∩ B] = Pr [B] · Pr [A|B]; more generally,

Pr [A1 ∩ A2 ∩ · · · ∩ Ak] = Pr [A1] · Pr [A2|A1] · Pr [A3|A1 ∩ A2] · · · · · Pr [Ak|A1 ∩ · · · ∩ Ak−1] .

The law of total probability says that Pr [A] = Pr [A|B] · Pr [B] + Pr [A| B] · Pr [B].

Bayes’ Rule is a particularly useful rule that allows us to “flip around” a conditional probability

statement: for any two events A and B, we have

Pr [A|B] = Pr [B|A] · Pr [A]
Pr [B]

.

Random Variables and Expectation

The probabilistic statements that we’ve considered so far are about events (“whether or not” questions); we

can also consider probabilistic questions about “howmuch” or “how often.” A random variable X assigns a

numerical value to every outcome in the sample space S—that is, a random variable is a functionX : S→ R.

(Often we write X to denote the value of a random variable X for a realization chosen according to Pr, or

perform arithmetic on random variables.) An indicator random variable is a {0, 1}-valued random variable.

Two random variables X and Y are independent if every two events of the form “X = x” and “Y = y” are

independent.

The expectation of a random variable X, denoted E [X], is the average value of X, defined as

E [X] =
∑

x∈S X(x) · Pr [x]. A Bernoulli random variable with parameter p has expectation p. A binomial

random variable with parameters p and n has expectation pn. A geometric random variable with parameter

p has expectation 1
p .

Linearity of expectation is the very useful fact that the expectation of a sum is the sum of the expectations.

That is, for random variables X : S→ R and Y : S→ R, we have E [X+ Y] = E [X]+E [Y]. (Note that there

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-89

10.5 Chapter at a Glance 10-89

is no requirement of independence on X and Y!) Another useful fact is that, for a positive integer–valued

random variable X : S→ Z≥0, we have E [X] =
∑∞

i=1 Pr [X ≥ i].

The conditional expectation of a random variable X given an event E is the average value of X over

outcomes where E occurs, defined as E [X|E] =∑x∈E X(x) · Pr [x|E].
The variance of a random variable X is

var (X) = E
[
(X− E [X])2

]
= E

[
X2
]
− (E [X])2 .

The standard deviation is std (X) =
√

var (X).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-10-90

10-90 Probability

Key Terms and Results

Key Terms

Probability, Outcomes, and Events

• outcome/realization

• sample space

• probability function/distribution

• event

• tree diagram

• uniform vs. nonuniform probability

• fair vs. biased coin flips

• uniform distribution

• Bernoulli distribution

• binomial distribution

• geometric distribution

Independence and Conditional

Probability

• independent/uncorrelated events

• dependent/correlated events

• positive/negative correlation

• conditional probability

• conditional independence

• chain rule

• law of total probability

• Bayes’ Rule

Random Variables and Expectation

• random variable

• indicator random variable

• independent random variables

• expectation

• linearity of expectation

• conditional expectation

• variance

• standard deviation

Key Results

Probability, Outcomes, and Events

1 For a sample space S and events A and B, writing A

(“not A”) to denote the event S− A, we have that

Pr [S] = 1, Pr [∅] = 0, Pr [A] = 1− Pr [A], and

Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].

2 Under the uniform distribution, Pr [s] = 1
|S| for every

s ∈ S. Consider parameters p and n. Under a Bernoulli

distribution, Pr [H] = p and Pr [T] = 1− p. Under a

binomial distribution, Pr [k] =
(n
k

)
pk(1− p)n−k. Under a

geometric distribution, Pr [k] = (1− p)k−1p.

Independence and Conditional Probability

1 Events A and B are independent if and only if

Pr [A ∩ B] = Pr [A] · Pr [B], or, equivalently, if
Pr [A|B] = Pr [A].

2 The chain rule: Pr [A ∩ B] = Pr [B] · Pr [A|B].
3 The law of total probability:

Pr [A] = Pr [A|B] · Pr [B] + Pr [A| B] · Pr [B].

4 Bayes’ Rule: Pr [A|B] = Pr[B|A]·Pr[A]
Pr[B] .

Random Variables and Expectation

1 The expectation of a random variable X is the average

value of X, defined as E [X] =
∑

x∈S X(x) · Pr [x].
2 A Bernoulli random variable with parameter p has

expectation p. A binomial random variable with

parameters p and n has expectation pn. A geometric

random variable with parameter p has expectation 1
p .

3 Linearity of expectation: for any two random variables X

and Y, we have E [X+ Y] = E [X] + E [Y]. (Note that

there is no requirement of independence on X and Y!)

4 For a random variable X : S→ Z≥0, we have that

E [X] =
∑∞

i=1 Pr [X ≥ i].

5 For a random variable X, we have

var (X) = E
[
(X− E [X])2

]
= E

[
X2
]
− (E [X])2 .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

