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Probability

In which our heroes evade threats and conquer their fears by flipping coins,
rolling dice, and spinning the wheels of chance.
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1002 CHAPTER 10. PROBABILITY

10.1 Why You Might Care
Fortune can, for her pleasure, fools advance,
And toss them on the wheels of Chance.

Juvenal (c. 55-–c. 127)

This chapter introduces probability, the study of randomness. Our focus, as will be
no surprise by this point of the book, is on building a formal mathematical framework
for analyzing random processes. We’ll begin with a definition of the basics of probabil-
ity: defining a random process that chooses one particular outcome from a set of pos-
sibilities (any one of which occurs some fraction of the time). We’ll then analyze the
likelihood that a particular event occurs—in other words, asking whether the chosen
outcome has some particular property that we care about. We then consider indepen-
dence and dependence of events, and conditional probability: how, if at all, does knowing
that the randomly chosen outcome has one particular property change our calculation
of the probability that it has a different property? (For example, perhaps 90% of all
email is spam. Does knowing that a particular email contains the word ENLARGE make
that email more than 90% likely to be spam?) Finally, we’ll turn to random variables and
expectation,which give quantitative measurements of random processes: for example,
if we flip a coin 1000 times, how many heads would we see (on average)? How many
runs of 10 or more consecutive heads? Probabilistic questions are surprisingly difficult
to have good intuition about; the focus of the chapter will be on the tools required to
rigorously settle these questions.

Probability is relevant almost everywhere in computer science. One broad appli-
cation is in randomized algorithms to solve computational problems. In the same way
that the best strategy to use in a game of rock–paper–scissors involves randomness
(throw rock 1

3 of the time, throw paper 1
3 of the time, throw scissors 1

3 of the time),
there are some problems—for example, finding the median element of an unsorted
array, or testing whether a given large integer is a prime number—for which the best
known algorithm (the fastest, the simplest, the easiest to understand, . . . ) proceeds by
making random choices. The same idea occurs in data structures: a hash table is an ex-
cellent data structure for many applications, and it’s best when it assigns elements to
(approximately) random cells of a table. (See Section 10.1.1.) Randomization can also
be used for symmetry breaking: we can ensure that 1000 identical drones do not clog the
airwaves by all trying to communicate simultaneously: each drone will choose to try to
communicate at a random time. And we can generate more realistic computer graph-
ics of flame or hair or, say, a field of grass by, for each blade, randomly perturbing the
shape and configuration of an idealized piece of grass.

As a rough approximation, we can divide probabilistic applications in CS into two
broad categories: those uses in which the randomness is internally generated by our
algorithms or data structures, and those cases in which the randomness comes “from
the outside.” The first type we discussed above. In the latter category, consider circum-
stances in which we wish to build some sort of computational model that addresses
some real-world phenomenon. For example, we might wish to model social behavior
(a social network of friendships), or traffic on a road network or on the internet, or to
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10.1. WHY YOU MIGHT CARE 1003

build a speech recognition system. Because these applications interact with extremely
complex real-world behaviors, we will typically think of them as being generated ac-
cording to some deterministic (nonrandom) underlying rule, but with hard-to-model
variation that is valuably thought of as generated by a random process. In systems
for speech recognition, it works well to treat a particular “frame” of the speech stream
(perhaps tens of milliseconds in duration) as a noisy version of the sound that the
speaker intended to produce, where the noise is essentially a random perturbation of
the intended sound.

Finally, you should care about probability because any well-educated person must
understand something about probability. You need probability to understand political
polls, weather forecasting, news reports about medical studies, wagers that you might
place (either with real money or by choosing which of two alternatives is a better
option), and many other subjects. Probability is everywhere!

10.1.1 Hashing: A Running Example
Throughout this chapter, we will consider a running sequence of examples that are
about hash tables, a highly useful data structure that also conveniently illustrates a wide
variety of probabilistic concepts. So we’ll start here with a short primer on hash tables.
(See also p. 267, or a good textbook on data structures.)

A hash table is a data structure that stores a set of elements in a table T[1 . . .m]—
that is, an array of size m. (Remember that, throughout this book, arrays are indexed
starting at 1, not 0.) The set of possible elements is called the universe or the keyspace.
We will be asked to store in this table a particular small subset of the keyspace. (For
example, the keyspace might be the set of all 8-letter strings; we might be asked to
store the user IDs of all students on campus.) We use a hash function h to determine in
which cell of the table T[1 . . .m] each element will be stored. The hash function h takes
elements of the keyspace as input, and produces as output an index identifying a cell
in T. To store an element x in T using hash function h, we compute h(x) and place x
into the cell T[h(x)]. (We say that the element x hashes to the cell T[h(x)].)

We must somehow handle collisions, when we’re asked to store two different ele-
ments that hash to the same cell of T. We will usually consider the simplest solution,
where we use a strategy called chaining to resolve collisions. To implement chaining,
we store all elements that hash to a cell in that cell, in an unsorted list. Thus, to find
whether an element y is stored in the hash table T, we look one-by-one through the list
of elements stored in T[h(y)].

Example 10.1 (A small hash table)
Let the keyspace be {1, 2, 3, 4}, and consider a 2-cell hash table with the hash function
h given by h(x) = (x mod 2) + 1. (Thus h(1) = h(3) = 2 and h(2) = h(4) = 1.)

• If we store the elements {1, 4}, then the table would be
T[1] T[2]

[4] [1] .

• If we store the elements {2, 4}, then the table would be [2, 4] [] .
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1004 CHAPTER 10. PROBABILITY

More formally, we are given a finite set K called the keyspace, and we are also given
a positive integer m representing the table size. We will base the data structure on a
hash function h : K → {1, . . . ,m}. For the purposes of this chapter, we choose h ran-
domly, specifically choosing the hash function so that each function from K to {1, . . . ,m}
is equally likely to be chosen as h.

Let’s continue our above example with a randomly chosen hash function. For the
moment, we’ll treat the process of randomly choosing a hash function informally. (The
precise definitions of what it means to choose randomly, and what it means for certain
“events” to occur, will be defined in the following sections.)

h(
1)

h(
2)

h(
3)

h(
4)

1 1 1 1 A
1 1 1 2
1 1 2 1 A
1 1 2 2 B
1 2 1 1 A
1 2 1 2 B
1 2 2 1 AB
1 2 2 2
2 1 1 1
2 1 1 2 AB
2 1 2 1 B
2 1 2 2 A
2 2 1 1 B
2 2 1 2 A
2 2 2 1
2 2 2 2 A C

Figure 10.1: All
functions from
{1, 2, 3, 4} to {1, 2}.
Each row is a differ-
ent function h; the
ith column records
the value of h(i).
The letters mark
some functions
as described in
Example 10.2.

Example 10.2 (A small hash table)
As before, let K = {1, 2, 3, 4} and m = 2. There are m|K| = 24 = 16 different functions
h : K → {1, 2}, and each of these functions is equally likely to be chosen. (The
functions are listed in Figure 10.1.) Each of these functions is chosen a 1

16 fraction of
the time. Thus:

• a 8
16 = 1

2 fraction of the time, we have h(4) = h(1).
(These functions are marked with an ‘A’ in Figure 10.1.)

• a 6
16 = 3

8 fraction of the time, the hash function is “perfectly balanced”—that is,
hashes an equal share of the keys to each cell.
(These functions are marked with a ‘B’ in Figure 10.1.)

• a 1
16 fraction of the time, the hash function hashes every element of K into cell #2.

(This one function is marked with a ‘C’ in Figure 10.1.)

Taking it further: In practice, the function h will not be chosen completely at random, for a variety
of practical reasons (for example, we’d have to write down the whole function to remember it!), but
throughout this chapter we will model hash tables as if h is chosen completely randomly. The assump-
tion that the hash function is chosen randomly, with every function K → {1, 2, . . . ,m} equally likely to be
chosen, is called the simple uniform hashing assumption. It is very common to make this assumption when
analyzing hash tables.

It may be easier to think of choosing a random hash function using an iterative process instead: for
every key x ∈ K, we choose a number ix uniformly at random and independently from {1, 2, . . . ,m}. (The
definitions of “uniformly” and “independently” are coming in the next few sections. Informally, this de-
scription means that each number in {1, 2, . . . ,m} is equally likely to be chosen as ix , regardless of what
choices were made for previous numbers.) Now define the function h as follows: on input x, output ix .
One can prove that this process is completely identical to the process illustrated in Example 10.2: write
down every function from K to {1, 2, . . . ,m} (there are m|K| of them), and pick one of these functions at
random.

After we’ve chosen the hash function h, a set of actual keys {x1, . . . , xn} ⊆ K will
be given to us, and we will store the element xi in the table slot T[h(xi)]. Notice that
the only randomly determined quantity is the hash function h. Everything else—the
keyspace K, the table size m, and the set of to-be-stored elements—is fixed.
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10.2 Probability, Outcomes, and Events
Anyone who does not know how to make the most of
his luck has no right to complain if it passes by him.

Miguel de Cervantes (1547–1616)

This section will give formal definitions of the fundamental concepts in probability,
giving us a framework to use in thinking about the many computational applications
that involve chance. These definitions are somewhat technical, but they’ll allow us Warning! It is very

rare to have good
intuition or instincts
about probability
questions. Try to
hold yourself back
from jumping to
conclusions too
quickly, and instead
use the systematic
approaches to prob-
abilistic questions
that are introduced
in this chapter.

reason about some fairly sophisticated probabilistic settings fairly quickly.

10.2.1 Outcomes and Probability
Here’s the very rough outline of the relevant definitions; we’ll give more details in a
moment. Imagine a scenario in which some quantity is determined in some random
way. We will consider a set S of possible outcomes. Each outcome has an associated
probability, which is a number between 0 and 1. The set S is called the sample space.
In any particular result of this scenario, one outcome from S is selected randomly
(by “nature”); the frequency with which a particular outcome is chosen is given by
that outcome’s associated probability. (Sometimes we might talk about the process by
which a sequence of random quantities is selected, and the realization as the actual
choice made according to this process.) For example, for flipping an unweighted coin
we would have S = {Heads, Tails}, where Heads has probability 0.5 and Tails has
probability 0.5. Our particular outcome might be Heads.

Here are the formal definitions:

Definition 10.1 (Outcomes and sample space)
An outcome of a probabilistic process is the sequence of results for all randomly determined
quantities. (An outcome can also be called a realization of the probabilistic process.) The
sample space S is the set of all outcomes.

Definition 10.2 (Probability function)
Let S be a sample space. A probability function Pr : S → R describes, for each outcome
s ∈ S, the fraction of the time that s occurs. (We denote probabilities using square brackets, so
the probability of s ∈ S is written Pr [s].) We insist that the following two conditions hold of
the probability function Pr:

∑
s∈S

Pr [s] = 1 (10.1)

Pr [s] ≥ 0 for all s ∈ S. (10.2)

Intuitively, condition (10.1) says that something has to happen: when we flip a coin, then
either it comes up heads or it comes up tails. (And so Pr [Heads] + Pr [Tails] = 1.) The
other condition, (10.2), formalizes the idea that Pr [s] denotes the fraction of the time
that the outcome s occurs: the least frequently that an outcome can occur is never.
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1006 CHAPTER 10. PROBABILITY

The probability function Pr is also sometimes called a probability distribution over S.
(This function “distributes” one unit of probability across the set S of all possible out-
comes, as in (10.1).)

Taking it further: Bizarrely, in quantum computation—an as-yet-theoretical type of computation based on
quantum mechanics—we can have outcomes whose probabilities are not restricted to be real numbers
between 0 and 1. This model is (very!) difficult to wrap one’s mind around, but a computer based on this
idea turns out to let us solve interesting problems, and faster than on “normal” computers. For example,
we can factor large numbers efficiently on a quantum computer. (Though we don’t know how to build
quantum computers of any nontrivial size.) See p. 1016 for some discussion.

A few examples: cards, coins, and words
Here are a few examples of sample spaces with probabilities naturally associated

with each outcome:

Example 10.3 (One card from the deck)
We draw one card from a perfectly shuffled deck of 52 cards. Then we can denote
the sample space as S = {2, 3, . . . , 10, J, Q, K,A} × {♣,♦,♥,♠}. Each card c ∈ S has
Pr [c] = 1

52 . Note that condition (10.1) is satisfied because

∑c∈S Pr [c] = ∑c∈S
1
52 = 52 · 1

52 = 1,

and (10.2) is obviously satisfied because Pr [c] = 1
52 ≥ 0 for each c.

Example 10.4 (Coin flips)
You flip a quarter and Bill Gates flips a platinum trillion-dollar coin. Assume that
both coins are fair (equally likely to come up Heads and Tails) and that flips of the
quarter and the platinum coin do not affect each other in any way. Then the four
outcomes are—writing the quarter’s result first—〈Heads,Heads〉, 〈Heads, Tails〉,
〈Tails,Heads〉, and 〈Tails, Tails〉. Each of these four outcomes has probability 0.25.

Now is the winter
of our discontent/
Made glorious
summer by this sun
of York;/And all the
clouds that lour’d
upon our house/In
the deep bosom of
the ocean buried.
—William

Shakespeare
(1564–1616)
King Richard III

Example 10.5 (A word on the page)
Consider the following sentence, which—excluding spaces—contains a total of 29
different symbols (namely N, o, w, i, s, t, . . . , t):

Now is the winter of our discontent.

We are going to select a word from this sentence, according to the following process:
choose one of the 29 non-space symbols from the sentence with equal likelihood; the
selected word is the one in which the selected symbol appears. (Thus longer words
will be chosen more frequently than shorter words, because longer words contain
more symbols—and are therefore more likely to be selected.)

The sample space is S = {Now, is, the, winter, of, our, discontent}. There are
3 + 2 + 3 + 6 + 2 + 3 + 10 = 29 total symbols, and thus Pr [Now] = 3

29 , Pr [is] = 2
29 , and

so on, through Pr [discontent] = 10
29 . Again, the conditions for being a probability are

satisfied: each outcome’s probability is nonnegative, and ∑w∈S Pr [w] = 1.
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Examples 10.3 and 10.4 are scenarios of uniform probability, in which each outcome
in the sample space is chosen with equal likelihood. (Specifically, each s ∈ S has
probability Pr [s] = 1

|S| .) Example 10.5 illustrates nonuniform probability, in which some
outcomes occur more frequently than others.

Note that for a single sample space S, we can have many different distinct processes
by which we choose an outcome from S. For example:

Example 10.6 (Two ways of choosing from S = {0, 1, 2, . . . , 7})
One process for selecting an element of S is to flip three fair coins and treat their
results as a binary number (HHH = 111 → 7, HHT = 110 → 6, . . . , TTT = 000 → 0).
This process gives a uniform distribution over S: each sequence of coin flips occurs
with the same probability. For example, Pr [4] = 1

8 = 0.125 and Pr [7] = 1
8 = 0.125.

A second process for selecting an element of S is to flip 7 fair coins and to let the
outcome be the number of heads that we see in those 7 flips (HHHHHHH → 7,
HHHHHHT → 6, HHHHHTH → 6, . . . , TTTTTTT → 0). This process gives a
nonuniform distribution over S, because the number of sequences that have k heads is
different for different values of k. For example:

Pr [4] =
(7
4
)

27 = 35
128 ≈ 0.2734, but Pr [7] =

(7
7
)

27 = 1
128 ≈ 0.0078.

As a word of warning, notice that probabilistic statements about a particular realiza-
tion don’t make sense; the only kind of probabilistic statement that makes sense is a
statement about a probabilistic process. If you happen to be one of the ≈ 10% of the pop-
ulation that’s red–green colorblind, and a friend says “what are the odds that you’re
colorblind!?”, the correct answer is: the probability is 1 (because it happened!).

10.2.2 Events
Many of the probabilistic questions that we’ll ask are about whether the realization has
some particular property, rather than whether a single particular outcome occurs. For
example, we might ask for the probability of getting more heads than tails in 1000
flips of a fair coin. Or we might ask for the probability that a hand of seven cards
(dealt from a perfectly shuffled deck) contains at least two pairs. There may be many
different outcomes in the sample space that have the property in question. Thus, often
we will be interested in the probability of a set of outcomes, rather than the probability
of a single outcome. Such a set of outcomes is called an event:

Definition 10.3 (Event)
Let S be a sample space with probability function Pr. An event is a subset of S. The
probability of an event E is the sum of the probabilities of the outcomes in E, and it is
written Pr [E] = ∑s∈E Pr [s].

The probability of an event E ⊆ S follows by a probabilistic version of the Sum Rule,
from counting: because one (and only one) outcome is chosen in a particular realiza-
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1008 CHAPTER 10. PROBABILITY

tion, the probability of either outcome x or y occurring is Pr [x] + Pr
[y].

Note that the notation in Definition 10.3 generalizes the function Pr by allowing Our mixture of
Pr [outcome] and
Pr [event] is an
abuse of notation;
we’re mixing
the type of input
willy nilly. But,
because Pr [x] for
an outcome x and
Pr
[
{x}] for the

singleton event {x}
are identical, we can
write probabilities
this way without
risk of confusion.

us to write either elements of S or subsets of S as inputs to Pr. That is, previously we
considered a function Pr : S → [0, 1]; we have now “extended” our notation so that
it’s a function Pr : P(S) → [0, 1]. (To be more precise, we’re actually extending the
notation to be a function Pr : (S ∪ P(S)) → [0, 1], because we’re still letting ourselves
write outcomes as arguments too.)

A few examples
Here are a few examples of events and their probabilities:

Example 10.7 (At least one head)
You and Bill Gates each flip fair coins, as in Example 10.4. Define the event H =
{〈Heads,Heads〉, 〈Heads, Tails〉, 〈Tails,Heads〉} as “at least one coin comes up
heads.” Then Pr [H] = 0.25 + 0.25 + 0.25 = 0.75.

Example 10.8 (Aces up)
Problem: Suppose that you draw one card from a perfectly shuffled deck, as in Exam-

ple 10.3. What is the probability that you draw an ace?

Solution: The event in question is E = {A♣, A♦, A♥, A♠}. Each of these four out-
comes has a probability of 1

52 , so Pr [E] = 1
52 + 1

52 + 1
52 + 1

52 = 4
52 = 1

13 .

Example 10.9 (Full house)
Problem: You’re dealt 5 cards from a shuffled deck, so that each set of 5 cards is

equally likely to be your hand. A hand is a full house if 3 cards share one rank, and
the other 2 cards share a second rank. (For example, the hand 3♥, 3♠, 9♥, 9♣, 3♣
is a full house.) What’s the probability of being dealt a full house?

Solution: There are (525
) possible hands, each of which is dealt with probability

1/
(52
5
)
. Thus the key question is a counting question: how many full houses are there?

We can compute this number using the Generalized Product Rule; specifically, we
can view a full house as the result of the following sequence of selections:
• we choose the rank of which to have three of a kind;
• we choose which 3 of the 4 cards of that rank are in the hand;
• we choose the rank of the pair (any of the 12 remaining ranks); and
• we choose which 2 of the 4 cards of that rank are in the hand.
Thus there are

(13
1
)
·
(4
3
)
·
(12
1
)
·
(4
2
)
full houses, and the probability of a full house is

(13
1
) · (43

) · (121
) · (42

)
(52
5
) = 3744

2598960 ≈ 0.00144.

Here’s a slightly more complex example, with multiple events of interest:
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1 3
5

7 9
12

14
16 18
19 21

23
25 27

30
32

34 36

2
4 6

8
10 11
13 15

17
20

22 24
26

28 29
31 33

35

0 00

2 to 1 2 to 1 2 to 1

first12
second

12
third

12
1–18

even
black

red
odd

19–36

event name outcomes probability
1–18 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 18

38
even {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36} 18

38
1st 12 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 12

38
black {2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35} 18

38
red {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36} 18

38
2nd 12 {13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24} 12

38
odd {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35} 18

38
19–36 {19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36} 18

38
3rd 12 {25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36} 12

38
“2 to 1” A {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34} 12

38
“2 to 1” B {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35} 12

38
“2 to 1” C {3, 6, 9, 12, 15, 18, 21, 24, 27, 39, 33, 36} 12

38

Figure 10.2: The
Roulette board, and
the corresponding
events.

This version of
roulette is the
American wheel;
the European wheel
has only one green
zero segment,
and there are
only 37 outcomes.
The player in the
European version
does better on
average.

Example 10.10 (Roulette)
In roulette, a wheel is spun, and a metal ball comes to rest in one of the wheel’s 38
segments. The segments are numbered 1–36 (each colored red or black, as shown in
Figure 10.2), and there are two more segments labeled 0 and 00 (both colored green).
Assume that the ball is equally likely to land in each segment, and that the sample
space consists of {00, 0, 1, 2, . . . , 36}. There are 38 outcomes in the sample space.

In addition to particular outcomes or pairs/triples/quadruples of outcomes
whose numbered squares are adjacent in the board, a roulette player can bet on a
number of different events defined by the twelve panels along the left-hand and bot-
tom sides of the grid. These events, and their probabilities, are shown in Figure 10.2.
(For roulette purposes, the numbers 0 and 00 count as neither even nor odd—for rea-
sons related only to casinos’ business models, and not to the value of 0 mod 2.)

Even:
1 3 5 7 9 19 21 23 25 27
11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36
2 4 6 8 10 20 22 24 26 28

0
00

Black:
1 3 5 7 9 19 21 23 25 27
11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36
2 4 6 8 10 20 22 24 26 28

0
00

Red:
1 3 5 7 9 19 21 23 25 27
11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36
2 4 6 8 10 20 22 24 26 28

0
00

Black & Even:
1 3 5 7 9 19 21 23 25 27
11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36
2 4 6 8 10 20 22 24 26 28

0
00

Red & Even:
1 3 5 7 9 19 21 23 25 27
11 13 15 17 29 31 33 35

12 14 16 18 30 32 34 36
2 4 6 8 10 20 22 24 26 28

0
00

Figure 10.3: A
visualization of the
sample space and
a few events from
roulette.

The details of the particular roulette events in Ex-
ample 10.10 aren’t particularly important, but the
distinction between outcomes and events—which
this example should make starkly (it’s the difference
between “the ball stops on number 17” and “the ball
stops on an odd number”)—is crucial in probability.

It is often useful to visualize a sample space, and
the events of interest, using a Venn diagram–like rep-
resentation. It can be particularly helpful to draw the
subsets/events in such a way that their area corresponds to their probability. A small
example of this visualization, for some of the roulette events from Example 10.10, is
shown in Figure 10.3. This figure also shows a few intersections of pairs of events: be-
cause an event is just a subset of the sample space, the intersection of two events is still
a subset of the sample space, and therefore is also an event.
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Here are a few useful general properties of the probability of events:

Theorem 10.1 (Some properties of event probabilities)
Let S be a sample space, and let A ⊆ S and B ⊆ S be events. Then, writing A := S− A to
denote the complement of the event A, we have:

Pr [S] = 1 (10.1.1)
Pr [∅] = 0 (10.1.2)
Pr
[A ] = 1− Pr [A] (10.1.3)

Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A∩ B] . (10.1.4)

These properties all follow directly from the definition of the probability of an event.

10.2.3 Tree Diagrams in Probability
Many probabilistic processes involve a sequence of randomly determined quantities, Problem-solving tip:

Tree diagrams are
generally a very
good way to solve
probability ques-
tions; they force you
to systematically
think about all of
the steps of a prob-
abilistic process
(and also about
all of the steps of
solving probability
problems!).

rather than just a single random choice. Much like in counting, we can use a tree di-
agram to represent the sequence of random choices—and then we can look for the
probability of a particular outcome as reflected in the sequence of choices in the tree.
In a tree diagram for a probabilistic sequence of choices:
• Every internal node in the tree corresponds to a random decision; every edge leav-

ing that internal node is labeled with the probability of a particular decision. The
probability labels of all edges leaving any particular internal node u must add up
to 1. (The interpretation is: if the probabilistic process reaches node u, then each
branch leaving u is chosen with frequency in proportion to its label.)

• Every leaf corresponds to an outcome. The probability of reaching a particular leaf
is precisely equal to the product of the labels on the edges leading from the root to
that leaf. As usual, the probability of an event is the sum of the probabilities of the
outcomes contained in that event.

Here is a first small example:

Example 10.11 (Rolling two dice)
Here’s the probability tree for rolling two fair dice, one after the other. Outcomes are
listed in order from 〈1, 1〉 at left to 〈6, 6〉 at right; every edge has probability 1

6 .

b

b b b b b b

• All edges have probability 1
6 ; thus each outcome’s probability is 1

6 · 1
6 = 1

36 .
• The event “doubles are rolled” (light-shaded outcomes) has probability 6 · 1

36 = 1
6 .

• The event “a 7 is rolled” (medium-shaded outcomes) has probability 6 · 1
36 = 1

6 .
• The event “an 11 is rolled” (black-shaded outcomes) has probability 2 · 1

36 = 1
18 .
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A B

1 2 3 4 5 6 7 8 9 10
(a) Suppose A and B, with h(A) = 4
and h(B) = 8, are stored initially.

A BC

1 2 3 4 5 6 7 8 9 10
(b) Suppose h(C) = 3. T[3] is empty,
so we store C in T[3].

A BC D

1 2 3 4 5 6 7 8 9 10
(c) Suppose h(D) = 4. T[4] is full,
but T[5] is empty, so we store D in
T[5].

A BC D E

1 2 3 4 5 6 7 8 9 10
(d) Suppose h(E) = 3. T[3] is full,
T[4] is full, and T[5] is full too, but
T[6] is empty, so we store E in T[6].

Figure 10.4: Linear
probing.

Incidentally, one of the calculations from Example 10.11 can also be
rephrased to address a question about hashing. Suppose that we hash two
elements into a hash table with 6 slots using a uniform random hash func-
tion. (See Section 10.1.1.) What is the probability that we have a collision?
In fact, this question is precisely the same as asking for the probability of
rolling doubles with two fair dice—that is, 1

6 , by Example 10.11.
When we introduced hash tables in Section 10.1.1, we described resolving

collisions by chaining: an element x is stored in cell T[h(x)]; if that cell is al-
ready occupied, then we simply add x to a list of elements in cell T[h(x)]. But
there are several other strategies for resolving collisions in a hash table, the
simplest of which is called linear probing. In linear probing, when we insert
an element x into the table, we put x in the first unoccupied cell, moving from
left to right, starting at cell h(x). (That is, we try to put x in cell T[h(x)], but if
that cell already has an element, then we try to put x into cell T[h(x) + 1], and
then cell T[h(x) + 2], and so on. We wrap around to T[1] after we reach the
right edge of T.) See Figure 10.4 for an example.

Taking it further: One of the downsides of resolving collisions in a hash table using linear
probing is a phenomenon called “clustering”: contiguous blocks of filled cells develop, and
these filled blocks tend to get longer and longer as more and more elements are added to the
table. (This problem is beginning to occur in Figure 10.4.) Other collision-resolution schemes
can mitigate this problem; see Exercises 10.45–10.50.

Example 10.12 (Hashing with linear probing)
Problem: Suppose that we hash 2 elements into a hash table with 6 slots using a uni-

form random hash function h, where we resolve collisions by linear probing. What
is the probability that we end up with 2 consecutive slots of the hash table filled?

Solution: The sample space is S = {1, 2, . . . , 6} × {1, 2, . . . , 6}: we first randomly
choose a value for h(A), and then randomly choose a value for h(B). We’ll build a
tree diagram to represent these choices, as shown (in part) here:

b

h(A)=1
A␣␣␣␣␣

1
6

h(B)=1
AB␣␣␣␣

1
6

h(B)=2
AB␣␣␣␣

1
6

h(B)=3
A␣B␣␣␣

1
6

h(B)=4
A␣␣B␣␣

1
6

h(B)=5
A␣␣␣B␣

1
6

h(B)=6
A␣␣␣␣B

1
6

h(A)=2
␣A␣␣␣␣

1
6

h(B)=1
BA␣␣␣␣

1
6

h(B)=2
␣AB␣␣␣

1
6

h(B)=3
␣AB␣␣␣

1
6

h(B)=4
␣A␣B␣␣

1
6

h(B)=5
␣A␣␣B␣

1
6

h(B)=6
␣A␣␣␣B

1
6

h(A)=3
␣␣A␣␣␣

h(A)=4
␣␣␣A␣␣

h(A)=5
␣␣␣␣A␣

h(A)=6
␣␣␣␣␣A

The highlighted outcomes have A and B hashed to adjacent cells. (The remainder of
the tree is analogous; it’s good practice to try drawing the other branches.)

Each branch of the tree is equally likely, so each outcome occurs with proba-
bility 1

36 . How many different outcomes result in A and B being stored in adjacent
cells? For each of the 6 possible hash values for A, there are 3 hash values for B that
cause A and B to be adjacent, when h(B) is one of h(A)− 1, h(A), and h(A) + 1. So the
final probability of a cluster forming is (6 · 3) · 1

36 = 18
36 = 1

2 .
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Here’s another (by now famous) example, called the Monty Hall Problem, in which The Monty Hall
Problem is named
after Monty Hall,
the host of the
television game
show Let’s Make A
Deal in the 1960s–
1980s. The problem
became famous
after a kerfuffle
involving Marilyn
vos Savant, in
Parade magazine.

using a probability tree helps resolve a potentially confusing probability question:

ca
r

yo
ur

ch
oic

e
rev

ea
led

go
at

pr
ob

ab
ili
ty

A A B 1/18
A A C 1/18
A B C 1/9
A C B 1/9
B A C 1/9
B B A 1/18
B B C 1/18
B C A 1/9
C A B 1/9
C B A 1/9
C A B 1/18
C B A 1/18
Figure 10.5: The
12 outcomes in
the Monty Hall
sample space, and
their associated
probabilities. The
shaded outcomes
are those where you
win by switching.

Example 10.13 (Monty Hall Problem)
Problem: Here is the problem (based on the Let’s Make a Deal setup):

You are given the choice of three doors, behind which are a car, a goat, and another
goat. You choose a door. Monty Hall opens one of the doors that you didn’t choose to
reveal a goat. He then offers you the chance to switch to the other (unopened) door
that you didn’t initially choose. Should you switch?

(To make this question concrete, assume that the car is initially placed randomly;
you choose an initial door randomly; the host always opens one of the two doors
you didn’t choose to reveal a goat, choosing a goat at random if there are two
unchosen goats; and the host will always give you an opportunity to switch.)

Solution: There are three randomly chosen quantities: where the car is placed, which
door you choose, and which goat is revealed (if there are two possibilities). We can
express the process using the following probability tree:

b

car placed at A

1/3

you pick A
1/3

B revealed 1
3 · 1

3 · 1
2 = 1

181/2

C revealed 1
3 · 1

3 · 1
2 = 1

18
1/2

you pick B1/3 C revealed 1
3 · 1

3 · 1
1 = 1

91

you pick C
1/3

B revealed 1
3 · 1

3 · 1
1 = 1

91

car placed at B1/3

you pick A
1/3

C revealed 1
3 · 1

3 · 1
1 = 1

91

you pick B1/3

A revealed 1
3 · 1

3 · 1
2 = 1

181/2

C revealed 1
3 · 1

3 · 1
2 = 1

18
1/2

you pick C
1/3

A revealed 1
3 · 1

3 · 1
1 = 1

91

car placed at C

1/3

you pick A
1/3

B revealed 1
3 · 1

3 · 1
1 = 1

91

you pick B1/3 A revealed 1
3 · 1

3 · 1
1 = 1

91

you pick C
1/3 A revealed 1

3 · 1
3 · 1

2 = 1
181/2

B revealed 1
3 · 1

3 · 1
2 = 1

18
1/2

The shaded outcomes are those in which switching from your initially chosen door
causes your new door to hide a car; the unshaded outcomes are those in which not
switching causes you to win. These outcomes and their associated probabilities are
also shown in Figure 10.5; again, in the shaded outcomes you win by switching.

There are six outcomes in which switching causes you to win the car. Each of
these outcomes has probability 1

9 , so the probability of winning a car by switching
is 6 · 1

9 = 2
3 . The other six outcomes are those in which not switching causes you to

get a car (and switching gets you a goat); these outcomes each have probability 1
18 ,

and so the probability of winning by not switching is 6 · 1
18 = 1

3 . You should switch.

Problem-solving
tip: It is usually
worth the time to
make the prob-
abilistic process
concrete, and to
make explicit any
hidden assumptions
about the process,
before solving the
problem. (That’s
how we began
Example 10.13.)
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Taking it further: Section 10.2.3 has been devoted to tree diagrams—a systematic way of analyzing
probabilistic settings in which a sequence of random choices is made. Typically we think of—or at
least model—these random choices as being made “by nature”: if you flip a coin, you act as though the
universe “chooses” (via microdrafts of wind, the precise topology of the ground where the coin bounces,
etc.) whether the coin will come up Heads or Tails.

But, in many scenarios in computer science, we want to generate the randomness ourselves, per-
haps in a program: choose a random element of the set A; go left with probability 1

2 and go right with
probability 1

2 ; generate a random 8-symbol password. The process of actually generating a sequence of
“random” numbers on a computer is difficult, and (perhaps surprisingly) very closely tied to notions of
cryptographic security. A pseudorandom generator is an algorithm that produces a sequence of bits that
seem to be random, at least to someone examining the sequence of generated bits with limited computa-
tional power. It turns out that building a difficult-to-break encryption system is in a sense equivalent to
building a difficult-to-distinguish-from-random pseudorandom generator.1

1

For more, see:
1 Oded Goldre-
ich. Foundations of
Cryptography. Cam-
bridge University
Press, 2006.

10.2.4 Some Common Probability Distributions
We’ll end this section by spending a few words on some of the common probabilistic
processes (and therefore some common probability distributions) that arise in com-
puter science applications.

Uniform distribution
Under the uniform distribution, every outcome is equally likely. We can define a

uniform distribution for any finite sample space S:

Definition 10.4 (Uniform distribution)
Let S be a finite sample space. Under the uniform distribution, the probability of any
particular outcome s ∈ S is given by Pr [s] = 1

|S| .

Some familiar examples of the uniform distribution include:

• flipping a fair coin (Pr [Heads] = Pr [Tails] = 1
2 ).

• rolling a fair 6-sided die (Pr [1] = Pr [2] = Pr [3] = Pr [4] = Pr [5] = Pr [6] = 1
6 ).

• choosing one card from a shuffled deck (Pr [c] = 1
52 for any card c).

Note that, if outcomes are chosen uniformly at random, then the probability of an
event is simply its fraction of the sample space. That is, for any event E ⊆ S, we have

Pr [E] = |E|
|S| .

Taking it further: We often make use of a uniform distribution in randomized algorithms. For example,
in randomized quicksort or randomized select applied to an array A[1 . . .n], a key step is to choose a
“pivot” value uniformly at random from A, and then use the chosen value to guide subsequent operation
of the algorithm. (See Exercises 10.24–10.27.)

Bernoulli distribution
The next several distributions are related to “flipping coins” in various ways. “Coin

flipping” is a common informal way of referring to any probabilistic process is which
we have one or more trials, where each trial has the same “success probability,” also
known as “getting heads.” We will refer to flipping an actual coin as a coin flip, but we
will also refer to other probabilistic processes that succeed with some fixed probability
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as a coin flip. We will consider a (possibly) biased coin—that is, a coin that comes up
heads with probability p, and comes up tails with probability 1− p. The coin is called
fair if p = 1

2 ; that is, if the probability distribution is uniform. We can call the coin p-
biased when Pr [heads] = p. It’s important that the result of one trial has no effect on
the success probability of any subsequent trial. (That is, these flips are independent; see
Section 10.3.)

The first coin-related distribution is simply the one associated with a single trial:
The Bernoulli
distribution is
named after Jacob
Bernoulli, a 17th-
century Swiss
mathematician.

Definition 10.5 (Bernoulli distribution)
The Bernoulli distribution with parameter p is the probability distribution that results
from flipping one p-biased coin. Thus the sample space is {H,T}, where Pr [H] = p and
Pr [T] = 1− p.

Taking it further: Imagine a sequence of Bernoulli trials performed with p = 0.01, and another sequence
of Bernoulli trials performed with p = 0.48. The former sequence will consist almost entirely of zeros; the
latter will be about half zeros and about half ones. There’s a precise technical sense in which the second
sequence contains more information than the first, measured in terms of the entropy of the sequence. See
p. 1017 for some discussion.

Binomial distribution

0 1 2 3 4 5 6 7 8 9 10

k0.1
0.2
0.3 Pr [k]

(a) n = 10, p = 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k0.1
0.2
0.3 Pr [k]

(b) n = 15, p = 0.5

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

k0.1
0.2
0.3 Pr [k]

(c) n = 20, p = 0.5

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3

(d) n = 10, p = 0.25

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3

(e) n = 10, p = 0.75

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3

(f) n = 10, p = 0.85

Figure 10.6: Several
binomial distribu-
tions, for different
values of n and p.

A somewhat more interest-
ing distribution results from
considering a sequence of flips
of a biased coin. Consider the
following probabilistic process:
perform n flips of a p-biased coin,
and then count the number of
heads in those flips. The binomial
distribution with parameters n and p
is a distribution over the sample
space {0, 1, . . . , n}, where Pr [k]
denotes the probability of getting
precisely k heads in those flips.
Figure 10.6 shows several exam-
ples of binomial distributions, for different settings of the parameters n and p. Each
panel of Figure 10.6 shows the probability P[k] of getting precisely k heads in n flips of
a p-biased coin, for each k in the sample space.

If we flip a p-biased coin n times, what is the probability of the event of getting
exactly k heads? For example, consider the outcome

HH · · ·H︸ ︷︷ ︸
k times

TT · · ·T︸ ︷︷ ︸
n− k times

.

The probability of this outcome is pk · (1− p)n−k: the first k flips must come up heads,
and the next n− k flips must come up tails. In fact, any ordering of k heads and n− k
tails has probability pk · (1− p)n−k. One way to see this fact is by imagining the prob-
ability tree, which is a binary tree with left branches (heads) having probability p and
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right branches (tails) having probability 1− p. The outcomes in question have k left
branches and n− k right branches, and thus have probability pk · (1− p)n−k. There are(n
k
) different outcomes with k heads—a sequence of n flips, out of which we choose

which k come up heads. Therefore:

Definition 10.6 (Binomial distribution)
The binomial distribution with parameters n and p is a distribution over the sample space
{0, 1, . . . , n}, where for each k ∈ {0, 1, . . . , n} we have

Pr [k] =
(n
k
) · pk · (1− p)n−k.

For an unbiased coin, when p = 1
2 , the expression for Pr [k] from Definition 10.6 simpli-

fies to Pr [k] =
(n
k
)/2n, because ( 12 )k · (1− 1

2 )n−k = ( 12 )k · ( 12 )n−k = ( 12 )n.

Geometric distribution

1 2 3 4 5 6 7 8 9 10
k
. . .

0.1
0.2
0.3
0.4
0.5
0.6 Pr [k]

(a) p = 0.3

1 2 3 4 5 6 7 8 9 10
k
. . .

0.1
0.2
0.3
0.4
0.5
0.6 Pr [k]

(b) p = 0.5

1 2 3 4 5 6 7 8 9 10
k
. . .

0.1
0.2
0.3
0.4
0.5
0.6

(c) p = 0.7

Figure 10.7: Sev-
eral geometric
distributions, for
different values of
p. Although these
plots are truncated
at k = 10, the dis-
tribution continues
infinitely: Pr [k] > 0
for all positive
integers k.

Another interesting coin-derived distribution comes from the
“waiting time” before we see heads for the first time. Consider a
p-biased coin, and continue to flip it until we get a heads. The out-
put of this probabilistic process is the number of flips that were
required, and the geometric distribution with parameter p is defined
by this process. (The name “geometric” comes from the fact that
the probability of needing k flips looks a lot like a geometric se-
ries, from Chapter 5.) See Figure 10.7 for a few such distributions.

What is the probability of needing precisely k flips to get heads
for the first time? We would have to have k − 1 initial flips come
up tails, and then one flip come up heads. As with the binomial
distribution, one nice way to think about the probability of this
outcome uses the probability tree. This tree has left branches
(heads) having probability p and right branches (tails) having
probability 1− p; the outcome k follows k− 1 right branches and
one left branch, and thus has probability (1− p)k−1 · p. Therefore:

Definition 10.7 (Geometric distribution)
Let p be a real number satisfying 0 < p ≤ 1. The geometric distribution with parameter p
is a distribution over the sample space Z≥1 = {1, 2, 3, . . .}, where for each k we have

Pr [k] = (1− p)k−1 · p.

Notice that the geometric distribution is our first example of an infinite sample space:
every positive integer is a possible result.
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Computer Science Connections

Quantum Computing
As the 20th-century revolution in physics brought about by the discovery

of quantum mechanics unfolded, some researchers working at the boundary
of physics and computer science developed a new model of computation
based on these quantum ideas. This model of quantum computation relies
deeply on some very deep physics, far too deep for one page, but here is a
brief summary—without any of the details of the physics. “Anyone who is not shocked by quan-

tum theory has not understood it.”
— attributed to Niels Bohr (1885–1962)

The most basic element of data in a quantum computer is a quantum bit,
or qubit. Like a bit (the basic element of data on a classical computer), a qubit
can be in one of two basic states. These two states are written as |0〉 and |1〉.
(A classical bit is in state 0 or 1). The quantum magic is that a qubit can be in
both states simultaneously, in what’s called a superposition of these basic states.
A qubit will be in a state α|0〉 + β|1〉, where α and β are “weights” where
|α|2 + |β|2 = 1. (Actually, the weights α and β are complex numbers, but the
basic idea will come across if we think of them as real numbers—possibly
negative!—instead.) Thus, while there are only two states of a bit, there are
infinitely many states that a qubit can be in. So a qubit’s state contains a huge
amount of information. But, by the laws of quantum physics, we are limited
in how we can extract that information from a qubit. Specifically, we can
measure a qubit, but we only see 0 or 1 as the output. When we measure a
qubit α|0〉 + β|1〉, the probability that we see 0 is |α|2; the probability that we
see 1 is |β|2. For example, we might have a qubit in the state

1
2 |0〉 +

√
3
2 |1〉. (Note

(
1
2
)2

+
(√

3
2
)2

= 1
4 + 3

4 = 1.)

When we measure this qubit, 25% of the time we’d see a 0, and 75% of the
time we’d see a 1.

There are two more crucial points. First, when there are multiple qubits—
say n of them—the qubits’ state is a superposition of 2n basic states. (For
example, two qubits are in a state α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉.) Sec-
ond, even though we only see one value when we measure qubits, there can
be “cancellation” (or interference) among coefficients. There are notable restric-
tions on how we can operate on qubits, based on constraints of physics, but
at a very rough level, we can run an operation on an n-qubit quantum com-
puter in parallel in each of the 2n basic states and, if the process is designed
properly, still read something useful from our single measurement.2

This cursory description of qubits and
quantum computation is nowhere close
to a full accounting of how qubits work,
or what a quantum computer might do.
For much more, see the wonderful text
2 Michael A. Nielsen and Isaac L.
Chuang. Quantum Computation and
Quantum Information. Cambridge
University Press, 2000.

Why does anyone care about any of this? The main interest in quantum
computation stems from a major breakthrough, Shor’s algorithm (named after
its discoverer, Peter Shor): an algorithm that solves the factoring problem—
given a large integer n, determine n’s prime factorization—efficiently on a
quantum computer. An efficient factoring problem is deeply problematic
for most currently deployed cryptographic systems (see Chapter 7), so a
functional quantum computer would be a big deal. But, at least as of this
writing, no one has been able to build a quantum computer of any appreciable
size. So at the moment, at least, it’s a theoretical device—but there’s active
research both on the physics side (can we actually build one?) and on the
algorithmic side (what else could we do if we did build one?).
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Computer Science Connections

Information, Charles Dickens, and the Entropy of English
Consider the following two (identical-length) sequences of letters and

spaces—one from Charles Dickens’s A Tale of Two Cities and one generated by
uniformly randomly choosing a sequence of elements of {A, . . . , Z, ␣}:

IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES, IT WAS THE AGE OF

WISDOM, IT WAS THE AGE OF FOOLISHNESS, IT WAS THE EPOCH OF BELIEF, IT

WAS THE EPOCH OF INCREDULITY.

TUYSSUWWYVOZULF XZQBSFS AFNBMAOOGWZPAHGREAYC SUSCMBOWDCNCYEJBHPVCRO

MLVTGVHTVCZXHSCQFULCMBO CDIWTXOCUPKTFZVNBHRGDWAKZSZPFTZKEWKWIH O

QFIUWTCDKUBTQSPLXSYXGQZA DLXBHKFILFPZ.

Which sequence contains more information? It is very tempting to choose the
first (information about contrast, and irony, and the opposition of ideas!)—
but, in a precise technical sense, Random contains far more information than
Dickens. The basic reason is that, in Dickens, certain letters occur far more
frequently than others—E occurs 17 times and there are six letters that don’t
appear at all. (In Random, all 26 letters appear.) With such a lopsided distri-
bution, you already know a lot about what letter is (probably) going to come
next, and so there’s less new information conveyed by a typical letter.

Formally, the entropy of a sequence of letters (or bits, or whatever) is a

Figure 10.8: A sequence of bits, pro-
duced independently at random with
probability p = 0.25 (top), p = 0.5
(middle), and p = 0.9 (bottom) of a one.
Their entropies are, respectively, 0.8113,
1.0000, and 0.4690.

measure of “how surprising” each element of the sequence is, averaged over
the sequence. We’ll convert the “unit of surprise” into a real number between
zero and one, where zero corresponds to the next letter is 100% predictable
and one corresponds to we have absolutely no idea what the next letter will be.
Formally, the entropy H of a probability distribution over S is given by

− ∑
x∈S

Pr [x] · log(Pr [x]).

For example, if we produce a sequence of coin flips where each flip comes up
heads with probability p (see Figure 10.8), then the entropy of the sequence
will be −

(
p log p + (1− p) log(1− p)

)
, as shown in Figure 10.9.

This definition of entropy comes from the 1940s, in a paper by Claude 0
0.2
0.4
0.6
0.8
1.0

0 0.25 0.50 0.75 1.00
probability p

entropy

Figure 10.9: The entropy of a biased coin
whose heads probability is p.

Shannon,3 and has found all sorts of useful applications since. Here is one

3 Claude E. Shannon. A mathematical
theory of communication. Bell System
Technical Journal, 27:379–423, 1948.

example: the entropy of a sequence of bits expresses a theoretical limit on
the compressibility of that sequence. (And that theoretical limit is, in fact,
achievable.) That is, if the entropy of a string of n bits is very low—say around
0.25—then with some clever algorithms we can represent that string (without
any error) using only about n

4 bits. But we can’t represent it in fewer bits with
perfect fidelity (“lossless” compression; see p. 938).

There is significant redundancy in English text, as we’ve already men-
tioned, based on the nonuniformity in the probability distribution of indi-
vidual letters. But there’s even more redundancy based on the fact that the
probability that the ith character of an English document is an H is affected by
whether the (i− 1)st character was a T. (In the language of Section 10.3, these
events are not independent.) If you’ve seen the letters TH in succession, you
can make a very good bet that E is coming next. Compression schemes for
English make use of this phenomenon.4

For more about entropy, compressibility,
and information generally, see a text-
book about information theory. A great
classic reference is:
4 Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory. Wiley,
1991.
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10.2.5 Exercises

Philippe flips a fair coin 100 times. Let the outcome be the number of heads that he sees.
10.1 What is the sample space?
10.2 What is Pr [0]?

10.3 What is Pr [50]?
10.4 What is Pr [64]?

Philippe now flips his fair coin n times. He is interested in the event “there are (strictly) more heads than tails.” What’s
the probability of this event for the following values of n?
10.5 n = 2
10.6 n = 3

10.7 n = 1001 (Hint: Pr [k] = Pr [1001− k].)
10.8 an arbitrary positive integer n

Bridget plays Bridge. Bridge is a card game played with a standard 52-card deck. Each player is initially dealt a hand of
13 cards; assume a fair deal in which each of the (5213

) hands is equally likely.
10.9 What is the probability of being dealt both A♣ and A♦?
10.10 Suppose Bridget receives a uniformly drawn hand of 13 cards, in a uniformly random order. Be-
cause your ex-friend Peter was trying to cheat at poker with this deck, the A♣ card is marked. You observe
that the card the fourth-from-the-right position in Bridget’s hand is A♣. What is the probability that Bridget
also has the A♦ in her hand?
Most casual bridge players sort their hands by suit (♠,♥,♣,♦ from left to right), and decreasing from left to right
by rank within each suit. (So one might have a hand like ♠AK4 ♥983 ♣AKQ ♦AJ98, reading from left to right.)
Professional players are taught not to sort their hands, because doing so causes which card they play to leak information
about the rest of their hand to the other players. Suppose Bridget receives a uniformly drawn hand of 13 cards, and
sorts the cards in her hand. Peter’s card marking is still present, and you observe the A♣ in a particular position in
Bridget’s hand. In the following scenarios, what is the probability that Bridget also has the A♦ in her hand? (That is:
out of all hands for which A♣ is highest/lowest/etc. card, what fraction also have the A♦?)
10.11 A♣ is the fourth-from-the-right (that is, fourth-from-the-lowest) card
10.12 A♣ is the rightmost (that is, lowest) card
10.13 A♣ is the leftmost (that is, highest) card

Chrissie plays Cribbage. Cribbage is a card game played with a standard 52-card deck. For the purposes of these ques-
tions, assume that a player is dealt one of the (524

) different 4-card hands, chosen uniformly at random. Cribbage hands
are awarded points for having a variety of special configurations:
• A flush is a hand with all four cards from the same suit.
• A run is a set of at least 3 cards with consecutive rank. (For example, the hand 3♥, 9♣, 10♦, J♣ contains a run.)
• A pair is a set of two cards with identical rank.
Aces are low in Cribbage, so A, 2, 3 is a valid run, but Q,K,A is not.
10.14 What’s the probability that Chrissie is dealt a flush?
10.15 What’s the probability that Chrissie is dealt a run of length 4?
10.16 What’s the probability of getting two runs of length 3 that is not a run of 4? (For example, the
hand 9♥, 9♣, 10♦, J♣ contains two runs of length 3: the first is 9♥, 10♦, J♣ and the second is 9♣, 10♦, J♣.)
10.17 What’s the probability of getting one (and only one) run of length 3 (and not a run of length 4)?
10.18 What’s the probability of getting at least one pair? (Hint: Pr [getting a pair] = 1−Pr

[getting no pair].)
10.19 What’s the probability of getting two or more pairs? (In cribbage, any two cards with the same
rank count as a pair; for example, the hand 2♥2♦2♠8♣ has three pairs: 2♥2♦ and 2♥2♠ and 2♦2♠.)
10.20 (programming required) Write a program to approximately verify your calculations from these
Cribbage exercises, as follows: generate 1,000,000 random hands from a standard deck, and count the
number of those samples in which there’s a flush, run (of the three flavors), pair, or multiple pairs.
10.21 (programming required) Modify your program to exactly verify your calculations: exhaustively
generate all 4-card hands, and count the number of hands with the various features (flushes, runs, pairs).
10.22 A fifteen is a subset of cards whose ranks sum to 15, where an A counts as 1 and each of {10, J, Q, K}
counts as 10. (For example, the hand 3♥, 2♣, 5♦, J♣ contains two fifteens: 3♥ + 2♣ + J♣ = 15 and
5♦ + J♣ = 15.) What’s the probability a 4-card hand contains at least one fifteen? (Hint: use a program.)

10.23 A bitstring x ∈ {0, 1}5 is stored in vulnerable memory, subject to corruption—for example, on
a spacecraft. An α-ray strikes the memory and resets one bit to a random value (both the new value and
which bit is affected are chosen uniformly at random). A second α-ray strikes the memory and resets one bit
(again chosen uniformly at random). What’s the probability that the resulting bitstring is identical to x?
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quickSort(A[1 . . . n]):
1: if n ≤ 1 then
2: return A
3: else
4: choose pivot ∈ {1, . . . , n}, somehow.
5: L := list of all A[i] where A[i] < A[pivot].
6: R := list of all A[i] where A[i] > A[pivot].
7: return quickSort(L) + 〈A[pivot]〉 + quickSort(R)

Figure 10.10: Quick
Sort, briefly. (See
Figure 5.20(a)
for more detail.)
Assume that the
elements of A are all
distinct.

Recall the quick sort algorithm for sorting an array A: we choose a “pivot”
value x; we partition A into those elements less than x and those greater than
x; and we return x and those two sublists, recursively sorted, in the correct
order. (See Figure 10.10.) This algorithm is efficient if the two sublists are
close to equal in size. There are many ways to choose the pivot value, but one
common (and good!) strategy is to choose x randomly from A.

Assume that the elements of A are all distinct. If we select pivot in Line 4
by choosing uniformly at random from the set {1, . . . , n}:
10.24 As a function of n, what is the probability that |L| ≤ 3n/4
and |R| ≤ 3n/4? (You may assume that n is divisible by 4.)
10.25 As a function of n and α ∈ [0, 1], what is the probability |L| ≤ αn and |R| ≤ αn? (You may neglect
issues of integrality: assume αn is an integer.)
Suppose that we choose pivot in Line 4 by choosing three elements p1, p2, p3 uniformly at random from the set
{1, . . . , n}, and taking as pivot the pi whose corresponding element of A is the median of the three. (Assume that the
same index can be chosen as both p1 and p3 , for example.) For example, for the array A = 〈94, 32, 29, 85, 64, 8, 12, 99〉,
we might randomly choose p1 = 1, p2 = 7, and p3 = 2. Then the pivot will be p3 because A[p3] = 32 is between
A[p2] = 12 and A[p1] = 94. Under this “median of three” strategy:
10.26 What is the probability that |L| ≤ 3n/4 and |R| ≤ 3n/4? Assume n is large; for ease, you may
neglect issues of integrality in your answer.
10.27 As a function of α ∈ [0, 1], what is the probability |L| ≤ αn and |R| ≤ αn? Again, you may assume
that n is large, and you may neglect issues of integrality in your answer.

Suppose that Team Emacs and Team VI play a best-of-five series of softball games. Emacs, being better than VI, wins “Emacs” rhymes
with “ski wax”;
“VI” rhymes with
“knee-high.” The
teams are named
after two text
editors frequently
used by computer
scientists to write
programs or emails
or textbooks.

each game with probability 60%.
10.28 Use a tree diagram to compute the probability that Team Emacs wins the series.
10.29 What is the probability that the series goes five games? (That is, what is the probability that
neither team wins 3 of the first 4 games?)
10.30 Update your last two answers if Team Emacs wins each game with probability 70%.
(Calculus required.) Now assume that Team Emacs wins each game with probability p, for an arbitrary value
p ∈ [0, 1]. For the following questions, write down a formula expressing the probability of the listed event. Also find the
value of p that maximizes the probability, and the probability of the specified event for this maximizing p.
10.31 There is a fifth game in the series.
10.32 There is a fourth game of the series.
10.33 There is a fourth game of the series and Team Emacs wins that fourth game.

Let S be a sample space, and let Pr : S → [0, 1] be an arbitrary function satisfying the requirements of being a
probability function (Definition 10.2). That is, we have

∑
s∈S

Pr [s] = 1 and Pr [s] ≥ 0 for all s ∈ S.

Argue briefly that the following properties hold.
10.34 For any outcome s ∈ S, we have Pr [s] ≤ 1.
10.35 For any event A ⊆ S, we have Pr [A ] = 1− Pr [A]. (Recall that A = S−A.)
10.36 For any events A,B ⊆ S, we have Pr [A∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].
10.37 The Union Bound: for any events A1,A2, . . . ,An,we have Pr [⋃i Ai] ≤ ∑i Pr [Ai].

Imagine n identical computers that share a single radio frequency for use as a network connection. Each of the n
computers would like to send a packet of information out across the network, but if two or more different computers
simultaneously try to send a message, no message gets through. Here you’ll explore another use of randomization:
using randomness for symmetry breaking.
10.38 Suppose that each computer flips a coin that comes up heads with probability p. What is the
probability that exactly one of the nmachines’ coins comes up heads (and thus that machine can send its
message)? Your answer should be a formula that’s in terms of n and p.
(The next two exercises require calculus.)
10.39 Given the formula you found in Exercise 10.38, what p should you choose to maximize the proba-
bility of a message being successfully sent?
10.40 What is the probability of success if you choose p as in Exercise 10.39? What is the limit of this
quantity as n grows large? (You may use the following fact: (1− 1

m )m → e−1 as m → ∞.)
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We hash items into a 10-slot hash table using a hash function h that uniformly assigns elements to {1, . . . , 10}. Com-
pute the probability of the following events if we hash 3 elements into the 10-slot table:
10.41 no collisions occur
10.42 all 3 elements have the same hash value

1 2 3 4 5 6 7 8 9 10

Figure 10.11: A
reminder of linear
probing. If h(x) = 4,
then we try to store
x in slot 4, then 5,
then 6. Because
slot 6 is empty, x is
placed into that slot.

Suppose that we resolve collisions by linear probing, wherein an element x that hashes to an occupied
cell h(x) is placed in the first unoccupied cell after h(x). (That is, we try to put x into h(x), then h(x) + 1,
then h(x) + 2, and so forth—wrapping back around to the beginning of the table after the 10th slot. See
Figure 10.11.) If we hash 3 elements into the 10-slot table, what is the probability that . . .
10.43 at least 2 adjacent slots are filled. (Count slot #10 as adjacent to #1.)
10.44 3 adjacent slots are filled.
One issue with resolving collisions by linear probing is called clustering: if there’s a large block of occupied slots in the
hash table, then there’s a relatively high chance that the next element placed into the table extends that block.
10.45 Suppose that we currently have a single block of k adjacent slots full in an n-slot hash table, and
all other slots are empty. What’s the probability that the next element inserted into the hash table extends
that block (that is, leaves k + 1 adjacent slots full).
10.46 (programming required) Write a program to hash 5000 elements into a 10,007-slot hash table using
linear probing. Record which cell x5000 ends up occupying—that is, how many hops from h(x5000) is x5000?
Run your program 2048 times, and report how far, on average, x5000 moved from h(x5000). Also report the
maximum distance that x5000 moved.

1 2 3 4 5 6 7 8 9 10

Figure 10.12:
Quadratic probing.
We try to store x
in slot h(x), then
h(x) + 12, then
h(x) + 22, etc.

Because linear probing suffers from this clustering issue, other mechanisms for resolving collisions are
sometimes used. Another choice is called quadratic probing: we change the cell number we try by an
increasing step size at every stage, instead of by one every time. Specifically, to hash x into an n-slot table,
first try to store x in h(x); if that cell is full, try putting x into h(x) + i2 , wrapping back around to the
beginning of the table as usual, for i = 1, 2, . . .. (Linear probing tried slot h(x) + i instead.)
10.47 (programming required) Modify your program from Exercise 10.46 to use quadratic probing in-
stead, and report the same statistics: the mean and maximum number of cells probed for x5000.
10.48 In about one paragraph, explain the differences that you observed between linear and quadratic
probing. A concern called secondary clustering arises in quadratic probing: if h(x) = h(y) for two elements
x and y, then the sequence of cells probed for x and y is identical. These sequences were also identical for
linear probing. In your answer, explain why secondary clustering from quadratic probing is less of a concern
than the clustering from linear probing.

h(x) = 4
g(x) = 1

h(y) = 4
g(y) = 3

1 2 3 4 5 6 7 8 9 10

Figure 10.13:
Double hashing.
We try to store
x in slot h(x),
then h(x) + g(x),
then h(x) + 2g(x),
etc. (wrapping
around the table as
necessary).

A fourth way of handling collisions in hash tables (after chaining, linear probing, and quadratic probing)
is what’s called double hashing: we move forward by the same number of slots at every stage, but that
number is randomly chosen, as the output of a different hash function. Specifically, to hash x into an
n-slot table, first try to store x in h(x); if that cell is full, try putting x into h(x) + i · g(x), wrapping
back around to the beginning of the table as usual, for i = 1, 2, . . .. (Here g is a different hash function,
crucially one whose output is never zero.) See Figure 10.13.
10.49 (programming required) Modify your program from Exercises 10.46 and 10.47 to use
double hashing. Again report the mean and maximum number of cells probed for x5000.
10.50 In about one paragraph, explain the differences you observe between chaining, linear probing,
quadratic probing, and double hashing. Is there any reason you wouldn’t always use double hashing?

Consider a randomized algorithm that solves a problem on a particular input correctly with probability p, and it’s
wrong with probability 1− p. Assume that each run of the algorithm is independent of every other run, so that we can
think of each run as being an (independent) coin flip of a p-biased coin (where heads means “correct answer”).
10.51 (Requires calculus.) Suppose that the probability p is unknown to you. You observe that exactly k
out of n trials gave the correct answer. Then the number k of correct answers follows a binomial distribution
with parameters n and p: that is, the probability that exactly k runs give the correct answer is

(n
k
) · pk · (1− p)n−k. (∗)

Prove that the maximum likelihood estimate of p is p = k
n—that is, prove that (∗) is maximized by p = k

n .

10.52 (Requires calculus.) Suppose that the probability p is unknown to you. You observe that it takes n
trials before the first time you get a correct answer. Then n follows a geometric distribution with parameter
p: that is, the probability that n runs were required is given by

(1− p)n−1p. (†)
Prove that the maximum likelihood estimate of p is p = 1

n—that is, prove that (†) is maximized by p = 1
n .
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10.3 Independence and Conditional Probability
If your parents never had children, chances are you
won’t, either.

Dick Cavett (b. 1936)
Imagine that you’re interviewing to be a consultant for Premier Passenger Pigeon

Purveyors, a company that pitches its products to prospective pigeon purchasers using
online advertising—specifically, by displaying ads to users of a particular search en-
gine on the web. PPPP makes $50 profit from each sale, and, from historical data, they
have determined that 0.02% of searchers who see an ad buy a pigeon. The interviewer
asks you how much PPPP should be willing to pay to advertise to a searcher. A good
answer is $0.01: on average, PPPP earns $50 · 0.0002 = $0.01 per ad, so paying anything
up to a penny per ad yields a profit, on average. But you realize that there’s a better
answer (and, by giving it, you get the job): it depends on what the user is searching for! A
user who searches for BIRD or PIGEON or BUYING A PET TO COMBAT LONELINESS is far
more likely to respond to a PPPP ad than an average user, while a user who searches
for ORNITHOPHOBIA is much less likely to respond to an ad.

It is a general phenomenon in probability that knowing that event A has occurred may
tell you that an event B is much more likely (or much less likely) to occur than you’d previ-
ously known. In this section, we’ll discuss when knowing that an event A has occurred
does or does not affect the probability that B occurs (that is, whether A and B are de-
pendent or independent, respectively). We’ll then introduce conditional probability, which
allows us to state and manipulate quantities like “the probability that B happens given
that A happens.”

10.3.1 Independence and Dependence of Events
We’ll start with independence and dependence of events. Intuitively, two events A and
B are dependent if A’s occurrence/nonoccurrence gives us some information about
whether B occurs; in contrast, A and B are independent when A occurs with the same
probability when B occurs as it does when B does not occur. More formally:

Definition 10.8 (Independent and dependent events)
Two events A and B are independent if and only if Pr [A∩ B] = Pr [A] · Pr [B]. The events
A and B are called dependent if they are not independent.

If A and B are dependent events, then we can also say that A and B are correlated; inde-
pendent events are said to be uncorrelated.

This definition is phrased a bit differently from the intuition above, but a little
manipulation of the equation from Definition 10.8 may help to make the connection
clearer. Assume for the moment that Pr [B] 6= 0. (Exercise 10.70 addresses the case of
Pr [B] = 0.) Dividing both sides of the equality Pr [A] · Pr [B] = Pr [A∩ B] by Pr [B], we
see that the events A and B are independent if and only if

Pr [A] = Pr [A∩ B]
Pr [B] .
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The left-hand side (Pr [A]) denotes the fraction of the time that A occurs. The right-
hand side (Pr [A∩ B] /Pr [B]) denotes the fraction of the time when B occurs that A
occurs too. If these two fractions are equal, then A occurs with the same probabil-
ity when B occurs as it does when B does not occur. (And if these two fractions are
equal, then bothwhen B occurs and when B does not occur, A occurs with probability
Pr [A]—that is, the probability of Awithout reference to B.)

Examples of independent and dependent events
To establish that two events A and B are independent, we can simply compute

Pr [A], Pr [B], and Pr [A∩ B], and show that the product of the first two quantities is
equal to the third. Here are a few examples:

Example 10.14 (Some independent events)
The following pairs of events are independent:

1. I flip a fair penny and a fair nickel. Define the following events:

• Event A: The penny is heads.
• Event B: The nickel is heads.

Then Pr [A] = 0.5 and Pr [B] = 0.5 and Pr [A∩ B] = 0.25 = 0.5 · 0.5.

2. I draw a card from a randomly shuffled deck. Define the following events:

• Event A: I draw an ace.
• Event B: I draw a heart.
For these events, we have Pr [A] = Pr

[
{A♣, A♦, A♥, A♠}

] = 1
13

Pr [B] = Pr
[
{A♥, 2♥, . . . , K♥}

] = 1
4

Pr [A ∩ B] = Pr
[
{A♥}

]
= 1

52 = 1
4 · 1

13 .

3. I roll a fair red die and a fair blue die. Define the following events:

• Event A: The red die is odd.
• Event B: The sum of the rolled numbers is odd.

Then, writing outcomes as 〈the red roll, the blue roll〉, we have

Pr [A] = Pr
[
{1, 3, 5}× {1, 2, 3, 4, 5, 6}

] = 18
36 = 0.5

Pr [B] = Pr [{1, 3, 5}× {2, 4, 6}︸ ︷︷ ︸
red odd, blue even

∪ {2, 4, 6}× {1, 3, 5}︸ ︷︷ ︸
red even, blue odd

] = 18
36 = 0.5

Observe that A∩ B = {1, 3, 5}× {2, 4, 6}, and so Pr [A∩ B] = 9
36 = (0.5) · (0.5).

Any time the processes by which A and B come to happen are completely unrelated,
it’s certainly true that A and B are independent. But events can also be independent
in other circumstances, as we saw in Example 10.14.3: both events in this example in
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some way incorporated the result of the value rolled on the red die, but the stated
events themselves are independent anyway.

A
A

(a) An event A in a sample
space S. The shaded region is
a rectangle of area Pr [A].

B B

(b) An event Bwith
Pr [B] = 0.5. The shaded
region has area 0.5.

B B
A
A

(c) A and B are independent,
because A ∩ B has area equal
to 0.5 · Pr [A].

A
A

(d) The event A, again.

C
C

(e) An event C with
Pr [C] = 0.5. The shaded
region has area 0.5.

A
A

C
C

(f) A and C are not
independent, because A ∩ C
has area different from (much
bigger than) 0.5 · Pr [A].

Figure 10.14: Pairs
of independent
and dependent
events, represented
visually. Think of
the area of a region
as its probability;
the area of the
sample space (the
enclosing rectangle)
is 1.

A visual represen-
tation of independent
and dependent events is
shown in Figure 10.14.

In Example 10.14,
we showed that a few
pairs of events are in-
dependent by show-
ing that Pr [A∩ B] =
Pr [A] · Pr [B]. By con-
trast, we can establish
that two events are not
independent—that is,
they are dependent—
directly from the defi-
nition by showing that
Pr [A∩ B] 6= Pr [A] · Pr [B]. Here are a few examples:

Example 10.15 (Some dependent events)
The following pairs of events are not independent:
1. I roll a fair die. Define the following events:

• Event A: I roll an odd number.
• Event B: I roll a prime number.

Pr [A] = Pr
[
{1, 3, 5}

] = 1
2

Pr [B] = Pr
[
{2, 3, 5}

] = 1
2

Pr [A∩ B] = Pr
[
{3, 5}

]
= 2

6 .
Because the probability of A ∩ B is 2

6 = 1
3 , but Pr [A] · Pr [B] = 1

2 · 1
2 = 1

4 6= 1
3 , the

events A and B are dependent.
Similarly, define Event C as “I roll an even number.” Because Pr [B] = Pr [C] = 1

2
and Pr [C ∩ B] = Pr

[
{2}

] = 1
6 6= 1

2 · 1
2 , the events B and C are dependent too.

2. I draw a card from a randomly shuffled deck. Define the following events:

• Event A: I draw a heart.
• Event B: I draw a spade.

Pr [A] = Pr
[
{A♥, 2♥, . . . , K♥}

]
= 1

4
Pr [B] = Pr

[
{A♠, 2♠, . . . , K♠}

] = 1
4

Pr [A∩ B] = Pr [∅] = 0,
where A ∩ B = ∅ because no cards are both a heart and a spade. Because
0 6= 1

16 = 1
4 · 1

4 , we have Pr [A∩ B] 6= Pr [A] · Pr [B]. These events are dependent.
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3. I flip a fair penny and a fair nickel. Define the following events:

• Event A: The penny is heads.
• Event B: Both coins are heads.

Then Pr [A] = 0.5 and Pr [B] = 0.25 and Pr [A∩ B] = 0.25 = Pr [B] 6= Pr [A] · Pr [B].

Correlation of events
The pairs of dependent events from Example 10.15 are of two different qualitative

types. Knowing that the first event occurred can make the second event more likely
to occur (“rolling an odd number” and “rolling a prime number” for the dice) or less
likely to occur (“rolling an even number” and “rolling a prime number”):

Definition 10.9 (Positive and negative correlation)
When two events A and B satisfy Pr [A∩ B] > Pr [A] · Pr [B], we say that A and B are
positively correlated. When Pr [A∩ B] < Pr [A] · Pr [B], we say that A and B are
negatively correlated. (If Pr [A∩ B] = Pr [A] · Pr [B], then A and B are uncorrelated.)

At the extreme, knowing that the first event occurred can ensure that the second event
definitely does not occur (“drawing a heart” and “drawing a spade” from Exam-
ple 10.15) or can ensure that the second event definitely does occur (“both coins are
heads” and “the first coin is heads” from Example 10.15).

Here are some further examples in which you’re asked to figure out whether certain
pairs of events are independent or dependent:

Example 10.16 (Encryption by random substitution)
Problem: One simple form of encryption for text is a substitution cipher, in which (in

the simplest version) we choose a permutation of the alphabet, and then replace
each letter with its permuted variant. (For example, we might permute the letters
as ABCDE· · · → XENBG· · · ; thus DECADE would be written as BGNXBG.) Suppose we
choose a random permutation for this mapping, so that each of the 26! orderings
of the alphabet is equally likely. Are the following events Q and Z independent or
dependent?
• Q = “the letter Q is mapped to itself (that is, Q is ‘rewritten’ as Q).”
• Z = “the letter Z is mapped to itself.”

Solution: We must compute Pr [Q], Pr [Z], and Pr [Q∩ Z]. Because each permutation
is equally likely to be chosen, we have

Pr [Q] = # permutations π1,2,...,26 where π17 = 17
# permutations π1,2,...,26

= 25!
26! =

1
26

because we can choose any of 25! orderings of all non-Q letters. Similarly,

Pr [Z] = # permutations π1,2,...,26 where π26 = 26
# permutations π1,2,...,26

= 25!
26! =

1
26 .
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To compute Pr [Q ∩ Z], we need to count the number of permutations π1...26 with
both π17 = 17 and π26 = 26. Any of the 24 other letters can go into any of the
remaining 24 slots of the permutation, so there are 24! such permutations. Thus

Pr [Q ∩ Z] = # permutations π1,2,...,26 where π17 = 17 and π26 = 26
# permutations π1,2,...,26

= 24!
26! =

1
25 · 26 .

Thus we have

Pr [Q ∩ Z] = 1
25·26 and Pr [Q] · Pr [Z] = 1

26 · 1
26 = 1

26·26 .

There’s only a small difference between 1
26·26 ≈ 0.00148 and 1

25·26 ≈ 0.00154, but
they’re indubitably different, and thus Q and Z are not independent.

(Incidentally, substitution ciphers are susceptible to frequency analysis: the most com-
mon letters in English-language texts are ETAOIN—almost universally in texts of rea-
sonable length—and the frequencies of various letters is surprisingly consistent. See
Exercises 10.72–10.76.)

HT TH
HH

TT

A B

C
Figure 10.15: Two
coin flips and three
events.

Example 10.17 (Matched flips of two fair coins)
Problem: I flip two fair coins (independently). Consider the following events:

• Event A: the first flip comes up heads.
• Event B: the second flip comes up heads.
• Event C: the two flips match (are both heads or are both tails).
Which pairs of these events are independent, if any?

Solution: The sample space is {HH,HT, TH, TT}, and the events from the problem
statement are given by A = {HH,HT}, B = {HH,TH}, and C = {HH,TT}. Thus
A ∩ B = A ∩ C = B ∩ C = {HH}—that is, HH is the only outcome that results in
more than one of these events being true. (See Figure 10.15.)

Because the coins are fair, every outcome in this sample space has probability 1
4 .

Focusing on the events A and B, we have

Pr [A] = Pr
[
{HH,HT}

] = 1
2

Pr [B] = Pr
[
{HH,TH}

] = 1
2

Pr [A∩ B] = Pr
[
{HH}

] = 1
4 .

Thus Pr [A] · Pr [B] = 1
2 · 1

2 = 1
4 , and Pr [A∩ B] = 1

4 . Because Pr [A] · Pr [B] =
Pr [A∩ B], the two events are independent.

The calculation is identical for the other two pairs of events, and so A and B are
independent; A and C are independent; and B and C are independent.
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Example 10.18 (Matched flips of two biased coins)
Problem: How would your answers to Example 10.17 change if the coins are p-biased

instead of fair?

Solution: The sample space and events remain as in Example 10.17 (see Figure 10.16),
but the outcomes now have different probabilities:

outcome HH HT TH TT
probability p · p p · (1− p) (1− p) · p (1− p) · (1− p)

Using these outcome probabilities, we compute the event probabilities as follows:

Pr [A] = Pr
[
{HH,HT}

]
= p · p + p · (1− p) = p (1)

Pr [B] = Pr
[
{HH,TH}

] = p · p + (1− p) · p = p (2)
Pr [C] = Pr

[
{HH,TT}

] = p · p + (1− p) · (1− p) = p2 + (1− p)2. (3)

Because A∩ B = B∩ C = A∩ C = {HH}, we also have

Pr [A∩ B] = Pr [B∩ C] = Pr [A∩ C] = Pr [HH] = p2. (4)

Thus A and B are still independent, because Pr [A] · Pr [B] = p · p = p2 = Pr [A∩ B]
by (1), (2), and (4). But what about the events A and C? By (1), (3), and (4), we have

Pr [A] · Pr [C] = p ·
[
p2 + (1− p)2

]
and Pr [A∩ C] = p2.

By a bit of algebra, we see that Pr [A∩ C] = Pr [A] · Pr [C] if and only if

p2 = p(p2 + (1− p)2) ⇔ 0 = p(p2 + (1− p)2)− p2

⇔ 0 = 2p3 − 3p2 + p
⇔ 0 = p(2p− 1)(p− 1).

So the events A and C are independent—that is, Pr [A∩ C] = Pr [A] · Pr [C]—if and
only if p ∈ {0, 12 , 1}.

Thus events A and B are independent for any value of p, while events A and C
(and similarly B and C) are independent if and only if p ∈ {0, 12 , 1}.

HT TH
HH

TT

A B

C
Figure 10.16:
The flips and
events, again.
Recall the events:
A: 1st flip heads.
B: 2nd flip heads.
C: flips match.

Taking it further: While any two of the events from Example 10.17 (or Example 10.18 with p = 1
2 ) are

independent, the third event is not independent of the other two. Another way to describe this situation is
that the events A and B ∩ C are not independent: in particular, Pr [A ∩ (B ∩ C)] /Pr [B ∩C] = 1 6= Pr [A].
A set of events A1,A2, . . . ,An is said to be pairwise independent if, for any two indices i and j 6= i, the
events Ai and Aj are independent. More generally, these events are said to be k-wise independent if, for
any subset S of up to k of these events, the events in S are all independent. (And we say that the set of
events is fully independent if every subset of any size satisfies this property.)

Sometimes it will turn out that we “really” care only about pairwise independence. For example, if
we think about a hash table that uses a “random” hash function, we’re usually only concerned with the
question “do elements x and y collide?”—which is a question about just one pair of events. Generally, we
can create a pairwise-independent random hash function more cheaply than creating a fully indepen-
dent random hash function. If we view random bits as a scarce resource (like time and space, in the style
of Chapter 6), then this savings is valuable.
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10.3.2 Conditional Probability
In Section 10.3.1, we discussed the black-and-white distinction between pairs of in-
dependent events and dependent events: if A and B are independent, then knowing
whether or not B happened gives you no information about whether A happened; if
A and B are dependent, then the probability that A happens if B happened is different
from the probability that A happens if B did not happen. But how does knowing that
B occurred change your estimate of the probability of A? Think about events like “the
sky is clear” and “it is very windy” and “it will rain today”: sometimes Bmeans that
A is less likely or even impossible; sometimes B means that A is more likely or even
certain. Here we will discuss quantitatively how one event’s probability is affected by
the knowledge of another event.

The conditional probability of A given B represents the probability of A occurring if we
know that B occurred:

Definition 10.10 (Conditional probability)
The conditional probability of A given B, written Pr

[A|B], is given by

Pr
[A|B] = Pr [A∩ B]

Pr [B] .

(The quantity Pr [A|B] is also sometimes called the probability of A conditioned on B.)
We will treat Pr [A|B] as undefined when Pr [B] = 0.

Here are a few simple examples:

Example 10.19 (Odds and primes)
I choose a number uniformly at random from {1, 2, . . . , 10}. Define these two events:

• Event A: The chosen number is odd.
• Event B: The chosen number is prime.
For these events, we have Pr

[A|B] = Pr [A∩ B]
Pr [B] = Pr

[
{3, 5, 7}

]

Pr
[
{2, 3, 5, 7}

] = 3
4

and Pr
[
B|A

]
= Pr [A∩ B]

Pr [A] = Pr
[
{3, 5, 7}

]

Pr
[
{1, 3, 5, 7, 9}

] = 3
5 .

Figure 10.17: Some
dominoes.

Example 10.20 (Dominoes)
Problem: Shuffle the dominoes in Figure 10.17, and draw one uniformly at random.

1. What is the probability that you drew a domino with a 2 ( ) on it?
2. You make a draw and see the domino . (Imagine the shaded side of the

domino is covered by your hand.) What’s the probability your domino has a 2?
3. You make a draw and see that the domino is . What is the probability that

you drew a domino with a 2?
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Solution: 1. We are asked for the probability of drawing a domino with a 2:

contain a 2 do not contain a 2

Thus 3 of the 7 dominoes have a 2, so Pr [ ] = 3
7 .

2. We observe on our drawn domino. We’re asked for the probability of a 2:

contains a 2 does not contain a 2 impossible (do not contain a 1)

We know that the domino you drew must have been either or . These
two dominoes were equally likely to be drawn, and 1 of these 2 has a , so
there’s a 1

2 probability that you drew a . Using conditional probability nota-
tion, we can write this quantity as Pr

[
|
]
= 1

2 .
3. We are computing Pr

[ | ], the probability of a given thatwe observed a
. By the definition of conditional probability, we have

Pr
[ | ] = Pr [ ∩ ]

Pr [ ] = 0
1
7
= 0.

(A less notationally heavy way of writing this argument: because we see a ,
we know that the domino you drew must have been . This domino doesn’t
have a and so there’s zero chance that we observe a .)

Conditional probability as “zooming in” (and another example)

S
A

B

(a) A sample space S and two events A and B.
Any outcome in S can be chosen, and so in this
example Pr [A] ≈ 0.4 and Pr [B] ≈ 0.1.

A
B

(b) Conditioning on the event B.
Any outcome in B can be chosen,
and so Pr

[A|B] is the fraction of
those outcomes for which A occurs,
so here Pr [A|B] ≈ 0.8.

A
B

(c) Conditioning on the event A.
Any outcome in A can be chosen,
and so Pr

[B|A] is the fraction of
those outcomes for which B occurs,
so here Pr [B|A] ≈ 0.2.

Figure 10.18: A
view of conditional
probability.Intuitively, we can think of Pr [A|B] as “zooming” the universe down to the set

B. The basic idea that we used in Example 10.20was to narrow the set of possible
outcomes to those consistent with the observed partial data about the drawn domino,
and then compute the fraction of the narrowed sample space for which A occurs. This
view of conditional probability is illustrated in Figure 10.18.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



10.3. INDEPENDENCE AND CONDITIONAL PROBABILITY 1029

Here’s one more example, where we condition on slightly more complex events.

Example 10.21 (Coin flips)
Problem: Flip a fair coin 10 times (with all flips independent: the ith flip has no effect

on the jth flip for j 6= i). Write H to denote the event of getting at least 9 heads.
1. What is Pr [H]?
2. Let A be the event “the first flip comes up heads.” What is Pr [H|A]?
3. Let B be the event “the first flip comes up tails.” What is Pr

[
H|B

]
?

4. Let C be the event “the first three flips come up heads.” What is Pr [H|C]?
5. Let D be the event “we get at least 8 heads.” What is Pr [H|D]?

Solution: 1. Observe that every outcome—every element of {H,T}10—is equally
likely, each with probability 1/210. The number of sequences of 10 flips with 9
or 10 heads is (109

) + (1010
) = 10 + 1 = 11, so Pr [H] = 11/210 ≈ 0.0107.

For the conditional probabilities, we will compute Pr [H ∩X] and Pr [X] for each
of the stated events X. The final answer is their ratio. Because each outcome is
equally likely, we only have to compute the cardinality of the given events (and the
cardinality of their intersection with H) to answer the questions.
2. For A (the first flip comes up H), we have |A ∩ H| = 10: there are 9 outcomes

with one Tails that start with a Heads (HTHHHHHHHH, HHTHHHHHHH,
. . ., HHHHHHHHHT) and 1 outcome with zero Tails (HHHHHHHHHH).
Thus Pr [A∩H] = 10/210. Obviously Pr [A] = 1

2 . Thus

Pr
[H|A] = Pr [A∩H]

Pr [A] = 10/210
1/2 = 10

29 ≈ 0.01953.

3. For B (the first flip comes up T), we’ve already “used up” the single permit-
ted non-heads in the first flip, so there’s only one outcome in B ∩ H, namely
THHHHHHHHH. And, again, obviously Pr [B] = 1

2 . Therefore we have

Pr
[H|B] = Pr [B∩H]

Pr [B] = 1/210
1/2 = 1

29 ≈ 0.00195.

4. For C (the first three flips come up H), we have Pr [C] = 1
8 . The outcomes in

C ∩ H are exactly those that start with HHH followed by 6+ heads in the last 7
flips. There are (77

) + (76
) = 8 such outcomes. Thus

Pr
[H|C] = Pr [C ∩H]

Pr [C] = 8/210
1/8 = 64

210 ≈ 0.0625.

5. For D (there are at least 8 heads), we have Pr [H ∩D] = Pr [H] = 11/210. (There
are no outcomes in which we get 9+ heads but fail to get 8+ heads!) The proba-
bility of getting 8+ heads in 10 fair flips is

Pr [D] =
(10
8
)
+
(10
9
)
+
(10
10
)

210 = 45 + 10 + 1
210 = 56

210 .

And therefore

Pr
[H|D] = Pr [D ∩H]

Pr [D] = 11/210
56/210 = 11

56 ≈ 0.1964.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



1030 CHAPTER 10. PROBABILITY

To repeat the word of warning from early in this chapter: it can be very difficult to have
good intuition about probability questions. For example, the last problem in Example 10.21
asked for the probability of getting 9+ heads in 10 flips conditioned on getting 8+ heads.
It may be easy to talk yourself into believing that, of the times that we get 8+ heads,
there’s a ≈ 50% chance of getting 9 or more heads. (“Put aside the first 8 heads, and
look at one of the other flips—it’s heads with probability 1

2 , so we get a 9th heads
with probability 1

2 .”) But this intuition is blatantly wrong. Another way of thinking
about the calculation in the last part of Example 10.21 is to observe that there are 56
outcomes with 8, 9, or 10 heads. Only 11 of these outcomes have 9 or 10 heads. Each
outcome is equally likely. So if we’re promised that one of the 56 outcomes occurred,
then there’s an 11

56 chance that one of the 11 occurred.

Taking it further: So far, we have considered only random processes in which each outcome that can
occur does so with probability ε > 0—that is, there have been no infinitesimal probabilities. But we can
imagine scenarios in which infinitesimal probabilities make sense.

For example, imagine a probabilistic process that chooses a real number x between 0 and 1, where
each element of the sample space S = {x : 0 ≤ x ≤ 1} is equally likely to be chosen. We can make
probabilistic statements like Pr [x ≤ 0.5] = 1

2—half the time, we end up with x ≤ 0.5, half the time we
end up with x ≥ 0.5—but for any particular value c, the probability that x = c is zero! (Perhaps bizarrely,
Pr [x ≤ 0.5] = Pr [x < 0.5]. Indeed, Pr [x = 0.5] cannot be ε > 0, for any ε. Every possible outcome has to
have that same probability ε of occurring, and for any ε > 0 there are more than 1

ε real numbers between
0 and 1. So we’d violate (10.1) if we had Pr [x = 0.5] > 0.)

To handle infinitesimal probabilities, we need calculus. We can describe the above circumstance with
a probability density function p : S → [0, 1], so that, in place of (10.1), we require

∫

x∈S
p(x)dx = 1.

(For a uniformly chosen x ∈ [0, 1], we have p(x) = 1; for a uniformly chosen x ∈ [0, 100], we have
p(x) = 1

100 .) Some of the statements that we’ve made in this chapter don’t apply in the infinitesimal case.
For example, the “zooming in” view of conditional probability from Figure 10.18 doesn’t quite work in
the infinitesimal case. In fact, we can consider questions about Pr [A|B] even when Pr [B] = 0, like what is
the probability that a uniformly chosen x ∈ [0, 100] is an integer, conditioned on x being a rational number?. (And
Exercise 10.70—if Pr [B] = 0, then A and B are independent—isn’t true with infinitesimal probabilities.)
But details of this infinitesimal version of probability theory are generally outside of our concern here,
and are best left to a calculus-based/analysis-based textbook on probability.

The restriction to non-infinitesimal probabilities is generally a reasonable one to make for CS ap-
plications, but it is a genuine restriction. (It’s worth noting that we have encountered an infinite sample
space before—just one that didn’t have any infinitesimal probabilities. In a geometric distribution with
parameter 1

2 , for example, any positive integer k is a possible outcome, with Pr [k] = 1/2k ,which is a
finite, albeit very small, probability for any positive integer k.)

10.3.3 Bayes’ Rule and Calculating with Conditional Probability

Here, we’ll briefly introduce a few simple but useful ways of thinking about condi-
tional probability: the connection between independence of events and conditional
probability; a few ways of thinking about plain (unconditional) probability using
conditional probability; and, finally, Bayes’ Rule, a tremendously useful formula that
relates Pr [A|B] and Pr

[B|A].

Relating independence of events and conditional probability
Consider two events A and B for which Pr [B] 6= 0. Observe that A and B are inde-
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pendent if and only if Pr [A|B] = Pr [A]:

A and B are independent ⇔ Pr [A] · Pr [B] = Pr [A∩ B] definition of independence

⇔ Pr [A] = Pr [A∩ B]
Pr [B] dividing by Pr [B]

⇔ Pr [A] = Pr
[
A|B

]
. definition of Pr [A|B]

(Note that this calculation doesn’t work when Pr [B] = 0—we can’t divide by 0, and
Pr
[A|B] is undefined—but see Exercise 10.70.) Notice again that this relationship is

an if-and-only-if relationship: when A and B are not independent, then Pr [A] and
Pr
[
A|B

]
must be different. Here is a small example:

Example 10.22 (Self-mapped letters in substitution ciphers)
In Example 10.16, we showed that, for a random permutation π of the alphabet, the
events Q (Q is mapped to itself by π) and Z (Z is mapped to itself by π) were not inde-
pendent: specifically, Pr [Q] = 1

26 , Pr [Z] = 1
26 , and Pr [Q ∩ Z] = 1

25·26 . Thus

Pr
[Q|Z] = Pr [Q ∩Z]

Pr [Z] = 1/(25 · 26)
1/26 = 1

25 .

Compare Pr [Q|Z] = 1
25 to Pr [Q] = 1

26 : thus, knowing that Z is mapped to itself makes
it slightly more likely that Q is also mapped to itself. The reason that Zmakes Q slightly
more probable is that, when Z occurs, Z cannot be mapped to Q, so there are only 25
letters “competing” to be mapped to Q instead of 26.

Problem-solving tip:
Often it is easier to
get intuition about
a probabilistic
statement by
imagining an
absurdly small
variant of the
problem. Here, for
example, imagine a
2-letter alphabet Q,Z.
Then if Z is mapped
to itself then Q must
also be mapped to
itself. So Pr [Q] = 1

2 ,
but Pr [Q|Z] = 1.

Intersections and conditional probability
The definition of conditional probability (Definition 10.10) states that

Pr
[A|B] = Pr [A∩ B]

Pr [B] .

Multiplying both sides of this equality by Pr [B] yields a useful way of thinking about
the probability of intersections:

Theorem 10.2 (The Chain Rule)
Let A and B be arbitrary events. Then

Pr [A∩ B] = Pr [B] · Pr
[A|B] .

And, more generally, for events A1,A2, . . . ,Ak, we have

Pr [A1 ∩A2 ∩A3 ∩ · · · ∩Ak]
= Pr [A1] · Pr [A2|A1

] · Pr [A3|A1 ∩A2
] · · · · · Pr [Ak|A1 ∩ · · · ∩Ak−1

] .

If we’re interested in the probability that A and B occur, then we need it to be the case
that A occurs—and, conditioned on A occurring, B occurs too.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



1032 CHAPTER 10. PROBABILITY

Example 10.23 (Drawing a heart flush in poker)
Problem: A flush in poker is a 5-card hand, all of which are the same suit. What is the

probability of drawing a heart flush from a randomly shuffled deck?

Solution: We can draw any heart first. We have to keep drawing hearts to get a flush,
so for 2 ≤ k ≤ 5, the kth card we draw must be one of the remaining 14− k hearts
from the 53− k cards left in the deck. That is, writing Hi to denote the event that
the ith card drawn is a heart:

Pr [H1 ∩H2 ∩H3 ∩H4 ∩H5]

= Pr [H1] · Pr
[
H2|H1

]
· Pr

[
H3|H1,2

]
· Pr

[
H4|H1,2,3

]
· Pr

[
H5|H1,2,3,4

]

= 13
52 · 1251 · 1150 · 1049 · 9

48

= 154440
311875200 ≈ 0.00049519807.

(We could also have directly computed this quantity via counting: there are (135
)

hands of 5 hearts, and (525
) total hands. Thus the fraction of all hands that are heart

flushes is (13
5
)

(52
5
) =

13!
5!·8!
52!

5!·47!
= 13! · 47!

8! · 52! = 13 · 12 · 11 · 10 · 9
52 · 51 · 50 · 49 · 48 ,

which is the same quantity that we found above.)

We can use the chain rule to compute the probability of an event A by making the
(obvious!) observation that another event B either occurs or doesn’t occur:

Theorem 10.3 (The Law of Total Probability)
Let A and B be arbitrary events. Then

Pr [A] = Pr
[A|B] · Pr [B] + Pr

[A| B ] · Pr [ B ] .

Proof. We’ll proceed by splitting A into two disjoint subsets, A∩ B and A− B (which is
otherwise known as A∩ B):

Pr [A] = Pr
[(A∩ B) ∪ (A∩ B)] A = (A∩ B)∪ (A ∩ B)

= Pr [A∩ B] + Pr
[A∩ B] A∩ B and A∩ B are disjoint

= Pr
[A|B] · Pr [B] + Pr

[A| B ] · Pr [ B ] . the chain rule

Thus the theorem follows.

Here’s a simple example of using the law of total probability:
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Example 10.24 (Binary Symmetric Channel)
We wish to transmit a 1-bit message from a sender to a receiver. The sender’s mes-
sage is 0 with probability 0.3, and it’s 1 with probability 0.7. The sender sends this
data using a communication channel that corrupts (that is, flips) every transmitted bit
with probability 0.25. Then the probability that the receiver receives a “1” message is

Pr [receive 1] = Pr
[receive 1|send 1] · Pr [send 1] + Pr

[receive 1|send 0] · Pr [send 0]
= (0.75 · 0.7) + (0.25 · 0.3)
= 0.525 + 0.075 = 0.6.

0

1

0

1

p
1− p

1− p
p

input output

Figure 10.19: The
binary symmetric
channel.

Taking it further: The binary symmetric channel is
given this name because it transmits a bit (it’s bi-
nary) and it corrupts a 0 with the same probability
as it corrupts a 1 (it’s symmetric). (See Figure 10.19;
view each arrow in the channel as transforming a
particular input bit to a particular output bit, with
the indicated probability.)

The binary symmetric channel is one of the
most basic forms of a noisy communication channel (that is, a channel that does not perfectly transmit its
input without any chance of corruption). The subfield of information theory is devoted to analyzing topics
like the (theoretical) efficiency of communication channels, including the binary symmetric channel. For
much more, see a textbook on information theory.5

5

5 Thomas M. Cover
and Joy A. Thomas.
Elements of Informa-
tion Theory. Wiley,
1991.

Bayes’ Rule
Bayes’ Rule is a simple—but tremendously useful—rule for “flipping around” a

conditional probability statement. It allows us to express the conditional probability of

Bayes’ Rule is
named after
Thomas Bayes,
an 18th-century
English mathemati-
cian.

A given B in terms of the conditional probability of B given A:

Theorem 10.4 (Bayes’ Rule)
For any two events A and B:

Pr
[
A|B

]
= Pr

[B|A] · Pr [A]
Pr [B] .

Proof. Applying the chain rule to break apart Pr [A∩ B] “in both orders,” we have

Pr [A∩ B] = Pr
[A|B] · Pr [B]

Pr [B∩A] = Pr
[B|A] · Pr [A] .

The left-hand sides of these equations are identical because A ∩ B = B ∩ A (and there-
fore Pr [A∩ B] = Pr [B∩A]), so their right-hand sides are equal, too:

Pr
[A|B] · Pr [B] = Pr

[B|A] · Pr [A] .

Dividing both sides of this equality by Pr [B] yields the desired equation:

Pr
[
A|B

]
= Pr

[B|A] · Pr [A]
Pr [B] .
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Here are a couple of simple examples of using Bayes’ Rule:

Example 10.25 (Binary Symmetric Channel, again)
As in Example 10.24, assume a sender transmits a 0 with probability 0.3 and a 1 with
probability 0.7 across a channel that corrupts every bit with probability 0.25. We
showed in Example 10.24 that Pr [receive 1] = 0.6 and thus Pr [receive 0] = 0.4. Then
the probability that the receiver receiving a “1” message was indeed sent a 1 is

Pr
[message sent was 1|receive 1] = Pr

[
receive 1|send 1

]
· Pr [send 1]

Pr [receive 1] by Bayes’ Rule

= 0.75 · 0.7
0.6 = 0.875.

And the probability that the receiver receiving a “0” message was indeed sent a 0 is

Pr
[message sent was 0|receive 0] = Pr

[
receive 0|send 0

]
· Pr [send 0]

Pr [receive 0] by Bayes’ Rule

= 0.75 · 0.3
0.4 = 0.5625.

(Qualitatively, these numbers tell us that most of received ones were actually sent as
ones, but barely more than half of the received zeros were actually sent as zeros.)

Example 10.26 (9+ heads, again)
We flip a fair coin 10 times. As in Example 10.21, let A denote the event that the first
flip comes up heads and let H denote the event that there are 9 or more heads in the
10 flips. (There we showed Pr [H] = 11/210, Pr [A] = 1

2 , and Pr
[
H|A

]
= 10/29.) Then

Pr
[A|H] = Pr

[H|A] · Pr [A]
Pr [H] = (10/29) · 1

2
11/210 = 10

11 .

Taking it further: A speech recognition system is supposed to “listen” to speech in a language like English,
and recognize the words that are being spoken. Bayes’ Rule allows us to think about two different types
of evidence that such a system uses in deciding what words it “thinks” are being said; see p. 1036.

A particularly important application of Bayes’ Rule is in “updating” one’s beliefs
about the world by observing new information. (Here “beliefs” take the form of a
probability distribution.) One starts with a prior distribution which one then updates
based on evidence to produce a posterior distribution. Here are two examples:

The prior (pre =
before) is your
best guess of the
probability of
the event prior
to seeing the
produced evidence;
the posterior (post
= after) is your best
guess after seeing
the evidence.

Example 10.27 (Alice the CS major)
We are interested in whether a student (let’s call her Alice) is a computer science
major. Our prior for Alice might be Pr [CS major] = 0.05 because 5% of students
are CS majors. We learn that Alice took Ancient Philosophy. If we know that 10% of
students as a whole take Ancient Philosophy, and 50% of CS majors do, then
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Pr
[CS major|phil] = Pr

[phil|CS major] · Pr [CS major]

Pr
[
phil

] = 0.5 · 0.05
0.10 = 0.25.

Our posterior distribution (that is, the updated guess) is that there is now a 25%
chance that Alice is a CS major.

Example 10.28 (Flipping a coin to decide which coin to flip)
I have two coins in an opaque bag. The coins are visually indistinguishable, but one
coin is fair (Pr [H] = 0.5); the other coin is 0.75-biased (Pr [H] = 0.75). I pull one of the
two coins out at random.

• My prior distribution is that there is a 50% chance I’m holding the fair coin, and a
50% chance I’m holding the biased coin. (That is, Pr [biased] = Pr [fair] = 0.5.)

I flip the coin that I’m holding. It comes up heads.

• The evidence is the Heads flip.

Because the biased coin is more likely to produce Heads flips than the fair coin is
(and we saw Heads), this evidence should make us view it as more likely that the
coin that I’m holding is the biased coin. Let’s compute my posterior probability:

• The posterior probability of an event is the probability of that event conditioned on
the observed evidence. So we wish to compute Pr [biased|H]:

Pr
[biased|H] = Pr

[H|biased] · Pr [biased]
Pr [H] Bayes’ Rule

= Pr
[H|biased] · Pr [biased]

Pr
[H|biased] · Pr [biased] + Pr

[H|fair] · Pr [fair]
Law of Total Probability

= 0.75 · Pr [biased]
(0.75 · Pr [biased]) + (0.5 · Pr [fair])

the given biases of the coins: 0.75 for biased, 0.5 for fair

= 0.75 · 0.5
(0.75 · 0.5) + (0.5 · 0.5) Pr [biased] = Pr

[fair] = 0.5, as defined by the prior

= 0.375
0.375+ 0.25 = 0.6.

So the posterior probability is Pr
[
biased|H

]
= 0.6 and Pr

[
fair|H

]
= 0.4.

Taking it further: The idea of Bayesian reasoning is used frequently in many applications of computer
science—any time a computational system weighs various pieces of evidence in deciding what kind of
action to take in a particular situation. One of the most noticeable examples of this type of reasoning
occurs in Bayesian spam filters; see p. 1037 for more.
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Computer Science Connections

Speech Recognition, Bayes’ Rule, and Language Models
A software system for speech recognition must solve the following problem:

given an audio stream S of spoken English as input, produce as output a
transcriptW of the words in S . There will be many candidate transcripts of
S , and generally the task of the system is to produce the most likely sequence of
words given the audio stream—that is, to find the W∗ maximizing Pr

[W∗|S].
Using Bayes’ Rule, we can rephrase Pr

[
W∗|S

]
into an expression that’s

Figure 10.20: A spectrogram represen-
tation of an audio stream: the x-axis
represents time, the y-axis represents
frequency, and the darkness of the
shading denotes the intensity of sound
at that particular frequency at that
particular time. (See p. 234 for more
discussion.) The task is to turn this
representation into its most proba-
ble sequence of words—in this case,
the sentence “I prefer agglomerative
clustering.”

easier to understand:

the W∗ maximizing Pr
[
W∗|S

]

= the W∗ maximizing Pr
[S|W∗] · Pr [W∗]

Pr [S] Bayes’ Rule

= the W∗ maximizing Pr
[S|W∗] · Pr [W∗] . Pr [S] is the same for eachW∗

Thus there are two valuable sources of data for evaluating a candidate W :
• Pr

[S|W], the likelihood of the observation: the probability that this sound
stream would have been produced if W were the sequence of words; and

• Pr [W], the probability of this output: the probability of this sequence of
words being uttered at all.

For example, even if the audio stream is a better acoustic match for the phrase
whirled Siri string, you’d want your system to prefer the phrase World Se-
ries ring—because an English speaker is far more likely to say the latter
phrase than the former. (That is, Pr

[
World Series ring

]
is much higher than

Pr
[
whirled Siri string

]
.) Of course, we still must take into account the audio

stream S—otherwise, regardless of the audio,we’d end up with a system that
produced precisely the same output sentence (the most common sentence in
English: I’m sorry!, or whatever it is) for any input sound stream.

Generally speaking, the quantity Pr
[S|W] would be estimated by an

acoustic model of the vocal tract: if I’m trying to say Camp Utah seance, what is
the probability that I produce a particular stream S of sounds?

The quantity Pr [W] is estimated by what’s called a language model. We
would acquire a large collection of English text, and then try to use that data
to estimate how likely a particular sequence is. The simplest language model
is the unigrammodel:
• from a giant data set with N total words, for each word w we count up the

number of times n(w) that w appears.
• if W = w1,w2, . . . ,wk ,we estimate Pr [W] as n(w1)

N · n(w2)
N · · · · · n(wk )

N .
A more complex language model might use bigrams—two-word sequences—
instead; we count the number of occurrences of wi ,wi+1 consecutively in
the giant data set, and estimate Pr [W] based on these counts. Other more
complex language models are used in real systems.6 There’s also a great deal

For much more, see
6 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.

of complication with avoiding overfitting of the language model to the training
data. (In addition to speech recognition, a variety of other natural language
processing problems are generally solved with the same general approach.)
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Computer Science Connections

Bayesian Modeling and Spam Filtering
There are, it’s estimated, a few hundred billion email messages sent on

earth per day. Of those, a significant fraction of those messages are unso-
licited, unwanted bulk messages—that is, what’s commonly known as spam.
Somewhere between 50% and 95% of emails are currently spam. (It’s hard
to be precise; statistics and definitions of spam vary, and there’s change over
time as certain spammers are shut down, or not.) See statistics on email and spam pro-

duced by the Radicati Group, for exam-
ple: www.radicati.com.

The basic idea of a spam filter is to estimate the probability that a particular
messagem is spam. The email client, or possibly the individual user, can
choose a threshold p; a messagem for which Pr

[
m is spam

]
≥ p is placed into

a spam folder. The choice of p depends on the user’s relative concern about
false positives (nonspam messages that end up being incorrectly treated as
spam) versus false negatives (spam messages that end up being incorrectly left
in the inbox). So, how might a spam filter actually make its decisions? Here’s

It’s a good test of your probabilistic
intuition to ask: supposing that we have
a spam filter that correctly classifies 90%
of email messages as spam/nonspam,
and 95% of email messages are spam,
what fraction of email in your inbox is
nonspam? The answer, by Bayes’ Rule:
Pr
[nonspam|inbox]

= Pr
[inbox|nonspam] Pr [nonspam](

Pr
[inbox|nonspam] Pr [nonspam]

+ Pr
[inbox|spam] Pr [spam]

)

= 0.9 · 0.05
0.9 · 0.05 + 0.1 · 0.95

= 0.045
0.045 + .095

= 0.3214 · · · .
In other words, a full two thirds of
messages in your inbox would be spam!

one approach, based fundamentally on Bayes’ Rule. Consider a message
consisting of words w1,w2, . . . ,wn;we must compute Pr [spam|w1,w2, . . .wn

].
Using Bayes’ Rule, we turn around this probability:

Pr
[
spam|w1,w2, . . .wn

]
= Pr

[
w1,w2, . . .wn|spam

]
· Pr

[
spam

]

Pr [w1,w2, . . .wn]
And, by the law of total probability (every message is either spam or not
spam), we can further rewrite this probability as

Pr
[
w1,w2, . . .wn|spam

]
· Pr

[
spam

]

Pr
[
w1,w2, . . .wn|spam

]
Pr
[
spam

]
+ Pr

[
w1,w2, . . .wn|not spam

]
Pr
[
not spam

] .

That is, we want to know: what is the probability that the sequence of words
w1, . . . ,wn would have been generated in a spam message, relative to the
probability that w1, . . . ,wn would have been generated in a spam or nonspam
message? (These “relative probabilities” are weighted by the background
probability of spam-vs.-nonspam messages.)

A naïve Bayes classifier uses an additional assumption: that the appearance
of every word in an email is an independent event. That is, we’re going to
estimate Pr [w1,w2, . . .wn] as if the probability of each wi appearing does not
depend on any other word appearing. (Obviously that assumption isn’t right:
the probability of the word MORTGAGE appearing is not independent of the
probability of the word RATE appearing, in either spam or nonspam.)

Pr
[
w1,w2, . . .wn|spam

]
≈ Pr

[
w1|spam

]
· Pr

[
w2|spam

]
· · · · · Pr

[
wn|spam

]
.

Thus a naïve Bayes classifier estimates the probability of a message being
generated as spam by multiplying a measure of “how spammy” each word
is. A spam filter would still need to have two numbers associated with each
word wi—namely Pr

[
wi |spam

]
and Pr

[
wi|nonspam

]
. We can estimate these

numbers from a training set of spam/nonspam emails, with some sort of
“smoothing” mechanism to improve our estimate of the spamminess of a
word that doesn’t appear in any of the training emails.7

For more about the training of these
estimates, and about text classification—
the broader version of the problem that
we’re trying to solve in spam filtering—
again see:
7 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.
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10.3.4 Exercises

Choose one of the 12 months of the year uniformly at random. (That is, choose a number uniformly from the set
{1, 2, . . . , 12}.) Indicate whether the following pairs of events are independent or dependent. Justify your answers.
10.53 “The month number is even” and “the month number is divisible by 3.”
10.54 “The month number is even” and “the month number is divisible by 5.”
10.55 “The month number is even” and “the month number is divisible by 6.”
10.56 “The month number is even” and “the month number is divisible by 7.”

We flip a fair coin 6 times. Which of these events are independent or dependent? Justify your answers.
10.57 “The number of heads is even” and “the number of heads is divisible by 3.”
10.58 “The number of heads is even” and “the number of heads is divisible by 4.”
10.59 “The number of heads is even” and “the number of heads is divisible by 5.”

10.60 We flip three fair coins, called a, b, and c. Are the events “The number of heads in {a, b} is odd”
and “The number of heads in {b, c} is odd” independent or dependent?
10.61 How (if at all) would your answer to the previous exercise change if the three coins are p-biased?
(That is, assume Pr [a = H], Pr [b = H], and Pr [c = H] are all equal to p.)

ABIDES

BASES

CAJOLED

DATIVE

EXUDE

FEDORA

GASOLINES

HABANERO

(a) Some words.

A : “the first
letter of the
word is a
consonant.”

B : “the second
letter of the
word is a
consonant.”

C : “the second
letter of the
word is a
vowel.”

D : “the last
letter of the
word is a
consonant.”

E : “the word
has even
length.”

(b) Some events.
Figure 10.21: A
word list from
which we choose a
random word, and
some events.

Consider the list of words and the events in Figure 10.21. Choose a word at random from this list. Which of these pairs
of events are independent? For the pairs that are dependent, indicate whether the events are positively or negatively
correlated. Justify your answers.
10.62 A and B
10.63 A and C
10.64 B and C
10.65 A and D

10.66 A and E
10.67 A ∩ B and E
10.68 A ∩ C and E
10.69 A ∩D and E

Let A and B be arbitrary events in a finite sample space.
10.70 Prove that if Pr [B] = 0, then A and B are independent.
10.71 Prove that A and B are independent if and only if A and B are independent.

A substitution cipher (see Example 10.16) is a simple cryptographic scheme in which we choose a permutation π of
the alphabet, and replace each letter i with πi. (Decryption is the same process, but backward: replace πi by i.) However,
substitution ciphers are susceptible to frequency analysis, in which an eavesdropper who observes the encrypted
message (the ciphertext) infers that the most common letter in the ciphertext probably corresponds to the most common
letter in English text (the letter E), the second-most common to the second-most common (T), and so on.
10.72 (programming required) Write a program that generates a random permutation π of the alphabet,
and encrypts a given input text using π. (Leave all non-alphabetic characters unchanged.)
10.73 (programming required) Write a program that takes a text as input, converts it to upper case, and
produces as output a vector 〈fA, fB, . . . , fZ〉, where f• is the fraction of letters in the input text that are the letter
•. (So f will be a probability distribution over the alphabet.)

10.74 (programming required) Write a program that, given a reference text and a text encrypted with an
unknown substitution cipher, attempts to decrypt by mapping the most common encrypted letters, in order,
to the most common reference letters. You can find useful reference files—for example, the complete works
of Shakespeare—from Project Gutenberg, http://www.gutenberg.org/.

A Caesar cipher is a special kind of substitution cipher in which the permutation π is generated by choosing a nu-
merical shift s and moving all letters s steps forward in the alphabet, wrapping back to the beginning of the alphabet as
necessary. (For example, with a shift of 5, A→ F and W → B.)
10.75 (programming required) Write a Caesar cipher encryption program that encrypts a given input text
file with a randomly chosen shift in {0, 1, . . . , 25}.
10.76 (programming required) If you run your decryption program from Exercise 10.74 on Caesar-
ciphered text, you’ll find that your program generally doesn’t work perfectly. Write a Caesar-cipher-
decrypting program that takes advantage of the fact that every letter is shifted by the same amount. Find
the most probable s—the s that minimizes the difference in the probabilities of each letter from the reference
text and the deciphered text. That is, minimize ∑i |f ′i − fi+s|, where f comes from the ciphertext and f ′ comes
from the reference text.
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Flip n fair coins. For any two distinct indices i and j with 1 ≤ i < j ≤ n, define the event Ai,j as
Ai,j := (the ith coin flip came up heads) XOR (the jth coin flip came up heads).

For example, for n = 4 and the outcome 〈T,T,H,H〉, the events A1,3, A1,4 , A2,3, and A2,4 all occur; A1,2 and A3,4
do not. Thus, from n independent coin flips, we’ve defined Ω(n2) different events—(n2

), to be specific. In the next few
exercises, you’ll show that these (n2

) events are pairwise independent, but not fully independent.
10.77 Let i and j > i be arbitrary. Show that Pr [Ai,j] = 1

2 .
10.78 Let i and j > i be arbitrary, and let i′ and j′ > i′ be arbitrary. Show that any two distinct events Ai,j
and Ai′ ,j′ are independent. That is, show that Pr [Ai,j |Ai′ ,j′

] = Pr
[Ai,j |Ai′,j′

] = 1
2 if {i, j} 6= {i′, j′}.

10.79 Show that there is a set of three distinct A events that are not mutually independent. That is,
identify three events Ai,j , Ai′ ,j′ , and Ai′′,j′′ where the sets {i, j}, {i′ , j′}, and {i′′, j′′} are all different (though
not necessarily disjoint). Then show that if you know the value of Ai,j and Ai′ ,j′ , the probability of Ai′′,j′′ 6= 1

2 .

Figure 10.22: Some
dominoes.

Suppose that you have the dominoes in Figure 10.22, and you shuffle them and draw
one domino uniformly at random. (More specifically, you choose any particular
domino with probability 1

12 . After you’ve chosen the domino, you choose an orienta-
tion, with a 50–50 chance of either side pointing to the left.) What are the following
conditional probabilities? (“Even total” means that the sum of the two halves of the
domino is even. “Doubles” means that the two halves are the same.)
10.80 Pr

[even total|doubles]

10.81 Pr
[doubles|even total]

10.82 Pr
[doubles|at least one ]

10.83 Pr
[at least one |doubles]

10.84 Pr
[total ≥ 7|doubles]

10.85 Pr
[doubles|total ≥ 7]

10.86 Pr
[even total|total ≥ 7]

10.87 Pr
[doubles|left half of drawn domino is ]

10.88 Suppose A and B are mutually exclusive events—that is, A ∩ B = ∅. Prove or disprove the
following claim: A and B cannot be independent.
10.89 Let A and B be two events such that Pr [A|B] = Pr

[B|A]. Which of the following is true? (a)
A and Bmust be independent; (b) A and Bmust not be independent; or (c) A and Bmay or may not be
independent (there’s not enough information to tell). Justify your answer briefly.

Suppose, as we have done throughout the chapter, that h : K → {1, . . . ,n} is a random hash function.
10.90 Suppose that there are currently k cells in the array that are occupied. Consider a key x ∈ K not
currently stored in the hash table. What is the probability that the cell h(x) into which x hashes is empty?
10.91 Suppose that you insert n distinct values x1, x2, . . . , xn into an initially empty n-slot hash table.
What is the probability that there are no collisions? (Hint: if the first i elements have had no collisions, what is the
probability that the (i + 1)st hashed element does not cause a collision? Use Theorem 10.2 and Exercise 10.90.)

There’s a disease BCF (“base-case failure”) that afflicts a small but very unfortunate fraction of the population. One in
a thousand people in the population have BCF. Explain your answers to the following questions:
10.92 Doctor Genius has invented a BCF-detection test. Her test, though, isn’t perfect:
• it has false negatives: if you do have BCF, then her test says that you’re not sick with probability 0.01.
• it has false positives: if you don’t have BCF, then her test says that you’re sick with probability 0.03.
What is the probability p that Dr. Genius gives a random person x an erroneous diagnosis?
10.93 “Doctor” Quack has invented a BCF-detection test, too. He was a little confused by the statement
“one in a thousand people in the population have BCF,” so his test is this: no matter who the patient is, with
probability 1

1000 report “sick” and with probability 999
1000 report “not sick.” What is p now?

Alice wishes to send a 3-bit message 011 to Bob, over a noisy channel that corrupts (flips) each transmitted bit indepen-
dently with some probability. To combat the possibility of her transmitted message differing from the received message,
she adds a parity bit to the end of her message (so that the transmitted message is 0110). [Bob checks that he receives a
message with an even number of 1s, and if so interprets the first three received bits as the message.]
10.94 Assume that each bit is flipped with probability 1%. Conditioned on receiving a message with an
even number of 1s, what is the probability that the message Bob received is the message that Alice sent?
10.95 What if the probability of error is 10% per bit?

Suppose, as in Example 10.28, I have two coins—one fair and one p-biased. I pull one uniformly at random from an
opaque bag, and flip it. What is Pr [I pulled the biased coin|the following observed flips]? Justify your answers.
10.96 p = 2

3 , and I observe a single Heads flip.
10.97 p = 3

4 , and I observe the flip sequence HHHT.
10.98 p = 3

4 , and I observe the flip sequence HTTTHT.
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A Bloom filter is a probabilistic data structure designed to store a set of elements from a universe U, allowing very
quick query operations to determine whether a particular element has been stored.8 Specifically, it supports the opera- 8 Burton H. Bloom.

Space/time trade-
offs in hash coding
with allowable
errors. Communi-
cations of the ACM,
13(7):422–426, July
1970.

tions Insert(x), which adds x to the stored set, and Lookup(x), which reports whether x was previously stored. But,
unlike most data structures for this problem, we will allow ourselves to (occasionally) make mistakes in lookups, in
exchange for making these operations fast.

Here’s how a Bloom filter works. We will choose k different hash functions h1 , . . . , hk : U → {1, . . . ,m}, and we
will maintain an array of m bits, all initially set to zero. The operations are implemented as follows:
• To insert x into the data structure, we set the k slots h1(x), h2(x), . . . , hk (x) of the array to 1. (If any of these slots

was already set to 1, we leave it as a 1.)
• To look up x in the data structure, we check that the k slots h1(x), h2(x), . . . , hk(x) of the array are all set to 1. If

they’re all 1s, we report “yes”; if any one of them is a 0, we report “no.” 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

11
0

12
0

13
0

0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 1 1 0 0
(a) The table initially; after inserting 3; and after
inserting 7. Note h1(3) = 4, h2(3) = 10, h1(7) = 8,
and h2(7) = 11.

1
0

2
0

3
0

4
1

5
0

6
0

7
0

8
1

9
0

10
1

11
1

12
0

13
0

0 0 0 1 0 0 0 1 0 1 1 0 0

0 0 0 1 0 0 0 1 0 1 1 0 0
(b) Testing for 3 (yes!), 15 (no!), and 10 (yes!?!).
Note h1(15) = 3, h2(15) = 5, h1(10) = 11, and
h2(10) = 10—so 10 is a false positive.

Figure 10.23: An
example of a Bloom
filter with k = 2
hash functions:
h1(x) = x mod 13 + 1
and h2(x) =
x2 mod 13 + 1.

For an example, see Figure 10.98. Note that there can be a false positive in a
lookup: if all k slots corresponding to a query element x happen to have been set to 1
because of other insertions, then x will incorrectly be reported to be present.

As usual, we treat each of the k hash functions as independently assigning each
element of U to a uniformly chosen slot of the array. Suppose that we have an m-slot
Bloom filter, with k independent hash functions, and we insert n elements into the
data structure.
10.99 Suppose we have k = 1 hash functions, and we’ve inserted n = 1
element into the Bloom filter. Consider any particular slot of them-slot table.
What is the probability that this particular slot is still set to 0? (That is, what
is the probability that this slot is not the slot set to 1 when the single element
was inserted?)
10.100 Let the number k of hash functions be an arbitrary number k ≥ 1,
but continue to suppose that we’ve inserted only n = 1 element in the
Bloom filter. What is the probability a particular slot is still set to 0 after this
insertion?
10.101 Let the number k of hash functions be an arbitrary number k ≥ 1,
and suppose that we’ve inserted an arbitrary number n ≥ 1 of elements into
the Bloom filter. What is the probability a particular slot is still set to 0 after these insertions?

Define the false-positive rate of a Bloom filter (with m slots, k hash functions, and n inserted elements) to be the
probability that we incorrectly report that y is in the table when we query for an uninserted element y.

For many years (starting with Bloom’s original paper about Bloom filters), people in computer science believed that
the false positive rate was precisely pk , where p = (1− [your answer to Exercise 10.101]). The justification was the
following. Let Bi denote the event “slot hi(y) is occupied.” We have a false positive if and only if B1,B2, . . . ,Bk are all
true. Thus

the false positive rate = Pr [B1 and B2 and · · · and Bk] .
You showed in the previous exercise that Pr [Bi] = p. Everything up until here is correct; the next step in the
argument, however, was not! Therefore, because the Bi events are independent,

the false positive rate = Pr [B1 and B2 and · · · and Bk] = Pr [B1] · Pr [B2] · · · Pr [Bk] = pk .
But it turns out that Bi and Bj are not independent!9 (This error is a prime example of how hard it is to have perfect

9 Prosenjit Bose,
Hua Guo, Evange-
los Kranakis, Anil
Maheshwari, Pat
Morin, Jason Morri-
son, Michiel Smid,
and Yihui Tang. On
the false-positive
rate of Bloom fil-
ters. Information
Processing Letters,
108(4):210–213,
2008; and Ken
Christensen, Allen
Roginsky, and
Miguel Jimeno. A
new analysis of the
false positive rate of
a Bloom filter. In-
formation Processing
Letters, 110:944–949,
2010.

intuition about probability!)
10.102 Letm = 2, k = 2, and n = 1. Compute by hand the false-positive rate. (Hint: there are “only” 16
different outcomes, each of which is equally likely: the random hash functions assign values in {1, 2} to h1(x), h2(x),
h1(y), and h2(y). In each of these 16 cases, determine whether a false positive occurred.)
10.103 Compute p2—the answer you would have gotten by using

false-positive rate = (1− [your answer to Exercise 10.101])2.
Which is bigger—p2 or [your answer to Exercise 10.102]? In approximately one paragraph, explain the
difference, including an explanation of why the events B1 and B2 are not independent.

10.104 While the actual false-positive rate is not exactly pk , it turns out that pk is a very good approxima-
tion to the false-positive rate as long as m is sufficiently big and k is sufficiently small. Write a program that
creates a Bloom filter with m = 1,000,000 slots and k = 20 hash functions. Insert n = 100,000 elements, and
estimate the false positive probability by querying for n additional uninserted elements y /∈ X. What is the
false-positive rate that you observe in your experiment? How does it compare to pk?
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10.4 Random Variables and Expectation
Acts of sacrifice, charity and penance are not to be
given up but should be performed. . . . All these
activities should be performed without any
expectation of result.

Bhagavad Gita 18:5–6
Thus far, we have been considering whether or not something occurs—that is, using

the language of probability, we have been interested in events. But often we will also be
interested in how many? questions and not just did it or did it not? questions. How many
heads came up in 1000 coin flips? How many times do we have to flip a coin before
it comes up heads for the 1000th time? For a randomly ordered array A[1 . . .n] of the
integers {1, . . . , n}, for how many indices i is A[i] < A[i + 1]? To address these types
of questions, we will introduce the concept of a random variable, which measures some
numerical quantity that varies from outcome to outcome. We will also consider the Warning! A “ran-

dom variable” is
one of the worst-
named concepts in
this entire book. A
random variable
is not a variable—
rather, it’s a function
that maps each out-
come to a numerical
value. But everyone
calls it a random
variable, so that’s
what we’ll call it,
too.

expectation of a random variable, which is the value of that variable averaged over all of
the outcomes in the sample space.

10.4.1 Random Variables
We begin with the definition of a random variable itself:

Definition 10.11 (Random variable)
A random variable X assigns a numerical value to every outcome in the sample space S. (In
other words, a random variable is a function X : S → R.)

Here are a few simple examples:

Example 10.29 (Counting heads in 3 flips)
Suppose that we flip a fair coin independently, three times. (Then the sample space is
S = {H,T}3, and Pr [x] = 1

8 for any x ∈ S.) Define the random variables

X = the number of heads
Y = the number of initial consecutive tails.

These random variables take on the following values:

X(HHH) = 3 Y(HHH) = 0
X(HHT) = 2 Y(HHT) = 0
X(HTH) = 2 Y(HTH) = 0
X(HTT) = 1 Y(HTT) = 0
X(THH) = 2 Y(THH) = 1
X(THT) = 1 Y(THT) = 1
X(TTH) = 1 Y(TTH) = 2
X(TTT) = 0 Y(TTT) = 3.
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Example 10.30 (Word length, and number of vowels)
Select a word from the sample space {Now, is, the, winter, of, our, discontent} by
choosing word w with probability proportional to the number of letters in w, as in
Example 10.5. Define a random variable L to denote the number of letters in the word
chosen. Thus L(discontent) = 10 and L(winter) = 6, for example. We can also
define a random variable V to denote the number of vowels in the word chosen. Thus
V(discontent) = 3 and V(winter) = 2, for example. Here are the values for these two
random variables for each outcome in the sample space:

w Pr [w] L(w) V(w)
Now 3/29 3 1
is 2/29 2 1
the 3/29 3 1
winter 6/29 6 2
of 2/29 2 1
our 3/29 3 2
discontent 10/29 10 3

Although it’s an abuse of notation, often we just write X to denote the value of a ran-
dom variable X for a realization chosen according to the probability distribution Pr. (So we
might write “X = 3 with probability 1

8” or “there are L letters in the chosen word.”)
We can state probability questions about events based on random variables, as the

following example illustrates:

Example 10.31 (More word length and vowel counts)
Choose a word as in Example 10.30. Define L as the number of letters in the word,
and define V as the number of vowels in the word. Then Pr [L = 3] denotes the proba-
bility that we choose an outcome w for which L(w) = 3. (In other words, L = 3 denotes
the event {w : L(w) = 3}.) Thus (see the table in Example 10.30)

Pr [L = 3] = Pr
[
{Now, the, our}

] = 9
29

Pr [V = 3] = Pr
[
{discontent}

] = 10
29 .

We will also abuse notation by performing arithmetic on random variables (remember,
these are functions!): for two random variables X and Y, we write X + Y as a new
random variable that, for any outcome x, denotes the sum of X(x) and Y(x). We will
interpret similarly any other arithmetic expression that involves random variables.
(The notational analogue here is writing “sin + cos” to denote the function f (x) =
sin(x) + cos(x).) Here’s a small example:

Example 10.32 (Number of consonants)
We can express the number of consonants in the randomly chosen word from our
running example (see Example 10.30) as L− V. For example, L− V = 1 when the
chosen word is our, and L−V = 4 when the chosen word is winter.
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Indicator random variables
One special type of random variable that will come up frequently is an indicator

random variable, which only takes on the values 0 and 1. (Such a random variable “indi-
cates” whether a particular event has occurred.) Here’s a simple example:

Example 10.33 (Indicator random variables in coin flips)
Suppose that we flip three fair coins independently. Let X1 be an indicator random
variable that reports whether the first flip came up heads. Similarly, let X2 and X3 be
indicator random variables for the second and third flips. Then:

outcome X1 X2 X3
HHH 1 1 1
HHT 1 1 0
HTH 1 0 1
HTT 1 0 0
THH 0 1 1
THT 0 1 0
TTH 0 0 1
TTT 0 0 0

Note that the total number of heads is given by the random variable X1 +X2 +X3.

Independence of random variables
Just as with independence for events, we will often be concerned with whether

knowing the value of one random variable tells us something about the value of an-
other. Two random variables X and Y are independent if every two events of the form
“X = x” and “Y = y” are independent: for every value x and y, it must be the case that
Pr
[X = x and Y = y] = Pr [X = x] · Pr

[Y = y]. For example:

Example 10.34 (Some independent/dependent random variables)
The random variables X2 and X3 from Example 10.33—we flip 3 fair coins indepen-
dently; X2 and X3 indicate whether the 2nd and 3rd flips are heads—are indepen-
dent. You can check all four possibilities; for example,

Pr [X2 = 1 and X3 = 1] = 1
4 = 1

2 · 1
2 = Pr [X2 = 1] · Pr [X3 = 1] and

Pr [X2 = 1 and X3 = 0] = 1
4 = 1

2 · 1
2 = Pr [X2 = 1] · Pr [X3 = 0] .

On the other hand, the random variables X and Y from Example 10.29—we flip 3 fair
coins independently; X is the number of heads and Y is the number of consecutive
initial tails—are not independent; for example,

Pr [X = 3] · Pr [Y = 3] = 1
8 · 1

8 but Pr [X = 3 and Y = 3] = 0.
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10.4.2 Expectation
A random variable X measures a numerical quantity that varies from realization to
realization. We will often be interested in the “average” value of X, which is otherwise
known as the random variable’s expectation:

The alternate ver-
sion of the summa-
tion for expectation
in Definition 10.12
follows by collect-
ing together each
outcome x that has
the same value of
the random variable
X(x):

∑
x∈S

X(x) · Pr [x]

= ∑
y∈R

∑
x∈S:

X(x)=y

y · Pr [x]

= ∑
y∈R

y · ∑
x∈S:

X(x)=y

Pr [x]

= ∑
y∈R

y · Pr [X = y] .

Definition 10.12 (Expectation)
The expectation of a random variable X, denoted E [X], is the average value of X, defined as

E [X] = ∑
x∈S

X(x) · Pr [x] .

The expectation of X is also sometimes called themean of X.
We can equivalently write E [X] = ∑y

(y · Pr [X = y]) by summing over each possible
value y that X can take on, rather than by summing over outcomes.

In other words, E [X] is the average value of X over all outcomes (where the average is
weighted, with weights defined by the probability function). For example:

Example 10.35 (Expectation of a Bernoulli random variable)
Let X be an indicator random variable for a Bernoulli trial with parameter p—that is,
X = 1 with probability p and X = 0 with probability 1− p. Then E [X] is precisely

E [X] = 1 · Pr [X = 1] + 0 · Pr [X = 0] definition of expectation (alternative version)

= 1 · p + 0 · (1− p) definition of a Bernoulli trial with parameter p

= p.

Warning! Just
because E [X] = 1.5
doesn’t mean that
Pr [X = 1.5] is big!
(If you ever flip
three fair coins
and see exactly
1.5 heads, it might
be a sign that the
world is ending.)
Remember that
“average” and
“typical” aren’t the
same thing!

Example 10.36 (Counting heads in 3 flips, again)
Problem: Recall Example 10.29, where the random variable X denotes the number of

heads in three independent flips of a fair coin. (The sample space was S = {H,T}3,
and Pr [x] = 1

8 for any x ∈ S.) What is E [X]?

Solution: The expectation of X is

E [X] = ∑
x∈{H,T}3

Pr [x] ·X(x)

= 1
8X(HHH) + 1

8X(HHT) + 1
8X(HTH) + 1

8X(HTT)
+ 1

8X(THH) + 1
8X(THT) + 1

8X(TTH) + 1
8X(TTT)

= 1
8 ·
[3 + 2 + 2 + 1 + 2 + 1 + 1 + 0]

= 12
8 = 1.5.

In other words, in three flips of a fair coin, we expect 1.5 flips to come up Heads.
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Example 10.37 (Counting letters and vowels, again)
Recall the probabilistic process of choosing a word from the sentence Now is the

winter of our discontent in proportion to word length. Recall also the random
variables from Example 10.30: L denotes the chosen word’s length, and V the number
of vowels in the chosen word. (See Figure 10.24 for a reminder.) Then we have

E [L] = 3 · 3
29 + 2 · 2

29 + 3 · 3
29 + 6 · 6

29 + 2 · 2
29 + 3 · 3

29 + 10 · 10
29

= 171
29

≈ 5.8966.

E [V] = 1 · 3
29 + 1 · 2

29 + 1 · 3
29 + 2 · 6

29 + 1 · 2
29 + 2 · 3

29 + 3 · 10
29

= 57
29

≈ 1.9656.

10

outcome Pr L V
Now 3

29 3 1
is 2

29 2 1
the 3

29 3 1
winter 6

29 6 2
of 2

29 2 1
our 3

29 3 2
discontent 10

29 10 3
Figure 10.24: A
reminder of the
sample space,
probabilities, and
random variables
for Example 10.37.

10 Scott L. Feld. Why
your friends have
more friends than
you do. American
Journal of Sociology,
96(6):1464–1477,
May 1991.

Taking it further: If we think about it without a great deal of care, there’s something apparently curious
about the result from Example 10.37. We’ve plopped down our thumb on a random letter in the sentence
Now is the winter of our discontent, and we’ve computed that the word that our thumb lands on
has an average length of about 5.9 letters. That seems a little puzzling, because there are 7 words in
the sentence, with an average word length of 29

7 = 4.1428 letters. But there’s a good reason for this
discrepancy: longer words are more likely to be chosen because they have more letters, and therefore the
average word that’s chosen has more letters than average. An analogous phenomenon occurs in many
other settings, too. When you’re driving, you spend most of your time on longer-than-average trips.
Most people in Canada live in a larger-than-average-sized Canadian city. Most 3rd-grade students
in California are in a larger-than-average-size 3rd-grade class. (In fact, this broader phenomenon is
sometimes called the class-size paradox.) Perhaps even more jarringly, a random person x knows fewer
people than the average number of people known by someone x knows—that is, on average, your friends
are more popular than you are.10 (Why? A very popular person—call her Oprah—is, by definition, the
friend of many people, and therefore Oprah’s astronomical popularity is averaged into the popularity of
many people x. In computing the popularity of a randomly chosen person x, Oprah only contributes her
popularity once for x = Oprah—but she contributes it many times to the popularity of x’s friends.)

This phenomenon may illustrate an example of a sampling bias, in which we try to draw a uniform
sample from a population but we end up with some kind of bias that overweights some members of
the population at the expense of others. Sampling biases are a widespread concern in any statistical
approach to understanding a population. For example, consider a telephone-based political poll that col-
lects voters’ preferences for candidates one evening by randomly dialing phone numbers until somebody
answers, and records the answerer’s preference. This poll will overweight those people who are sitting
around at home during the evening—which correlates with the voter’s age, which correlates with the
voter’s political affiliation.

Example 10.38 (Number of aces in a bridge hand)
Problem: Suppose that we are dealt a 13-card hand from a standard 52-card deck.

What is the expected number of aces in our hand?

Solution: Later we’ll solve this problem more easily (see Example 10.41), but here
we’ll do it the hard way. We’ll compute the probability of getting 0, 1, . . . , 4 aces:
• There are

(52
13
)
different hands.

• There are (4k
) · ( 48

13−k
) hands with exactly k aces. (We have to pick k ace cards

from the 4 aces in the deck, and 13− k non-ace cards from the 48 non-aces.)
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Because each hand is equally likely to be chosen, therefore

Pr
[drawing exactly k aces] =

(4
k
)
·
( 48
13−k

)
(52
13
) .

And thus, letting A be a random variable denoting the number of aces, we have

E [A] = ∑
h
Pr
[being dealt hand h] · (number of aces in h)

=
4
∑
i=0

i · Pr [A = i] (reordering sum by collecting all hands with the same number of aces)

=

0·Pr[A=0]︷ ︸︸ ︷
0 · (40

) · (4813
) +

1·Pr[A=1]︷ ︸︸ ︷
1 · (41

) · (4812
) +

2·Pr[A=2]︷ ︸︸ ︷
2 · (42

) · (4811
) +

3·Pr[A=3]︷ ︸︸ ︷
3 · (43

) · (4810
) +

4·Pr[A=4]︷ ︸︸ ︷
4 · (44

) · (489
)

(52
13
)

= 0 · 1 · (4813
) + 1 · 4 · (4812

) + 2 · 6 · (4811
) + 3 · 4 · (4810

) + 4 · 1 · (489
)

(52
13
)

= 0 + 278,674,137,872 + 271,142,404,416 + 78,488,590,752 + 6,708,426,560
635,013,559,600

= 635,013,559,600
635,013,559,600

= 1.

That is, the expected number of aces in a 13-card hand is precisely 1.

A useful property of expectation
We’ve now seen several examples of computing the expectation of random variables

by directly following the definition of expectation. Here we’ll introduce a transforma-
tion that can often make expectation calculations easier, at least for positive integer–
valued random variables:

Theorem 10.5 (A new formula for expectation, for nonnegative integers)
Let X : S → Z≥0 be a random variable. Then E [X] = ∑∞

i=1 Pr [X ≥ i].

(Note that by definition E [X] = ∑∞
i=0 i · Pr [X = i], so we’re trading the multiplication of

i for the replacement of = by ≥.)
The proof will follow by changing the order of summation in the expectation for-

mula. We’ll give an algebraic proof in a moment, but it may be easier to follow the idea
by looking at a visualization first. See Figure 10.25.
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Pr [X = 1]

...

Pr [X = 2] Pr [X = 2]

...

Pr [X = 3] Pr [X = 3] Pr [X = 3]

...

Pr [X = 4] Pr [X = 4] Pr [X = 4] Pr [X = 4]

...

Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5]

...

Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6]

...

Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7]

...

Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8]

...

Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9]

...

= 1 · Pr [X = 1]

= 2 · Pr [X = 2]

= 3 · Pr [X = 3]

= 4 · Pr [X = 4]

= 5 · Pr [X = 5]

= 6 · Pr [X = 6]

= 7 · Pr [X = 7]

= 8 · Pr [X = 8]

= 9 · Pr [X = 9]

...

(a) The sum ∑∞
i=0 i · Pr [X = i] can be visualized as adding up i copies of Pr [X = i] one row at a time . . .

Pr [X = 1]

...

Pr [X = 2] Pr [X = 2]

...

Pr [X = 3] Pr [X = 3] Pr [X = 3]

...

Pr [X = 4] Pr [X = 4] Pr [X = 4] Pr [X = 4]

...

Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5] Pr [X = 5]

...

Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6] Pr [X = 6]

...

Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7] Pr [X = 7]

...

Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8] Pr [X = 8]

...

Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9] Pr [X = 9]

...

= Pr [X ≥ 1] = Pr [X ≥ 2] = Pr [X ≥ 3] = Pr [X ≥ 4] = Pr [X ≥ 5] = Pr [X ≥ 6] = Pr [X ≥ 7] = Pr [X ≥ 8] = Pr [X ≥ 9] · · ·

(b) . . . or by visualizing adding up one column at a time. The jth column contains a copy of Pr [X = i] for
every i greater than or equal to j, so the value of the sum of the jth column is Pr [X ≥ j].

Figure 10.25: A
change of summa-
tion. View E[X] =
∑∞

i=0 i · Pr [X = i]
as the sum of the
entries of an infinite
table, where the
ith row of the table
contains i copies
of Pr [X = i]. By
computing column
sums instead of
row sums, we see
∑∞

i=0 i · Pr [X = i] =
∑∞

j=1 Pr
[X ≥ j].

Proof of Theorem 10.5. We proceed using the manipulation from Figure 10.25:

E [X] =
∞

∑
i=0

i · Pr [X = i] definition of expectation

=
∞

∑
i=0

i
∑
j=1

Pr [X = i] i = ∑i
j=1 1

=
∞

∑
j=1

∞

∑
i=j

Pr [X = i] changing the order of summation (see Figure 10.25)

=
∞

∑
j=1

Pr
[X ≥ j] . Pr

[X ≥ j] = ∑∞
i=j Pr [X = i]

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



1048 CHAPTER 10. PROBABILITY

We can use this theorem to find the expected value of a geometric random variable:

Example 10.39 (Expectation of a geometric random variable)
Let X be a geometric random variable with parameter p. (That is, X measures the
number of flips of a p-biased coin before we get Heads for the first time.) Then E [X]
is precisely 1

p :

E [X] =
∞

∑
i=1

Pr [X ≥ i] Theorem 10.5 (E [X] = ∑∞
i=1 Pr [X ≥ i])

=
∞

∑
i=1

Pr
[fail to get heads in i− 1 flips] definition of geometric random variable

=
∞

∑
i=1

(1− p)i−1 need i− 1 consecutive tails flips

=
∞

∑
i=0

(1− p)i changing index of summation

= 1
1− (1− p) =

1
p . formula for geometric summations

For example, we expect to flip a fair coin (with p = 1
2 ) twice before we get heads.

10.4.3 Linearity of Expectation
Here’s a very useful general property of expectation, called linearity of expectation: the
expectation of a sum is the sum of the expectations. (A linear function is a function f
that satisfies f (a + b) = f (a) + f (b)—for example, f (x) = 3x or f (x) = 0.) The usefulness
of Linearity of Expectation will come from the way in which it lets us “break down” a
complicated random variable into the sum of a collection of simple random variables.
(We can then compute E

[
Complicated

]
= E

[
∑i Simplei

]
= ∑i E

[
Simplei

]
.)

We’ll see several useful examples soon, but let’s start with the proof:

Theorem 10.6 (Linearity of Expectation)
Consider a sample space S, and let X : S → R and Y : S → R be any two random variables.
Then E [X + Y] = E [X] + E [Y].

Proof. We’ll be able to prove this theorem by just invoking the definition of expectation
and following our algebraic noses:

E [X + Y] = ∑
s∈S

(X + Y)(s) · Pr [s] definition of expectation

= ∑
s∈S

[X(s) +Y(s)] · Pr [s] definition of the random variable X +Y

=
[

∑
s∈S

X(s) · Pr [s]
]

+
[

∑
s∈S

Y(s) · Pr [s]
]

distributing the multiplication; rearranging

= E[X] + E[Y]. definition of expectation

Therefore E [X + Y] = E [X] + E [Y], as desired.
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Notice that Theorem 10.6 does not impose any requirement of independence on the
random variables X and Y: even if X and Y are highly correlated (positively or nega-
tively), we still can use linearity of expectation to conclude that E [X + Y] = E [X] + E [Y].
There are many apparently complicated problems in which using linearity of expecta-
tion makes a solution totally straightforward. Here are a few examples:

Example 10.40 (Expectation of a binomial random variable)
Problem: We have a p-biased coin (that is, Pr [heads] = p) that we flip 1000 times.

What is the expected number of heads that come up in these 1000 flips?
Solution: The intuition is fairly straightforward: a p-fraction of flips are heads, so we

should expect 1000p heads in 1000 flips. But doing the math requires a bit of work.
An abandoned first attempt: Let’s compute the probability that there are exactly

k heads in a sequence of 1000 flips, and then apply the definition of expectation
directly. There are (1000k

) sequences of 1000 flips that have exactly k heads, and
the probability of any one of these sequences is pk(1− p)1000−k, so

E [number of heads]

=
1000
∑
k=0

k · Pr [number of heads = k] definition of expectation

=
1000
∑
k=0

k ·
(1000

k
)
· pk · (1− p)1000−k. above analysis of Pr [number of heads = k]

We could try to simplify this expression (but it turns out to be pretty hard!).
Instead, let’s start over with a different approach.

A second try: Here’s a strategy that ends up being much easier. Define 1000 ran-
dom variables X1,X2, . . . ,X1000,where Xi is the indicator random variable

Xi =
{

1 if the ith flip of the coin comes up Heads
0 if the ith flip of the coin comes up Tails.

The total number of heads in the 1000 coin flips is given by the random variable
X = X1 +X2 + · · · +X1000.

We can use this definition of X and linearity of expectation to compute the
expected number of heads much more easily:

E [number of heads] = E [X] = E

[
1000
∑
i=1

Xi

]
definition of X

=
1000
∑
i=1

E [Xi] linearity of expectation

=
1000
∑
i=1

p Example 10.35 (expectation of a Bernoulli variable)

= 1000p.

Problem-solving tip:
Often, the easiest
way to compute
an expectation is
by finding a way
to express the
quantity of interest
in terms of a sum of
indicator random
variables.
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Example 10.41 (Number of aces in a bridge hand, better)
Recall Example 10.38, where we showed that the number A of aces in a randomly
chosen 13-card hand from a standard 52-card deck has E [A] = 1. Here is a much
easier way of solving that problem:

Number your cards from 1 to 13. Let Ai be an indicator random variable that re-
ports whether the ith card in your hand is an ace. Then A = A1 +A2 + . . . +A13. Note
that Pr [Ai = 1] = 1

13 (there are 4
52 = 1

13 aces in the deck), so

E [A] = E [A1 +A2 + · · · +A13]
= E [A1] + E [A2] + · · · + E [A13] linearity of expectation

= 13 · 1
13 Pr [Ai = 1] = 1

13 as above, and so E [Ai] = 1
13 (Example 10.35)

= 1.

(The random variables Ai and Aj are correlated—but, again, linearity of expectation
doesn’t care! We can still use it to conclude that E [Ai +Aj

] = E [Ai] + E
[Aj
].)

Some examples about hashing
Here are two more problems about expectation, both involving hashing:

Example 10.42 (Hashing)
Problem: Suppose that we hash 1000 elements into a 1000-slot hash table, using a

completely random hash function, resolving collisions by chaining. (See Sec-
tion 10.1.1.) How many empty slots do we expect?

Solution: Let’s compute the probability that some particular slot is empty:

Pr
[slot i is empty]

= Pr [none of the 1000 elements hash to slot i]

= Pr
[
every element j ∈ {1, 2, . . . , 1000} hashes to a slot other than i

]

=
1000
∏
j=1

Pr
[element j hashes to a slot other than i] elements are hashed independently

=
1000
∏
j=1

999
1000 elements are hashed uniformly, and there are 999 other slots

=
(

999
1000

)1000
= 0.3677 · · · .

We’ll finish with the by-now-familiar calculation that also concluded the last two
examples: we define a collection of indicator random variables and use linearity of
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expectation. Let Xi be an indicator random variable that’s 1 if slot i is empty and 0
if slot i is full. Then the expected number of empty slots is

E

[
1000
∑
i=1

Xi

]
=

1000
∑
i=1

E [Xi] = 1000 ·
(

999
1000

)1000
≈ 367.7.

Taking it further: If we stated the question from Example 10.42 in full generality, we would ask: if we
hash n elements into n slots, how many empty slots are there in expectation? Using the same approach as in
Example 10.42, we’d find that the fraction of empty slots is, in expectation, (1− 1/n)n . Using calculus, it’s
possible to show that (1− 1/n)n approaches 1/e ≈ 0.367879 as n → ∞. So, for large n, we’d expect to
have n

e empty slots when we hash n elements into n slots.
We can also turn this hashing problem on its head: we’ve been asking “if we hash n elements into

n slots, how many slots do we expect to find empty?” Instead we can ask “how many elements do we
expect have to hash into n slots before all n slots are full?” This problem is called the coupon-collector
problem; see Exercises 10.136–10.137 for more.

Let’s also consider a second example about hashing—this time counting the (ex-
pected) number of collisions, rather than the (expected) number of empty slots:

Example 10.43 (Expected collisions in a hash table)
Problem: Hash n elements A = {x1, . . . , xn} into an m-slot hash table. Recall that a

collision between two elements xi and xj (for i 6= j) occurs when h(xi) = h(xj).
1. Consider two elements xi 6= xj. What’s Pr [there’s a collision between xi and xj]?
2. What is the expected number of collisions among the elements of A?

Solution: 1. A collision between xi and xj occurs precisely when, for some index k,
we have h(xi) = k and h(xj) = k. Thus:

Pr
[collision between xi and xj

]

= Pr
[[h(xi) = h(xj) = 1] or [h(xi) = h(xj) = 2] or · · · or [h(xi) = h(xj) = m]

]

=
m
∑
k=1

Pr
[
h(xi) = k and h(xj) = k

]
by the sum rule; these events are disjoint

=
m
∑
k=1

Pr [h(xi) = k] · Pr
[h(xj) = k] hashing assumption: hash values are independent

=
m
∑
k=1

1
m · 1

m hashing assumption: hash values are uniform

= m
m2 = 1

m .

So the probability that a particular pair of elements collides is precisely 1
m .
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2. Given (1), we can again compute the expected number of collisions using indi-
cator random variables and linearity of expectation. The number of collisions
between elements of A is precisely the number of unordered pairs {xi, xj} that
collide. For indices i and j > i, then, define Xi,j as the indicator random variable

Xi,j =




1 if xi and xj collide
0 if they do not.

Thus the expected number of collisions among the elements of A is given by

E
[

∑
1≤i<j≤n

Xi,j
]

summing over all unordered pairs of elements

= ∑
1≤i<j≤n

E
[Xi,j

]
linearity of expectation

= ∑
1≤i<j≤n

1
m part 1 of this example: we showed E

[
Xi,j
]
= Pr

[
Xi,j = 1

]
= 1

m

=
(n
2
)

m = n(n− 1)
2m . there are (n2

) = n(n−1)
2 unordered pairs of elements

One consequence of this analysis is that we’d expect the first collision in an
m-slot hash table to occur when the number n of hashed elements reaches approxi-
mately

√
2m: for n =

√
2m + 1, the expected number of collisions would be

n(n− 1)
2m = (

√
2m + 1) ·

√
2m

2m ≈ 2m
2m = 1.

Taking it further: Example 10.43 also explains the so-called birthday paradox. Assume that a person’s
birthday is uniformly and independently chosen from them = 365 days in the year. (Close, but not quite
true; certain parts of the year are nine months before days whose probabilities are notably more than
1

365 .) Under this assumption, you can think of “birthday” as a random hash function mapping people
to {1, 2, . . . , 365}. By Example 10.43, if you’re in a room with more than

√
2 · 365 = 27.018 people, you’d

expect to find a pair that shares a birthday. (It’s called a “paradox” because most people’s intuition is
that you’d need way more than 28 people in a room before you’d find a shared birthday.)

Two more examples of expectation: breaking PINs and Insertion Sort
Here’s another example of expectation, in a simple security context:

Example 10.44 (Brute-force breaking of PINs)
Problem: I steal a debit card from a (former) friend. The card has a 4-digit PIN, be-

tween 0000 and 9999, that I need to know to get all my friend’s money. Here are
two strategies:
1. every day, I try a random PIN.
2. every day, I try a random PIN that I haven’t tried before.
How many days would I expect to wait before I get into my friend’s account?
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Solution: 1. Observe that the probability of getting the correct PIN on a particular
day is 1

10000 . Thus we have a geometric random variable with parameter 1
10000 ,

so by Example 10.39 we expect to need 10000 days to break the PIN.
2. As usual, there are multiple ways to solve this problem—and, for illustrative

purposes, we’ll describe two of them, using fairly different approaches.
Solution A: Pr

[
winning on day #i]. The key will be to find the probability

of breaking the code for the first time on day i. (For the purposes of this
analysis, imagine that we keep guessing new PINs even after we find the
correct answer.)
Because we make i− 1 guesses on the i− 1 days before day i, we know

Pr
[
getting the PIN before day i

]
= i−1

10000 (1)
Pr
[
not getting the PIN before day i

]
= 1− i−1

10000 = 10001−i
10000 . (2)

Furthermore, on day i there are 10000− (i− 1) untried guesses, and so

Pr
[
getting the PIN on day i

| not getting it before day i
]
= 1

10000−(i−1) = 1
10001−i . (3)

Thus the expected number of days that we have to keep guessing is:
10000
∑
i=1

i · Pr [we first break the code on day #i] definition of expectation

=
10000
∑
i=1

i · Pr
[
wrong on days 1, . . . , i− 1

]

· Pr [right on day i|wrong on days 1, . . . , i− 1]
Chain Rule

=
10000
∑
i=1

i · 10001−i
10000 · 1

10001−i (2) and (3), as argued above

= 1
10000 ·

10000
∑
i=1

i algebra

= 1
10000 · 10000·10001

2 = 5000.5. arithmetic summation (Example 5.4)

(Another way to view this solution: our PIN-guessing strategy corresponds
to choosing a permutation of {0000, . . . , 9999} uniformly at random, and
guessing in the chosen order. The correct PIN is equally likely to be at any
position in the permutation so, for any i, we require exactly i days with prob-
ability precisely 1

10000 .)

Solution B: Pr
[
have to guess on day #i]. Define an indicator random vari-

able Xi, where Xi = 1 if we have to make a guess on day #i, and Xi = 0
if we do not. Thus the number of days that we have to guess is precisely
X := ∑10000

i=1 Xi. Observe that

E [Xi] = Pr [Xi] = Pr
[lose on days 1, . . . , i− 1] = 10001−i

10000
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by the same reasoning as in Solution A. Thus

E [X] =
10000
∑
i=1

E [Xi] linearity of expectation

=
10000
∑
i=1

10001−i
10000 the above argument

=
10000
∑
j=1

j
10000 change of variables j = 10001− i

= 5000.5. just as in Solution A

So avoiding duplication saves, in expectation, just less than half of the days: we
expect to use 10000 days if we allow duplication, and 5000.5 days if we avoid it.

(Incidentally, the argument in Solution B is just another way of viewing
the transformation from Theorem 10.5: instead of calculating the value of
∑i i · Pr

[exactly i days], we calculated ∑i Pr
[at least i days].)

insertionSort(A[1 . . .n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j− 1]:
4: swap A[j] and A[j− 1]
5: j := j− 1

Figure 10.26:
A reminder of
Insertion Sort.

Let’s conclude with one last example of another type:
analyzing the expected performance of an algorithm on a
randomly chosen input. In Example 6.13, we gave a brief
intuition for the average-case (expected) performance of
Insertion Sort. (See Figure 10.26 for a reminder of the algo-
rithm.) Here is a somewhat different version of the analysis,
which comes out with the same result:

Example 10.45 (Expected performance of Insertion Sort)
Problem: Let the array A be a permutation of {1, . . . , n} chosen uniformly at random.

What is the expected number of swaps performed by insertionSort(A[1 . . .n])?

Solution: Define an indicator random variable Xj,i for indices j < i:

Xj,i =
{

1 if the (original) elements A[j] and A[i] are swapped by insertionSort
0 if not.

Note that E [Xj,i] = Pr [Xj,i = 1] = 1
2 : precisely half of permutations have their

ith element larger than their jth element. (There’s a bijection between the set of
permutations with their ith element larger than their jth element and the set of
permutations with their ith element smaller than their jth element. Because these
sets have the same size, the probability of choosing one of the former is 1

2 .)
Because insertionSort correctly sorts its input and only swaps out-of-order

pairs once per pair, the total number of swaps done is precisely

X =
n
∑
i=2

i−1
∑
j=1

Xi,j.
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Note that the number of indicator random variables in this sum is
n
∑
i=2

i−1
∑
j=1

1 =
n
∑
i=2

(i− 1) =
n−1
∑
i=1

i = (n−1)·n
2 =

(n
2
)
.

Thus by linearity of expectation we have

E [X] =
(n
2
) · E [Xi,j] =

(n
2
) · 1

2 .

10.4.4 Conditional Expectation
Just as we did with conditional probability in Section 10.3, we can define a notion of
conditional expectation: that is, the average value of a random variable X when a particu-
lar event occurs.

Definition 10.13 (Conditional expectation)
The conditional expectation of a random variable X given an event E, denoted E

[
X|E

]
, is

the average value of X over all outcomes where E occurs:

E
[X|E] = ∑

x∈E
X(x) · Pr [x|E] .

In the original definition of expectation, we summed over all x in the whole sample
space; here we sum only over the outcomes in the event E. Furthermore, here we
weight the value of X by Pr

[x|E] rather than by Pr [x]. We’ll omit the details, but con-
ditional expectation has analogous properties to those of the original (nonconditional)
version of expectation, including linearity of expectation.

Here’s a brief example of computing some conditional expectations:

Example 10.46 (Hearts in Poker)
Problem: In Texas Hold ’Em, a particular variant of poker, after a standard deck of

cards is randomly shuffled, you are dealt two “personal” cards, and then five
“community” cards are dealt. Let P denote the number of your personal cards that
are hearts, and let C denote the number of community cards that are hearts. What
are the following?
1. E [P]
2. E [C]
3. E

[C|P = 0]

4. E
[C|P = 2]

Solution: 1 & 2. Each card that’s dealt has a 13
52 = 1

4 chance of being a heart. By linear-
ity of expectation, then, E [P] = 2

4 = 0.5 and E [C] = 5
4 = 1.25. (Implicitly, we’re

defining indicator random variables for “the ith card is a heart,” so P = P1 + P2
and C = C1 + · · · +C5.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



1056 CHAPTER 10. PROBABILITY

3. Given that 2 of the 39 non-heart cards were dealt as your personal cards, there
are still 13 undealt hearts among the remaining 50 undealt cards. Thus there is
a 13

50 = 0.26 chance that any particular undealt card is a heart. Thus, again by
linearity of expectation, we have that E

[
C|P = 0

]
= 5 · 13

50 = 1.30.
4. Similarly, there are 11 undealt hearts among the remaining 50 undealt cards.

Thus there is an 11
50 = 0.22 chance that any particular undealt card is a heart, and

E
[C|P = 2] = 5 · 11

50 = 1.10.

We’ll omit the proof, but it’s worth noting a useful property that connects expecta-
tion to conditional expectation, an analogy to the law of total probability:

Theorem 10.7 (Law of Total Expectation)
For any random variable X and any event E:

E [X] = E
[X|E] · Pr [E] + E

[X| E ] · (1− Pr [E]).

That is, the expectation of X is the (weighted) average of the expectation of X when E
occurs and when E does not occur.

Taking it further: One tremendously valuable use of probability is in randomized algorithms, which flip
some coins as part of solving some problem. There is a massive variety in the ways that randomization
is used in these algorithms, but one example—the computation of themedian element of an unsorted
array of numbers—is discussed on p. 1060. (We’ll make use of Theorem 10.7.) Median finding is a nice
example of problem for which there is a very simple, efficient algorithm that makes random choices in its
solution. (There are deterministic algorithms that solve this problem just as efficiently, but they are much
more complicated than this randomized algorithm.)

10.4.5 Deviation from Expectation
Let X be a random variable. By definition, the value of E [X] is the average value that
X takes on, where we’re averaging over many different realizations. But how far away
from E [X] is X, on average? That is, what is the average difference between (a) X,
and (b) the average value of X? We might care about this quantity in applications like
political polling or scientific experimentation, for example. Suppose X is a random
variable defined as follows:

X =





−1 the voter will vote for the Democratic candidate
0 the voter will vote for neither the Democratic nor Republican candidates
+1 the voter will vote for the Republican candidate

for a voter chosen uniformly at random from the population. If E [X] < 0, then the
Democrat will beat the Republican in the election; if E [X] > 0, then the Republican
will beat the Democrat. We might estimate E [X] by calling, say, 500 uniformly chosen
voters from the population and averaging their responses. We’d like to know whether
our estimate is accurate (that is, if our estimate is close to E [X]). This kind of question
is the core of statistical reasoning. We’ll only begin to touch on these questions, but
here are a few of the most important concepts.
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Definition 10.14 (Variance)
Let X be a random variable. The variance of X is

var (X) = E
[
(X− E [X])2

]
.

The standard deviation is std (X) = √var (X).

(Exercise: why didn’t we just define std (X) = E [X − E [X]]?)
Here’s a simple example:

Example 10.47 (Variance/standard deviation of a Bernoulli random variable)
Let X be the outcome of a flipping a p-biased coin. (That is, X is a Bernoulli random
variable.) We previously showed that E [X] = p, so the variance of X is

var (X) = E [ (X− E [X])2 ] definition of expectation

= E [ (X− p)2 ] expectation of a Bernoulli random variable (Example 10.35)

= Pr [X = 0] · (0− p)2 + Pr [X = 1] · (1− p)2 definition of expectation

= (1− p) · (0− p)2 + p · (1− p)2 definition of Bernoulli random variable

= (1− p)p2 + p(1− p)2

= (1− p)p · (p + 1− p)
= (1− p)p.

Thus the standard deviation is std (X) = √var (X) =
√

(1− p)p.

(For example, for a fair coin, the standard deviation is √(1− 0.5)0.5 =
√
0.25 = 0.5: an

average coin flip is 0.5 units away from the mean 0.5. In fact, every coin flip is that far
away from the mean!)

Here’s another simple example, illustrating the fact that two random variables can
have the same mean but wildly different variances:

1 3

5

7 9

12

14

16 18

19 21

23

25 27

30

32

34 36

2

4 6

8

10 11

13 15

17

20

22 24

26

28 29

31 33

35

0 00

Figure 10.27: A
reminder of the
roulette outcomes.
A number in the set
{0, 00, 1, 2, . . . , 36}
is chosen uniformly
at random by a
spinning wheel;
there are 18 red
numbers and 18
black numbers; 0
and 00 are neither
red nor black.

Example 10.48 (Roulette bets)
Here are two bets available to a player in roulette (see Figure 10.27 for a reminder):
• Bet $1 on “red”: If the spin lands on one of the 18 red numbers, you get $2 back;

otherwise you get nothing.

• Bet $1 on “17”: If the spin lands on the number 17, you get $36 back; otherwise
you get nothing.

Let X denote the payoff from playing the first bet, so X = 0 with probability 20
38 and

X = 2with probability 18
38 . Let Y denote the payoff from playing the second bet, so

Y = 0 with probability 37
38 and X = 36 with probability 1

38 . The expectations match:

E [X] = 20
38 · 0 + 18

38 · 2 = 36
38

E [Y] = 37
38 · 0 + 1

38 · 36 = 36
38 .
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But the variances are very different:

var (X) = 20
38 · (0− 36

38 )2 + 18
38 · (2− 36

38 )2 = 0.9972 · · ·
var (Y) = 37

38 · (0− 36
38 )2 + 1

38 · (36− 36
38 )2 = 33.2077 · · · .

Generally speaking, the expectation of a random variable measures “how good it is”
(on average), while the variance measures “how risky it is.”

Variance, the squared expectation, and the expectation of the square
Here’s a useful property of variance, which sometimes helps us avoid tedium in

calculations. We can write var (X) as var (X) = E [X2]− (E [X])2, that is, the difference
between the expectation of the square of X and the square of the expectation of X:

Theorem 10.8 (Variance = expectation of the square minus the expectation2)
For any random variable X, we have

var (X) = E
[
X2
]
− (E [X])2 .

Proof. Writing µ := E [X], we have

var (X)
= E

[
(X− µ)2

]
definition of expectation

= E
[
X2 − 2Xµ + µ2

]
multiplying out

= E
[
X2
]
+ E [−2Xµ] + E

[
µ2
]

linearity of expectation

= E
[
X2
]
− 2µ · E [X] + µ2 Exercise 10.151

= E
[
X2
]
− 2µ · µ + µ2 definition of µ = E [X]

= E
[
X2
]
− µ2

= E
[
X2
]
− (E [X])2 .

Here is a simple example in which Theorem 10.8 eases the computation:

Example 10.49 (Variance/standard deviation of a uniform random variable)
Problem: Let X be the result of a roll of a fair die. What is var (X)?

Solution: Because Pr [X = k] = 1
6 for all k ∈ {1, . . . , 6}, we have that

E [X] = 1
6 · (1 + 2 + 3 + 4 + 5 + 6)

= 1
6 · 21

= 3.5.
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Similarly, we can compute E [X2] as follows:

E
[
X2
]
= 1
6 · (12 + 22 + 32 + 42 + 52 + 62)

= 1
6 · 91

≈15.1666 · · · .

Therefore, by Theorem 10.8,

var (X) = E [X2]− (E [X])2 = 91
6 − 49

4 = 35
12 ≈ 2.9116 · · · ,

and std (X) =
√
35/12 ≈ 1.7078 · · · .

(In Exercise 10.150, you’ll show that the standard deviation of the average result
of two independent dice rolls is much smaller.)

Taking it further: Suppose that we need to estimate the fraction of [very complicated objects] that have
[easy-to-verify property]: would I win a higher fraction of chess games with Opening Move A or B?
Roughly how many different truth assignments satisfy Boolean formula ϕ? Roughly how many integers
in {2, 3, . . . ,n− 1} evenly divide n? Is the array A “mostly” sorted?

One nice way to approximate the answer to these questions is theMonte Carlo method, one of the sim-
plest ways to use randomization in computation. The basic idea is to compute many random candidate
elements—chess games, truth assignments, possible divisors, etc.—and test each one; we can then esti-
mate the answer to the question of interest by calculating the fraction of those random candidates that
have the property in question. See p. 1062 for more discussion.
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Computer Science Connections

A Randomized Algorithm for Finding Medians
The median element of an array A[1 . . .n] is the item that would appear in

Select:
Given: an array A[1 . . . n] and an

index k ∈ {1, . . . ,n}.
Output: the element x in A such

that, if you were to sort A, x
would appear in the kth slot of
the sorted array.

Figure 10.28: The Select problem.

the ⌈n/2⌉th slot of the sorted order if we sorted A. For example, the median of
[1, 3, 5, 7, 9] is 5, and the median of [4, 3, 2, 1] is 2. (We arbitrarily chose to find
the ⌈n/2⌉th element instead of the ⌊n/2⌋th.) This description already suggests
a solution to the median problem: sort A, and then return A[⌈n/2⌉]. But we
can do better than the sorting-based approach: we’ll give a faster algorithm
for finding the median element of an unsorted array. Our algorithm will be
randomized, and the expected running time of the algorithm will be linear.
It will turn out to be easier to solve a generalization of the median problem,
called Select. See Figure 10.28.

randSelect(A[1 . . . n], i):
// Find the ith-largest element of A.
// If i /∈ {1, 2, . . . , n}, then error.
1: if n = 1 then
2: return A[1]. (If i 6= 1, then error.)
3: choose x ∈ {1, . . . , n} randomly
4: Losers[1 . . . ℓ] := {y ∈ A : y < A[x]}
5: Winners[1 . . .w] := {y ∈ A : y > A[x]}.
6: if i < ℓ + 1 then
7: return randSelect(Losers, i)
8: else if i = ℓ + 1 then
9: return A[x]
10: else if i > ℓ + 1 then
11: return randSelect(Winners, i− ℓ− 1)

Figure 10.29: Randomized Median
finding. (We build Losers andWinners by
going through A element-by-element.)

A recursive solution to Select is given in Figure 10.29;we can
solve the median problem by calling randSelect(A[1 . . .n], ⌈n/2⌉). A
proof of correctness of the algorithm—that is, a proof that randSelect
actually solves the Select problem—is reasonably straightforward by
induction. (In fact, correctness is guaranteed regardless of how we choose x
in Line 3 of the algorithm.) But we still have to analyze the running time.

Running Time: The Big Picture
Think about an invocation of randSelect(A), and imagine the array A

in sorted order and divided into quartiles:

0 n
4

n
2

3n
4 n

Here are two crucial observations:
1. Suppose that the element A[x] chosen in step 3—call A[x] the pivot—

falls within the shaded region of the quartile picture above. Then we
know that |Losers| ≤ 3n

4 and |Winners| ≤ 3n
4 .

2. The shaded region contains half of the elements of A.
(Why? To put it briefly: because half of the elements of A are in the middle
half of the array A.) So what? Let’s think intuitively for a moment, and defer
the formal analysis. Whenever we choose an element from the middle half of
the sorted order, the next recursive call is on an array of size at most 3

4 the size
of the original input. Also observe that the running time of any particular call
(aside from the recursive call) is linear in the input size. Thus, if we got lucky
every time and picked an element from the middle half of the array, we’d have
a recurrence like the following:

T(1) = 1 T(n) ≤ n + T(3n/4)

That’s a classic Master Method recurrence with a solution of T(n) = Θ(n).
(Actually the master method only says that T(n) = O(n), because we have an
inequality in the recurrence. But it’s trivial that the running time is Ω(n) as
well, because just building Losers and Winners at the root takes Ω(n) time.)
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Computer Science Connections

A Randomized Algorithm for Finding Medians, Continued
Running Time: Making it Formal

We engaged in wishful thinking in the last paragraph: it’s obviously not
true that we get a pivot in the middle half of the array every time. In fact, it’s
only half the time! But this isn’t so bad: even if we imagine that picking a pivot
outside the middle half yields zero progress at all toward the base case, we’d only
double the estimate of the running time! Let’s make this formal. Define

Cn := the number of comparisons performed by randSelect on an input of size n.

Notice that Cn is a random variable: the number of comparisons that are
performed depends on which pivots are chosen! But we can analyze E [Cn].

Before we start, let’s make one quick observation: the expected running
time of this algorithm is monotonic in its input size. That is, E [Cn] ≤ E [Cn′ ] if
n ≤ n′. (This fact is tedious to prove rigorously, but is still pretty obvious.)
Theorem: E [Cn] ≤ 8n.
Proof (by strong induction on n). Base case (n = 1): In fact, when n = 1, the

algorithm performs zero comparisons, and indeed 0 ≤ 8.
Inductive case (n ≥ 2): We assume the inductive hypothesis, namely that for

any n′ < n, we have that E [C′n
] ≤ 8n′. We must prove that E [Cn] ≤ 8n.

Let’s consider the comparisons that are made on an input array of size n.
First, there are n comparisons performed in Lines 4–5, to compute Losers
and Winners. Then there are whatever comparisons are made in the recur-
sive call. Because we’re trying to compute a worst-case bound, we’ll make
do with the following observation: Cn ≤ n + Cmax(|Losers|,|Winners|).
LetM denote the event that our pivot is in the middle half of A (that is,
falls in the shaded region of the diagram on the previous page). Thus:

E [Cn] ≤ E
[
n + Cmax(|Losers|,|Winners|)

]
the above accounting of the comparisons

= n + E
[
Cmax(|Losers|,|Winners|)

]
linearity of expectation

= n + E
[
Cmax(|Losers|,|Winners|)|M

]
· Pr [M] + E

[
Cmax(|Losers|,|Winners|)| M

]
· Pr [M ]

Law of Total Expectation (Theorem 10.7)

= n + 1
2 ·
[
E
[
Cmax(|Losers|,|Winners|)|M

]
+ E
[
Cmax(|Losers|,|Winners|)| M

]]
Crucial observation #2: Pr [M] = Pr

[
M
] = 1

2

≤ n + 1
2 ·
[
E
[
C3n/4

]
+ E [Cn]

]
. Crucial observation #1: if M occurs, we recurse on ≤ 3n

4 elements; else it’s certainly on ≤ n elements.

Thus we have argued that

E [Cn] ≤ n + 1
2 · E

[
C3n/4

]
+ 1

2 · E [Cn] and therefore
E [Cn] ≤ 2n + E

[C3n/4
] . starting with the previous inequality and subtracting 1

2 · E [Cn] from both sides, and then multiplying both sides by 2

The inductive hypothesis says that E [C3n/4
] ≤ 8 · 3n

4 = 6n, so we therefore have

E [Cn] ≤ 2n + 6n = 8n.
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Computer Science Connections

The Monte Carlo Method
If we need to compute some (potentially very complicated) quantity, one

way to do so is the Monte Carlo method. Let’s take a computation of area of a
potentially complicated shape as an example. If we identify a bounding box
(a rectangle surrounding the shape) and then generate a sequence of random
points in the bounding box, we can count how many of those points fall into
the shape in question.

b

b
b

b b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

bb

b
b

b b

b
b

bb

b

b

b

b

b

b
b

b

b
b

b b

b

b

b

b
b

b

b

b

b

b

bb

b

bb

b

b

bb
b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b
b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

bb

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b
bb

b b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b
b

b

bb

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b b

b

b

b

b

b

b
b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b
b b

b
b

b

b

b

b

b

b

b

b

bb
b

b

b

b

bb
b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
bb

b

b

b

b

b
b b

b

b b

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

bb

b

b
b

bb

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

bb

b
b

bb

b

b b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b b

b

b
b b

b

b

b

b

b

b b

b

b

b

b

b

b

b
bb

b

b

b

bb

b

bb
b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b
bb

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b bb

b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b

b

b

b

b

b
b

b b

b b

b

b

b

b

b

b

bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b
b

b b

b

b b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

bb

b

b
b

b

b

b

b

b
b b

b b

b

b

b

b

b

b

b

b

b

b

b

b

bb b

b b

b
b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb b

b
b

b

b

b b

bb

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

bb b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b bb

b
b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b b

b

b b
b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b b

b

b

b

b

b b

b

b

b

b

b

bb

b

b
b

b

bb
b b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b
b

b

b

bb

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b b

b

b

b
b

b

bb

b

b

b

b

b b
b

b

b

b

bb
b

b

b

b

b

b

b

b

b

b

b

b

b
b

bb

b

b

b

bb
b

b

b

b

b

b

b

b
b

b

b

b
b

b

b
b

b

b

bb

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

bb

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b b
b

b b
b

b b b

b

b

b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b b

bb

b

b

b

b
b

b
b

b

b b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b b

b

b

bb

b

b
b

b

b

b

b

bb

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b b

bb

b

b b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b
b

b

bb

b

b

b
b

bb

b

b

b

b

b

b

b

b
b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b
b

b

b

b

bb
b

b

b

b

b

b b

b

b b

b

b
b

b

b
b

b
b

b

b

bb

b
b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

b

b

b

b

b
b b

b

b

b

b

b

b

b
b

bb

b

b

b

b
b

b

b b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b
b

b

b

b

b

bb b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b b

b

b

b
b

b

b

b

b

b

b
b

b

b

b b

b

b

b
b

b b

b

b

b b

b

b

b

bb

b

bb

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b
b

b b

b

b

b

b

b

b

Figure 10.30: A shape, and an estimate
of its area with random points: we
simply estimate the area using the
fraction of the chosen points that fall
within the shape. The more points, the
more accurate the estimate.

For example, to find the area of the shape in Figure 10.30, we can throw
a random point into the bounding box. The probability that the randomly
chosen point is inside the polygon is precisely the ratio of the area of the
polygon to the area of the bounding box—and thus the expected fraction of
points that land inside the shape precisely yields the area of the shape. Of
course, the more points we throw at the bounding box, the more accurate our
estimate of the area will be: the fraction of heads in n flips of a p-biased coin
has a much lower variance (but the same expectation) as n gets bigger and
bigger. (See Exercise 10.155.)

There are a few issues complicating this approach. First, we must find a
bounding box for which the shape in question covers a “large” fraction of the
bounding box. (If the probability p of a random point falling into the shape is
tiny, then a little bad luck in sampling—2 points land inside instead of 3?—
causes huge relative [multiplicative] error in our area estimate.) Second, we’ve
described this process as choosing a uniform point from the bounding box—
which requires infinitesimal probabilities associated with each of the infinitely
many points inside the bounding box. The handle this, typically we would
define a “mesh” of points: we specify a “resolution” ε and choose a coordinate
of a random point as k/ε for a random k ∈ {0, 1, . . . , 1/ε}.

The example in Figure 10.30 is a nice way of being lazy—we could have
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Figure 10.31: Estimating π with a point
in the unit square, or with Buffon’s
needle.

calculated the area of the polygon with some tedious algebra—but there are
some other examples in which this technique is even more useful. Some of
the simplest methods for estimating the value of π in the last century were
based on Monte Carlo methods. One option is to throw a point 〈x, y〉 into the
unit square [0, 1]× [0, 1] and test what fraction have x2 + y2 ≤ 1. Another
is an algorithm called Buffon’s needle—named after an 18th-century French
mathematician—in which we throw unit-length “needles” onto a surface with
parallel lines one unit apart; one can show that Pr [a needle crosses a line] = 2

π .
See Figure 10.31.
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10.4.6 Exercises

Choose a word in S = {Computers, are, useless, They, can, only, give, you, answers} (a quote attributed to Pablo
Picasso) by choosing a word w with probability proportional to the number of letters in w. Let L be a random variable
denoting the number of letters in the chosen word, and let V be a random variable denoting the number of vowels.
10.105 Give a table of outcomes and their proba-
bilities, together with the values of L and V.
10.106 What is Pr [L = 4]? What is E [V|L = 4]?
10.107 Are L and V independent?

10.108 What are E [L] and E [V]?
10.109 What is var (L)?
10.110 What is var (V)?

Flip a fair coin 16 times. Define the following two random variables:
• let H be an indicator random variable that’s 1 if at least one of the 16 flips comes up heads, and 0 otherwise.
• let R be a random variable equal to the length of the longest “run” in the flips. (A run of length k is a sequence of k

consecutive flips that all come up Heads, or k consecutive flips that all come up Tails.)
10.111 What’s E [H]?
10.112 What’s E [R]? (Hint: write a program—not by simulating many sequences of 16 coin flips, but rather by
listing exhaustively all outcomes.)
10.113 Are H and R independent?

In 1975, a physicist named Michael Winkelmann invented a dice-based game with the following three (fair) dice:
Blue die: sides 1, 2, 5, 6, 7, 9 Red die: sides 1, 3, 4, 5, 8, 9 Black die: sides 2, 3, 4, 6, 7, 8

There are some weird properties of these dice, as you’ll see.
10.114 Choose one of the three dice at random, roll it, and call the result X. Show that Pr [X = k] = 1

9 for
any k ∈ {1, . . . , 9}.
10.115 Choose one of the three dice at random, roll it, and call the result X. Put that die back in the pile
and again (independently) choose one of the three dice at random, roll it, and call the result Y. Show that
Pr [9X− Y = k] = 1

81 for any k ∈ {0, . . . , 80}.
10.116 Roll each die. Call the results B (blue), R (red), and K (black). Compute E [B], E [R], and E [K].
10.117 Define B, R, and K as in the last exercise. Compute Pr [B > R|B 6= R], Pr [R > K|R 6= K], and
Pr
[K > B|K 6= B]—in particular, show that all three of these probabilities (strictly) exceed 1

2 .
The last exercise demonstrates that the red, blue, and black dice are nontransitive, using the language of relations
(Chapter 8): you’d bet on Blue beating Red and you’d bet on Red beating Black, but (surprisingly) you’d want to bet
on Black beating Blue. Here’s another, even weirder, example of nontransitive dice. (And if you’re clever and mildly
unscrupulous, you can win some serious money in bets with your friends using these dice.)

Kelly die: sides 3, 3, 3, 3, 3, 6 Lime die: sides 2, 2, 2, 5, 5, 5 Mint die: sides 1, 4, 4, 4, 4, 4
These dice are fair; each side comes up with probability 1

6 . Roll each die, and call the resulting values K, L, and M.
10.118 Show that the expectation of each of these three random variables is identical.
10.119 Show that Pr [K > L], Pr [L >M], and Pr [M > K] are all strictly greater than 1

2 .
You can think of the last exercise as showing that, if you had to bet on which of K or L would roll a higher number,
you should bet on K. (And likewise for L over M, and for M over K.) Now let’s think about rolling each die twice and
adding the two rolled values together. Roll each die twice, and call the resulting values K1 , K2, L1, L2, M1, and M2,
respectively.
10.120 Show that the expectation of the three values K1 +K2, L1 + L2, andM1 +M2 are identical.
10.121 (programming required) Show that the following probabilities are all strictly less than 1

2 :
Pr [K1 +K2 > L1 + L2] , Pr [L1 + L2 > M1 +M2] , and Pr [M1 +M2 > K1 +K2] .

(Notice that which die won switched directions—and all we did was go from rolling the dice once to
rolling them twice!) To show this result, write a program to check how many of the 64 outcomes cause
K1 +K2 > L1 + L2, etc.

Suppose that you are dealt a 5-card hand from a standard deck. For the purposes of the next two questions, a pair
consists of any two cards with the same rank—-so ♣A♥A♦A23 contains three pairs (♥A♦A and ♣A♦A and
♣A♥A). Let P denote the number of pairs in your hand.
10.122 Compute E [P] “the hard way,” by computing Pr [P = 0], Pr [P = 1], Pr [P = 2], and so forth. (There
can be as many as 6 pairs in your hand, if you have four-of-a-kind.)
10.123 Compute E [P] “the easy way,” by defining an indicator random variable Ri,j that’s 1 if and only if
cards #i and #j are a pair, computing E

[Ri,j
], and using linearity of expectation.
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In bridge, you are dealt a 13-card hand from a standard deck. A hand’s high-card points are awarded for face cards: 4
for an ace, 3 for a king, 2 for a queen, and 1 for a jack. A hand’s distribution points are awarded for having a small
number of cards in a particular suit: 1 point for a “doubleton” (only two cards in a suit), 2 points for a “singleton”
(only one card in a suit), and 3 points for a “void” (no cards in a suit).
10.124 What is the expected number of high-card points in a bridge hand? (Hint: define some simple
random variables, and use linearity of expectation.)
10.125 What is the expected number of distribution points for hearts in a bridge hand? (Hint: calculate the
probability of having exactly 2 hearts, exactly 1 heart, or no hearts in a hand.)
10.126 Using the results of the last two exercises and linearity of expectation, find the expected number
of points (including both high-card and distribution points) in a bridge hand.

We’ve shown linearity of expectation—the expectation of a sum equals the sum of the expectations—even when the
random variables in question aren’t independent. It turns out that the expectation of a product equals the product of the
expectations when the random variables are independent, but not in general when they’re dependent.
10.127 Let X and Y be independent random variables. Prove that E [X ·Y] = E [X] · E [Y].
On the other hand, suppose that X and Y are dependent random variables. Prove that . . .
10.128 . . . E [X · Y] is not necessarily equal to E [X] · E [Y].
10.129 . . . E [X · Y] is also not necessarily unequal to E [X] · E [Y].

We showed in Example 10.39 that the expected number of flips of a p-biased coin before we get Heads is precisely 1
p .

10.130 How many flips would you expect to have to make before you see 1000 heads in total (not neces-
sarily consecutive)? (Hint: define a random variable Xi denoting the number of coin flips after the (i − 1)st Heads
before you get another Heads. Then use linearity of expectation.)
10.131 How many flips would you expect to make before you see two consecutive heads?

insertionSort(A[1 . . .n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j− 1]:
4: swap A[j] and A[j− 1]
5: j := j− 1

Figure 10.32:
A reminder of
Insertion Sort.

In Insertion Sort, we showed in Example 10.45 that the expected number of swaps is(n
2
)/2 for a randomly sorted input. With respect to comparisons, it’s fairly easy to

see that each element participates in one more comparison than it does swap—with
one exception: those elements that are swapped all the way back to the beginning of
the array. Here you’ll precisely analyze the expected number of comparisons.
10.132 What is the probability that the ith element of the array is
swapped all the way back to the beginning of the array?
10.133 What’s the expected number of comparisons done by Insertion Sort on a randomly sorted n-
element input?

Suppose we hash n elements into an 100,000-slot hash table, resolving collisions by chaining.
10.134 Use Example 10.43 to identify the smallest n for which the expected number of collisions first
reaches 1. What the smallest n for which the expected number of collisions exceeds 100,000?
10.135 (programming required) Write a program to empirically test your answers from the last exercise, by
doing k = 1000 trials of loading [your first answer from Exercise 10.134] elements into a 100,000-slot hash table.
Also do k = 100 trials of loading [your second answer from Exercise 10.134] elements. On average, how many
collisions did you see?

Consider an m-slot hash table that resolves collisions by chaining. In the next few problems, we’ll figure out the ex-
pected number of elements that must be hashed into this table before every slot is “hit”—that is, until every cell of the
hash table is full.
10.136 Suppose that the hash table currently has i − 1 filled slots, for some number i ∈ {1, . . . ,m}. What
is the probability that the next element that’s hashed falls into an unoccupied slot? Let the random variable Xi
denote the number of elements that are hashed until one more cell is filled. What is E [Xi]?
10.137 Argue that the total number X of elements hashed before the entire hash table is full is given by
X = ∑m

i=1 Xi . Using Exercise 10.136 and linearity of expectation, prove that E [X] = m ·Hm.
(Recall that Hm denotes the mth harmonic number, where Hm := ∑m

i=1
1
i . See Definition 5.4.)

The problem you’ve addressed in the last two exercises is called the coupon collector problem among computer
scientists: imagine, say, a cereal company that puts one of n coupons into each box of cereal that it sells, choosing which
coupon type goes into each box randomly. How many boxes of cereal must a serial cereal eater buy before he collects a
complete set of the n coupons?
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True story: some nostalgic friends and I were trying to remember all of the possible responses on a Magic 8 Ball, a
pseudopsychic toy that reveals one of 20 answers uniformly at random when it’s shaken—things like

{ask again later, signs point to yes, don’t count on it, . . .} .

We found a toy shop with a Magic 8 Ball in stock and started asking it questions. We hoped to have learned all 20
different answers before we got kicked out of the store.
10.138 What is the probability that we’d get 20 different answers in our first 20 trials?
10.139 In expectation, how many trials would we need before we found all 20 answers? (Use the result
on coupon collecting from Exercise 10.137.)
In Exercise 10.139, you determined the number of trials that, on average, are necessary to get all 20 answers. But how
likely are we to succeed with a certain number of trials?
10.140 Suppose we perform 200 trials. What is the probability that a particular answer (for example, “ask
again later”) was never revealed in any of those 200 trials?
10.141 Use the Union Bound (Exercise 10.37) and the previous exercise to argue that the probability that
we need more than 200 trials to see all 20 answers is less than 0.1%.

10.142 Suppose that one random bit in a 32-bit number is corrupted (that is, flipped from 0 to 1 or from 1
to 0). What is the expected size of the error (thinking of the change of the value in binary)? What about for a
random bit in an n-bit number?

10.143 Suppose that the numbers {1, . . . , n} are randomly ordered—that is, we choose a random per-
mutation π of {1, . . . ,n}. For a particular index i, what is the probability that πi = i—that is, the ith biggest
element is in the ith position?
10.144 Let X be a random variable denoting the number of indices i for which πi = i. What is E [X]?
(Hint: define indicator random variables and use linearity of expectation.)

Markov’s inequality states that, for a random variable X that is always nonnegative (that is, for any x in the sample Markov’s inequality
is named after
Andrey Markov,
a 19th-to-20th-
century Russian
mathematician. A
number of other
important ideas
in probability are
also named after
him, like Markov
processes, Hidden
Markov models,
and more.

space, we have X(x) ≥ 0), the following statement is true, for any α ≥ 1:

Pr [X ≥ α] ≤ E [X]
α

.

10.145 Prove Markov’s inequality. (Hint: use conditional expectation.)
10.146 The median of a random variable X is a value x such that

Pr [X ≤ x] ≥ 1
2 and Pr [X ≥ x] ≥ 1

2 .

Using Markov’s inequality, prove that the median of a nonnegative random variable X is at most 2 · E [X].

Take a fair coin, and repeatedly flip it until it comes up heads. Let K be a random variable indicating the number of
flips performed. (We’ve already shown that E [K] = 2, in Example 10.39.) You are offered a chance to play a gambling
game, for the low low price of y dollars to enter. A fair coin will be flipped until it comes up heads, and you will be paid
(3/2)K dollars if K flips were required. (So there’s a 1

2 chance that you’ll be paid $1.50 because the first flip comes up
heads; a 1

4 chance that you’ll be paid $2.25 = (1.50)2 because the first flip comes up tails and the second comes up heads,
and so forth.)
10.147 Assuming that you care only about expected value—that is, you’re willing to play if and only if
E [(3/2)K ] ≥ y—then what value of y is the break-even point? (In other words, what is E [(3/2)K ]?)
10.148 Let’s sweeten the deal slightly: you’ll be paid 2K dollars if K flips are required. Assuming that you
still care only about expected value, then what value of y is the break-even point? (Be careful!)

10.149 Let X be the number of heads flipped in 4 independent flips of a fair coin. What is var (X)?
10.150 Let Y be the average of two independent rolls of a fair die. What is var (Y)?

10.151 Let a ∈ R, and let X be a random variable. Prove that E [a ·X] = a · E [X].
10.152 Let a ∈ R, and let X be a random variable. Prove that var (a ·X) = a2 · var (X).
10.153 Prove that var (X +Y) = var (X) + var (Y) for two independent random variables X and Y. (Hint:
use Exercise 10.127.)
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10.154 Let X be a random variable following a binomial distribution with parameters n and p. (That
is, X is the number of heads found in n flips of a p-biased coin.) Using Exercise 10.153 and the logic as in
Example 10.40, show that E [X] = np and var (X) = np(1− p).

10.155 Flip a p-biased coin n times, and let Y be a random variable denoting the fraction of those n flips
that came up heads. What are E [Y] and var (Y)?

In the next few exercises, you’ll find the variance of a geometric random variable. This derivation will require a little
more work than the result from Exercise 10.154 (about the variance of a binomial random variable); in particular, we’ll
need a preliminary result about summations first:
10.156 (Calculus required.) Prove the following two formulas, for any real number r with 0 ≤ r < 1:

∞

∑
i=0

iri = r
(1− r)2

∞

∑
i=0

i2ri = r(1 + r)
(1− r)3 .

(Hint: use the geometric series formula ∑n
i=0 ri = rn+1−1

r−1 from Theorem 5.2, differentiate, and take the limit as n grows.
Repeat for the second derivative.)
10.157 Let X be a geometric random variable with parameter p. (That is, X denotes the number of flips of
a p-biased coin we need before we see heads for the first time.) What is var (X)? (Hint: compute both E [X]2 and
E
[X2]. The previous exercise will help with at least one of those computations.)

Recall from Chapter 3 that a proposition is in 3-conjunctive normal form (3CNF) if it is the conjunction of clauses,
where each clause is the disjunction of three different variables/negated variables. For example,

(¬p∨ q ∨ r) ∧ (¬q∨ ¬r ∨ x)
is in 3CNF. Recall further that a proposition ϕ is satisfiable if it’s possible to give a truth assignment for the variables
of ϕ to true/false so that ϕ itself turns out to be true. We’ve previously discussed that it is believed to be computation-
ally very difficult to determine whether a proposition ϕ is satisfiable (see p. 326)—and it’s believed to be very hard to
determine whether ϕ is satisfiable even if ϕ is in 3CNF. But you’ll show here an easy way to satisfy “most” clauses of
a proposition ϕ in 3CNF, using randomization.
10.158 Let ϕ be a proposition in 3CNF. Consider a random truth assignment for ϕ—that is, each variable
is set independently to True with probability 1

2 . Prove that a particular clause of ϕ is true under this truth
assignment with probability ≥ 7

8 .
10.159 Suppose that ϕ has m clauses and n variables. Prove that the expected number of satisfied clauses
under a random truth assignment is at least 7m

8 .
10.160 Prove the following general statement about any random variable: Pr [X ≥ E [X]] > 0. (Hint:
use conditional expectation.) Then, using this general fact and Exercise 10.159, argue that, for any 3CNF
proposition ϕ, there exists a truth assignment that satisfies at least 7

8 of ϕ’s clauses.

Taking it further: One can also show that there’s a very good chance—at least 8/m—that a random
truth assignment satisfies at least 7m/8 clauses, and therefore we expect to find such a truth assign-
ment within m/8 random trials. This algorithm is called Johnson’s algorithm, named after the researcher
David Johnson; for details of this and other randomized algorithms for satisfiability, see a good book on
randomized algorithms.11

11

11 Michael Mitzen-
macher and Eli
Upfal. Probability
and computing: ran-
domized algorithms
and probabilistic
analysis. Cambridge
University Press,
2005; Rajeev Mot-
wani and Prabhakar
Raghavan. Ran-
domized Algorithms.
Cambridge Uni-
versity Press, 1995;
and Jon Kleinberg
and Éva Tardos.
Algorithm Design.
Addison–Wesley,
2006.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



10.5. CHAPTER AT A GLANCE 1067

10.5 Chapter at a Glance

Probability, Outcomes, and Events
Imagine a process by which some quantities of interest are determined in some ran-
dom way. An outcome, or realization, of this probabilistic process is the sequence of
results for all randomly determined quantities. The sample space S is the set of all pos-
sible outcomes. A probability function Pr : S → R describes, for each outcome s ∈ S,
the fraction of the time that s occurs. The probability function Prmust satisfy two
conditions: (i) ∑s∈S Pr [s] = 1, and (ii) Pr [s] ≥ 0 for every s ∈ S.

An event is a subset of S, and the probability of an event E, written Pr [E], is the sum
of the probabilities of the outcomes contained in E. We have that Pr [S] = 1 and
Pr [∅] = 0. For events A and B, writing A (“not A”) to denote the event A = S − A,
we have that Pr [ A ] = 1− Pr [A], and Pr [A∪ B] = Pr [A] + Pr [B]− Pr [A∩ B].

We can use a tree diagram to represent a sequence of random choices, where internal
nodes of the tree correspond to random decisions made by the probabilistic process;
leaves correspond to the outcomes in the sample space. Every edge leaving an internal
node is labeled with the probability of the corresponding random decision; the prob-
ability of a particular outcome is precisely equal to the product of the labels on the
edges leading from the root to its corresponding leaf.

The uniform distribution is the probability distribution in which all outcomes in the
sample space S are equally likely—that is, when Pr [s] = 1

|S| for each s ∈ S. (Nonuniform
probability is when this equality does not hold.)

The Bernoulli distribution with parameter p is the probability distribution that results
from flipping one coin, where the sample space is {H,T} and Pr [H] = p (and thus
Pr [T] = 1− p). Such a coin is called p-biased. Each coin flip is called a trial; the flip is
called fair if p = 1

2 .
The binomial distribution with parameters n and p is a distribution over the sample

space {0, 1, . . . , n} determined by flipping a p-biased coin n times and counting the
number of times the coin comes up heads. Here Pr [k] =

(n
k
) · pk · (1− p)n−k denotes the

probability that there are precisely k heads in the n flips.
The geometric distribution with parameter p is a distribution over the positive integers,

where the output is determined by the number of flips of a p-biased coin required
before we first see a heads; thus Pr [k] = (1− p)k−1 · p for any integer k ≥ 1.

Independence and Conditional Probability
When there are multiple events of interest, then one useful way understanding the
relationship between two events is to understand whether one event’s occurrence
changes the likelihood of the other event also occurring. When there’s no change, the
events are called independent; when there is a change in the probability, the events are
called dependent. More formally, two events A and B are independent (or uncorrelated) if
and only if Pr [A∩ B] = Pr [A] · Pr [B]. Otherwise the events A and B are called depen-
dent (or correlated). Intuitively, A and B are dependent if A’s occurrence/nonoccurrence
tells us something about whether B occurs. When knowing that A occurred makes B
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more likely to occur, we say that A and B are positively correlated; when Amakes B less
likely to occur, we say that A and B are negatively correlated.

The conditional probability of A given B is

Pr
[A|B] = Pr [A∩ B]

Pr [B] .

(Treat Pr [A|B] as undefined when Pr [B] = 0.) Intuitively, we can think of Pr [A|B] as
“zooming” the universe down to the set B. Two events A and B for which Pr [B] 6= 0 are
independent if and only if Pr [A|B] = Pr [A].

There are a few useful equivalences based on conditional probability. For any events
A and B, the chain rule says that Pr [A∩ B] = Pr [B] · Pr

[A|B]; more generally,

Pr [A1 ∩A2 ∩A3 ∩ · · · ∩Ak]
= Pr [A1] · Pr

[A2|A1
] · Pr [A3|A1 ∩A2

] · · · · · Pr [Ak|A1 ∩ · · · ∩Ak−1
] .

The law of total probability says that Pr [A] = Pr
[
A|B

]
· Pr [B] + Pr

[
A| B

]
· Pr [ B ].

Bayes’ Rule is a particularly useful rule that allows us to “flip around” a conditional
probability statement: for any two events A and B, we have

Pr
[
A|B

]
= Pr

[B|A] · Pr [A]
Pr [B] .

Random Variables and Expectation
The probabilistic statements that we’ve considered so far are about events (“whether
or not” questions); we can also consider probabilistic questions about “how much” or
“how often.” A random variable X assigns a numerical value to every outcome in the
sample space S—that is, a random variable is a function X : S → R. (Often we write
X to denote the value of a random variable X for a realization chosen according to Pr,
or perform arithmetic on random variables.) An indicator random variable is a {0, 1}-
valued random variable. Two random variables X and Y are independent if every two
events of the form “X = x” and “Y = y” are independent.

The expectation of a random variable X, denoted E [X], is the average value of X,
defined as E [X] = ∑x∈SX(x) · Pr [x]. A Bernoulli random variable with parameter p has
expectation p. A binomial random variable with parameters p and n has expectation
pn. A geometric random variable with parameter p has expectation 1

p .
Linearity of expectation is the very useful fact that the expectation of a sum is the sum

of the expectations. That is, for random variables X : S → R and Y : S → R, we
have E [X +Y] = E [X] + E [Y]. (Note that there is no requirement of independence on
X and Y!) Another useful fact is that, for a positive integer–valued random variable
X : S → Z≥0, we have E [X] = ∑∞

i=1 Pr [X ≥ i].
The conditional expectation of a random variable X given an event E is the average

value of X over outcomes where E occurs, defined as E
[
X|E

]
= ∑x∈EX(x) · Pr

[
x|E
]
.

The variance of a random variable X is

var (X) = E
[
(X− E [X])2

]
= E

[
X2
]
− (E [X])2 .

The standard deviation is std (X) = √var (X).
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Key Terms and Results

Key Terms
Probability, Outcomes, and Events
• outcome/realization
• sample space
• probability function/distribution
• event
• tree diagram
• uniform vs. nonuniform probability
• fair vs. biased coin flips
• uniform distribution
• Bernoulli distribution
• binomial distribution
• geometric distribution

Independence and Conditional
Probability
• independent/uncorrelated events
• dependent/correlated events
• positive/negative correlation
• conditional probability
• chain rule
• law of total probability
• Bayes’ Rule

Random Variables and Expectation
• random variable
• indicator random variable
• independent random variables
• expectation
• linearity of expectation
• conditional expectation
• variance
• standard deviation

Key Results
Probability, Outcomes, and Events
1. For a sample space S and events A and B, writing A (“not

A”) to denote the event S−A, we have that Pr [S] = 1,
Pr [∅] = 0, Pr [ A ] = 1− Pr [A], and
Pr [A∪ B] = Pr [A] + Pr [B]− Pr [A∩ B].

2. Under the uniform distribution, Pr [s] = 1
|S| for every

s ∈ S. Consider parameters p and n. Under a Bernoulli
distribution, Pr [H] = p and Pr [T] = 1− p. Under a
binomial distribution, Pr [k] =

(n
k
)
pk(1− p)n−k. Under a

geometric distribution, Pr [k] = (1− p)k−1p.

Independence and Conditional Probability
1. Events A and B are independent if and only if

Pr [A∩ B] = Pr [A] · Pr [B], or, equivalently, if
Pr
[A|B] = Pr [A].

2. The chain rule: Pr [A∩ B] = Pr [B] · Pr
[
A|B

]
.

3. The law of total probability:
Pr [A] = Pr

[A|B] · Pr [B] + Pr
[A| B ] · Pr [ B ].

4. Bayes’ Rule: Pr [A|B] = Pr[B|A]·Pr[A]
Pr[B] .

Random Variables and Expectation
1. The expectation of a random variable X is the average

value of X, defined as E [X] = ∑x∈SX(x) · Pr [x].
2. A Bernoulli random variable with parameter p has

expectation p. A binomial random variable with
parameters p and n has expectation pn. A geometric
random variable with parameter p has expectation 1

p .
3. Linearity of expectation: for any two random variables X

and Y, we have E [X + Y] = E [X] + E [Y]. (Note that there is
no requirement of independence on X and Y!)

4. For a random variable X : S → Z≥0, we have that
E [X] = ∑∞

i=1 Pr [X ≥ i].
5. For a random variable X, we have

var (X) = E
[
(X− E [X])2

]
= E

[
X2]− (E [X])2 .
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