
preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-1

9 Counting

In which our heroes encounter many choices, some of which may

lead them to live more happily than others, and a precise count of

their number of options is calculated.

9-1

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-2

9-2 Counting

9.1 Why You Might Care

How do I love thee? Let me count the ways.

Elizabeth Barrett Browning (1806–1861)
Sonnet 43, Sonnets from the Portuguese (1850)

The earth is a slightly squashed sphere, with a radius of a little less than 6400 kilometers (about 4000

miles), which means that its surface area is roughly 4πr2 ≈ 5.1×1014 square meters. If you then divide the

earth’s surface into squares that are three meters on a side, you’ll end up just under 350003 total squares.

This calculation is at the heart of the service provided by the company What Three Words, which has

(pseudorandomly) assigned a sequence of three common English words to each three-meter square on

earth, as an easy-to-use addressing system. (So computer.science.happiness is a spot in northwestern

Brazil, and enjoy.counting.chapter is located in eastern Quebec, in Canada.) Our calculation says

that we’d only need a vocabulary of 35,000 words (out of hundreds of thousands in current use) to specify

addresses. (The company’s underlying idea is that much of the world does not have a reliable street address

system—sometimes because a particular house doesn’t have a fixed address, sometimes because it’s in the

middle of an ocean, sometimes because the resolution of a street address isn’t sufficiently fine-grained.)

This chapter is devoted to the apparently trivial task of counting. By “counting,” we mean the follow-

ing problem: given a potentially convoluted description of a set S, compute the cardinality of S—that is,

compute the number of elements in S. It may seem bizarre that counting could somehow be harder than at

the preschool level (just count! one, two, three), but it will turn out that we can solve surprisingly subtle

problems with some useful and general (and subtle) techniques.

Why does counting matter in computer science? There are, again, surprisingly many applications. Here

are a few examples. One common (basic) style of algorithm is a brute-force algorithm,which finds the best

whatzit by trying every possible whatzit and seeing which one is best. Whether a brute-force algorithm is

fast enough depends on how many possible whatzits there are. A more advanced algorithmic design tech-

nique, called dynamic programming, can be used to design efficient recursive solutions to problems—as

long as there aren’t toomany distinct subproblems. Counting techniques are even powerful enough to estab-

lish a mind-bending result about computability: we will be able to prove that there are more problems than

computer programs—which means that there are some problems that cannot be solved by any program!

Probability (see Chapter 10) has a plethora of applications in computer science, ranging from random-

ized algorithms in sorting (algorithms that process their input by making random decisions about how to

act) to models of random noise in speech recognition or random errors in typing (if I’m trying to type the

letter p, what is the chance that I accidentally type o instead?). We can think of the probability of some

event X happening as two counting problems: the ratio of, first, the number of ways X can happen, and,

second, the number of ways X can either happen or not happen.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-3

9.1 Why You Might Care 9-3

We’ll start in Section 9.2 with some basic counting techniques—how to compute the cardinality of a

union A∪B of two sets, or sequences from the Cartesian product A×B of two sets. We then turn in Section

9.3 to one of the best counting strategies: being lazy! If we can show that |A| = |B| and we already know

the value of |B|, then figuring out |A| is easy; we’ll often use functions to relate two sets so that we can

then lazily compute the size of the apparently harder-to-count set. Finally, in Section 9.4, we’ll explore

combinations (“how many ways are there to choose an unordered collection of k items out of a set of n

possibilities?”) and permutations (“how many ways are there to put a set of n items into some order?”).

As we go, we’ll see several other applications, scattered across computer science: breaking cryptographic

systems, compressing media files, and the time the internet started to run out of addresses, to name a few.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-4

9-4 Counting

9.2 Counting Unions and Sequences

But if he does really think that there is no distinction between virtue and vice, why, Sir,
when he leaves our houses let us count our spoons.

Samuel Johnson (1709–1784)

Suppose that we have two sets A and B from which we must choose an element. There are two dif-

ferent natural scenarios that meet this one-sentence description: we must choose a total of one element

from either A or B, or we must choose one element from each of A and B. For example, consider a restau-

rant that offers soups A = {chicken noodle, beer cheese,minestrone,mulligatawny, . . .} and offers salads

B = {caesar, house, cobb, . . .}. A lunch special that includes soup or salad involves choosing an x ∈ A∪B.
A dinner special including soup and salad involves choosing an x ∈ A and also choosing a y ∈ B—that is,

choosing an element ⟨x, y⟩ ∈ A×B. In Section 9.2.1, we’ll start with rules for computing these cardinalities:

Sum Rule: If A and B are disjoint, then |A ∪ B| = |A|+ |B|.

Product Rule: The number of pairs ⟨x, y⟩ with x ∈ A and y ∈ B is |A× B| = |A| · |B|.

These rules handle the soup-and-salad scenarios above, but there are a pair of extensions that we’ll introduce

to handle slightly more complex situations. The first (Section 9.2.2) extends the Sum Rule to calculate the

cardinality of a union of two sets even if those sets may contain elements in common:

Inclusion–Exclusion: |A ∪ B| = |A|+ |B| − |A ∩ B|.

The second extension (Section 9.2.3) generalizes the Product Rule to allow us to calculate the cardinality

of a set of pairs ⟨x, y⟩ even if the choice of x changes the list (but not the number) of possible choices for y:

Generalized Product Rule: Consider pairs ⟨x, y⟩ of the following form: we can choose any x ∈ A, and,

for each such x, there are precisely n different choices for y. Then the total number of pairs meeting this

description is |A| · n.

The remainder of this section will give the details of these four rules, and how to use these rules individually

and in combination.

9.2.1 The Basics: The Sum and Product Rules

Sum Rule: counting disjoint unions

Our first rule addresses the union of two sets: if two sets A and B are disjoint, then the cardinality of their

union is simply the sum of their sizes:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-5

9.2 Counting Unions and Sequences 9-5

Theorem 9.1: Sum Rule.
Let A and B be sets. If A ∩ B = ∅, then |A ∪ B| = |A|+ |B|.

More generally, consider a collection of k ≥ 1 sets A1,A2, . . . ,Ak. If these sets are all disjoint—that is, if

Ai ∩ Aj = ∅whenever i ̸= j—then the cardinality of their union is the sum of their individual cardinalities:

|A1 ∪ A2 ∪ · · · ∪ Ak| = |A1|+ |A2|+ · · ·+ |Ak|.
The Sum Rule captures an intuitive fact: if a box contains some red things and some blue things, then

the total number of things in the box is the number of red things plus the number of blue things.

Example 9.1: Counting disjoint unions.

• Let A = {1, 2} and B = {3, 4, 5, 6}. Thus |A| = 2 and |B| = 4. Observe that the sets A and B are

disjoint. By the sum rule, |A∪ B| = |A|+ |B| = 2+ 4 = 6. Indeed, we have A∪ B = {1, 2, 3, 4, 5, 6},
which contains 6 elements.

• There are 11 starters on your school’s women’s soccer team. Suppose there are 8 nonstarters on the

team. The total number of people on the team is 19 = 11+ 8.

• At a certain school in the midwest, there are currently 30 computer science majors who are studying

abroad. There are 89 computer science majors who are studying on campus. Then the total number of

computer science majors is 119 = 89+ 30.

• Consider a computer lab that contains 32 Macs and 14 PCs and 1 PDP-8 (a 1960s-era machine, one

of the first computers that was sold commercially). Then the total number of computers in the lab is

47 = 32+ 14+ 1.

Example 9.2: Students in classes.

During this term, there are 19 students taking Data Structures, and 39 students taking Mathematics of

Computer Science. Let S denote the set of students taking Data Structures or Mathematics of Computer

Science this term. What is |S|?

Solution. There isn’t enough information to answer the question!

It’s possible that there are no students who are taking both classes. In this case—that is, in the case

that DS ∩MOCS = ∅—we have |S| = |DS|+ |MOCS| = 19+ 39 = 58.

But, for all we know from the problem statement, every student in Data Structures is also taking

Mathematics of Computer Science. In this case, we have DS ⊂ MOCS and thus S = DS ∪MOCS =

MOCS; therefore |S| = |MOCS| = 39.

Indeed, |S| can be anywhere between 39 and 58. (The Inclusion–Exclusion Rule, in Section 9.2.2,

formalizes the calculation of |A∪B| in terms of |A|, |B|, and |A∩B|, in the manner that we just considered.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-6

9-6 Counting

Taking it further: The logic that we used in Example 9.2 to conclude that there were at most 58 students in the two classes

combined is an application of the general fact that |A∪B| ≤ |A|+|B|. While this fact is pretty simple, it turns out to be remarkably

useful in proving facts about probability. The Union Bound states that the probability that any of A1,A2, . . . ,Ak occurs is at most

p1 + p2 + · · · + pk, where pi denotes the probability that Ai occurs. The Union Bound turns out to be useful when each Ai is

a “bad event” that we’re worried might happen, and these bad events may have complicated probabilistic dependencies—but if

we can show that the probability that every particular one of these bad events is some very small ϵ, then we can use the Union

Bound to conclude that the probability of experiencing any bad event is at most k · ϵ. (See Exercise 10.143, for example.)

Using the Sum Rule in less obvious settings

As a general strategy for solving counting problems, we can try to find a way to apply the Sum Rule—even

if it does not superficially seem to apply. If we can find a way to partition an apparently complicated set S

into simple disjoint sets S1, S2, . . . , Sk such that
⋃k

i=1 Si = S, then we can use the Sum Rule to find |S|.
In this spirit, here’s a somewhat more complex example of using the Sum Rule, where we have to figure

out the subsets ourselves: let’s determine how many 8-bit strings contain precisely two ones. (The full list

of the bitstrings meeting this condition appears in Figure 9.1.)

Example 9.3: 8-bit strings with exactly 2 ones.

How many elements of {0, 1}8 have precisely two 1s?

Solution. Obviously, we can just count the number of bitstrings in Figure 9.1, which yields the answer:

there are 28 such bitstrings. But let’s use the Sum Rule instead.

What does a bitstring x ∈ {0, 1}8 with two ones look like? There must be two indices i and j—say

with i > j—such that xi = xj = 1, and all other components of x must be 0:

x = 00 · · · 0
j − 1

zeroes

1

one in position j

00 · · · 0
i − j − 1

zeroes

1

one in position i

00 · · · 0
8 − i

zeroes

(For example, 01001000 has ones in positions j = 2 and i = 5, interspersed with an initial block of

j− 1 = 1 zero, a block of i− j− 1 = 2 between-the-ones zeros, and a block of 8− i = 3 final zeros.)

We are going to divide the set of 8-bit strings with two 1s based on the index i. That is, suppose that

x ∈ {0, 1}8 contains two ones, and the second 1 in x appears in bit position #i. Then there are i − 1

positions in which the first one could appear—any of the slots j ∈ {1, 2, . . . , i− 1} coming before i. (See

11000000 01100000
10100000

00110000
01010000
10010000

00011000
00101000
01001000
10001000

00001100
00010100
00100100
01000100
10000100

00000110
00001010
00010010
00100010
01000010
10000010

00000011
00000101
00001001
00010001
00100001
01000001
10000001

Figure 9.1 All bitstrings in {0, 1}8 that contain exactly two ones.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-7

9.2 Counting Unions and Sequences 9-7

Figure 9.1, where the (i− 1)st column contains all i− 1 bitstrings whose second 1 appears in position #i.

For example, column #3 contains the 3 bitstrings with x4,5,6,7,8 = 10000: that is, 10010000, 01010000,
and 00110000.) Because every x with exactly two ones has an index i of its second 1, we can use the

Sum Rule to say that the answer to the given question is

8∑

i=1

[number of bitstrings with the second 1 in position i] =
8∑

i=1

(i− 1) = 0+ 1+ · · ·+ 7 = 28.

(We’ll also see another way to solve this example later, in Example 9.41.)

Problem-solving tip: When you’re trying to find the cardinality of a complicated set S, try to find a way to split S into a collection

of simpler disjoint sets, and then apply the Sum Rule.

Let’s also generalize this example to bitstrings of arbitrary length:

Example 9.4: k-bit strings with exactly 2 ones.

Consider the set S = {x ∈ {0, 1}k : x has precisely two 1s}. As in Example 9.3, every bitstring x ∈ S has

an index i of its second 1; we’ll use the value of i to partition S into sets that can be easily counted, and

then use the Sum Rule to find |S|. Specifically, for each index i with 1 ≤ i ≤ k, define the set

Si = {x ∈ S : xi = 1 and xi+1 = xi+2 = · · · = xk = 0}

= {x ∈ {0, 1}k : [∃j ≤ i− 1 : xi = xj = 1 and x has no other 1s]} .

Observe that |Si| = i − 1: there are i − 1 different possible values of j. Also, observe that S =
⋃k

i=1 Si

and that, for any i ̸= i′, the sets Si and Si′ are disjoint. Thus

|S| =
∣∣∣∣∣

k⋃

i=1

Si

∣∣∣∣∣ =
k∑

i=1

|Si| =
k∑

i=1

(i− 1) =
k(k− 1)

2
(∗)

by the Sum Rule and the formula for the sum of the first n integers (Theorem 5.3). As a check of our

formula, let’s verify our solution for some small values of k:

• For k = 2, (∗) says there are 2(2−1)
2 = 1 strings with two 1s. Indeed, there’s just one: the string 11.

• For k = 3, indeed there are 3(3−1)
2 = 3 strings with two 1s: 011, 101, and 110.

• For k = 4, there are 4·3
2 = 6 such strings: 1100, 1010, 0110, 1001, 0101, and 0011.

• For k = 8, (∗) matches Example 9.3: for k = 8, we have 28 = 8·7
2 strings with two 1s.

Problem-solving tip: It’s always a good idea to check to make sure your formulas are reasonable by testing them for small inputs

(as we did in Example 9.4).

Product Rule: counting sequences

Our second basic counting rule addresses the Cartesian product of sets. Recall that, for sets A and B, the

Cartesian product A×B consists of all pairs ⟨a, b⟩ with a ∈ A and b ∈ B. (For example, {1, 2, 3} × {x, y}

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-8

9-8 Counting

is {⟨1, x⟩, ⟨1, y⟩, ⟨2, x⟩, ⟨2, y⟩, ⟨3, x⟩, ⟨3, y⟩}.) The cardinality of A × B is the product of the cardinalities

of A and B:

Theorem 9.2: Product Rule.
Let A and B be sets. Then |A× B| = |A| · |B|.

More generally, consider a collection of k arbitrary sets A1,A2, . . . ,Ak, and consider the set of k-element

sequences where, for each i, the ith component is an element of Ai. The number of such sequences is given

by the product of the sets’ cardinalities:

|A1 × A2 × · · · × Ak| = |A1| · |A2| · · · · · |Ak|.

Here are a few examples of counting using the Product Rule:

Example 9.5: Counting sequences.

• Let A = {1, 2} and B = {3, 4, 5, 6}. By the product rule, |A × B| = |A| · |B| = 2 · 4 = 8. Indeed,

A× B = {⟨1, 3⟩, ⟨1, 4⟩, ⟨1, 5⟩, ⟨1, 6⟩, ⟨2, 3⟩, ⟨2, 4⟩, ⟨2, 5⟩, ⟨2, 6⟩}, which contains 8 elements.

• At a certain school in the midwest, there are currently 56 senior computer science majors and 63 junior

computer science majors. Then the number of ways to choose a pair of class representatives, one senior

and one junior, is 56 · 63 = 3528.

• Consider a tablet computer that is sold with three different options: a choice of protective cover, a

choice of stylus, and a color. If there are 7 different styles of protective cover, 5 different styles of

stylus, and 3 different colors, then there are 7 · 5 · 3 = 105 different configurations of the computer.

Like the Sum Rule, the Product Rule should be reasonably intuitive: if we are choosing a pair ⟨a, b⟩ from
A× B, then we have |A| different choices of the first component a—and, for each of those |A| choices, we

have |B| choices for the second component b. (Thinking of A as A = {a1, a2, . . . , a|A|}, we can even view

{⟨a, b⟩ : a ∈ A, b ∈ B} as

{⟨a1, b⟩ : b ∈ B} ∪ {⟨a2, b⟩ : b ∈ B} ∪ · · · ∪ {⟨a|A|, b⟩ : b ∈ B} .

By the Sum Rule, this set has cardinality |B| + |B| + · · · + |B|, with one term for each element of A—in

other words, it has cardinality |A| · |B|.) Here are a few more examples:

Example 9.6: 32-bit strings.

How many different 32-bit strings are there?

Solution. The set of 32-bit strings is {0, 1}32—that is, elements of

{0, 1} × {0, 1} × {0, 1} × · · · × {0, 1}
32 times

.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-9

9.2 Counting Unions and Sequences 9-9

Because | {0, 1} | = 2, the Product Rule lets us conclude that

|{0, 1}32| = | {0, 1} | · | {0, 1} | · · · · · | {0, 1} |
32 times

= 2 · 2 · · · · · 2
32 times

= 232.

Example 9.7: Number of possible shortened URLs.

A URL-shortening service like bit.ly or tinyurl.com allows a user to compress a long URL into a

much shorter sequence of characters. (The shorter URL can then be used in emails or tweets or other

contexts in which a long URL is unwieldy.) For example, by entering the URL of Katherine Johnson’s

Wikipedia page into bit.ly, I got the URL https://bit.ly/36fvkTP as a shortened form of https:
//en.wikipedia.org/wiki/Katherine_Johnson.

If a shortened URL consists of 7 characters, each of which is a digit, lowercase letter, or uppercase

letter, the number of possible shortened URLs is, using the Product Rule,

|C× C× C× C× C× C× C| = |C| · |C| · |C| · |C| · |C| · |C| · |C| = |C|7,

where C = {0, . . . , 9} ∪ {a, . . . , z} ∪ {A, . . . , Z} is the set of possible characters. Because |C| =

10+ 26+ 26 = 62 via the Sum Rule, there are 627 = 3,521,614,606,208 possible 7-character URLs.

Taking it further: The point of a URL-shortening service is to translate long URLs into short ones, but it’s theoretically

impossible for every URL to be shortened by this service: there are more possible URLs of length k than there are URLs of

length strictly less than k. A similar issue arises with file compression algorithms, like ZIP, that try to reduce the space required

to store a file. See p. 9-48.

Product Rule: counting sequences from a fixed set

The use of the Product Rule in Examples 9.6 and 9.7—to count the number of sequences of length k with

elements all drawn from a fixed set S, rather than having a different set of options for each component—is

common enough that we’ll note it as a separate rule:

Theorem 9.3: Product Rule: sequences of elements from a single set S.

For any set S and any k ∈ Z≥1, the number of k-tuples from the set Sk = S× S× · · · × S
k times

is |Sk| = |S|k.

(A notational reminder regarding Theorem 9.3: Sk is the set S × S × · · · × S, that is, the set of k-tuples

where each component is an element of S, while |S|k is the number |S| raised to the kth power.)

Here’s another example using this special case of the Product Rule:

Example 9.8: MAC addresses.

A media access control address, or MAC address, is a unique identifier for a network adapter, like an

ethernet card orwireless card. AMACaddress consists of a sequence of six groups of pairs of hexadecimal

digits. (A hexadecimal digit is one of 0123456789ABCDEF.) For example, F7:DE:F1:B6:A4:38 is a

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-10

9-10 Counting

MAC address. (The pairs of digits are traditionally separated by colons when written down.) How many

different MAC addresses are there?

Solution. There are 16 different hexadecimal digits. Thus, using the Product Rule, there are 16 · 16 =

256 different pairs of hexadecimal digits, ranging from 00 to FF. Using the Product Rule again, as in

Example 9.7, we see that there are 2566 different sequences of six pairs of hexadecimal digits. Thus there

are 2566 = [162]6 = [(24)2]6 = 248 = 281,474,976,710,656 total different MAC addresses.

Taking it further: In addition to the numerical addresses assigned to particular hardware devices—the MAC addresses from

Example 9.8—each device that’s connected to the internet is also assigned an address, akin to a mailing address, that’s used

to identify the destination of a packet of information. But we’ve had to make a major change to the way that information is

transmitted across the internet because of a counting problem: we’ve run out of addresses! See p. 9-22.

9.2.2 Inclusion–Exclusion: Unions of Nondisjoint Sets

The counting techniques that we’ve introduced so far have some important restrictions. We can only use

the Sum Rule to calculate |A∪B| when A and B are disjoint. And we are only able to use the Product Rule

to calculate the number of sequences when the set of options for the second component does not depend

on the choice that we made in the first component. In the remainder of this section, we will extend our

techniques to remove these restrictions so that we can handle more general problems. Let’s start with a

specific example of the cardinality of the union of nondisjoint sets:

Example 9.9: Primes and odds.

Consider the set O = {1, 3, 5, 7, 9} of odd numbers less than 10 and the set P = {2, 3, 5, 7} of prime

numbers less than 10. What is |O ∪ P|?
It might be tempting to use the Sum Rule to conclude that |O ∪ P| = |O|+ |P| = 5+ 4 = 9. But this

conclusion is incorrect, because P ∩ O = {3, 5, 7} ̸= ∅, so the Sum Rule doesn’t apply. In particular,

O ∪ P = {1, 2, 3, 5, 7, 9}, so |O ∪ P| = 6.

The issue with the naïve application of the Sum Rule in Example 9.9 is called double counting: in the

expression |O|+ |P|, we counted the elements in the intersection O∩ P twice, which gave us the incorrect

A B

(a) Two sets A and B;
we seek |A ∪ B|.

A B
+

A B

=

A B

(b) Calculating |A|+ |B| counts elements in
the dark-shaded region A ∩ B twice.

A B
−

A B

=

A B

(c) We correct for the double-counted
intersection by subtracting its cardinality.

Figure 9.2 The Inclusion–Exclusion Rule: |A ∪ B| = |A|+ |B| − |A ∩ B|.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-11

9.2 Counting Unions and Sequences 9-11

total count. The idea underlying the Inclusion–Exclusion Rule is to correct for this error: to compute the size

of the union of two sets A and B, we extend the Sum Rule to correct for the double counting by subtracting

|A∩B| from the final result. (See Figure 9.2.) This counting rule is called inclusion–exclusion because we

include (add) the cardinalities of the two individual sets, and then exclude (subtract) the cardinality of the

intersection of the pairs:

Theorem 9.4: Inclusion–Exclusion.
Let A and B be sets. Then |A ∪ B| = |A|+ |B| − |A ∩ B|.

Problem-solving tip: Sometimes the easiest way to solve a problem—in CS or in life!—is to find an imperfect approximation to

the solution, and then correct for whatever inaccuracies result. Inclusion–Exclusion is a good example of this estimate-and-fix

strategy.

Here are a few small examples, and then one that’s slightly more complicated:

Example 9.10: Counting not necessarily disjoint unions.

• Let A = {1, 2, 3} and B = {3, 4, 5, 6}. Thus A ∩ B = {3}, and so |A| = 3 and |B| = 4 and |A ∩ B| = 1.

By the inclusion–exclusion rule, |A ∪ B| = |A| + |B| − |A ∩ B| = 3 + 4 − 1 = 6. Indeed, we have

A ∪ B = {1, 2, 3, 4, 5, 6}, which contains 6 elements.

• At a certain school in the midwest, there are 119 computer science majors and 65 math majors. There

are 7 students double majoring in CS and math. Thus a total of 119+ 65− 7 = 177 different students

are majoring in either of the two fields.

• There are 21 consonants (BCDFGHJKLMNPQRSTVWXYZ) in English. There are 6 vowels in English

(AEIOUY). There is one letter that’s both a vowel and a consonant (Y). Thus there are 21+ 6− 1 = 26

total letters.

• Let E be the set of even integers between 1 and 100. Let O be the set of odd integers between 1 and

100. Note that |E| = 50, |O| = 50, and |E ∩ O| = 0. Thus |E ∪ O| = 50+ 50− 0 = 100.

Example 9.11: ATM machine PIN numbers.

A certain bank’s customers can select a 4-digit number (called a PIN) to access their accounts, but the

bank insists that the PIN may not start with the same digit repeated three times (for example, 7770) or

end with the same digit repeated three times (for example, 0111). How many invalid PINs are there?

Solution. Let S denote the set of PINs that start with three repeated digits. Let E denote the set of PINs

that end with three repeated digits. Then the set of invalid PINs is S ∪ E. (See Figure 9.3.)

Note that |S| = 100: we can view a PIN in S as a sequence of two digits ⟨x, y⟩ ∈ {0, 1, . . . , 9}2, with x

repeated three times in the PIN. (So ⟨3, 1⟩ corresponds to the PIN 3331.) By the Product Rule, there are

102 = 100 such codes.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-12

9-12 Counting

0001, 0002, 0003, . . . , 9997, 9998 0000, 1111, . . . , 9999 0111, 0222, 0333, . . . , 9777, 9888

the first three positions match the last three positions match

Figure 9.3 Invalid PINs, starting or ending with the same digit repeated three times.

Similarly, we have that |E| = 100: we can think of an element of E as a sequence of two digits

⟨x, y⟩ ∈ {0, 1, . . . , 9}2, where y is repeated three times in the PIN.

If S ∩ E were empty, then we could apply the Sum Rule to compute |S ∪ E| as 100+ 100 = 200. But

there are PINs that are in both S and E. A 4-digit number ⟨x, y, z,w⟩ is in S ∩ E if and only if x = y = z

(because ⟨x, y, z,w⟩ ∈ S) and y = z = w (because ⟨x, y, z,w⟩ ∈ E). That is, any 4-digit number that

consists of the same digit repeated four times is in S ∩ E. Thus

S ∩ E = {0000, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999} ,

and |S ∩ E| = 10. Applying the Inclusion–Exclusion rule, we see that the set S ∪ E of invalid PINs has

cardinality |S|+ |E| − |S ∩ E| = 100+ 100− 10 = 190. (So 10,000− 190 = 9810 PINs are valid.)

The basic Sum Rule is actually a special case of the Inclusion–Exclusion Rule: if A and B are disjoint, then

|A ∩ B| = ∅, so |A ∪ B| = |A|+ |B| − |A ∩ B| = |A|+ |B| − 0 = |A|+ |B|.

Inclusion–Exclusion for three sets

Theorem 9.4 describes how to calculate the cardinality of the union of two sets, but this idea can be gen-

eralized. The basic idea is simple: we will try counting in the easiest way possible, and then we’ll correct

for any overcounting or undercounting. For example, we can compute the cardinality of the union of three

sets A ∪ B ∪ C using a more complicated version of Inclusion–Exclusion:

• We add (include) the three singleton sets (|A|+ |B|+ |C|), but this sum counts any element contained in

more than one of the three sets more than once.

• So we subtract (exclude) the three pairwise intersections (|A ∩ B|+ |A ∩ C|+ |B ∩ C|) from the sum.

But we’re not done: imagine an element contained in all three of A, B, and C; such an element was

included three times and then excluded three times, so it hasn’t been counted at all.

• So we add (include) the three-way intersection |A ∩ B ∩ C|.

This calculation yields the following three-set rule for inclusion–exclusion. (Or see Figure 9.4 for a visual

illustration of why this calculation is correct.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-13

9.2 Counting Unions and Sequences 9-13

A B

C

+
A B

C

+
A B

C

=

A B

C

(a) If we start to compute |A ∪ B ∪ C|
as |A|+ |B|+ |C|, we correctly count
the light-shaded regions, but we count
elements in the medium-shaded
regions twice, and elements in the
dark-shaded region three times.

A B

C

+
A B

C

+
A B

C

=

A B

C

(b) Subtracting the sum of the sizes of
the pairwise intersections
|A ∩ B|+ |B ∩ C|+ |A ∩ C| almost
corrects for the double counting from
(a), but it also triple counts the
elements of A ∩ B ∩ C.

A B

C

−
A B

C

+
A B

C

=

A B

C

(c) The result of (a) minus (b) hasn’t
counted the elements of A ∩ B ∩ C at
all, so we can achieve the final count
by adding |A ∩ B ∩ C|.

Figure 9.4 The Inclusion–Exclusion Rule for three sets A, B, and C. See Theorem 9.5.

Theorem 9.5: Inclusion–Exclusion for three sets.
Let A, B, and C be sets. Then |A ∪ B ∪ C| is given by

|A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|.

Here are a couple of small examples of the three-set version of inclusion–exclusion:

Example 9.12: Counting three-set unions.

• Let A = {0, 1, 2, 3, 4} and B = {0, 2, 4, 6} and C = {0, 3, 6}. Then

|A ∪ B ∪ C| = |A|

{0, 1, 2, 3, 4}

+ |B|

{0, 2, 4, 6}

+ |C|

{0, 3, 6}

− |A ∩ B|

{0, 2, 4}

− |A ∩ C|

{0, 3}

− |B ∩ C|

{0, 6}

+ |A ∩ B ∩ C|

{0}

= 5 + 4 + 3 − 3 − 2 − 2 + 1 = 6,

by Inclusion–Exclusion. Indeed, A ∪ B ∪ C = {0, 1, 2, 3, 4, 6}.

• Consider the words ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, and EIGHT. Let E be the set of these

words containing at least one E, let T be the words containing a T, and let R be the words containing

an R. Then

|E ∪ T ∪ R| = |E|

ONE
THREE
FIVE
SEVEN
EIGHT

+ |T|

TWO
THREE
EIGHT

+ |R|

THREE
FOUR

− |E ∩ T|

THREE
EIGHT

− |E ∩ R|

THREE

− |T ∩ R|

THREE

+ |E ∩ T ∩ R|

THREE

= 5 + 3 + 2 − 2 − 1 − 1 + 1 = 7,

and, indeed, seven of the eight words are in E ∪ T ∪ R (the only one missing is SIX).

We’ll close with a slightly bigger example, about integers divisible by 2, 3, or 5:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-14

9-14 Counting

Example 9.13: Divisibility.

How many integers between 1 and 1000, inclusive, are evenly divisible by any of 2, 3, or 5?

Solution. Define the following sets (writing Z1...1000 for {1, . . . , 1000}):

A =
{
n ∈ Z1...1000 : 2 | n

}
, B =

{
n ∈ Z1...1000 : 3 | n

}
, and C =

{
n ∈ Z1...1000 : 5 | n

}
.

We must compute |A ∪ B ∪ C|. It’s fairly easy to see that |A| = 500, |B| = 333, and |C| = 200, because

A = {2n : 1 ≤ n ≤ 500}, B = {3n : 1 ≤ n ≤ 333}, and C = {5n : 1 ≤ n ≤ 200}.
Observe that A ∩ B is the set of integers between 1 and 1000 that are divisible by both 2 and 3—that

is, the set of integers divisible by 6. By the same logic that we used to compute |A|, |B|, and |C|, we see

|A ∩ B|
= | {6n : 1 ≤ n ≤ 166} |
= 166

|A ∩ C|
= | {10n : 1 ≤ n ≤ 100} |
= 100

|B ∩ C|
= | {15n : 1 ≤ n ≤ 66} |
= 66.

And, using the same approach, we can conclude that A ∩ B ∩ C = {n : 30 | n} = {30n : 1 ≤ n ≤ 33},
so |A ∩ B ∩ C| = 33. Therefore, using the Inclusion–Exclusion Rule, |A ∪ B ∪ C| is

|A ∪ B ∪ C| = 500
|A|

+ 333
|B|

+ 200
|C|
− 166

|A∩ B|
− 100

|A∩C|
− 66

|B∩C|
+ 33

|A∩ B∩C|
= 734.

Problem-solving tip: To verify a calculation like this one, it’s a good idea (and not hard) to write a short program.

We can further generalize the inclusion–exclusion principle to calculate the cardinality of the union of an

arbitrary number of sets. (See Exercises 9.33 and 9.184.)

9.2.3 The Generalized Product Rule

The Product Rule (Theorem 9.2) tells us how to compute the number of 2-element sequences where the

first element is drawn from the set A and the second from the set B—specifically, it says that |A × B| is
|A| · |B|. But there are many types of sequences that do not precisely fit this setting: the Product Rule only

describes the set of sequences where each component is selected from a fixed set of options. If the set of

options for choice #2 depends on choice #1, then we cannot directly apply the Product Rule. However, the

basic principle of the Product Rule still applies if the number of different choices for the second component

is the same regardless of the choice of the first component, even if the particular set of choices can differ:

Theorem 9.6: Generalized Product Rule.
Let S denote a set of sequences, each of length k, where for each index i ∈ {1, . . . , k} the following

condition holds: for each choice of the first i−1 components of the sequence, there are exactly ni choices

for the ith component. Then |S| =∏k
i=1 ni.

Here are a few examples using the Generalized Product Rule:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-15

9.2 Counting Unions and Sequences 9-15

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 9.5 The valid first moves in a chess game.

Example 9.14: Gold, silver, and bronze.

A set S of eight sprinters qualify for the finals of the 100-meter dash in the Olympics. One will win the

gold medal, another the silver, and a third the bronze. Howmany different trios of medalists are possible?

Solution. It “feels” like we can solve this problem using the Product Rule, by choosing a sequence of

three elements from S, where we forbid duplication in our choices. But our choice of gold, silver, and

bronze medalists would be from

S× (S− {the gold medalist})× (S− {the gold and silver medalists})

and the Product Rule doesn’t permit the set of choices for the second component to depend on the first

choice, or the options for the third choice to depend on the first two choices.

Instead, observe that there are 8 choices for the gold medalist. For each of those choices, there are 7

choices for the silver medalist. For each of these pairs of gold and silver medalists, there are 6 choices

for the bronze medalist. Thus, by the Generalized Product Rule, the total number of trios of medalists is

8 · 7 · 6 = 336.

Example 9.15: Opening moves in a chess game.

In White’s very first move in a chess game, there are n1 = 10 pieces that can move: any of White’s 8

pawns or 2 knights. Each of these pieces has n2 = 2 legal moves: the pawns can move forward either 1

or 2 squares, and the knights can move either ↰ or ↱. (See Figure 9.5.) Thus there are n1 ·n2 = 10 ·2 = 20

legal first moves.

Example 9.16: Students in classes.

At a certain school in the midwest, each of 2023 students enrolls in exactly 3 classes per term. The set

Enrollments = {⟨s, c⟩ : s is a student enrolled in class c during the current term}

has cardinality 2023 · 3 = 6069, by the Generalized Product Rule: for each of the n1 = 2023 choices

of student, there are n2 = 3 choices of classes. (Note that the original Product Rule does not apply,

because the set Enrollments is not a Cartesian product: in general, two students are not enrolled in the

same classes—just the same number of classes.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-16

9-16 Counting

Although we didn’t say we were doing so, we actually used the underlying idea of the Generalized Product

Rule in Example 9.11. Let’s make its use explicit here:

Example 9.17: 4-digit PINs starting with a triplicated digit.

Let S ⊆ {0, 1, . . . , 9}4 denote the set of 4-digit PINs that start with three repeated digits. We claim that

|S| = 100, as follows:

• There are n1 = 10 choices for the first digit.

• There is only n2 = 1 choice for the second digit: it must match the first digit.

• There’s also only n3 = 1 choice for the third digit: it must match the first two.

• There are n4 = 10 choices for the fourth digit.

Thus there are n1 · n2 · n3 · n4 = 10 · 1 · 1 · 10 = 100 elements of S.

Permutations

The Generalized Product Rule sheds some light on a concept that arises in a wide range of contexts: a

permutation of a set S, which is any ordering of the elements of S.

Definition 9.7: Permutation.
A permutation of a set S is a sequence of elements from S that is of length |S| and contains no repetitions.

In other words, a permutation of S is an ordering of the elements of S.

As a first example, let’s list all the permutations of the set {1, 2, . . . , n} for a few small values of n:

• for n = 1, there’s just one ordering: ⟨1⟩.
• for n = 2, there are two orderings: ⟨1, 2⟩ and ⟨2, 1⟩.
• for n = 3, there are six: ⟨1, 2, 3⟩, ⟨1, 3, 2⟩, ⟨2, 1, 3⟩, ⟨2, 3, 1⟩, ⟨3, 1, 2⟩, and ⟨3, 2, 1⟩.
• for n = 4, there are twenty-four: six with 1 as the first element (which can then be followed by any of the

six permutations of ⟨2, 3, 4⟩), six with 2 as the first element, six with 3 first, and six with 4 first, yielding

a total of 4 · 6 = 24 orderings.

How many permutations of an n-element set are there? There are several ways to see the general pattern,

including recursively, but it may be easiest to use the Generalized Product Rule to count:

Theorem 9.8: Number of permutations.

Let S be any set, and write n = |S|. The number of different permutations of S is n!.

Proof. There are n choices for the first element of a permutation of S. For the second element, there are

n−1 choices (all but the element chosen first). There are n−2 choices for the third slot (all but the elements

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-17

9.2 Counting Unions and Sequences 9-17

chosen first and second). In general, for the ith element, there are n− i+ 1 choices. Thus

the number of permutations of S =
n∏

i=1
(n− i+ 1) =

n∏
j=1

j = n!

by the Generalized Product Rule.

Here’s a small example for a concrete set S:

Example 9.18: 10-digit numbers.

What fraction of integers between 0 and 9,999,999,999 (all written as 10-digit numbers, including any

leading zeros) have no repeated digits?

Solution.We seek a 10-digit sequence with no repetitions—that is, a permutation of {0, 1, . . . , 9}. There
are 10! = 3,628,800 such permutations, by Theorem 9.8. There are a total of 1010 integers between 0

and 9,999,999,999, by the Product Rule. Thus the fraction of these integers with no repeated digits is
10!
1010 ≈ 0.00036 · · · , about one out of every 2750 integers in this range.

Taking it further: A permutation of a set S is an ordering of that set S—so thinking about permutations is closely related to

thinking about sorting algorithms that put an out-of-order array into a specified order. By using the counting techniques of this

section, we can prove that algorithms must take a certain amount of time to sort; see p. 9-24. We will also return to permutations

frequently later in the chapter. For example, in Section 9.4, we will address counting questions like the following: how many

different 13-card hands can be drawn from a standard 52-card deck of playing cards? (Here’s one way to think about it: we can

lay out the 52 cards in any order—any permutation of the cards—and then pick the first 13 of them as a hand. We’ll have to

correct for the fact that any ordering of the first 13 cards—and, for that matter, any ordering of the last 39—will count as the

same hand. But permutations will also help us to think about this correction!)

9.2.4 Combining Products and Sums

Suppose that we select a pair ⟨a, b⟩ from a set of possible choices. The Product Rule tells us how many

ways to make these choices if the particular choice of a does not affect the set of options from which b

is chosen. The Generalized Product Rule tells us how many ways to make these choices if the particular

choice of a does not affect the size of the set of options fromwhich b is chosen. But if the number of options

for the choice of b differs based on the choice of a, even the Generalized Product Rule does not apply. In

this case, we can use a combination of the Sum Rule and the Generalized Product Rule to calculate the

number of results. We’ll close this section with a few of these somewhat more complex questions.

Example 9.19: Ordering coffee.

A certain coffeeshop sells the following espresso-based drinks: americano∗, cappuccino, espresso∗, latte,

macchiato, and mocha. (The drinks marked with an asterisk do not contain milk; the others do.) All drinks

can be made with either decaf or regular espresso. All milk-containing drinks can be made with any of

{soy, skim, 2%,whole} milk. How many different drinks are sold by this coffeeshop?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-18

9-18 Counting

We can think of a chosen drink as a sequence of the form

⟨drink type,milk type (or “none”), espresso type⟩.

There are 4 · 4 · 2 = 32 choices of milk-based drinks (4 drink types, 4 milk types, and 2 espresso types).

There are 2 · 1 · 2 = 4 choices of non-milk-based drinks (2 drink types, 1 “milk” type [“none”], and 2

espresso types). Thus the total number of different drinks sold by this coffeeshop is 32+ 4 = 36.

Example 9.20: Text numbers.

In the United States, a text message can be sent either to a regular 10-digit phone number, or to a so-called

short code which is a 5- or 6-digit number. Neither a phone number nor a short code can start with a 0 or

a 1. How many different textable numbers are there in the United States?

Solution. Let D = {2, 3, . . . , 9}. Note |D| = 8. The set of valid textable numbers is:

D× (D ∪ {0, 1})9
phone numbers

∪ D× (D ∪ {0, 1})4
5-digit short codes

∪ D× (D ∪ {0, 1})5
6-digit short codes

.

The Product Rule tells us that |D× (D ∪ {0, 1})i| = |D| · |D ∪ {0, 1} |i = 8 · 10i for any i. (To be totally

pedantic: we’re using the Sum Rule to conclude that |D ∪ {0, 1} | = |D|+ | {0, 1} | = 10, because D

and {0, 1} are disjoint.) Therefore:

∣∣D× (D ∪ {0, 1})9 ∪ D× (D ∪ {0, 1})4 ∪ D× (D ∪ {0, 1})5
∣∣

=
∣∣D× (D ∪ {0, 1})9

∣∣+
∣∣D× (D ∪ {0, 1})4

∣∣+
∣∣D× (D ∪ {0, 1})5

∣∣
Sum Rule: the three types of numbers are disjoint because they have different lengths

= 8 · 109 + 8 · 104 + 8 · 105 Product Rule, as described in the previous paragraph

= 8,000,880,000.

Problem-solving tip: When you’re facing a counting problem that appears complicated, try to find a nice way of splitting the

problem into several disjoint options. Often a difficult counting problem is actually the sum of two simple counting problems.

Combining sums and products: prefix-free codes

We’ll end the section with two somewhat more complicated counting problems, where we’re asked to

calculate the number of objects meeting some particular condition: sets of bitstrings such that no string

is a prefix of another, and results of a best-of-five series of games. In both cases, we can give a solution

based entirely on a brute-force approach by simply enumerating all possible sequences, eliminating any

that don’t meet the stated condition, and counting the uneliminated sequences one by one. But there are

also ways to break down the set of objects of interest into subsets that we can count using the Sum and

(Generalized) Product Rules.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-19

9.2 Counting Unions and Sequences 9-19

0 1 00 01 10 11
prefix
free?

3
3 3

3 3
3 3 3

3 3
3 3 3
3 3 3
3 3 3 3

3 3
3 3 3
3 3 3
3 3 3 3
3 3 3
3 3 3 3
3 3 3 3
3 3 3 3 3

0 1 00 01 10 11
prefix
free?

3 3
3 3 11
3 3 10
3 3 3 10
3 3 3
3 3 3 11
3 3 3 10
3 3 3 3 10
3 3 3
3 3 3 11
3 3 3 10
3 3 3 3 10
3 3 3 3
3 3 3 3 11
3 3 3 3 10
3 3 3 3 3 10

0 1 00 01 10 11
prefix
free?

3 3
3 3 3
3 3 3
3 3 3 3
3 3 01
3 3 3 01
3 3 3 01
3 3 3 3 01
3 3 00
3 3 3 00
3 3 3 00
3 3 3 3 00
3 3 3 00
3 3 3 3 00
3 3 3 3 00
3 3 3 3 3 00

0 1 00 01 10 11
prefix
free?

3 3 3
3 3 3 11
3 3 3 10
3 3 3 3 10
3 3 3 01
3 3 3 3 01
3 3 3 3 01
3 3 3 3 3 01
3 3 3 00
3 3 3 3 00
3 3 3 3 00
3 3 3 3 3 00
3 3 3 3 00
3 3 3 3 3 00
3 3 3 3 3 00
3 3 3 3 3 3 00

Figure 9.6 All 64 subsets of {0, 1, 00, 01, 10, 11}, with indication of whether the subset is prefix-free or not. In each
row (a subset), if the set is not prefix-free, then one violation found in the set is listed.

Example 9.21: Prefix-free codes.

A prefix-free code is a set C of bitstrings with the property that no x ∈ C is a prefix of any other y ∈ C.

(For example, if 010 ∈ C, then we must have 0101 /∈ C, because 010 is a prefix of 0101.) Let’s compute

the number of prefix-free codes where all of the codewords are only 1 or 2 bits long.

One uncomplicated way to find the number of prefix-free codes C ⊆ {0, 1}1∪{0, 1}2 is to write down

all subsets of S = {0, 1}1 ∪ {0, 1}2, and then check each subset to eliminate any set that violates the

prefix rule. (See Figure 9.6, which was generated by a Python program; there are 25 codes in the table

that pass the prefix test.) There are 2|S| = 26 = 64 subsets of S: we can describe each subset of S as an

element of {yes, no}|S| where the ith component tells us whether the ith element of S is in the set. The

Product Rule tells us that |{yes, no}|S|| = 26 = 64. (See Lemma 9.10.)

Here’s a different approach, involving more thinking and less brute-force calculation. Let’s partition

the set of valid codes into four classes based on whether 0 ∈ C or not, and whether 1 ∈ C or not:

• If 0 /∈ C and 1 /∈ C, then any subset of {00, 01, 10, 11} can be in C.

• If 0 /∈ C and 1 ∈ C, then any subset of {00, 01} can also be in C.

• If 0 ∈ C and 1 /∈ C, then any subset of {10, 11} can also be in C.

• If 0 ∈ C and 1 ∈ C, then no 2-bit strings can be included.

By the Product Rule, there are, respectively, 24 and 22 and 22 and 20 choices corresponding to these

classes. (The four classes correspond to the four columns of Figure 9.6.) By the Sum Rule, the total

number of prefix-free codes using 1- and 2-bit strings is 16+ 4+ 4+ 1 = 25.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-20

9-20 Counting

Taking it further: Prefix-free codes are useful in that they can be transmitted unambiguously, without a special marker that

separates codewords. For example, consider the prefix-free code {0, 10, 11}. Then a sequence 0101111100 can only be inter-

preted as 0∥10∥11∥11∥10∥0. If a code is not prefix-free—like the English language!—then a sequence of codewords cannot be

unambiguously decoded: for example, THEME might be one word (theme) or it might be two (the me).

Huffman coding—named after David Huffman (1925–1999)—is an algorithm for computing a prefix-free code that can be used

for data compression for English (for example), by allowing us to translate each letter into a corresponding code word. Huffman

coding carefully assigns shorter codewords to more commonly used letters, and thus has a special property: among all prefix-free

codes, its codewords have the smallest length, on average. A Huffman code can be constructed using a greedy approach [59].

Combining sums and products: a best-of-five series

Here’s one more example of using our counting rules in combination:

Example 9.22: A best-of-five series.

Suppose that two teams A and B play a best-of-five series of games: the teams play until one team has won

three games, at which point the match is over, and that team is the winner. How many different sequences

of outcomes are there?

Solution. The simplest approach is to use brute force: simply write out all possible sequences of out-

comes, and count them up. This approach is shown in Figure 9.7. However, there’s another way to count.

Suppose that team A wins the series:

• There’s 1 outcome in which A never loses: A wins games 1, 2, and 3.

• There are 3 outcomes in which A loses once: A loses immediately before its first win (BAAA), before

its second win (ABAA), or before its third win (AABA).

BBB

BBAB

BBAABBBAAA

BABB

BABABBABAABAABBBAABA

BAAAABBB

ABBABABBAAABABBABABA

ABAA

AABBBAABBA

AABA

AAA

A B

A B A B

A B A B A B A B

A B A B A B A B A B A B

A B A B A B A BA BA B

Figure 9.7 A tree representing each best-of-five series of games between two teams, A and B. The branch points
correspond to the games, and are labeled by the winner of the game. The 20 different sequences of outcomes are shown
at the bottom of the tree.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-21

9.2 Counting Unions and Sequences 9-21

• If A loses twice, then Amust have won the fifth game, and exactly two of the first four. Thinking of the

outcomes of the first four games as 4-bit strings with 1s denoting A’s wins, Example 9.4 says there are

precisely 6 such outcomes.

In sum, there are 1+ 3+ 6 = 10 ways for A to win the series. There are 10 analogous ways for B to win,

so there are 20 outcomes in total.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-22

9-22 Counting

Computer Science Connections

Running out of IP addresses, and IPv6

A crucial component of the internet is the assignment of an address to every machine connected to the network.

This address is called an IP address, where “IP” stands for Internet Protocol—the algorithm by which packets of

information are handled while they’re being transmitted across the internet. Each packet of information to be trans-

mitted stores a variety of pieces of information, including (1) some basic header information; (2) a source address

(the sender of the information); (3) a destination address (the intended recipient of the information); and (4) the data

to be transmitted (the “payload”). The subfield of computer science called computer networking is devoted to every-

thing about how the internet (or some smaller network) works: design of the network, physical systems, protocols

for routing, and more. (See a good textbook on computer networks, like [75], for much more.) Here we are going to

concentrate on the IP address itself, and a particular issue related to how many—or how few!—addresses there are.

0–15.x.x.x
16–31.x.x.x
32–47.x.x.x
48–63.x.x.x
64–79.x.x.x
80–95.x.x.x
96–111.x.x.x
112–127.x.x.x
128–143.x.x.x
144–159.x.x.x
160–175.x.x.x
176–191.x.x.x
192–207.x.x.x
208–223.x.x.x
224–239.x.x.x
240–255.x.x.x

Ford Motor Company, 19.x.x.x

U.S. Postal Service, 56.x.x.x

Latin America and Caribbean

Network Information Centre [LACNIC]

177.x.x.x, 179.x.x.x, …, 201.x.x.x

Figure 9.8 Some of the allocations of IPv4 addresses. Each
square in this grid corresponds to 224 = 16,777,216
addresses; some of these blocks are assigned to companies
or government-related organizations, and some are allocated
to region-based internet organizations. (Examples of each
are labeled above.)

Each networked device that sends or receives infor-

mation needs an address by which to do so. For almost

the entire history of the internet, an IP address was just

a 32-bit string. These IP addresses are typically repre-

sented as an element of {0, . . . , 255}4 instead of as an

element of {0, 1}32, by converting 8 bits at a time into

base-10 numbers, and then writing each 8-bit chunk

separated by periods. For example, as of this writing,

the site cam.ac.uk is associated with the IP address

10000000
128

. 11101000
232

. 10000100
132

. 00001000
8

.

You can find the IP address of your favorite site using a

tool called nslookup on most machines, which checks

a so-called name server to translate a site’s name (like

cam.ac.uk) into an IP address (like 128.232.132.8).
The international consortia operating portions of inter-

net infrastructure allocate various blocks of addresses

to individual entities; see Figure 9.8. (Sometimes these

allocations are more efficient, and sometimes they are

more wasteful: Ford was allocated more IP addresses

than many countries.)

As a straightforward counting problem, we can see

that there only 232 = 4,294,967,296 different possible 32-bit IP addresses—which amounts to around 4.3 billion

addresses. Every machine connected to the internet needs to be addressable in order to be able receive data, so that

means that we can only directly support about 4.3 billion connected devices. (There are some strategies from computer

networking for conserving addresses by “translation,” so that several computers c1, c2, . . . can be connected via an

access point p—where p is the only machine that has a public, visible IP address. All of those computers’ traffic

is handled by p, but p must be able to reroute the traffic it receives to the correct one of the ci computers. Again,

see a book like [75] for more.) In the 1990s and 2000s, more and more people began to have machines connected

to the internet, and each person also began to have more and more devices that they wanted to connect. It became

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-23

9.2 Counting Unions and Sequences 9-23

clear that we were facing a dire shortage of IP addresses. As such, a new version of the Internet Protocol (version

six, hence called IPv6) was introduced. In IPv6, instead of using 32-bit addresses, we now use 128-bit addresses.

There were some tricky elements to the transition from 32-bit to 128-bit addresses—the system needed to ensure that

addressing under both systemswould keepworking throughout the (long!) transition—but there are now 2128 different

IP addresses available. That’s 340,282,366,920,938,463,463,374,607,431,768,211,456 ≈ 3.4× 1038, which should

hold us for a few millennia. These addresses are represented by 8 blocks of 4 hexadecimal numbers—that is, as an

element of the set [{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}4
]8. For example, cam.ac.uk is associated with a 32-

bit address 128.232.132.8, and a 128-bit address 2a05:b400:5:270::80e8:8408, (The double colon notation

is shorthand for a sequence of blocks of 0000s, and it’s customary to omit leading zeroes; in full, that address is

2a05:b400:0005:0270:0000:0000:80e8:8408.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-24

9-24 Counting

Computer Science Connections

A Lower Bound for Comparison-Based Sorting

Most people who encounter the sorting problem—given an array A[1 . . . n], rearrange A so that it’s in ascending

order—initially devise a quadratic-time algorithm. (For simplicity, suppose that we’re sorting distinct elements.) The

most common examples of Θ(n2)-time algorithms are Selection Sort, Insertion Sort, and Bubble Sort. Then, after a

lot of thought (and, usually, some help), those people often are able to devise aO(n log n)-time sorting algorithm, like

Merge Sort, Quick Sort, or Heap Sort. (See Section 6.3.) But suppose that you were extra impatient with the speed

of your sorting algorithm, and you were extra, extra clever. Could you do asymptotically better than O(n log n) in

the worst case? The answer, we’ll show, is no—with a footnote: any “comparison-based” sorting algorithm requires

Ω(n log n) time. (The footnote is that it depends on what we mean by “sort,” as we’ll see.)

selectionSort(A[1 . . . n]):

1 for i := 1 to n:

2 minIndex := i

3 for j := i+ 1 to n:

4 if A[j] < A[minIndex] then

5 minIndex := j

6 swap A[i] and A[minIndex]

the ith iteration (which is i

rows from the bottom)

contains n − i steps

n
it
er
at
io
ns

the inner square is
n
2 -by-

n
2 ; the outer

square is n-by-n.

Figure 9.9 Selection Sort: a reminder of the pseudocode, and its analysis. The
triangle represents the algorithm’s running time:

∑n
i=1 i, where the ith row

shows i steps. This triangle is contained within an n-by-n square and also
contains an n

2 -by-
n
2 square.

A warm-up: Selection Sort. First,

recall Selection Sort, shown in Fig-

ure 9.9. We saw one way to analyze

its running time in Example 6.7:

there are n iterations, and in the

(n − i)th iteration we require i

steps. In other words, the running

time of Selection Sort is
∑n

i=1 i,

and we could repeat the inductive

proof that
∑n

i=1 i = n(n+ 1)/2 to

complete the analysis. But, instead,

Figure 9.9 gives a more visual way

of seeing this result. The triangle

in the figure represents the running

time of Selection Sort. Because the triangle fits within an n-by-n square and contains an n
2 -by-

n
2 square, the area of

the triangle is upper bounded by n · n = n2 (the area of the outer square) and lower bounded by n
2 · n

2 = n2

4 (the area

of the inner square), and therefore is Θ(n2). This picture is a visual representation of a more algebraic proof:

n∑

i=1

i ≤
n∑

i=1

n = n2 and
n∑

i=1

i ≥
n∑

i= n
2+1

i ≥
n∑

i= n
2+1

n
2 = n2

4 .

(The first inequality comes from the fact that any i ∈ {1, . . . , n} satisfies i ≤ n; the last inequality comes from the

fact that any i ∈
{

n
2 + 1, . . . , n

}
satisfies i ≥ n

2 .)

There are no O(n) comparison-based sorting algorithms. All of the sorting algorithms that we’ve encountered in

the book are comparison-based sorting algorithms: they proceed by repeatedly comparing the values of two elements

xi and xj from the input array without considering the values themselves. Depending on the result of the comparison,

the algorithm may then swap some elements of the array. (Comparison-based sorting algorithms probably include

every sorting algorithm that you’ve ever seen, except counting, radix, and bucket sorts.)

Oneway to view a comparison-based sorting algorithm is through a decision tree, like the one shown in Figure 9.10

for Selection Sort on a 3-element array. Internal nodes encode the comparisons made by the algorithm; leaves corre-

spond to sorted orders—the algorithm’s output. The running time of the sorting algorithm whose input corresponds

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-25

9.2 Counting Unions and Sequences 9-25

to a particular leaf is Ω(number of comparisons on that root-to-leaf path) because, although the algorithm might do

more than compare—in fact, it must (for example, it has to perform swaps)—it must do at least these comparisons.

We will use the decision tree to establish a lower bound on the running time of comparison-based sorting algorithms:

Theorem. Any comparison-based sorting algorithm requires Ω(n log n) time.

(continued)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-26

9-26 Counting

Computer Science Connections

Sorting Lower Bounds, continued

a ≶ b?

b ≶ c?

a ≶ b?

⟨c, b, a⟩inconsistent!

a ≶ c?

⟨b, c, a⟩⟨b, a, c⟩

a ≶ c?

a ≶ b?

inconsistent!⟨c, a, b⟩

b ≶ c?

⟨a, c, b⟩⟨a, b, c⟩

a < b a > b

a < c a > c b < c b > c

b < c b > c a < b a > b a < c a > c a < b a > b

a is the
minimum
value

This branch (and
the analogous one,
to the left) is
logically
inconsistent, but
Selection Sort
doesn’t care; it
reexecutes the
a-versus-b
comparison in
these cases.

Figure 9.10 The decision tree for Selection Sort on input ⟨a, b, c⟩. Selection Sort first does two comparisons to find the
minimum value of {a, b, c}, and subsequently compares the remaining two elements to decide on the final order.

Proof. Consider the decision tree T of the sorting algorithm. First, observe that T must have at least n! leaves.

There are n! different permutations of the input, and a correct algorithm must be capable of producing any of these

permutations as output. Second, observe that T has at most 2d nodes at depth d. (It’s a binary tree!) Thus the height

h of T satisfies 2h ≥ n!. Taking logarithms of both sides, we have

h ≥ log2(n!) = log2 [n · (n− 1) · (n− 2) · · · · · (n2 + 1) · (n2) · · · · · 1]
≥ log2 [n · (n− 1) · (n− 2) · · · · · (n2 + 1)]

≥ log2

[
(n2)

(n/2)
]

The crucial fact here is precisely analogous to the one in Figure 9.9:

n∏

i=1

i ≥
n∏

i= n
2

+1

i ≥
n∏

i= n
2

+1

n
2 = (n

2)
n/2

.

The only difference: here we’re using products instead of summations.

= (n2) · log2(n/2)

= Ω(n log n),

which completes the proof.

A linear-time sorting algorithm. While we’ve now shown that every comparison-based sorting algorithm takes

Ω(n log n) time, there are faster algorithms for special cases.

countingSort(A[1 . . . n]):

Input: array (A[1 . . . n]) where each A[i] ∈ {1, 2, . . . , c}.
1 for v := 1 to c:

2 count[v] := 0

3 for i := 1 to n:

4 count[A[i]] := count[A[i]] + 1

5 i := 1

6 for v := 1 to c:

7 for t := 1 to count[v]:

8 A[i] := v

9 i := i+ 1

Figure 9.11 Counting Sort.

Figure 9.11 shows one, called counting sort, which

allows us to sort without doing element-to-element

comparisons. The basic idea is that, instead of sorting

the input array A by comparing A’s elements to each

other, we count (and track) how many times each inte-

ger in {1, 2, . . . , c} appears in A—and then use those

counts to fill in the array’s entries from left to right.

As long as the elements of the array are integers

from a small range, then this algorithm is fast: the run-

ning time is Θ(c + n) (the last nested loop requires

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-27

9.2 Counting Unions and Sequences 9-27

∑
v count[v] = n time); as long as c is small, this

algorithm runs in linear time.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-28

9-28 Counting

EXERCISES

9.1 For the first decade or so of Twitter’s existence, a tweet was a sequence of at most 140 characters. (This length restriction was

loosened in 2017.) Assuming there are 256 valid characters that can appear in each position, howmany distinct tweets are possible?

9.2 Cars in the United States have alphanumeric license codes (often misleadingly called license plate numbers despite the presence

of upper-case letters), whose format varies among states. Minnesota recently issued plates of the form digit-digit-digit-letter-letter-

letter (as in 400GPA). How many different license plate codes of this form are possible? (All letters in all codes are upper case.)

9.3 What about for Pennsylvania’s recent plates of the form letter-letter-letter-digit-digit-digit-digit (as in EEE2718)?

9.4 What about for Connecticut’s recent plates of the form digit-letter-letter-letter-letter-digit (as in 4FIVE6)?

9.5 You have been named Secretary of Transportation for the State of [Your Favorite State]. Congratulations! You’re considering

replacing the current license plate format ABCD-1234 (4 letters followed by 4 digits) with a sequence of any k symbols, each of

which can be either a letter or a digit. How large must k be so that your new format has at least as many options as the old format?

9.6 Until recently, France used license plates that contain codes of any of the following forms:

• digit-digit-digit-letter-digit-digit.

• digit-digit-digit-letter-letter-digit-digit, where the first letter is alphabetically ≤ P.

• digit-digit-digit-digit-letter-letter-digit-digit, where the first letter is alphabetically ≥ Q.

• digit-digit-digit-letter-letter-letter-digit-digit.

How many license plates, in total, met the French requirements?

9.7 A voicemail system allows numerical passwords of length 3, 4, or 5 digits. How many passwords are possible in this system?

9.8 What about numerical passwords of length 4, 5, or 6?

9.9 A contact lens is built with the following parameters: a (spherical) power (for correcting near- or farsightedness); and, possibly, a

cylindrical power and an axis (for correcting astigmatism). For a particular brand of contacts:

• The parameters for a lens that corrects near- or farsightedness only is a power between −6.00 and +6.00 inclusive in 0.25 steps

(excluding 0.00); between 6.50 and 8.00 inclusive in 0.50 steps; and between −6.50 and −10.00 inclusive in 0.50 steps.

• The parameters for a lens that corrects astigmatism are: (i) one of the powers listed previously; (ii) a cylindrical power in

{−0.75,−1.25,−1.75,−2.25}; and (iii) an axis between 10◦ and 180◦ in steps of 10◦.

How many different contact lenses are there?

9.10 A patient needing vision correction in both eyes may get different contact lenses for each eye. A prescription assigns a lens for the

left eye and for the right eye. How many contact prescriptions are there?

9.11 During the West African Ebola crisis that started in 2014, geneticists were working to trace the spread of the disease. To do so, they

acquired DNA samples of the viruses from a number of patients, and affixed a unique “tag” to each patient’s sample [104]. A tag

is a sequence of 8 nucleotides—each an element of {A, C, G, T}—attached to the end of a virus sample from each patient, so that

subsequently it will be easy to identify the patient associated with a particular sample. How many different such tags are there?

9.12 In a computer science class, there are 14 students who have previously written a program in Java, and 12 students who have

previously written a program in Python. Howmany students have previously written a program in at least one of the two languages?

(If you can’t give a single number as a definitive answer, give as narrow a range of possible values as you can.)

9.13 True story: a relative was given a piece of paper with the password to a wireless access point that was written as follows:

a154bc0401011. But she couldn’t tell from this handwriting whether each “1” was 1 (one), l (ell), or I (eye); or whether “0”

was 0 (zero) or O (oh). How many possible passwords would she have to try before having exhausted all of the possibilities?

A Rubik’s cube—named after the 20th-century Hungarian architect Ernő Rubik—is a 3-by-3-by-3 cube, with nine square cells

arranged in a grid on each face. Any of the six nine-cell faces (top, bottom, left, right, front, back) can be rotated 90◦ clockwise or

counterclockwise in a single move. (See Figure 9.12.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-29

Exercises 9-29

Each face of each cell is colored with one of six colors (blue, red,
green, yellow, white, and orange); initially, all nine cell-faces on
each cube-face have the same color, but the cube can then be
scrambled. The challenge is to use rotations to configure a
scrambled cube such that each face of the cube contains nine cells of
the same color. For more about the hardest positions, see [107]. (Or
see cube20.org.)

Figure 9.12 A Rubik’s cube, and the result of a single move—rotating the top face clockwise.

9.14 How many Rubik’s cube moves are there?

9.15 From any configuration, 26 moves suffice to solve the cube. (Note every 90◦ rotation counts as a move; if you rotate the same face

180◦ by using two consecutive 90◦ moves, it counts as two moves.) How many sequences of exactly 26 moves are possible?

9.16 It’s useless to rotate a face clockwise in one move, and rotate the same face counterclockwise in the next move. (You’ve just

undone the previous move.) A counterclockwise move followed by a clockwise move is analogous. How many sequences are there

of exactly 26 moves that never undo the previous move?

9.17 There is a bit of a schism in theworld of hard-core Rubik’s cube solvers regardingwhat counts as a “move.” The last several exercises

have considered what’s called the quarter-turn metric, where rotating a single face by 90◦ (clockwise or counterclockwise) counts

as a single move. Many people prefer the half-turn metric, where rotating a single face by any angle (90◦, 180◦, or 270◦—the last

of which is just 90◦ in the other direction) counts as a single move.

9.18 There are more single moves under the half-turn metric, but the hardest positions require fewer half-turn moves than they do

quarter-turn moves; from any configuration, 20 half-turn moves suffice to solve the cube. Redo Exercise 9.15 for half turns: how

many sequences of exactly 20 half-turn moves are possible? Is this number bigger or smaller than the solution to Exercise 9.15?

9.19 Under the half-turn metric, it’s always wasteful to make two consecutive moves by rotating the same face. (Rotating the same face

twice in a row either completely undoes whatever the first move did, or the pair of moves could have been replaced by a single

move with a different angle.) Redo Exercise 9.16 under the half-turn metric: how many sequences are there of exactly 20 moves

that never rotate the same face as the previous move? Is this number bigger or smaller than the solution to Exercise 9.16?

9.20 Emacs is a widely used software program for—among other things—editing text documents (including this book). Here’s a sim-

plified description of commands in Emacs: a command character is produced by pressing a letter key while holding down either

the Control key, the Meta key, or both. (For example, Control+Y or Meta+B or Control+Meta+U are command characters.) How

many command characters are there in Emacs?

9.21 Emacs is complicated enough that it needs more commands than Exercise 9.20 allows. To allow for more commands, the syntax

of Emacs has been extended, as follows. Meta+X and Control+X—as in eXtended—are command prefixes: neither Meta+X nor

Control+X is a valid command itself, but, they can be the first part of a two-part command. For example, “Control+X Control+U” is

a command (and it’s different from Control+U). A valid command can be formed by Control+X or Meta+X followed by any letter or

any command character (including Control+X or Meta+X). All other command characters from Exercise 9.20—aside fromMeta+X

and Control+X—are still valid. How many command characters are there now?

9.22 Argue that, for any sets A and B, |A ∪ B| = |A− B|+ |B− A|+ |A ∩ B|. (Use the Sum Rule.)

9.23 How many 100-bit strings have at most 2 ones? (Use Example 9.4.)

9.24 Determine how many k-bit strings have exactly three ones using the approach in Example 9.4—that is, by dividing the set of

bitstrings based on the position of the third one.

9.25 (programming required.)Write a program, in a language of your choice, to enumerate all bitstrings in {0, 1}16 and count the number

that have 0, 1, 2, and 3 ones. Use this program to verify your answer to Exercise 9.24 and your approach to Exercise 9.23.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-30

9-30 Counting

9.26 The following is a simpler “solution” to Example 9.4, where we computed the number of elements of {0, 1}k that have precisely

two ones. What, exactly, is wrong with this argument?

Let S be the set of k-bit strings that contain exactly 2 ones. Define Si = {x ∈ S : xi = 1}, for each index i ∈ {1, 2, . . . , k}. Observe
that S =

⋃k
i=1 Si and that |Si| = k− 1. Therefore, by the Sum Rule, we have |S| =

∑k
i=1 |Si| =

∑k
i=1(k− 1) = k(k− 1).

Unicode is a character set frequently used on the web; it supports hundreds of thousands of characters from many languages—

English, Greek, Chinese, Arabic, and all other scripts in common current use. A very common encoding scheme for Unicode, called

UTF-8, uses a variable number of bits to represent different characters (with more commonly used characters using fewer bits).

Valid UTF-8 characters can use 1, 2, 3, or 4 bytes, in one of the following forms:

0xxxxxxx 110xxxxx 10xxxxxx 1110xxxx 10xxxxxx 10xxxxxx 11110yyy 10yyxxxx 10xxxxxx 10xxxxxx

Here, x represents any bit, and the five bits labeled y have a further restriction: the five yyyyy bits must be either of the form

0xxxx or 10000. The ith character in the Unicode character set is encoded by the ith legal UTF-8 representation, resulting from

converting i into binary and filling in the x (and y) bits from the templates.

9.27 How many characters can be encoded using UTF-8?

9.28 Unicode forbids excess zero padding: if a character can be encoded using one byte, then the two-byte encoding is illegal. For

example, 01010101 encodes the same character as 11000001 10010101; thus the latter is not allowed. How many characters

from Exercise 9.27 can be encoded without violating this rule?

9.29 In chess, a rook can move any number of spaces horizontally or vertically. (See Figure 9.13.) How many ways can you put a black

rook and a white rook on an 8-by-8 chessboard so they can’t capture each other (that is, neither can move to the other’s square)?

9.30 A queen in chess can move any number of spaces horizontally, vertically, or diagonally. (Again, see Figure 9.13.) How many ways

are there to put one black queen and one white queen on an 8-by-8 chessboard so they can’t capture each other? (Hint: think about

how far the black queen is from the edge of the board.)

9.31 (programming required.) Write a program to verify your solution to the last two exercises.

9.32 You have a wireless-enabled laptop, phone, and tablet. Each device needs to be assigned a unique “send” frequency and a unique

“receive” frequency to communicate with a base station. Let S = {1, . . . , 8} denote send frequencies and R = {a, . . . , h} receive

frequencies. A frequency assignment is an element of S× R. A set of frequency assignments is noninterfering if no elements of S

or R appears twice. How many noninterfering frequency assignments are there for your three devices?

9.33 Write down an inclusion–exclusion formula for |A ∪ B ∪ C ∪ D|.

9.34 How many integers between 1 and 1000, inclusive, are divisible by one or more of 3, 5, and 7?

9.35 How many integers between 1 and 1000, inclusive, are divisible by one or more of 6, 7, and 8?

9.36 How many integers between 1 and 10,000, inclusive, are divisible by at least one of 2, 3, 5, or 7?

In Chapter 7, we encountered the totient function φ : Z≥1 → Z≥0, defined as

φ(n) = the number of k with 1 ≤ k ≤ n such that k and n have no common divisors.

We can always compute the totient of n by brute force (just test all k ∈ {1, . . . , n} for common divisors using the Euclidean

algorithm). But the next few exercises will give a hint at another way to do this computation more efficiently. For a fixed integer n:

9.37 Suppose m ∈ Z≥1 evenly divides n. Define M = {k ∈ {1, . . . , n} : m | k}. Argue that |M| = n
m .

9.38 (A number-theoretic interlude.) Let the prime factorization of n be n = pe11 · pe22 · · · peℓ

ℓ
, for integers e1, . . . , eℓ ≥ 1 and distinct

prime numbers {p1, . . . , pℓ}. Let k ≤ n be arbitrary. Argue that k and n have no common divisors greater than 1 if and only if, for

all i, we have pi ̸ | k.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-31

Exercises 9-31

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0S0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0L0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 9.13 Two chess boards, showing the legal moves for a rook (left) and queen (right).

9.39 Let n be an integer with exactly two prime factors—that is, we can write n = piqj for primes p and q ̸= p and for powers

i, j ∈ Z≥1. (For example, we have 544 = 171 · 25; here p = 17, q = 2, i = 1, and j = 5.) Let P = {k ∈ {1, . . . , n} : p | k} and

Q = {k ∈ {1, . . . , n} : q | k}. Argue that φ(n) = n(1− 1
p)(1−

1
q) by using Inclusion–Exclusion to compute |P∪Q|. (You should

find the previous two exercises helpful.)

In the sport of cricket, a team consists of 11 players who come up to bat in pairs. Initially, players #1 and #2 bat. When one of

those two players gets out, then player #3 replaces the one who got out. When one of the two batting players—player #3 and

whichever player of {#1,#2} didn’t get out—gets out, then player #4 joins the one who isn’t out. This process continues until

the 10th player gets out, leaving the last player not out (but stranded without a partner).

Thus, in total, there are 11 players who bat together in 10 partnerships. As an example, consider the lineup Anil, Brendan,

Curtly, Don, Eoin, Freddie, Glenn, Hansie, Inzamam, Jacques, Kumar. We could have the following batting partnerships: Anil &

Brendan; Anil & Curtly; Anil & Don; Don & Eoin; Don & Freddie; …; Don & Kumar.

9.40 How many different partnerships are possible? (That is, how many different pairs of players might end up batting together?)

9.41 How many sequences of partnerships (like the above list) are possible? (It doesn’t matter which of the last two players gets out.)

9.42 In cricket, a team’s batting lineup may be truncated (either because the team wins the game, or because the team strategically

chooses not to bat any longer). The batting team may stop batting at any point after the first pair starts batting. Now how many

different sequences of partnerships are possible? (A tedious clarification: it matters whether a sequence of partnerships is truncated

or not. For example, a sequence ending with Don & Kumar [where one of them gets out] is different from the same sequence but

where neither of Don & Kumar gets out. It does not matter, though, which of the two was the one who got out.)

9.43 Suppose that, as in Example 9.11, a bank uses 4-digit PINs, but doesn’t permit a PIN that starts with the same digit repeated twice

(for example, 7730) or ends with the same digit repeated twice (for example, 0122). Now how many invalid PINs are there?

9.44 Let Sk denote the set of k-digit PINs that neither start with three repeated digits nor end with three repeated digits. (Example 9.11

computed |S4|.) In terms of k, what is |Sk|? Be careful about very small k.

Checkers is a game, like chess, played on an 8-by-8 grid. (See Figure 9.14.) Two players, Red and Black, move tokens diagonally

on the grid; tokens can only occupy shaded squares. There are two types of tokens: pieces and kings. Any piece that has reached the

opposite side of the board from its starting side (row 8 or row 1) becomes a king. (So Black cannot have a piece in row 8, because

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 9.14 A checker board.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-32

9-32 Counting

that piece would have become a king. Similarly Red cannot have a piece in row 1.) The next few exercises ask you to compute how

many different board positions are possible when the number k of tokens on the board is very small—namely, for k ∈ {1, 2}. (In
2007, Checkers was solved by the authors of a program called Chinook, which never loses a game [112]. Part of Chinook computes

all possible board positions with a small number of tokens, as these exercises start to do.)

9.45 How many board positions have exactly one token? (Both the color and the type of the token matter; a Black piece on C3 is a

different position from either a Black king on C3 or a Red piece on C3.)

9.46 How many board positions have two kings, one of each color?

9.47 How many board positions have two Red kings? (Notice that two Red kings cannot be distinguished, so it doesn’t matter “which”

one comes first.)

9.48 How many board positions have two Black pieces?

9.49 How many board positions have two pieces, one of each color?

9.50 How many board positions have one Red king and one Red piece?

9.51 How many board positions have one Black king and one Red piece?

9.52 Use the last six exercises to determine how many total board positions have two tokens.

9.53 (programming required.) Write a program to verify your answers to Exercises 9.45–9.52 (particularly Exercise 9.52).

9.54 How many subsets of {0, 1}1 ∪ {0, 1}2 ∪ {0, 1}3 are prefix free? (See Example 9.21.) (Hint: I recommend writing a program.)

A text-to-speech system takes written language (text) and reads it aloud as audio (speech). One of the simplest ways to build a text-

to-speech system is to prerecord each syllable, and then paste together those sounds. (Pasting separate recordings is difficult, and

this system as described will produce very robotic-sounding speech. But it’s a start.) A syllable consists of a consonant or cluster

of consonants called the onset, then a vowel called the nucleus, and finally the consonant(s) called the coda. [Many languages only

allow some combinations of choices—there are fascinating linguistic constraints based on ordering or place of articulation (for

example, English allows stay but not tsay, and allows clay and play but not tlay) that we’re almost entirely omitting here.]

9.55 A consonant can be described by a place of articulation (one of 11 choices: the lips, the palate, etc.); a manner of articulation (one

of 8 choices: stopping the airflow, stopping the oral airflow with the nasal passage open, etc.); and a voicing (the vocal cords are

either vibrating, or not). According to this description, how many consonants are there?

9.56 A vowel can be described as either lax or tense; as either high or mid or low; and as either front or central or back. According to

this description, how many vowels are there?

9.57 As a rough approximation, Japanese syllables consist of one of 25 consonants followed by one of 5 vowels, with one consonant

that can appear as a coda (or the coda can be left off). How many Japanese syllables are there?

9.58 An even rougher approximation: English syllables consist of an onset that is either one of 25 consonants or a cluster of any two

consonants, followed by one of 16 vowels, followed optionally by one of 25 consonants. How many English syllables are there?

9.59 To cut down on the large number of syllables that you found in the last exercise, some text-to-speech systems are instead based on

demisyllables—the first half or the second half of a syllable. (We glue the sounds together in the middle of the vowel.) That is, a

demisyllable is either a legal onset followed by a vowel, or a vowel followed by a legal coda. How many demisyllables are there in

English (making the same very rough assumptions as the previous exercise)?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-33

9.3 Using Functions to Count 9-33

9.3 Using Functions to Count

The sun’s shining bright
Everything seems all right
When we’re poisoning pigeons in the park.

Tom Lehrer (b. 1928)
“Poisoning Pigeons In The Park” (1959)

Our focus in Section 9.2 was on counting sequences of choices (the Generalized Product Rule) and

choices of choices (the Sum Rule). But what about counting other kinds of sets? Our basic plan is simple:

be lazy! In this section, we’ll introduce ways of counting the cardinality of a given set A in terms of |B| for
some other set B, by using functions that translate between the elements of A and the elements of B:

Mapping Rule: There exists a bijection f : A→ B if and only if |A| = |B|. Similarly, there exists an onto

function f : A→ B if and only if |A| ≥ |B|, and a one-to-one function f : A→ B if and only if |A| ≤ |B|.

Division Rule: Suppose there exists a function f : A → B such that, for every b ∈ B, we have

| {a ∈ A : f(a) = b} | = k. Then |A| = k · |B|.

In particular, we’ll hope to “translate” a choice from an arbitrary set into a sequence of choices from simple

sets—whose size we can count using the tools from Section 9.2. Here’s an example to illustrate the idea:

Example 9.23: Number of valid Hamming codewords.

In Section 4.2, we introduced the Hamming code, an error-correcting code that encodes any 4-bitmessage

m ∈ {0, 1}4 as a 7-bit codeword x ∈ {0, 1}7. The encoding function encode : {0, 1}4 → {0, 1}7 maps

⟨a, b, c, d⟩ to ⟨a, b, c, d, b⊕c⊕d, a⊕b⊕d, a⊕b⊕d⟩, where⊕ is exclusive or. That is, a valid Hamming

codeword x is an element of {0, 1}7 satisfying three conditions:

x2 + x3 + x4 ≡2 x5 x1 + x3 + x4 ≡2 x6 x1 + x2 + x4 ≡2 x7.

How many different valid codewords does the Hamming code have?

Solution. We can count the number of valid codewords by looking at all 27 = 128 elements of {0, 1}7

and testing these three conditions. (See Figure 9.15.) By checking every entry in the table, we see that

there are 16 valid codewords.

This table-based approach is fine, but here’s a less tedious way to count. By the definition of the

encoding function, every possible message in {0, 1}4 is encoded as a different codeword in {0, 1}7.
Furthermore, every valid codeword is the encoding of a message in {0, 1}4. Thus the number of valid

codewords equals the number of messages, and there are |{0, 1}4| = 16 valid codewords.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-34

9-34 Counting

codeword
0000000 333

0000001 337

0000010 373

0000011 37 7

0000100 733

0000101 737

0000110 7 73

0000111 7 7 7

0001000 7 7 7

0001001 7 73

0001010 737

0001011 733

0001100 37 7

0001101 373

0001110 337

0001111 333

codeword
0010000 7 73

0010001 7 7 7

0010010 733

0010011 737

0010100 373

0010101 37 7

0010110 333

0010111 337

0011000 337

0011001 333

0011010 37 7

0011011 373

0011100 737

0011101 733

0011110 7 7 7

0011111 7 73

codeword
0100000 737

0100001 733

0100010 7 7 7

0100011 7 73

0100100 337

0100101 333

0100110 37 7

0100111 373

0101000 373

0101001 37 7

0101010 333

0101011 337

0101100 7 73

0101101 7 7 7

0101110 733

0101111 737

codeword
0110000 37 7

0110001 373

0110010 337

0110011 333

0110100 7 7 7

0110101 7 73

0110110 737

0110111 733

0111000 733

0111001 737

0111010 7 73

0111011 7 7 7

0111100 333

0111101 337

0111110 373

0111111 37 7

codeword
1000000 37 7

1000001 373

1000010 337

1000011 333

1000100 7 7 7

1000101 7 73

1000110 737

1000111 733

1001000 733

1001001 737

1001010 7 73

1001011 7 7 7

1001100 333

1001101 337

1001110 373

1001111 37 7

codeword
1010000 737

1010001 733

1010010 7 7 7

1010011 7 73

1010100 337

1010101 333

1010110 37 7

1010111 373

1011000 373

1011001 37 7

1011010 333

1011011 337

1011100 7 73

1011101 7 7 7

1011110 733

1011111 737

codeword
1100000 7 73

1100001 7 7 7

1100010 733

1100011 737

1100100 373

1100101 37 7

1100110 333

1100111 337

1101000 337

1101001 333

1101010 37 7

1101011 373

1101100 737

1101101 733

1101110 7 7 7

1101111 7 73

codeword
1110000 333

1110001 337

1110010 373

1110011 37 7

1110100 733

1110101 737

1110110 7 73

1110111 7 7 7

1111000 7 7 7

1111001 7 73

1111010 737

1111011 733

1111100 37 7

1111101 373

1111110 337

1111111 333

Figure 9.15 All 27 = 128 elements of {0, 1}7, marked with which of the three Hamming code conditions each one
passes (3) and which ones it fails (7): condition one (x2 + x3 + x4 ≡2 x5), condition two (x1 + x3 + x4 ≡2 x6), and
condition three (x1 + x2 + x4 ≡2 x7). The highlighted entries pass all three tests.

Problem-solving tip: Use programming to help you! If you’re going to use the simple-but-tedious way to count legal Hamming

code codewords, via enumeration, write a program rather than doing it by hand. (For example, the table in Example 9.23 was

generated with a Python program!)

9.3.1 The Mapping Rule

The approach that we used in Example 9.23 is based on functions that translate from one set to another. In

the remainder of this section, we will formalize this style of reasoning as a general technique for counting

problems. To build intuition about using functions to count, let’s start with some informal examples:

Example 9.24: Some mappings, informally.

• Let S be a collection of documents, where each document is labeled with one of 5 genres: poem,

essay, memoir, drama, or novel.

– Suppose every genre appears as the label for at least one document. Then |S| ≥ 5. (We see 5

different kinds of labels on documents, and every document has only one label. Thus there must

be at least 5 different documents.)

– Suppose there’s no genre that appears as the label for two distinct documents. Then |S| ≤ 5. (No

label is reused—that is, no label appears on more than one document—so we can only possibly

observe 5 total labels. Every document is labeled, so we can’t have more than 5 documents.)

• You’re taking a class in which no two students’ last names start with the same letter. Then there are

at most 26 students in the class.

• You’re in a club on campus that has at least one member from every state in the U.S. Then the club

has at least 50 members.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-35

9.3 Using Functions to Count 9-35

• You’re out to dinner with friends, and you and each of your friends order one of 8 desserts on the

menu. Suppose that each dessert is ordered at least once, and no two of you order the same dessert.

Then your group has exactly 8 people.

Taking it further: The document/genre scenario in Example 9.24 is an example of a classification problem, where we must

label some given input data (“instances”) as belonging to exactly one of k different classes. Classification problems are one of

the major types of tasks encountered in the subfield of CS called machine learning. In machine learning, we try to build software

systems that can “learn” how to better perform a task on the basis of some training data. Other problems in machine learning

include anomaly detection, where we try to identify which instances from a set “aren’t like” the others; or clustering problems

(see p. 2-42), where we try to separate a collection of instances into coherent subgroups—for example, separating a collection of

documents into “topics.” Classification problems are very common in machine learning: for example, we might want to classify

a written symbol as one of the 26 letters of the alphabet (optical character recognition); or classify a portion of an audio speech

stream as one of 40,000 common English words (speech recognition); or classify an email message as either “spam” or “not

spam” (spam detection).

Formalizing the rule

How canwe generalize the intuition of Example 9.24 into a rule for counting? Think about the first scenario,

the documents and the genres: we can view the labels on the documents in S as being given by a function

label : S → {poem, essay,memoir, drama, novel} . If there exists any function that behaves in the way

that label did in Example 9.24—that is, either “covering” all of the possible outputs at least once each, or

covering all of the possible outputs at most once each—then we can infer whether the set of possible inputs

or the set of possible outputs is bigger.

The formal statements of the counting rules based on this intuition rely on the definition of three special

types of functions that we defined in Chapter 2: onto functions (Definition 2.51), one-to-one functions

(Definition 2.52), and bijections (Definition 2.53). (See Figure 9.16 for a reminder of the definitions.)

Formally, the existence of a function f : A→ B with one of these properties will let us relate |A| and |B|:

Theorem 9.9: Mapping Rule.

Let A and B be arbitrary sets. Then:

• An onto function f : A→ B exists if and only if |A| ≥ |B|.
• A one-to-one function f : A→ B exists if and only if |A| ≤ |B|.
• A bijection f : A→ B exists if and only if |A| = |B|.

See Figure 9.16 for a visual representation of the Mapping Rule, and for the intuition as why it’s correct:

the number of arrows leaving A is precisely |A|; if |A| arrows are enough to “cover” all elements of B, then

|B| ≤ |A|; and if |A| arrows can be directed into |B| elements without any duplication, then |B| ≥ |A|. (And,

actually, the third part of the Mapping Rule is implied by the first two parts: if there’s a bijection f : A→ B

then f is both onto and one-to-one, so the first two parts of the Mapping Rule imply that |A| ≥ |B| and
|A| ≤ |B|, and thus that |A| = |B|.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-36

9-36 Counting

b1

b2

b3

...

bn

A B

f

f : A → B is onto if, for all b ∈ B, there exists an
a ∈ A such that f(a) = b. (“Every possible
output is hit.”) Every element of B has an
incoming arrow, so |A| ≥ |B|.

(a)

b1

b2

b3

...

bn

A B

f

f : A → B is one-to-one if, for all a ∈ A and
a′ ∈ A, if f(a) = f(a′) then a = a′. (“No output is
hit more than once.”) No element of B has more
than one incoming arrow, so |A| ≤ |B|.

(b)

b1

b2

b3

...

bn

A B

f

f : A → B is a bijection if it is both one-to-one
and onto. (“Every output is hit exactly once.”)
Every element of B has exactly one incoming
arrow, so |A| = |B|.

(c)

Figure 9.16 The Mapping Rule, and a reminder of the definitions of (a) onto, (b) one-to-one, and (c) bijective
functions. The number of arrows equals |A|.

A few examples

We’ll start with another example—like those in Example 9.24—of the logic underlying the Mapping Rule,

but this time using function terminology:

Example 9.25: Students and assignments.

Let S be a set of 128 students in a computer science class, let A be a set of programming assignments, and

suppose that mine : S → A is a function so that mine(s) is the assignment that has the name of student

s written on it. (Because mine is a function, each student’s name is by definition on one and only one

submitted assignment.)

The functionmine is onto.Then every assignment inA has at least one student’s name on it—and therefore

there are at least as many students as assignments: each name is written only once, and every assignment

has a name on it. So |A| ≤ 128. (There could be fewer than 128 if, for example, assignments were allowed

to be submitted by pairs of students.)

The functionmine is one-to-one. Then no assignment has more than one name on it—and therefore there

are at least as many students as assignments: each assignment has at most one name, so there can’t be

more names than assignments. So |A| ≥ 128. (There could be more than 128 if, for example, there are

assignments in the pile that were submitted by students in a different section of the course.)

The function mine is both onto and one-to-one. Then each assignment has exactly one name written on

it, and thus |A| = |S| = 128.

Let’s also rewrite two of the informal scenarios from Example 9.24 to explicitly the Mapping Rule:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-37

9.3 Using Functions to Count 9-37

Example 9.26: Classes and names, formalized.

Let S be the set of students taking a particular class. Define the function f : S→ {A, B, . . . , Z}, where f(s)

is the first letter of the last name of student s. If no two students’ last names start with the same letter,

then f(s) = f(s′) only when s = s′—in other words, the function f is one-to-one. Then, by the Mapping

Rule, |S| ≤ | {A, B, . . . , Z} |: there are at most 26 students in the class.

Example 9.27: States, formalized.

Let T be the set of people in a particular club. Let T′ ⊆ T be those people in T who are from one of the

50 states. Because T′ ⊆ T, we have |T| ≥ |T′|.
Define the function g : T′ → {Alabama,Alaska, . . . ,Wyoming}, where g(x) is the home state of per-

son x. If there is at least one student from every state, then for all s ∈ {Alabama,Alaska, . . . ,Wyoming}
there’s an x ∈ T′ such that g(x) = s—in other words, the function g is onto. Then, by the Mapping Rule,

|T′| ≥ | {Alabama,Alaska, . . . ,Wyoming} |: there are at least 50 people in the club.

We’ll close this section with an example of using the Mapping Rule to count the cardinality of a set

that we have not yet been able to calculate. We’ll do so by giving a bijection between this new set (with

previously unknown cardinality) and a set whose cardinality we do know. The set that we’ll analyze here is

the power set of a set X—the set of all subsets of X, defined as P(X) = {Y : Y ⊆ X}. (See Definition 2.33.)

For example, P({0, 1}) is
{
{} , {0} , {1} , {0, 1}

}
. Let’s look at the power set of {1, 2, . . . , 8}:

Example 9.28: Power set of {1, 2, . . . , 8}.
What is |P({1, 2, . . . , 8})|?

Solution. We’ll give a bijection between {0, 1}8 and P({1, 2, . . . , 8})—that is, we’ll define a function

b : {0, 1}8 → P({1, 2, . . . , 8}) that’s a bijection. Here is the correspondence: for every 8-bit string

y ∈ {0, 1}8, define b(y) to be the subset Y ⊆ {1, 2, . . . , 8} such that i ∈ Y if and only if the ith bit of y

is 1. For example:

y = 11101010 → Y = {1, 2, 3, 5, 7} that is, b(11101010) = {1, 2, 3, 5, 7},

y = 00001000 → Y = {5} and b(00001000) = {5},

y = 00000000 → Y = {} and b(00000000) = {}.

Because every subset corresponds to some bitstring, and no subset corresponds to more than one bitstring,

the function b : {0, 1}8 →P({1, 2, . . . , 8}) is a bijection between {0, 1}8 and P({1, 2, . . . , 8}).
Because a bijection from {0, 1}8 to P({1, 2, . . . , 8}) exists (we just defined it!), the Mapping Rule

says that |P({1, 2, . . . , 8})| = |{0, 1}8| = 28 = 256.

The idea of the mapping from Example 9.28 applies for an arbitrary finite set X. Here is the general result.

(Lemma 9.10 is the reason for the power set’s name: the cardinality of P(X) is 2 to the power of |X|.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-38

9-38 Counting

Lemma 9.10: Cardinality of the Power Set.

Let X be any finite set. Then |P(X)| = 2|X|.

Proof. Let n = |X|. Let X = {x1, x2, . . . , xn} be an arbitrary ordering of the elements of X. Define a

function f : {0, 1}n →P(X) as follows:

f(y) = {xi : the ith bit of y is 1} .

It is easy to see that f is onto: for any subset Y of X, there exists a y ∈ {0, 1}n such that f(y) = Y. It is also

easy to see that f is one-to-one: if y ̸= y′ then there exists an i such that yi ̸= y′i , so [xi ∈ f(y)] ̸= [xi ∈ f(y′)].

Therefore f is a bijection, and by the Mapping Rule we can conclude |P(X)| = | {0, 1}|X| | = 2|X|.

Taking it further: Although our focus is on finding the cardinality of finite sets, we can also apply the Mapping Rule to think

about infinite cardinalities. Infinite sets are generally more the focus of mathematicians than of computer scientists, but there are

some fascinating (and completely mind-bending) results that are relevant for computer scientists, too. For example, we can prove

that the number of even integers is the same as the number of integers (even though the former is a proper subset of the latter!).

But we can also prove that |R| > |Z|. More relevantly for computer science, we can prove that there are strictly more problems

than there are computer programs, and therefore that there are problems that cannot be solved by a computer. See p. 9-46.

9.3.2 The Division Rule

When we introduced the Inclusion–Exclusion Rule, we used an approach to counting that we might call

count first, apologize later: to compute the cardinality of a set A∪B, we found |A|+|B| and then “fixed” our

count by subtracting the number of elements that we’d counted twice—namely, subtracting |A ∩ B|. Here

we’ll consider an analogous count-and-correct rule, called the Division Rule, that applies when we count

every element of a set multiple times (and where each element is recounted the same number of times); we

then correct our total by dividing by this “redundancy factor.” Let’s start with some informal examples:

Example 9.29: Some redundant counting, informally.

• Suppose that the Juggling Club on campus sells 99 juggling torches to its members, in sets of three.

Then there are 33 people who purchased torches.

• There are 42 people at a party. Suppose that every person shakes hands with every other person. How

many handshakes have occurred, in total? There are many ways to solve this problem, but here’s an

approach that uses division: each person shakes hands with all 41 other people, for a grand total of

(42 people)·(41 shakes/person) = 1722 shakings. But each handshake involves two people, so we’ve

counted every shake exactly twice; thus there are actually a total of 861 = 1722
2 = 42·41

2 handshakes.

• In Game 5 of the 1997 NBA Finals, the Chicago Bulls had 10 different players who were on the

court for some portion of the game. The number of minutes played by each of these ten people were

⟨45, 44, 26, 24, 24, 24, 23, 23, 4, 3⟩. Thus the total number of minutes played by these ten players was

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-39

9.3 Using Functions to Count 9-39

45+ 44+ 26+ 24+ 24+ 24+ 23+ 23+ 4+ 3 = 240. In basketball, five players are on the court

at a time. Thus the game lasted 240
5 = 48 minutes.

We’ll phrase the Division Rule using the same general structure as theMapping Rule, in terms of a function

that maps from one set to another. Specifically, if we have a function f : A → B that always maps exactly

the same number of elements of A to each element of B—for instance, exactly three torches are mapped to

any particular juggler in Example 9.29—then |A| and |B| differ exactly by that factor:

Theorem 9.11: Division Rule.
Let A and B be arbitrary sets. Suppose that there exists a function f : A → B such that, for every b ∈ B,

there are exactly k elements a1, . . . , ak ∈ A such that f(ai) = b. (That is, |{a ∈ A : f(a) = b}| = k for all

b ∈ B.) Then |A| = k · |B|.

(TheDivision Rule with k = 1 simply is the bijection case of theMapping Rule: what it means for f : A→ B

to be a bijection is precisely that |{a ∈ A : f(a) = b}| = 1 for every b ∈ B. If such a function f exists, then

both the Mapping Rule and the Division Rule say that |A| = 1 · |B|.)

Example 9.30: Redundantly counting jugglers, formally.

LetM be the set of members of the Juggling Club, and let T be the set of torches bought by the members of

the club. Consider the function boughtBy : T → M. Assuming that each member bought precisely three

torches—that is, assuming that | {t ∈ T : boughtBy(t) = m} | = 3 for every m ∈ M—then |T| = 3 · |M|.

Example 9.31: Redundantly counting integers, formally.

Consider sets A = {0, 1, . . . , 31} and B = {0, 1, . . . , 15}. Define the function f : A→ B as f(n) = ⌊ n2⌋.
For each b ∈ B, there are exactly two input values whose output under f is b, namely 2b and 2b+1. Thus

by the Division Rule |A| = 2 · |B|.

This basic idea—if we count each thing k times, then dividing our total count by k gives us the number of

things—may be pretty obvious, but it’s also surprisingly useful. Here’s a sequence of examples, starting

with a warm-up exercise and continuing with two (less obvious) applications of the Division Rule:

EL
PR

LE
PR

EEPR

EL
RP

LE
RP

EERP

EP
LR

LP
ER

EPER

EP
RL

LP
RE

EPRE

ER
LP

LR
EP

EREP

ER
PL

LR
PE

ERPE

PE
LR

PL
ER

PEER

PE
RL

PL
RE

PERE

PR
EL

PR
LE

PREE

RE
LP

RL
EP

REEP

RE
PL

RL
PE

REPE

RP
EL

RP
LE

RPEE

Figure 9.17 The 24 different orderings of PERL and the 12 different orderings of PEER. The function that replaces L by
E is displayed by the arrows.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-40

9-40 Counting

Example 9.32: Rearranging PERL, PEER, and SMALLTALK.

Howmany different ways can you arrange the letters of (1) the name of the programming language PERL?
(2) the word PEER? (3) the name of the programming language SMALLTALK?

Solution. For PERL: There are 4 different letters, and any permutation of them is a different ordering.

Thus there are 4! = 4 · 3 · 2 · 1 = 24 orderings. (See Theorem 9.8.)

PEER: We’ll answer this question using the PERL solution. Define the function L->E as follows: given a

4-character input string, it produces a 4-character output string in which every L has been replaced by

an E. For example, L->E(PERL) = PERE. Let S denote the orderings of the word PERL, and let T denote

the orderings of PEER. Note that the function L->E : S → T has the property that, for every t ∈ T,

there are exactly two strings x ∈ S such that L->E(x) = t. (For example, L->E(PERL) = PERE and

L->E(PLRE) = PERE.) Thus, by the Division Rule, there are 4!
2 = 24

2 = 12 ways to order the letters of

PEER. (See Figure 9.17.)

SMALLTALK: There are 9! different orderings of the nine “letters” in the not-quite-real word

S M A1 L1 L2 T A2 L3 K. (We are writing L1 and L2 and L3 to denote three different “letters,”

and similarly for A1 and A2.) We will use the Division Rule repeatedly to “erase” subscripts:

• The function that erases subscripts on the As maps two inputs to each output: one with A1 before A2,

and one with A2 before A1. By the Division Rule, then, there are 9!
2 different orderings of the “letters”

in the word S M A L1 L2 T A L3 K.

• The function that takes an ordering of S M A L1 L2 T A L3 K and erases the subscripts on

the Ls maps precisely six inputs to each output: one for each of the 3! possible orderings of the Ls.

Thus there are 9!
2·3! =

362,880
12 = 30,240 orderings of the letters in S M A L L T A L K.

Counting orderings when some elements are indistinguishable

Although we phrased Example 9.32 in terms of the number of ways to rearrange the letters of some partic-

ular words, there’s a very general idea that underlies the PEER and SMALLTALK examples. We’ll state the

underlying idea as a theorem:

Theorem 9.12: Rearranging with duplicates.

The number of ways to rearrange a sequence containing k different distinct elements {x1, . . . , xk}, where

element xi appears ni times, is

(n1 + n2 + · · ·+ nk)!
(n1!) · (n2!) · · · · · (nk!)

.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-41

9.3 Using Functions to Count 9-41

For example, PERL has k = 4 distinct elements, which appear nP = nE = nR = nL = 1 time each; the

theorem says that there are (1+1+1+1)!
1!·1!·1!·1! = 4! ways to arrange the letters. On the other hand, SMALLTALK

has k = 6 distinct elements, which appear nA = 2, nL = 3, and nS = nM = nT = nK = 1 times each; the

theorem says that there are (2+3+1+1+1+1)!
2!·3!·1!·1!·1!·1! = 9!

2!·3! ways to arrange the letters.

Proof of Theorem 9.12. Let’s handle a simpler case first: suppose that we have n different elements that

we can put into any order, and precisely k of these n elements are indistinguishable. Then there are exactly
n!
k! different orderings of those n elements. To see this fact, imagine “decorating” each of those k items with

some kind of artificial distinguishing mark, like the numerical subscripts of the letters of SMALLTALK from

Example 9.32. Then there are n! different orderings of the n elements. The erase function that eliminates

our artificial distinguishing marks has k! inputs that yield the same output—namely, one for each ordering

of the k artificially marked elements. Therefore, by the Division Rule, there are n!
k! different orderings of

the elements, without the distinguishing markers.

The full theorem is just a mild generalization of this argument, to allow us to consider more than one set

of indistinguishable elements. (In particular, we could give a formal proof by induction on the number of

elements with ni ≥ 2.) In total, there are (n1+n2+· · ·+nk)! different orderings of the elements themselves,

but there are n1! equivalent orderings of the first element, n2! of the second, and so forth. The function that

“erases subscripts” as in Example 9.32 has (n1!) · (n2!) · · · · · (nk!) different equivalent orderings, and

thus the total number of orderings is, by the Division Rule,

(n1 + n2 + · · ·+ nk)!
(n1!) · (n2!) · · · · · (nk!)

.

Here’s a different kind of example that we can solve using this theorem:

Example 9.33: Writing 232,848 as a sequence of prime factors.

Howmany ways can we write 232,848 as a product p1p2 · · · pk, where each pi is prime? (The set of prime

factors, and the number of occurrences of each factor, are the same in every product, because the prime

factorization of any positive integer is unique. But the order may change: for example, we can write

6 = 3 · 2 or 6 = 2 · 3.)

Solution. The prime factorization of 232,848 is 232,848 = 24 · 33 · 72 · 11. Thus a product of primes

that equals 232,848 consists of 4 copies of two, 3 copies of three, 2 copies of seven, and one copy of

eleven—in some order. (For example, 2 · 2 · 7 · 3 · 3 · 7 · 2 · 11 · 3 · 2.) By Theorem 9.12, the number of

orderings of these elements is

(4+ 3+ 2+ 1)!
4! · 3! · 2! · 1! =

10!
4! · 3! · 2! =

3,628,800
24 · 6 · 2 = 12,600.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-42

9-42 Counting

A slightly more complicated example

Here is one final example of the Division Rule, in which we’ll use this approach on a slightly more

complicated problem:

Example 9.34: Assigning partners.

The professor divides the n students in a CS class into n
2 partnerships, with two students per partnership.

(Assume that n is even.) The order of partners within a pair doesn’t matter, nor does the order of the

partnerships. (That is,

Pairing A: Pair 1 = Paul and George; Pair 2 = John and Ringo and

Pairing B: Pair 1 = Ringo and John; Pair 2 = George and Paul

represent exactly the same partnerships.) How many ways are there to divide the class into partnerships?

Solution. Let’s line up the students in some order, and then pair the first two students, then pair the third

and fourth, and so on. There are n! different orderings of the students, but there are fewer than n! possible

partnerships, because we’ve double counted each set of pairs in two different ways:

• there are two equivalent orderings of the first pair of students, and two equivalent orderings of the

second pair, and so on.

• the ordering of the pairs doesn’t matter, so the partnerships themselves can be listed in any order at

all (without changing who’s paired with whom).

Each of the n
2 pairs can be listed in 2 orders, so—by the Product Rule—there are 2n/2 different possible

within-pair orderings. And there are (n/2)! different orderings of the pairs. Applying the Division Rule,

then, we see that there are

n!

(n/2)! · 2n/2 (∗)

ordering reordered within pairs

AB CD AB CD




AB
+
CD

AB DC AB CD
BA CD AB CD
BA DC AB CD
CD AB CD AB
CD BA CD AB
DC AB CD AB
DC BA CD AB

ordering reordered within pairs

AC BD AC BD




AC
+
BD

AC DB AC BD
BD AC BD AC
BD CA BD AC
CA BD AC BD
CA DB AC BD
DB AC BD AC
DB CA BD AC

ordering reordered within pairs

AD BC AD BC




AD
+
BC

AD CB AD BC
BC AD BC AD
BC DA BC AD
CB AD BC AD
CB DA BC AD
DA BC AD BC
DA CB AD BC

Figure 9.18 Partnerships for n = 4 students: the 4! orderings, then the orderings sorted within each pair, and finally
with the pairs themselves sorted.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-43

9.3 Using Functions to Count 9-43

total possible ways to assign partners.

Let’s confirm that (∗) checks out for some small values of n. For n = 2, there’s just one pairing, and

indeed (∗) is 2!
1!·21 = 2

2 = 1. For n = 4, the formula (∗) yields 4!
23 = 4·3·2

8 = 3 pairings; indeed, for

the quartet Paul, John, George, and Ringo, there are three possible partners for Paul (and once Paul is

assigned a partner there are no further choices to be made). See Figure 9.18: we try all 4! = 24 orderings

of the four people, then we reorder the names within each pair, and finally we reorder the pairs.

Problem-solving tip: There are often many different ways to solve a given problem—and you can use whatever approach makes

the most sense to you! For example, Exercise 9.109 explores a completely different way to solve Example 9.34, based on the

Generalized Product Rule instead of the Division Rule.

9.3.3 The Pigeonhole Principle

We’ll close this section with a not-too-hard-to-prove—but also surprisingly useful—theorem based on the

Mapping Rule, called the pigeonhole principle.

A pigeonhole refers to one of the “cells” in a grid of compartments that are open in the front, and which can house either snail

mail or, back in the day, roosting pigeons. (There’s also a related verb: to pigeonhole someone/something is to categorize that

person/thing into one of a small number of—misleadingly simple—groups.)

We’ll start with a few informal examples to introduce the underlying idea:

Example 9.35: What happens when there are more things than kinds of things.

• If there are more socks in your drawer than there are colors of socks in your drawer, then you must

have two socks of the same color.

• If there are only 5 possible letter grades and there are 6 or more students in a class, then there must

be two students who receive the same letter grade.

• If you take 9 or more CS courses during the 8 semesters that you’re in college, then there must be at

least one semester in which you doubled up on CS courses.

• In the antiquated language in which this result is generally stated: if there are n pigeonholes, and

n+ 1 pigeons that are placed into those pigeonholes, then there must be at least one pigeonhole that

contains more than one pigeon.

Here is the general statement of the theorem, along with its proof:

Theorem 9.13: Pigeonhole Principle.

Let A and B be sets with |A| > |B|, and let f : A→ B be any function. Then there exist distinct elements

a ∈ A and a′ ∈ A such that f(a) = f(a′).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-44

9-44 Counting

Proof. We can prove the Pigeonhole Principle using the Mapping Rule. Given the sets A and B, and the

function f : A→ B, the Mapping Rule tells us that

if f : A→ B is one-to-one, then |A| ≤ |B|. (1)

Taking the contrapositive of (1), we have

if |A| > |B|, then f : A→ B is not one-to-one. (2)

By assumption, we have that |A| > |B|, so f : A → B is not one-to-one. The theorem follows by the

definition of a one-to-one function: the fact that f : A → B is not one-to-one means precisely that there is

some b ∈ B that’s “hit” twice by f. In other words, there exist distinct a ∈ A and a′ ∈ A such that a ̸= a′

and f(a) = f(a′).

A slight generalization of this idea is also sometimes useful: if there are n total objects, each of which

has one of k types, then there must be a type that has at least ⌈ nk ⌉ objects. (We’ll omit the proof, but the

idea is very similar to Theorem 9.13.)

Theorem 9.14: Pigeonhole Principle: Extended Version.

Let A and B be sets, and let f : A → B be any function. Then there exists some b ∈ B such that the set

{a ∈ A : f(a) = b} contains at least ⌈|A|/|B|⌉ elements.

(Another less formal way of stating this fact is “the maximum must exceed the average”: the number of

elements in A that “hit” a particular b ∈ B is |A|
|B| on average, and there must be some element of B that’s hit

at least this many times.)

We’ll start with two simpler examples of the pigeonhole principle, and close with a slightly more com-

plicated application. (In the last example, the slightly tricky part of applying the pigeonhole principle is

figuring out what corresponds to the “holes.”)

Example 9.36: Congressional voting.

Suppose that there were 5 different bills upon which the House of Representatives voted yesterday. (There

are 435 representatives in the U.S. House.) The pigeonhole principle implies that there are two represen-

tatives who voted identically on yesterday’s bills. A representative’s vote can be expressed as an element

of {aye, nay, abstain}5, which has cardinality 35 = 243. Because 243 < 435, the pigeonhole principle

says that there are two representatives with the same voting record.

Example 9.37: Logical equivalence.

Let S be a set of 17 different logical propositions over the Boolean variables p and q.

A truth table for a proposition in S is an element of {True, False}4 (the rows of the truth table corre-

spond to each of the four truth assignments for p and q), and there are only |{True, False}4| = 24 = 16

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-45

9.3 Using Functions to Count 9-45

different such values. Therefore, our 17 different propositions have only 16 different possible truth

tables—so, by the pigeonhole principle, there must be two different propositions that have the same

truth table.

Example 9.38: Points in a square.

Suppose that there are n2 + 1 points in a 1-by-1 square, as in Figure 9.19a. Show that there must be two

points within distance
√

2
n of each other.

Solution. We will use the pigeonhole principle. Divide the unit square into n2 equal-sized disjoint

subsquares—each with dimension 1
n -by-

1
n . (To prevent overlap, we’ll say that every shared boundary line

is included in the square to the left or below the shared line.) There are n2 subsquares, and n2 + 1 points.

By the pigeonhole principle, at least one subsquare contains two or more points. (See Figure 9.19b.)

Notice that the farthest apart that two points in a subsquare can be is when they are at opposite corners

of the subsquare. In this case, they are 1
n apart in x-coordinate and 1

n apart in y-coordinate—in other words,

they are separated by a distance of
√
(1n)

2 + (1n)
2 =

√
2
n2 =

√
2
n .

Therefore, because there is at least one subsquare containing 2+ points, and points in the same subsquare

are within distance
√

2
n of each other, the claim follows.

Taking it further: The pigeonhole principle can be used to show that compression of data files (for example, ZIP files or

compressed image formats like GIF) must either lose information about the original data (so-called lossy compression) or must,

for some input files, actually cause the “compressed” version to be larger than the original file. See p. 9-48.

(a) 17 points in a 1-by-1 square. (b) The square divided into 16 subsquares, and one of the
several doubly occupied subsquares.

Figure 9.19 Putting n2 + 1 points in the unit square.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-46

9-46 Counting

Computer Science Connections

Infinite Cardinalities (and Problems that Can’t Be Solved by Any Program)

Recall the Mapping Rule: for any two sets A and B, a bijection f : A → B exists if and only if |A| = |B|. Although

we were thinking about finite sets when we stated this rule, the statement holds even for infinite sets A and B; we

can even think of this rule as defining what it means for two sets to have the same cardinality. Those sets S such that

|S| = |Z|, called countable sets, will turn out to be particularly important.

0

0

1

−1

2

1

3

−2

4

2

5

−3

6

3

7

−4

8

4

9

−5

10

5

11

−6

· · ·

· · ·

Z≥0 =

Z =

f(n) =
⌈ n
2

⌉
· (−1)n

Figure 9.20 A bijection f : Z≥0 → Z. Thus |Z≥0| = |Z|.

Surprisingly, some sets that “seem” much

bigger or much smaller than the integers have

the same cardinality as Z. For example, the

set of nonnegative integers has the same car-

dinality as the set of all integers! (See Fig-

ure 9.20.) This fact is very strange—after all,

we’re looking at sets A and B where A is a

proper subset of B and we’ve now established

that |A| = |B|! But, indeed, because we have a bijection between A and B, they really are the same size.

p r i n t (" h e l l o w o r l d ")
112 114 105 110 116 40 34 104 101 108 108 111 32 119 111 114 108 100 34 41
1110000 1110010 1101001 1101110 1110100 0101000 0100010 1101000 1100101 1101100 1101100 1101111 0100000 1110111 1101111 1110010 1101100 1100100 0100010 0101001

Figure 9.21 Converting a Python program into an integer. The
program print("hello world") corresponds to the integer
1,229,340,410,842,605,087,191,708,943,331,595,860,381,993, with
binary representation 1110000 1110010 1101001 1101110 · · · .

Or consider a Python program p. Think

of the source code of p as a sequence of

characters, each of which is represented as

a sequence of bits, which can therefore be

interpreted as an integer written in binary.

(See Figure 9.21.) Therefore there is a bijec-

tion f between the integers and the set of

Python programs, where f(i) is the ith-largest

Python program (sorted numerically by its

binary representation). With all of these sets that have the same cardinality, it might be tempting to think that all

infinite sets have the same cardinality as Z. But they don’t!

Theorem: The set of all subsets of Z≥0—that is, P(Z≥0)—is strictly bigger than Z≥0.

0 1 2 3 4

f(0) 1 0 1 0 1 · · ·

f(1) 0 0 0 1 1 · · ·

f(2) 0 1 1 0 1 · · ·

f(3) 1 1 0 1 1 · · ·

f(4) 1 0 1 0 0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

negation of diagonal:
i = 0 1 2 3 4 . . .

diagonal 1 0 1 1 0 . . .

negated 0 1 0 0 1 . . .

S = { 1, 4, . . .}

Suppose that f : Z≥0 → P(Z≥0). In a

table, write row n corresponding to

f(n)—so that f(n) has a “1” in column j

when j ∈ f(n). Define

S = {i : i /∈ f(i)}—that is, the opposite of

the diagonal element.

Figure 9.22 Diagonalization. Suppose that there exists an onto
function f : Z≥0 → P(Z≥0), and define S = {i : i /∈ f(i)}. Then
S ⊆ Z≥0, but S ̸= f(i) for every i—a contradiction!

Proof. Suppose for a contradiction that

f : Z≥0 → P(Z≥0) is an onto function.

We’ll show that there’s a set S ∈ P(Z≥0)

such that for every n ∈ Z≥0 we have

f(n) ̸= S. Define the set S as follows:

S = {i ∈ Z≥0 : i /∈ f(i)}
(So i ∈ S ⇔ the set f(i) does not contain i.)

Now, the set S differs from f(i) for every i,

because i ∈ S ⇔ i /∈ f(i) for every i. Thus

S is never “hit” by f—contradicting the

assumption that f was onto. Therefore there

is no onto function f : Z≥0 → P(Z≥0), and,

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-47

9.3 Using Functions to Count 9-47

by the Mapping Rule, |Z≥0| < |P(Z≥0)|.
(This argument is called a proof by diagonalization; see Figure 9.22.)

We can think of any subset of Z as defining a problem that we might want to write a Python program to solve.

For example, the set {0, 2, 4, 6, . . .} is the problem of identifying even numbers. The set {1, 2, 4, 8, 16, . . .} is the

problem of identifying exact powers of 2. The set {2, 3, 5, 7, 11, . . .} is prime numbers. What does all of this say?

There are more problems than there are Python programs! And thus there are problems that cannot be solved by any

program! (Problems that can’t be solved by any computer program are called uncomputable. See Section 4.4.4 for

some particular uncomputable problems, or see any good book on computability, like [73] or [120].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-48

9-48 Counting

Computer Science Connections

Lossy and Lossless Compression

Original

lower quality

than original

identical to

original

losslesslycompressed

lossily

compressed

uncompressed

uncompressed

N
A
S
A

ph
ot
og

ra
ph

er
B
ob

N
ye

,1
96

6

These images are of Katherine Johnson (1918–2020), a

mathematician and NASA scientist (and “computer,” when that word

was more a job title than a piece of hardware). Most famously, she

manually calculated flight trajectories for the first human earth orbit,

in John Glenn’s 1962 mission, in a story made famous by the 2016

movie Hidden Figures, based on a book of the same name [115].

Figure 9.23 A visual example of compression. A large image file (say, in TIFF
format) can typically be stored more efficiently in other image formats—either
losslessly (as in PNG) or lossily (as in JPG).

The task in compression is to

take a large (potentially massively

large!) piece of data and to repre-

sent it, somehow, using a smaller

amount of space. Compression tech-

niques are tremendously common,

for a wide variety of data: text,

images, audio, and video, for exam-

ple. There are two fundamentally

different approaches to compres-

sion of an original data file d into

a compressed form d′: lossy and

lossless compression.

Lossy Compression. In lossy com-

pression, d′ does not represent

exactly all of the information in d—

that is, we’ve “lost” some informa-

tion through compression. (That’s

why the compression is called

“lossy.”) In fact, many of the standard file formats for images, audio, and video are just standard methods for lossy

compression. For example, JPEG is a lossy image compression format, andMP3 is a lossy audio compression format.

The general goal with a lossy compression technique is to maintain, to the extent possible, “perceptual indistinguisha-

bility.” For example, a digital audio stream can be represented precisely as a sequence of intensities at each time t

(“how loud is the sound at time t?”). A lossy compression technique for sound might round the intensities: instead of

representing an intensity as one of 216 values (“a 16-bit sound,” which is CD quality), we could round to the nearest

of 28 values. (This idea is called quantization; see Example 2.51.) As long as the lost precision is smaller than the

level of human perception, the new audio file would “sound the same” as the original.

Lossless Compression. In lossless compression, the precise contents of the original data file d can be reconstructed

when the compressed data file d′ is uncompressed. This approach is the one commonly used, for example, when

compressing text using a program like ZIP. The typical idea of lossless compression is to exploit redundancy in

the stored data and to avoid wasting space storing the “same” information twice. For example, take the complete

works of Shakespeare. By replacing every occurrence of the with QQ (two letters that don’t occur consecutively in

Shakespeare) the resulting file takes “only” about 99.2% of the original size. We can then set up a “translation table”

telling us that QQ → the when we’re decompressing. (There are many thousands of occurrences of the—the word

the appears over 20,000 times in the complete works of Shakespeare, plus over 1000 each of thee, them, their,
they, there, and these—and we’re saving a character’s worth of storage for each of them.)

An algorithm due to Abraham Lempel and Jacob Ziv, published in 1977—hence “LZ77”—is the basis of many

commonly used lossless compression techniques [134].Huffman coding—see Example 9.21 and the discussion after

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-49

9.3 Using Functions to Count 9-49

it—is another classic approach to lossless compression [59]. One interesting fact about lossless compression, though,

is that it is impossible to actually compress every input file into a smaller size:

Theorem: Let C be any lossless compression function. Then there exists an input file d such that C(d) takes up at

least as much space as d.

Proof. Suppose that C compresses all n-bit inputs into n − 1 or fewer bits. That is, C : {0, 1}n → ∪n−1
i=0 {0, 1}i.

Observe that the domain has size 2n and the range has size
∑n−1

i=0 2i = 2n − 1. By the pigeonhole principle, there

must be two distinct input files d1 and d2 such that C(d1) = C(d2). But this C cannot be a lossless compression

technique: if the compressed versions of the files are identical, the decompressed versions must be identical too!

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-50

9-50 Counting

EXERCISES

9.60 Determine how many bitstrings x ∈ {0, 1}7 fail all three Hamming code tests. (These bitstrings are the ones marked “7 7 7” in

Figure 9.15.) That is, using the idea of Example 9.23, figure out how many bitstrings satisfy the following three conditions:

x2 + x3 + x4 ̸≡2 x5 x1 + x3 + x4 ̸≡2 x6 x1 + x2 + x4 ̸≡2 x7.

9.61 Prove that the set P of legal board positions in a chess game satisfies |P| ≤ 1364. (Hint: Define a one-to-one function from the set

{1, 2, . . . , 13}64 to P.)

A string over Σ is a sequence of elements of a set Σ—that is, a string x over Σ satisfies x ∈ Σn for some length n ≥ 0.

9.62 How many strings of length n over the alphabet Σ = {A, B, . . . , Z, } are there? How many contain exactly 2 “words” (that is,

contain exactly one space that is not in the first or last position)?

9.63 Let n ≥ 3. How many n-symbol strings over this alphabet contain exactly 3 “words”? (Hint: use Example 9.4 to account for

n-symbol strings with exactly two s; then use Inclusion–Exclusion to prevent an initial space, a final space, or two consecutive

spaces, as in ABC, XYZ␣, and JKL␣␣MNO.)

A string over the alphabet {[,]} is called a string of balanced parentheses if two conditions hold: (i) every [is later closed by a];

and (ii) every] closes a previous [. (You must close everything, and you never close something you didn’t open.) Let Bn ⊆ {[,]}n

denote the set of strings of balanced parentheses that contain n symbols.

9.64 Show that |Bn| ≤ 2n: define a one-to-one function f : Bn → {0, 1}n and use the Mapping Rule.

9.65 Show that |Bn| ≥ 2n/4 by defining a one-to-one function g : {0, 1}n/4 → Bn and using the Mapping Rule. (Hint: consider [][]

and [[]].)

A certain college requires its users’ passwords to be 15 characters long. Inspired by an XKCD comic (see http://xkcd.com/

936/), a certain faculty member started creating his passwords by choosing three 5-letter English words from the dictionary, without

spaces. (An example password is ADOBESCORNADORN, from the words ADOBE and SCORN and ADORN.) There are 8636 five-letter

words in the dictionary that he found.

9.66 How many passwords can be made from any 15 (uppercase-only) letters? How many passwords can be made by pasting together

three 5-letter words from this dictionary?

9.67 Howmany passwords can bemade by pasting together three distinct 5-letter words from this dictionary? (For example, the password

ADOBESCUBAADOBE is forbidden because ADOBE is repeated.)

9.68 The faculty member in question has a hard time remembering the order of the words in his password, so he’s decided to ensure that

the three words he chooses from this dictionary are different and appear in alphabetical order in his password. (For example, the

password ADOBESCUBAFOXES is forbidden because SCUBA is alphabetically after FOXES.) How many passwords fit this criterion?

Solve this problem as follows. Let P denote the set of three-distinct-word passwords (the set from Exercise 9.67). Let A denote the

set of three-distinct-alphabetical-word passwords. Define a function f : P → A that sorts. Then use the Division Rule.

9.69 After play-in games, the NCAA basketball tournament involves 64 teams, arranged in a bracket that specifies who plays whom in

each round. (The winner of each game goes on to the next round; the loser is eliminated. See Figure 9.24.) How many different

outcomes (that is, lists of winners of all games) of the tournament are there?

A palindrome over Σ is a string x ∈ Σn that reads the same backward and forward—like 0110, TESTSET, or (ignoring spaces and

punctuation) SIT ON A POTATO PAN, OTIS!.

9.70 How many 6-letter palindromes (elements of {A, B, . . . , Z}6) are there?

9.71 How many 7-letter palindromes (elements of {A, B, . . . , Z}7) are there?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-51

Exercises 9-51

A

B

C

D

E

F

G

H

In the first round, A plays B, C
plays D, etc. The A/B winner
plays the C/D winner in the
second round, and so forth.

Figure 9.24 An 8-team tournament bracket.

9.72 Let n ≥ 1 be an integer, and let Pn denote the set of palindromes over Σ of length n. Define a bijection f : Pn → Σk (for some

k ≥ 0 that you choose). Prove that f is a bijection, and use this bijection to write a formula for |Pn| for arbitrary n ∈ Z≥1.

9.73 Recall an integer k ≥ 1 is a factor of n if k | n. How many positive integer factors does 100 have? How many are squarefree?

9.74 How many positive integer factors does 12! have? (Hint: calculate the prime factorization of 12!.)

9.75 An integer n is called squarefree if there’s no integer m ≥ 2 such that m2 | n. How many squarefree factors does 12! have? Explain.

9.76 (programming required.) Write a program that, given n ∈ Z≥1, finds all squarefree factors of n.

9.77 Consider two sets A and B. Consider the following claim: if there is a function f : A → B that is not onto, then |A| < |B|. Why does

this claim not follow directly from the Mapping Rule?

9.78 The genre-counting problem (Example 9.24) considered a function f : {1, 2, . . . , n} → {1, 2, 3, 4, 5}. Let’s consider n = 5: how

many different functions f : {1, 2, . . . , 5} → {1, 2, . . . , 5} are there?

9.79 How many one-to-one functions f : {1, 2, . . . , 5} → {1, 2, . . . , 5} are there?

9.80 How many bijections f : {1, 2, . . . , 5} → {1, 2, . . . , 5} are there?

9.81 Let n ≥ 1 and m ≥ n be integers. Consider the set G of functions g : {1, 2, . . . n} → {1, 2, . . . ,m}. How many functions are in G?

How many one-to-one functions are there in G? How many bijections?

9.82 Show that the number of bijections f : A → B is equal to the number of bijections g : B → A. (Hint: define a bijection between

{bijections f : A → B} and {bijections g : B → A}, and use the bijection case of the Mapping Rule!)

9.83 A Universal Product Code (UPC) is a numerical representation of the bar codes used in stores, with an error-detecting feature

to handle misscanned codes. A UPC is a 12-digit number ⟨x1, x2, . . . , x12⟩ where [
∑6

i=1 3x2i−1 + x2i] mod 10 = 0. (That is, the

even-indexed digits plus three times the odd-indexed digits should be divisible by 10.) Prove that there exists a bijection between

the set of 11-digit numbers and the set of valid 12-digit UPC codes. Use this fact to determine the number of valid UPC codes.

9.84 A strictly increasing sequence of integers is ⟨i1, i2, . . . , ik⟩ where i1 < i2 < · · · < ik. How many strictly increasing sequences start

with 1 and end with 1024? (That is, we have i1 = 1 and ik = 1024. The value of k can be anything you want; you should count

both ⟨1, 1024⟩ and ⟨1, 2, 3, 4, . . . , 1023, 1024⟩.)

A subsequence of a sequence x = ⟨x1, x2, . . . , xn⟩ is a sequence ⟨xi1 , xi2 , . . . , xik ⟩ of k ≥ 0 elements of x, where ⟨i1, i2, . . . , ik⟩
is a strictly increasing sequence. For example, PYTHON is a subsequence of PYTHAGOREAN and BASIC is a subsequence of

BRAINSICKNESS.

9.85 Suppose the components of x = ⟨x1, x2, . . . , xn⟩ are all different (as in PYTHON but not PYTHAGOREAN). Use the Mapping Rule to

figure out how many subsequences of x there are.

9.86 Suppose the components of x = ⟨x1, x2, . . . , xn⟩ are all different, except for a single pair of identical elements that are separated

by k other elements. For example, PYTHAGOREAN has n = 11 and k = 4, because there are four entries (GORE) between the As (at

index 5 and 10), which are the only repeated entries. In terms of n and k, how many subsequences of x are there?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-52

9-52 Counting

As Example 9.23 describes, the Hamming code adds 3 different parity bits to a 4-bit message m, where each added bit corresponds

to the parity of a carefully chosen subset of the message bits, creating a 7-bit codeword c. Let k and n, respectively, denote the

number of bits in the message and the codeword. (For the Hamming code, we have k = 4 and n = 7.)

A decoding algorithm takes a received (and possibly corrupted) codeword c′ and determines whichmessage has a corresponding

codeword c that is most similar to c′ (as measured by Hamming distance). Specifically for the Hamming code: having received a

(possibly corrupted) codeword c′, we compute what the parity bits should have been for the received message bits, and check for

mismatches between the computed and received parity bits; each set of mismatched parity bits corresponds to a different single-bit

error in the received codeword. (See Section 4.2 for more, and also see Exercises 4.25–4.28.) We can view the decoding algorithm

as a function decode : P(1, 2, . . . , n− k) → {0, 1, 2, . . . , n}—where decode(S) tells us which bit (if any) to flip in the received

codeword when S is the set of mismatched parity bits. (If decode(S) = 0, then no bits should be flipped.)

9.87 Argue using the Mapping Rule (that is, without reference to the precise decoding function for the Hamming code) that for the

Hamming code’s parameters (n = 7 and k = 4) that there exists a bijection decode : P({1, 2, . . . , n− k}) → {0, 1, 2, . . . , n}.
9.88 Suppose that we choose n = 9 and k = 4. Does there exist a bijection from P({1, 2, . . . , n− k}) to {0, 1, 2, . . . , n}? Why or why

not?

9.89 Suppose that we choose n = 31. For what value(s) of k does there exist a bijection from P({1, 2, . . . , n− k}) to {0, 1, 2, . . . , n}?
Prove your answer.

9.90 Prove that, for any n that is not one less than a power of 2, there does not exist a bijection from P({1, 2, . . . , n− k}) to

{0, 1, 2, . . . , n}.

In the corporate and political worlds, there’s a dubious technique called URL squatting, where someone creates a website whose

name is very similar to a popular site and uses it to skim the traffic generated by poor-typing internet users. For example, Google

owns the addresses gogle.com and googl.com, which redirect to google.com. (But, as of this writing, someone else owns

oogle.com, goole.com, and googe.com.) Consider an n-letter company name. How many single-typo manglings of the name

are there for the following kinds of errors? Consider only uppercase letters throughout. (If your answers depend on the particular

n-letter company name, then say how they depend on that name. Note that no transposition errors are possible for the company

name MMM, for example.)

9.91 one-letter substitutions

9.92 one-letter insertions

9.93 one-pair transpositions (two adjacent letters written in the wrong order)

9.94 one-letter deletions

9.95 How many different ways can you arrange the letters of PASCAL?

9.96 How many different ways can you arrange the letters of GRACEHOPPER?

9.97 How many different ways can you arrange the letters of ALANTURING?

9.98 How many different ways can you arrange the letters of CHARLESBABBAGE?

9.99 How many different ways can you arrange the letters of ADALOVELACE?

9.100 How many different ways can you arrange the letters of PEERTOPEERSYSTEM?

9.101 (programming required.)Write a function that, given an input string, computes the number of ways to rearrange the string’s letters.

Use your program to verify your answers to the last few exercises.

9.102 (programming required.) In Example 9.33, we analyzed the number of ways to write a particular integer n as the product of primes.

(Because the prime factorization of n is unique, the only difference between these products is the order in which the primes appear.)

Write a program, in a language of your choice, to compute the number xn of ways we can write a given number n as p1 · p2 · · · pk,
where each pi is prime. For what number n ≤ 10,000 is xn the greatest?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-53

Exercises 9-53

O

X O

O
X O

O
X O

O X
X O

X
O

X
O O

O X
O

O X
X O

X
O

X
O O

X O
O

O

O X

O
O X

X O
O X

O
O X

X
O

X
O O

O X
O

X
O

X
O O

X O
O

X O
O X

O

O
X

O
O X

X O
O X

O O
X

O
X

O
X O

O O
X

X O

X O
O

X O
O

X O
O X

O

O
X

O
O X

O O
X

O
X

O
X O

O X
X O

O O
X

O X

O X
O

O X
X O

O X
O

Figure 9.25 The game tree for Tic-Tac.

In Chapter 3, we discussed the application of Boolean logic to AI-based approaches to playing games like Tic-Tac-Toe. (See p. 3-54,

or Figure 9.25 for a 2-by-2 version of the game [Tic-Tac; the 3-by-3 version is Tic-Tac-Toe].)

Specifically, recall the Tic-Tac-Toe game tree: the root of the tree is the empty board, and the children of any node in the tree

are the boards that result from any move made in any of the empty squares. We talked briefly about why chess is hard to solve using

an approach like this. (In brief: it’s huge.) The next few problems will explore why a little bit of cleverness helps a lot in solving

even something as simple as Tic-Tac-Toe.

9.103 Tic-Tac-Toe ends when either player completes a row, column, or diagonal. But for this question, assume that even after somebody

wins the game, the board is completely filled in before the game ends. (That is, every leaf of the game tree has a completely filled

board.) How many leaves are in the game tree?

9.104 Continue to assume that the board is completely filled in before the game ends. How many distinct leaves are there in the tree?

(That is, the order in which a player fills their squares doesn’t matter; if the same squares are filled, the boards count as the same.)

9.105 Continue to assume that the board is completely filled in before the game ends. Extend your answer to Exercise 9.103: how many

total boards appear in the game tree (as leaves or as internal nodes)? (Hint: it may be easiest to compute the number of boards after

k moves, and add up your numbers for k = 0, 1, . . . , 9.)

9.106 Continue to assume that the board is completely filled in before the game ends. How many distinct total boards—internal nodes or

leaves—are there in the tree?

There are still two optimizations left that we haven’t tried. The first is using the symmetry of the board to help us: for example, there

are really only three first moves that can be made in Tic-Tac-Toe: a corner, the middle of the board, and the middle of a side. The

second optimization is to truncate the tree when there’s a winner. These are both a bit tedious to track by hand, but it’s manageable

with a small program.

9.107 (programming required.) We can cut the size of the game tree down to less than a third of the original size—actually substantially

more!—by exploiting symmetry in plays. (We’re down to a third of the original size just within the first move.) Write a program to

compute the entire Tic-Tac-Toe game tree, and use it to determine the number of unique boards (counting as equivalent two boards

that match with respect to rotational or reflectional symmetry) in the game tree. How many boards are now in the tree?

9.108 (programming required.) We can reduce the size of the game tree just a bit further by not expanding the portions of the game tree

where one of the players has already won. Extend your implementation from the last exercise so that no moves are made in any

board in which O or X has already won. How many boards are in the tree now?

Recall Example 9.34: we must put n students (where n is even) into n
2 partnerships. (We don’t care about the order of the

partnerships, nor about the order of partners within a pair.) Here is an alternative way of solving this problem:

9.109 Consider sorting the n people alphabetically by name. Repeat the following n
2 times: for the unmatched person p whose name is

alphabetically first, choose a partner for p from the set of all other unmatched people. How many choices are there in iteration i?

How many choices are there, in total?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-54

9-54 Counting

9.110 Algebraically prove the following identity. (Hint: what does (n/2)! · 2n/2 represent?)

n/2∏

i=1

(n− 2i+ 1) =
n!

(n/2)! · 2n/2

Think of an n-gene chromosome as a permutation of the numbers {1, 2, . . . , n}, representing the order in which these n genes

appear. The following questions ask you to determine how many chromosome-level rearrangement events of a particular form

there are. (See, for example, Figure 3.33b.)

9.111 A prefix reversal inverts the order of the first j genes, for some index j satisfying j > 1 and j ≤ n. For example, for the chromosome

⟨5, 9, 6, 2, 1, 4, 7, 3, 8⟩ we could get the result ⟨6, 9, 5, 2, 1, 4, 7, 3, 8⟩ or ⟨1, 2, 6, 9, 5, 4, 7, 3, 8⟩ from a prefix reversal. How many

different prefix reversals are there for a 1000-gene chromosome?

9.112 A reversal inverts the order of the genes between index i and index j, for some i and j > i. For example, for the chromosome

⟨5, 9, 6, 2, 1, 4, 7, 3, 8⟩ we could get the result ⟨6, 9, 5, 2, 1, 4, 7, 3, 8⟩ or ⟨5, 9, 6, 4, 1, 2, 7, 3, 8⟩ from a reversal. How many different

reversals are there for a 1000-gene chromosome?

9.113 A transposition takes the genes between indices i and j and places them between indices k and k + 1, for some i and j > i and

k /∈ {i, i+ 1, . . . , j}. For example, for the chromosome ⟨5, 9, 6, 2, 1, 4, 7, 3, 8⟩ we could get the result ⟨5, 1, 4, 7, 3, 9, 6, 2 8⟩ or

⟨ 1, 4, 5, 9, 6, 2, 7, 3, 8⟩ from a transposition. How many different transpositions are there for a 1000-gene chromosome?

Imagine a round-robin chess tournament for 150 players, each of whom plays 7 games. (In other words, each player is guaranteed

to participate in precisely 7 games with 7 different opponents. Remember that each game has two players.)

9.114 There are 20 possible first moves for White in a chess game, and 20 possible first moves for Black in response. (See Example 9.15.)

Prove that there must be two different games in the tournament that began with the same first two moves (one by White and one

by Black).

9.115 Suppose that would-be draws in this tournament are resolved by a coin flip, so that every game has a winner and a loser. Prove

that there must be two participants in such a tournament who have precisely the same sequence of wins and losses (for example,

WWWLLLW).

9.116 Awin–loss record reports a number of wins and a number of losses (for example, 6 wins and 1 loss, or 3 wins and 4 losses), without

reference to the order of these results. Continuing to suppose that there are no draws in this tournament, identify as large a value

of k as you can for which the following claim is true, and prove that it’s true for your value of k: there is some win–loss record that

is shared by at least k competitors.

9.117 Now suppose that draws are allowed, so that competitors have a win–loss–draw record (for example, 2 wins, 1 loss, and 4 draws).

Identify the largest k for which there is some win–loss–draw record that is shared by at least k competitors, and prove that this

claim holds for the k you’ve identified.

A cellular automaton is a formalism that’s sometimes used to model complex systems—like the spatial distribution of populations,

for example. Here is the model, in its simplest form. We start from an n-by-n toroidal lattice of cells: a two-dimensional grid, that

“wraps around” so that that there’s no edge. (Think of a donut.) Each cell is connected to its eight immediate neighbors.

Cellular automata are a model of evolution over time: our model will proceed in a sequence of time steps. At every time step,

each cell u is in one of two states: active or inactive. A cell’s state may change from time t to time t+ 1. More precisely, each cell

u has an update rule that describes u’s state at time t+ 1 given the state of u and each of u’s neighbors at time t.

For example, see Figure 9.26 for the update rule for The Game of Life,which is the most famous model using cellular automata.

(The Game of Life was invented in 1970 by John Conway (1937–2020), a British mathematician.)

9.118 An update rule is a function that takes the state of a cell and the state of its eight neighbors as input, and produces the new state of

the cell as output. How many different update rules are there?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-55

Exercises 9-55

this cell will die from overcrowding
(it has 4 active neighbors)

this cell will die from loneliness
(it has 1 active neighbor)

this cell will become active
(it has 3 active neighbors)

time t time t+ 1

(a) The Game of Life update rule.

· · ·

(b) A sequence of configurations following this rule.

Figure 9.26 Each cell in the Game of Life has the same update rule: active cells with ≤ 1 or ≥ 4 active neighbors die,
and dead cells with exactly three living neighbors become alive.

9.119 Let’s call an update rule a strictly cardinal update rule if—as in the Game of Life—the state of a cell u at time t+ 1 depends only

the following: (i) the state of cell u at time t, and (ii) the number of active neighbors of cell u at time t. How many different strictly

cardinal update rules are there?

Suppose that we have an 10-by-10 lattice of 100 cells, and we have an update rule fu for every cell u. (These update rules might be

the same or differ from cell to cell.) Suppose the system begins in an initial configuration M0. Suppose we start the system at time

t = 0 in configuration M0, and derive the configuration Mt at time t ≥ 1 by computing

Mt(u) = fu(the states of u’s neighbors in Mt−1).

Let’s consider the possible outcomes of the sequence M0,M1,M2, Say that this sequence exhibits eventual convergence if the

following holds: there exists a time t ≥ 0 such that, for all times t′ ≥ t, we have Mt′ = Mt. (So the Life example in Figure 9.26

exhibits eventual convergence.) Otherwise, we’ll say that this sequence oscillates.

9.120 Given M0 and the fu’s, we’d like to know what the long-run behavior of this system is: does it eventually converge or does it

oscillate? Prove that, for a sufficiently large value of K, we have eventual convergence if and only if the following algorithm returns

True. Also compute the smallest value of K for which this algorithm is guaranteed to be correct.

• Start with M := M0 and t := 0.

• Repeat the following K times: update M to the next time step (that is, for each u compute the updatedM′(u) by evaluating fu on

u’s neighbor cells in M).

• If M would be unchanged by one additional round of updates, return True. Else return False.

9.121 Suppose that we place 1234 items into 17 buckets. (For example, consider hashing 1234 items into a 17-cell hash table.) Call the

number of items in a bucket its occupancy, and the maximum occupancy the number of items in the most-occupied bucket. What’s

the smallest possible maximum occupancy?

9.122 Consider a function f : A → B. Fill in the blank with a statement relating |A| and |B|, and then prove the resulting claim: if ,

then, for some b ∈ B, we have | {a ∈ A : f(a) = b} | ≥ 202.

9.123 Suppose that we quantize a set of values from S = {1, 2, . . . , n} into {k1, k2, . . . , k5} ⊂ S. (See Example 2.51.) Namely, we choose

these 5 values and then define a function q : S → {k1, k2, . . . , k5}. The maximum error of this quantization is maxx∈S |x − q(x)|.
Use the Pigeonhole Principle (or the “the maximum must exceed the average” generalization) to determine the smallest possible

maximum error.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-56

9-56 Counting

9.4 Combinations and Permutations
So much to win, so much to lose,
No marvel if I fear to choose.

Letitia Elizabeth Landon (1802–1838)
The Golden Violet with its tales of Romance and Chivalry, and other poems (1827)

So far in this chapter, we’ve been working to develop a toolbox of general techniques for counting

problems: the Sum Rule and Inclusion–Exclusion, the (Generalized) Product Rule, the Mapping Rule,

and the Division Rule. This section will be different; instead of a new technique, here we will devote our

attention to a particularly common kind of counting problem: the number of ways to choose a subset from

a given set of candidate elements. Let’s start with an illustrative example:

Example 9.39: Printing t-shirts.

Suppose you run a t-shirt shop. There is a collection of jobs that you’re asked to run, but there’s limited

time so you must choose which ones to actually print. There are 17 requested jobs {a, b, . . . , q}, but there
is only time to print 4 different jobs. How many ways are there to select 4 of these 17 candidate jobs?

Solution. There are two answers, depending on how we interpret the problem: does the order of the

printed jobs matter, or does it only matter whether a job was printed? (Are we choosing an ordered

4-tuple? Or an unordered subset of size 4?)

Order matters. Then the Generalized Product Rule immediately gives us the answer: there are 17 choices

for the first job, 16 for the second job, 15 for the third, and 14 for the fourth; thus there are 17 ·16 ·15 ·14
total choices. Another way to write 17 · 16 · 15 · 14 is 17!

13! : every multiplicand between 1 and 13 appears

in both the numerator and denominator, leaving only {17, 16, 15, 14} uncancelled. We can justify the 17!
13!

version of the answer using the Division Rule: we choose one of the 17! orderings of all 17 jobs, and

then print the first 4 jobs in this order—but we’ve counted each 4-job ordering 13! times (once for each

ordering of the 13 unprinted jobs), so we must divide by 13!.

Order doesn’t matter. As before, there are 17!
13! ways to choose an ordered sequence of 4 jobs. Because

order doesn’t matter, we have counted each set of four chosen jobs 4! times, once for each ordering of

them. By the Division Rule, then, there are 17!
13!·4! ways of selecting 4 unordered jobs from a set of 17.

Two different fundamental notions of choice are illustrated by Example 9.39: permutations, in which the

order of the chosen elements matters, and combinations, in which the order doesn’t matter. These two

notions will be our focus in this section. Here’s another example to further illustrate combinations:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-57

9.4 Combinations and Permutations 9-57

Example 9.40: Arranging letters of a bitstring.

How many different ways can you arrange the symbols in the “word” 000111? What about the “word”

00...011...1 containing k zeros and n− k ones?

Solution. This problem is just another application of the techniques we used for PERL and PEER and

SMALLTALK in Example 9.32. (We can think of the word 000111 just like a word like DEEDED: two

different letters, appearing three times each.) There are 6 total characters in the word, each appearing 3

times, so the total number of arrangements is 6!
3!·3! . (See Theorem 9.12.)

For the general version of the problem—the word 00...011...1, with k zeros and n − k ones—we

have a total of n characters, so there are n! ways of writing them down. But k! orderings of the zeros, and

(n− k)! orderings of the ones, are identical. Hence, by the Division Rule, the total number of orderings

is n!
k!·(n−k)! .

Combinations

The quantity that we computed in Example 9.40 is called the number of combinations of k elements chosen

from a set of n candidates:

Definition 9.15: Combinations.

Consider nonnegative integers n and k with k ≤ n. The quantity
(n
k

)
is defined as

(
n
k

)
=

n!
k! · (n− k)!

.

The expression
(n
k

)
is read as “n choose k.” (Sometimes

(n
k

)
is also called a binomial coefficient, for reasons

that we’ll see in Section 9.4.3. It’s also sometimes denoted C(n, k)—with a “C” as in “Combination”.)

As we just argued in Example 9.40, the quantity
(n
k

)
denotes the number of ways to choose a k-element

subset of a set of n elements. For convenience, define
(n
k

)
= 0 whenever n < 0 or k < 0 or k > n: there

are zero ways to choose a k-element subset of a set of n elements under these circumstances.

Taking it further: When there are annoying complications (or divide-by-zero errors or the like) in the boundary cases of a

definition, it’s often easiest to tweak the definition to make those cases less special. (Here, for example, instead of having
(7
8

)
be

undefined, we treat
(7
8

)
as 0.) A similar idea in programming can make life much simpler when you encounter data structures

with complicated edge conditions—for example, a node in a linked list that might not have a successor. A sentinel is a “fake”

element that you might add to the boundary of a data structure that makes the edge elements of the data structure less special.

For example, in image processing, we might augment an n-by-m image with an extra 0th and (m + 1)st column, and an extra

0th and (n + 1)st row, of blank pixels. Once these “border pixels” are added, every pixel in the image has a neighbor in each

cardinal direction. Thus there’s no special code required for edge pixels in code to, for example, apply a blur filter to the image.

Here are a few small examples of counting problems that use combinations:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-58

9-58 Counting

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Figure 9.27 All 8-bit bitstrings with exactly 2 ones.

Example 9.41: 8-bit strings with 2 ones.

How many different 8-bit strings have exactly 2 ones?

We solved this precise problem in Example 9.3 using the Sum Rule, but combinations give us an

easier way to answer this question. We must choose 2 out of 8 indices to make equal to one. There are
(8
2

)
= 8!

2!·(8−2)! = 8!
2!·6! =

8·7
2 = 28 such choices of indices, and thus

(8
2

)
different 8-bit bitstrings with

exactly 2 ones. These 28 strings are shown in Figure 9.27.

Example 9.42: 32-bit strings with < 3 ones.

How many different 32-bit strings have fewer than 3 ones?

We will use the Sum Rule, plus the formula for combinations. (We can partition the set of 32-bit

strings that have fewer than 3 ones into those with 0, 1, or 2 ones.) Thus there are
(32

0

)
+
(32

1

)
+
(32

2

)
=

1+ 32+ 32·31
2 = 1+ 32+ 496 = 529 total such strings.

(Recall that 0! = 1, so
(32

0

)
= 32!

0!·(32−0)! =
32!

0!·32! =
32!
1·32! =

32!
32! = 1.)

Finally, here’s an example of counting using combinations that relates counting to probability. (There’s

much more about probability in Chapter 10.) If we flip an unbiased coin (in other words, a coin that comes

up heads with probability 1
2 and tails with probability 1

2 each time we flip it), then every sequence of coin

flips is equally likely. The probability that an “event” E happens when we flip an unbiased coin is the

fraction of possible flip sequences for which E actually occurs.

Example 9.43: Exactly 50% heads.

Suppose we flip an unbiased coin 10 times. What is the probability that precisely 5 flips come up heads?

There are 210 = 1024 total sequences, of which
(10

5

)
= 10!

5!·5! = 252 have precisely 5 heads. Thus

there’s a 252
1024 ≈ 0.2461 chance of exactly half of the flips being heads.

9.4.1 Four Different Ways to Select k out of n Options

In Example 9.39, we saw two different ways in which we can imagine choosing a subset of k distinct

elements from a set S of n candidates, depending on whether the order in which we choose those k elements

matters. There is another dichotomy that can arise in counting problems: we can imagine circumstances in

which we choose k elements from a set S, but where repetition is allowed (that is, we can choose the same

element more than once). In other scenarios, repetition might not make sense. Here are some examples of

all four situations (see also Figure 9.28):

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-59

9.4 Combinations and Permutations 9-59

order matters order matters order irrelevant order irrelevant
repetition allowed repetition not allowed repetition allowed repetition not allowed

nk
n!

(n− k)!

(n+ k− 1
k

) (n
k

)

(9 ways for k = 2, n = 3) (6 ways for k = 2, n = 3) (6 ways for k = 2, n = 3) (3 ways for k = 2, n = 3)

A, then A
A, then B
B, then A
A, then C
C, then A
B, then B
B, then C
C, then B
C, then C

A, then B
B, then A
A, then C
C, then A

B, then C
C, then B

A and A
A and B

A and C

B and B
B and C

C and C

A and B

A and C

B and C

Figure 9.28 Four ways of choosing k of n items—depending on whether we can pick the same element more than once,
and whether the order of choices matters—and the ways to choose 2 elements from the candidates A, B, and C in each.

Example 9.44: Ways of choosing.

You order a two-scoop ice cream cone from a list of flavors. Order matters: a chocolate scoop on top of

a mint scoop ̸= mint on top of chocolate. Repetition is allowed: you can choose vanilla for both scoops.

Your soccer game is tied, and you must choose 5 of your 11 players to take penalty kicks to break the

tie. Order matters: the kicks are taken in sequence, so Rapinoe thenWambach ̸=Wambach then Rapinoe.

Repetition is forbidden: each player is allowed to take only one kick.

You order a three-salad salad sampler from a list of salads. Order doesn’t matter: salads are served on

a round plate, so it doesn’t matter which one is “first.” Repetition is allowed: you can choose the Caesar

as two or all three of your salads.

You select a starting lineup of 5 basketball players from your 13-person team. Order doesn’t matter:

all 5 chosen players are equivalent in starting the game. Repetition is forbidden: you must choose five

different players.

Here we will consider all four types of counting problems—ordered or unordered choice, with or without

repetition—and do a few examples. See Figure 9.28 for a summary of the number of ways to make these

different types of choices.

When order matters and repetition is forbidden

Suppose that we choose a sequence of k distinct elements from a set S: that is, the order of the selected

elements matters and repetition is not allowed. (For example, in a player draft for a sports league, no player

can be chosen more than once—”repetition is forbidden”—and the outcome of the draft depends not just

on whether Babe Ruth was chosen, but also whether it was the Eagles or the Wildcats that selected him.)

In other words, we make k successive selections from S, but no candidate can be chosen more than once.

Such a sequence is sometimes called a k-permutation of S—an ordered sequence of k distinct elements of

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-60

9-60 Counting

S. (Recall from Definition 9.7 that a permutation of a set S is an ordering of S’s elements. Some people

denote the number of ways of choosing an ordered sequence of k distinct selections from a set of n options

by P(n, k), because “permutation” starts with “P.”)

There are n!
(n−k)! different k-permutations of an n-element set S, by the Generalized Product Rule.

(Specifically, there are

(n)

choices of

first element

· (n− 1)

choices of

second element

· · · · · (n− k+ 1)

choices of

kth element

total choices, and n!
(n−k)! = n · (n− 1) · (n− 2) · · · · · (n− k+ 1).)

Example 9.45: 4 of 10.

Suppose that you are asked to place four of the cards {A♡, 2♡, · · · , 10♡} on the table, arranged from

left to right in an order of your choosing. There are 10 · 9 · 8 · 7 = 10!
(10−4)! such arrangements: order

matters (A234♡ ̸= 432A♡) and repetition is not allowed (4444♡ isn’t a valid arrangement, because you

only have one 4♡ card).

When order matters and repetition is allowed

Suppose that we simply choose a sequence of k (not necessarily distinct) elements: that is, order matters

and repetition is allowed. That is, we make k successive selections from S, and we’re allowed to make the

same choice multiple times. (For example, you and k − 1 friends go to a Chinese restaurant with n items

on the menu, and each of you orders something. You’re allowed to order the same dish as your friends—

”repetition is allowed”—but you getting the Tofu with Black Bean Sauce and your vegan friend getting

Twice-Cooked Pork is definitely different from the other way around.)

Then there are nk different ways to make this choice, by the Product Rule: at every stage, there are n

possible choices, and there are k stages.

Example 9.46: 4 of 10, a second way.

Suppose that you are asked to create a 4-digit integer. There are 104 such integers: order matters (1234 ̸=
4321) and repetition is allowed (4444 is a valid 4-digit number).

When order doesn’t matter and repetition is forbidden

Suppose that we choose an unordered set of k distinct elements: that is, order does not matter and repetition

is not allowed. (For example, you and n− 1 friends enter a raffle in which k identical new cell phones will

be given away. Each of you puts your name on one of n cards that are placed in a hat, and k cards are drawn

to choose the winners. Cards for winners are not put back into the hat after they’re drawn, so nobody can

win twice—”repetition is forbidden”—but Alice and Bob winning is the same as Bob and Alice winning.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-61

9.4 Combinations and Permutations 9-61

When we choose an unordered set of k distinct elements from a set of n options, there are
(n
k

)
dif-

ferent ways to make this choice, by the definition of combination. Such a subset is sometimes called a

k-combination of S—an unordered set of k distinct elements of S. (Recall from Definition 9.15 that a

combination of elements from a set S is precisely an unordered subset of elements from S.)

Example 9.47: 4 of 10, another way.

Suppose that you’re asked to create a 10-bit number with exactly 4 ones. You do so by starting with

0000000000 and choosing 4 indices to change from 0 to 1. There are
(10

4

)
such bitstrings: the order in

which you choose a bit to make a 1 doesn’t matter (changing bit #2 and then bit #7 to 1 yields the same

bitstring as changing bit #7 and then bit #2 to 1) and repetition is not allowed (you have to change 4

different bits to 1).

When order doesn’t matter and repetition is allowed

While these three types of selecting k out of n elements are the most frequent, the fourth possibility can

sometimes arise, too: order doesn’t matter but repetition is allowed. Let’s build some intuition for this case

with a longer example:

Problem-solving tip: When you encounter a problem that seems completely novel, run through the techniques you know about

and try them on for size, even if they’re not an obvious fit. The type of counting in Example 9.48 doesn’t seem like it has a lot to

do with combinations, but by changing the way you view this problem it can be transformed into a problem you’ve seen before.

Example 9.48: Taking notes on six sheets of paper in three classes.

You discover that your school notebook has only k = 6 sheets of paper left in it. You are attending n = 3

different classes today: Archaeology (A), Buddhism (B), and Computer Science (C). How many ways

are there to allocate your six sheets of paper across your three classes? (No paper splitting or hoarding:

each sheet must be allocated to one and only one class!)

(Here’s another way to phrase the question: you must choose how many pages to assign to A, how

many to B, and how many to C. That is, you must choose three nonnegative integers a, b, and c with

a+ b+ c = 6. How many ways can you do it?)

Solution. The 28 ways of allocating your paper are shown in Figure 9.29, sorted by the number of

pages allocated to Archaeology (and breaking ties by the number of pages allocated to Buddhism). The

allocations are shown in three ways:

• Pages are represented by the class name.

• Pages are represented by 2, with | marking divisions between classes: we allocate the number of

pages before the first divider to A, the number between the dividers to B, and the number after the

second divider to C.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-62

9-62 Counting

(a) (b)

AAAAAA
AAAAA B
AAAAA C
AAAA BB
AAAA B C
AAAA CC
AAA BBB
AAA BB C
AAA B CC
AAA CCC
AA BBBB
AA BBB C
AA BB CC
AA B CCC
AA CCCC
A BBBBB
A BBBB C
A BBB CC
A BB CCC
A B CCCC
A CCCCC

BBBBBB
BBBBB C
BBBB CC
BBB CCC
BB CCCC
B CCCCC

CCCCCC

(c) A |B |C

222222| |
22222 |2 |
22222 | |2
2222 |22 |
2222 |2 |2
2222 | |22

222 |222 |
222 |22 |2
222 |2 |22

222 | |222

22 |2222 |
22 |222 |2
22 |22 |22

22 |2 |222

22 | |2222

2 |22222 |
2 |2222 |2
2 |222 |22

2 |22 |222

2 |2 |2222

2 | |22222

|222222|
|22222 |2
|2222 |22

|222 |222

|22 |2222

|2 |22222

| |222222

(d)

00000011
00000101
00000110
00001001
00001010
00001100
00010001
00010010
00010100
00011000
00100001
00100010
00100100
00101000
00110000
01000001
01000010
01000100
01001000
01010000
01100000
10000001
10000010
10000100
10001000
10010000
10100000
11000000

Figure 9.29 The ways to allocate 6 sheets of paper across three classes {A, B, C}. (a) Any ordering of 6 pieces of paper
and 2 dividers tabs defines three sections (before, between, and after the dividers); (b) representing pages allocated to
each class by the class name; (c) representing pages allocated to each class by 2, with | marking divisions between
classes; and (d) representing pages allocated to each class by 0, with 1 marking divisions between classes.

• Pages are represented by 0, with 1 marking divisions between classes: as in the 2-and-| representa-

tion, we allocate pages before the first 1 to A, those between the 1s to B, and those after the second

1 to C.

All three versions of this table accurately represent the full set of 28 allocations, but let’s concentrate on

the representation in the second and third columns—particularly the third. The 0-and-1 representation in

the third column contains exactly the same strings as Figure 9.27, which listed all 28 =
(8
2

)
of the 8-bit

strings that contain exactly 2 ones.

In a moment, we’ll state a theorem that generalizes this example into a formula for the number of ways to

select k out of n elements when order doesn’t matter but repetition is allowed. But, first, here’s a slightly

different way of thinking about the result in Example 9.48 that may be more intuitive.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-63

9.4 Combinations and Permutations 9-63

Suppose that we’re trying to allocate a total of k pages among n classes. Imagine placing the k pages

into a three-ring binder along with n − 1 “divider tabs” (the kind that separate sections of a binder), as in

Figure 9.29a. There are now n+ k− 1 things in your binder. (In Example 9.48, there were 6 pages and 2

dividers, so 8 total things are in the binder.) The ways of allocating the pages precisely correspond to the

ways of ordering the things in the binder—that is, choosing which of the n + k − 1 things in the binder

should be blank sheets of paper, and which should be dividers. So there are
(n+k−1

k

)
ways of doing so. In

Example 9.48, we had n = 3 and k = 6, so there were
(8
6

)
= 28 ways of doing this allocation.

While the description in Example 9.48 wasn’t stated in precisely these terms, our paper-allocation task

was really a task about choosing with repetition: six times (once for each piece of paper), we select one

of the elements of the set {A,B,C} of classes. We may select the same class as many times as we wish

(“repetition is allowed”), and the pieces of paper are indistinguishable (“order doesn’t matter”). Here is the

general statement of the number of ways to select k out of n elements for this scenario:

Theorem 9.16: Choosing with repetition when order doesn’t matter.

The number of ways to select k out of n elements when order doesn’t matter but repetition is allowed is
(n+k−1

k

)
.

Proof. We’ll give a proof based on the Mapping Rule. We can represent a particular choice of k elements

from the set of n candidates as a sequence x ∈ (Z≥0)n such that
∑n

i=1 xi = k. (Specifically, xi tells us how

many times we chose element i.) Define

X =
{
x ∈ (Z≥0)n :

∑n
i=1 xi = k

}

and S = {x ∈ {0, 1}n+k−1
: x contains exactly n− 1 ones and k zeros} .

We claim that there is a bijection between X and S. Specifically, define f : X→ S as

f(x1, x2, . . . , xn) = 0 0 · · · 0
x1 times

1 0 0 · · · 0
x2 times

1 · · · 1 0 0 · · · 0
xn times

(This representation is precisely the one in Example 9.48.) Then f is a bijection: every element of S

corresponds to one and only one element of X. By Example 9.40, then, the cardinality of S is
(n+k−1

k

)
.

Here’s another example of this type of choice:

Example 9.49: 4 of 10, one last way.

Suppose that you have decided to buy 4 total drinks for a group of 10 of your friends. (You may buy

multiple drinks for the same friend.) You can think of lining your friends up and performing a total of 13

successive actions, each of which is either (a) buying a drink for the friend immediately in front of you,

or (b) shouting “next!”. Of your 13 actions, 4 must be drink purchases. (The other 9 must be shouts of

“next!”) There are
(13

4

)
ways to choose these actions.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-64

9-64 Counting

Choosing k of n elements, summarized

We’ve now discussed four notions of choosing k elements from a set of n candidates, depending on whether

we could choose the same option more than once and whether the order of our choices mattered:

• order matters and repetition is allowed: nk ways.

• order matters and repetition is forbidden: n!
(n−k)! ways.

• order doesn’t matter and repetition is allowed:
(n+k−1

k

)
ways.

• order doesn’t matter and repetition is forbidden:
(n
k

)
ways.

(Or see Figure 9.28 for a summary.) We’ve also considered the same example—choosing 4 of 10 options—

in each setting, and the number of ways to do so was different in each of the four different scenarios:

• order matters and repetition is allowed: 10,000 = 104 ways.

• order matters and repetition is forbidden: 5040 = 10 · 9 · 8 · 7 ways.

• order doesn’t matter and repetition is allowed: 715 =
(13

4

)
ways.

• order doesn’t matter and repetition is forbidden: 210 =
(10

4

)
ways.

Taking it further: In CS, we frequently encounter tasks where we must identify the best solution from a set of possibilities. For

example, we might want to find the longest increasing subsequence (LIS) of a sequence of n integers. A brute-force algorithm is

one that solves the problem by literally trying every possible solution and selecting the best. (For LIS, there are 2n subsequences,

so this algorithm is very slow.) But if there’s a certain kind of structure and enough repetition in the subproblems that arise

in a naïve recursive solution, a more advanced algorithmic design technique called dynamic programming can yield a much

faster algorithm. And counting the number of subproblems—and the number of distinct subproblems!—is what establishes when

algorithms using brute force or dynamic programming are good enough. See p. 9-73.

9.4.2 Some Properties of
(n
k

)
, and Combinatorial Proofs

Of the ways of choosing k elements from n candidates explored in Section 9.4.1, perhaps the most common

is the setting when order doesn’t matter and repetition is forbidden. In this section, we’ll explore some of

the remarkable mathematical properties of the numbers—the values of
(n
k

)
—that arise in this scenario.

The properties that we’ll prove here (and those that you’ll establish in the exercises) will be equalities

of the form x = y for two expressions x and y. We’ll generally be able to give two very different styles

of proof that x = y. One type of proof uses algebra, typically using the definition of
(n
k

)
and algebraic

manipulations to show that x and y are equal. The other type of proof will be a more story-based approach,

called a combinatorial proof,where we argue that x = y by explaining how x and y are really just two ways

of looking at the same set:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-65

9.4 Combinations and Permutations 9-65

Definition 9.17: Combinatorial proof.

A combinatorial proof establishes that two quantities x and y are equal by defining a set S and proving

that |S| = x and |S| = y by counting |S| in two different ways.

The algebraic approach is perhaps apparently more straightforward, but combinatorial proofs can be more

fun. Here’s a first example:

Theorem 9.18: A symmetry in choosing.

For any positive integer n and any integer k ∈ {0, 1, . . . , n}, we have
(n
k

)
=
(n
n−k

)
.

Proof #1 of
(n
k

)
=
(n
n−k

)
, via algebra. We simply follow our noses through the definition:

(n
k

)
= n!

k!·(n−k)! definition of combinations

= n!
(n−k)!·k! commutativity of multiplication

= n!
(n−k)!·(n−(n−k))! antisimplification: k = n− (n− k)

=
(n
n−k

)
. definition of combinations

Here is a second proof of Theorem 9.18—this time a combinatorial proof. The basic idea is that we will

construct a set S such that we can prove that |S| =
(n
k

)
and we can prove that |S| =

(n
n−k

)
. (Thus we can

conclude
(n
k

)
=
(n
n−k

)
.)

Proof #2 of
(n
k

)
=
(n
n−k

)
, via a combinatorial proof: Suppose that n students submit implementations of

Bubble Sort in a computer science class. The instructor has k gold stars, which will be affixed to each of k

different implementations. Let S be the set of ways to affix gold stars. Here are two ways to compute |S|:

• First, we claim that |S| =
(n
k

)
. Specifically, the instructor will choose k of the n submissions and affix

gold stars to the k chosen elements. There are
(n
k

)
ways of doing so.

• Second, we claim that |S| =
(n
n−k

)
. Specifically, the instructor will choose n− k of the n submissions

that will not be adorned with gold stars. The remaining unchosen submissions will be adorned. There

are
(n
n−k

)
ways of choosing the unadorned submissions.

But |S| is the same regardless of how we count it! So
(n
k

)
= |S| =

(n
n−k

)
and the theorem follows.

(Another way to think about the combinatorial proof: an n-bit string with k ones is an n-bit string with

n − k zeros; the number of choices for where the ones go is identical to the number of choices for where

the zeros go.)

A combinatorial proof requires creativity—what set S should we consider?—but the argument that the

proof is correct is generally comparatively straightforward. Thus the challenge in proving an identity with a

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-66

9-66 Counting

combinatorial proof is a challenge of narrative: we must find a story in which the two sides of the equation

both capture the set described by that story.

Problem-solving tip: The hard part in a combinatorial proof is coming up with a story that explains both sides of the equation.

Understanding what the more complicated side of the equation means is often a good place to start.

Pascal’s Identity

Here’s another example claim with both algebraic and combinatorial proofs:

Theorem 9.19: Pascal’s Identity.

For any integer n ≥ 1 and any k ∈ {0, 1, . . . , n}, we have

(
n− 1
k

)
+

(
n− 1
k− 1

)
=

(
n
k

)
.

(Pascal’s identity is named after Blaise Pascal (1623–1662), a French mathematician. The programming

language Pascal was also named in his honor.)

Proof #1 of Pascal’s Identity (algebra). Observe that if k = 0 or k = n, the identity follows immediately:

by definition, we have
(n
0

)
= 1 = 1+ 0 =

(n−1
0

)
+
(n−1
−1

)
and similarly

(n
n

)
= 1 = 0+ 1 =

(n−1
n

)
+
(n−1
n−1

)
.

For the non-boundary cases, we’ll manipulate the left-hand side until it’s equal to the right-hand side:

(n−1
k

)
+
(n−1
k−1

)

= (n−1)!
k!·(n−1−k)! + (n−1)!

(k−1)!·(n−k)! definition of combinations

= (n−1)!
k!·(n−1−k)! · n−k

n−k + (n−1)!
(k−1)!·(n−k)! · kk multiplying by 1 = x

x

= (n−1)!·(n−k)
k!·(n−k)! + (n−1)!·k

k!·(n−k)! (k− 1)! · k = k! and (n− 1− k)! · (n− k) = (n− k)!

= (n−1)!·[(n−k)+k]
k!·(n−k)! factoring

= n!
k!·(n−k)! n− k+ k = n, and (n− 1)! · n = n!

=
(n
k

)
. definition of combinations

Proof #2 of Pascal’s Identity (combinatorial proof). For the case of k = 0 or k = n, the argument is the

same as in Proof #1. Otherwise, consider a set of n ≥ 1 employees, one of whom is named Babbage. How

many ways can we select a subset of k different employees? Here are two different ways of counting the

number of these subsets:

• We choose k of the n employees. There are
(n
k

)
ways to do so.

• We decide whether to include Babbage, and then fill in the rest of the team:

– If we pick Babbage, we need to pick k − 1 further employees from the n − 1 other (non-Babbage)

employees; thus there are
(n−1
k−1

)
ways to select a team that includes Babbage.

– If we don’t pick Babbage, we pick all k employees from the n− 1 others; thus there are
(n−1

k

)
ways

to select a team that does not include Babbage.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-67

9.4 Combinations and Permutations 9-67

By the Sum Rule, there are therefore
(n−1
k−1

)
+
(n−1

k

)
ways to choose a team.

Because we’ve counted the cardinality of one set in two different ways, the two sizes must be equal.

Therefore
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
and the theorem follows.

Taking it further: World War II was perhaps the first major historical moment in which computer science—and, by the end of

the war, the computer—was central to the story. The German military used a complex cryptographic device called the Enigma

machine for encryption of military communication during the war. The Enigma machine, which was partially mechanical and

partially electrical, had a large (though not unfathomably large) set of possible physical configurations, each corresponding to

a different cryptographic “key.” Among the first applications of an electronic computer—and the reason that one of the first

computers was designed and built in the first place—was in breaking these codes, in part by exhaustively exploring the set of

possible keys. As such, understanding the number of different keys in the system (a counting problem!) was crucial to the Allies’

success in breaking the Enigma code. For more, see p. 9-75.

9.4.3 The Binomial Theorem

The quantity
(n
k

)
is sometimes called a binomial coefficient, for reasons that we’ll see in this section. (A

binomial—Latin bi “two” + nom “name”—is a special kind of polynomial—poly “many” + nom “name”—

that has precisely two terms.)

First, a reminder: the product of two binomials (x+ y) and (a+ b) is xa+ xb+ ya+ yb. (You may have

once learned the “FOIL” mnemonic for the terms of the product: first = xa; outer = xb; inner = ya; and

last = yb.) Thus when we square x+ y—that is, multiply it by itself—we get

(x+ y) · (x+ y) = xx+ xy+ yx+ yy = 1 · x2 + 2 · xy + 1 · y2.

Observe that the three coefficients of these terms, in order, are ⟨1, 2, 1⟩ = ⟨
(2
0

)
,
(2
1

)
,
(2
2

)
⟩. The binomial

theorem is a general statement of this pattern: when we multiply out the expression (x+y)n, the coefficient

of the xkyn−k term is
(n
k

)
:

Theorem 9.20: The Binomial Theorem.

For any a ∈ R, any b ∈ R, and any n ∈ Z≥0, we have (a+ b)n =
n∑

i=0

(n
i

)
aibn−i.

Before we prove the theorem, let’s start with some intuition aboutwhy these coefficients arise. For example,

let’s compute (x+ y)4 = (x+ y) · (x+ y) · (x+ y) · (x+ y), without doing any simplification:

(x+ y) · (x+ y) · (x+ y) · (x+ y)

= (xx+ xy+ yx+ yy) · (x+ y) · (x+ y)

= (xxx+ xyx+ yxx+ yyx+ xxy+ xyy+ yxy+ yyy) · (x+ y)

= xxxx+ xyxx+ yxxx+ yyxx+ xxyx+ xyyx+ yxyx+ yyyx

+ xxxy+ xyxy+ yxxy+ yyxy+ xxyy+ xyyy+ yxyy+ yyyy.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-68

9-68 Counting

Every term of the resulting expression consists of 4 multiplicands, one from each of the 4 copies of (x+y).

How many of these 16 terms contain, say, 2 copies of x and 2 copies of y? There are 6—yyxx, xyyx, yxyx,

xyxy, yxxy, and xxyy—which is just the number of elements of {x, y}4 that contain precisely two copies of

x. While the symbols are different, it’s easy to see that this quantity is precisely the number of elements of

{0, 1}4 that contain precisely two ones—which is just
(4
2

)
.

We will prove the Binomial Theorem in generality in a moment, but to build a little bit of intuition for

the proof, let’s look at a special case first:

Problem-solving tip: When you’re asked to solve a problem for a general value of n, one good way to get started is to try to solve

it for a specific small value of n—and then try to generalize your solution to an arbitrary n. It’s often easier to generalize from a

particular n to a general n than to give a fully generally answer “from scratch.”

Example 9.50: The coefficients of (x+ y)3.

We’re going to show that (x+y)3 = x3+3x2y+3xy2+y3 in the same style that we’ll use in the full proof of

the Binomial Theorem.We’ll start with the observation, made previously, that (x+y)2 = x2+2xy+y2 =
(2
0

)
x2+

(2
1

)
xy+

(2
2

)
y2. A key step will make use of Theorem 9.19 to move from the coefficients of (x+y)2

to the coefficients of (x+ y)3.

(x+ y)3 = (x+ y) · (x+ y)2

= (x+ y) ·
[(2

0

)
x2 +

(2
1

)
xy+

(2
2

)
y2
]

=
(2
0

)
x3 +

(2
1

)
x2y+

(2
2

)
xy2

= x ·
((2

0

)
x2 +

(2
1

)
xy +

(2
2

)
y2
)

+
(2
0

)
x2y+

(2
1

)
xy2 +

(2
2

)
y3

= y ·
((2

0

)
x2 +

(2
1

)
xy +

(2
2

)
y2
)

which, collecting like terms, simplifies to

(x+ y)3 =
(2
0

)
x3 +

[(2
1

)
+
(2
0

)]
x2y+

[(2
2

)
+
(2
1

)]
xy2 +

(2
2

)
y3.

By Theorem 9.19, we have that
(2
1

)
+
(2
0

)
=
(3
1

)
and

(2
2

)
+
(2
1

)
=
(3
2

)
, so

(x+ y)3 =
(2
0

)
x3 +

(3
1

)
x2y+

(3
2

)
xy2 +

(2
2

)
y3

Because
(n
n

)
= 1 and

(n
0

)
= 1 for any n, we have that

(2
0

)
=
(3
0

)
and

(2
2

)
=
(3
3

)
, and thus

(x+ y)3 =
(3
0

)
x3 +

(3
1

)
x2y+

(3
2

)
xy2 +

(3
3

)
y3

= x3 + 3x2y+ 3xy2 + y3.

The combination notation can sometimes obscure the structure of the proof; for further intuition, here is

what this proof looks like, without the notational overhead:

(x+ y)3 = (x+ y) · (x+ y)2

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-69

9.4 Combinations and Permutations 9-69

= (x+ y) · (x2 + 2xy+ y2)

= (x3 + 2x2y+ xy2) + (x2y+ 2xy2 + y3)

= x3 + (2+ 1)x2y+ (1+ 2)xy2 + y3

= x3 + 3x2y+ 3xy2 + y3.

Proof of the Binomial Theorem

We’re now ready to give a proof of the general form of the Binomial Theorem. Our proof will use mathe-

matical induction on the exponent, and the structure of the inductive case of the proof will precisely mimic

that of Example 9.50.

Proof of the Binomial Theorem. Let a and b be arbitrary real numbers. We wish to prove that, for any

integer n ≥ 0,

(a+ b)n =
n∑

i=0

(n
i

)
aibn−i.

We proceed by induction on n.

The base case (n = 0) is straightforward: anything to the 0th power is 1, so in particular (a+ b)0 = 1.

And
∑0

i=0

(0
i

)
aib0−i =

(0
0

)
· 1 · 1 = 1.

For the inductive case (n ≥ 1), we assume the inductive hypothesis (a+ b)n−1 =
∑n−1

i=0

(n−1
i

)
aibn−1−i.

We must prove that (a+ b)n =
∑n

i=0

(n
i

)
aibn−i. Our proof echoes the structure of Example 9.50:

(a+ b)n = (a+ b) · (a+ b)n−1 definition of exponentiation

= (a+ b) ·
n−1∑

i=0

(n−1
i

)
aibn−1−i inductive hypothesis

= a ·
[
n−1∑

i=0

(n−1
i

)
aibn−1−i

]
+ b ·

[
n−1∑

i=0

(n−1
i

)
aibn−1−i

]
distributing the multiplication

=

[
n−1∑

i=0

(n−1
i

)
ai+1bn−1−i

]
+

[
n−1∑

i=0

(n−1
i

)
aibn−i

]
distributing the multiplication, again

=




n∑

j=1

(n−1
j−1

)
ajbn−j


+

[
n−1∑

i=0

(n−1
i

)
aibn−i

]
. reindexing the first summation (j := i+ 1)

By separating out the i = 0 and j = n terms from the two summations, and then combining like terms, we

have

(a+ b)n =




n−1∑

j=1

(n−1
j−1

)
ajbn−j


+

[
n−1∑

i=1

(n−1
i

)
aibn−i

]
+
(n−1
n−1

)
anbn−n +

(n−1
0

)
a0bn−0

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-70

9-70 Counting

=




n−1∑

j=1

((n−1
j−1

)
+
(n−1

j

))
ajbn−j


+

(n−1
n−1

)
anbn−n +

(n−1
0

)
a0bn−0.

Applying Theorem 9.19 to substitute
(n
j

)
for
(n−1
j−1

)
+
(n−1

j

)
and using the fact that

(n−1
n−1

)
= 1 =

(n
n

)
and

(n−1
0

)
= 1 =

(n
0

)
, we have

(a+ b)n =




n−1∑

j=1

(n
j

)
ajbn−j


+

(n−1
n−1

)
anbn−n +

(n−1
0

)
a0bn−0 (n

j

)
=

(n−1
j−1

)
+

(n−1
j

)

=




n−1∑

j=1

(n
j

)
ajbn−j


+

(n
n

)
anbn−n +

(n
0

)
a0bn−0 (n−1

n−1

)
= 1 =

(n
n

)
and

(n−1
0

)
= 1 =

(n
0

)

=




n∑

j=0

(n
j

)
ajbn−j


 , incorporating the j = 0 and j = n terms back into the summation

which proves the theorem.

9.4.4 Pascal’s Triangle

Much of this section has been devoted to understanding the binomial coefficients, through the Binomial

Theorem and through combinatorial proofs of a number of their other properties.We’ll close our discussion

of binomial coefficients with a visual representation of these quantities, called Pascal’s triangle. (Like

Pascal’s identity, Pascal’s triangle is named after the 17th-century French mathematician Blaise Pascal.)

Pascal’s triangle arranges the binomial coefficients in a classical and very useful way: the nth row of

Pascal’s triangle consists of all of the n + 1 binomial coefficients
(n
0

)
,
(n
1

)
, · · · ,

(n
n

)
, in order. Figure 9.30

(0
0

)

(1
0

) (1
1

)

(2
0

) (2
1

) (2
2

)

(3
0

) (3
1

) (3
2

) (3
3

)

(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)

(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

(6
0

) (6
1

) (6
2

) (6
3

) (6
4

) (6
5

) (6
6

)

(7
0

) (7
1

) (7
2

) (7
3

) (7
4

) (7
5

) (7
6

) (7
7

)

(8
0

) (8
1

) (8
2

) (8
3

) (8
4

) (8
5

) (8
6

) (8
7

) (8
8

)

...

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

...

Figure 9.30 The top of Pascal’s triangle, in both “choose” notation and in numerical form.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-71

9.4 Combinations and Permutations 9-71

shows the first several rows of Pascal’s triangle. Many of the properties of the binomial coefficients that

we’ve established previously can be seen by looking at patterns visible in Pascal’s triangle—as can some

others that we’ll prove here, or that you’ll prove in the exercises.

For example, Figures 9.31a and 9.31b give visualizations of two properties that we’ve already proven.

Theorem 9.18 states that
(n
k

)
=
(n
n−k

)
; this theorem is reflected by the fact that the numerical values of

Pascal’s triangle are symmetric around a vertical line drawn down through the middle of the triangle.

And Theorem 9.19 (“Pascal’s Identity”), which states that
(n−1

k

)
+
(n−1
k−1

)
=
(n
k

)
, is illustrated by the fact

that each entry in Pascal’s triangle is the sum of the two elements immediately above it (up-and-left and

up-and-right).

There are many other notable properties of the binomial coefficients, many of which we can see more

easily by looking at Pascal’s triangle. Here’s one example; a number of other properties are left to you in

the exercises. Let’s look at the row sums of Pascal’s triangle—that is, computing
(n
0

)
+
(n
1

)
+ · · ·+

(n
n

)
for

different values of n. (See Figure 9.31c.) From calculating the row sum for a few small values of n, we see

that the nth row appears to have value equal to 2n. (Incidentally, the sum of the squares of the numbers

in any particular row in Pascal’s triangle also has a special form, as you’ll see in Exercise 9.173.) Indeed,

the power-of-two pattern for the row sums of Pascal’s triangle that we observe in Figure 9.31c holds for

arbitrary n—and we’ll prove this theorem here, in several different ways.

Theorem 9.21: Sum of a row of Pascal’s triangle.
∑n

i=0

(n
i

)
= 2n.

Proof #1 (algebraic/inductive) [sketch]. We can gain a bit of intuition for this claim from Theorem 9.19

(Pascal’s Identity): each entry
(n
k

)
in the nth row is added into exactly two entries in the (n + 1)st row,

namely
(n+1

k

)
and

(n+1
k+1

)
. Therefore the values in row #n of Pascal’s triangle each contribute twice to the

values in row #(n+1), and therefore the (n+1)st row’s sum is twice the sum of the nth row. This intuition

can be turned into an inductive proof, which you’ll give in Exercise 9.172.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Theorem 9.18:
all values match
their counterpart
mirrored
across the
middle line.

(a)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Theorem 9.19:
the bottom value
in each triplet
is the sum
of the top
two.

(b)

1

2

4

8

16

32

64

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Theorem 9.21:
the rows add
up to powers
of two:
1, 2, 4,
8, 16, 32,
64,

(c)

Figure 9.31 Theorems 9.18, 9.19, and 9.21 reflected in Pascal’s triangle.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-72

9-72 Counting

Proof #2 (combinatorial). Let S = {1, 2, . . . , n} be a set with n elements. Let’s count the number of subsets

of S in two different ways. On one hand, there are 2n such subsets: there is a bijection between subsets of

S and |S|-bit strings. (See Lemma 9.10.)

On the other hand, let’s account for the subsets of S by first choosing a size k of the subset, and then

counting the number of subsets of that size. By the Sum Rule, the total number of subsets of S is exactly

n∑

k=0

(the number of subsets of S of size k).

By definition, there are exactly
(n
k

)
subsets of size k. Therefore the total number of subsets is

∑n
k=0

(n
k

)
.

Thus 2n =
∑n

k=0

(n
k

)
.

Proof #3 (making clever use of the Binomial Theorem). We’ll start from the right-hand side of the theorem

statement, and begin with a completely unexpected, but obviously true, antisimplification:

2n = (1+ 1)n obviously 2 = 1+ 1; therefore 2n = (1+ 1)n

=
n∑

i=0

(n
i

)
1i1n−i binomial theorem

=
n∑

i=0

(n
i

)
. 1k = 1 for any value of k

You’ll explore some of the many other interesting and useful properties of Pascal’s triangle, and of the

binomial coefficients in general, in the exercises.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-73

9.4 Combinations and Permutations 9-73

Computer Science Connections

Brute Force Algorithms and Dynamic Programming

Cheapest Vertical Seam (CVS):

Input: An n-by-n grid of integers.

Output: A path from the top row to the bottom row,

moving in direction {↙, ↓,↘} at each step, such that

the sum of the integers along the path is minimized.

9 8 7 1 9

7 3 2 9 1

2 8 5 6 9

4 7 5 3 4

3 8 2 8 1

Figure 9.32 The Cheapest Vertical Seam problem, and an example.

In an optimization problem, we’re given a

set S of valid solutions and some measure of

quality f : S → R, and asked to compute

the x ∈ S that’s the best according to f. One

example is the traveling salesperson problem

(TSP)—the problem solved daily by delivery

drivers, who have to visit a list of addresses

and return to the depot, while minimizing their overall driving time. Another example is shown in Figure 9.32: the

cheapest vertical seam (CVS) problem, which arises in a remarkable computer graphics application; see Figure 9.33.

Im
ag

e
ad

ap
te
d
fr
om

U
.S
.
A
rm

y
P
ho

to
,

ar
ch

iv
es

of
th
e
A
R
L

Te
ch

ni
ca

l
L
ib
ra
ry

To shrink an image without

cropping or rescaling,

construct a matrix indicating

how prominent each pixel is;

then find the CVS, and delete

the pixels in the found seam.

Here, an image of a very early

computer (the ENIAC), being

programmed by Jean Bartik

and Frances Spence, with a

seam that could be removed.
Figure 9.33 Shai Avidan and Ariel Shamir’s method of seam carving
to resize images by removing the least important vertical seam [12].

For both TSP and CVS, there are straight-

forward brute-force algorithms that solve the

problem by computing the list of all possi-

ble solutions (all orderings of the cities; all

top-to-bottom paths) and identifying the best

of these possible solutions. It’s by now rea-

sonably straightforward to count: there are n!

orderings and between 2n · n and 3n · n paths.

(The gap between 2n and 3n arises because

it’s a little tricky to avoid counting paths that

fall off the sides of the grid.) These run-

ning times are unimpressive—even n ≈ 100

would require decades of computing time—and this is, more or less, the best known algorithm for TSP! (See p. 3-32.)

But we can do better for CVS, with another view of the problem. Given a grid G, define best(i, j) as the cost of the

cheapest path from grid cell ⟨i, j⟩ to the bottom of the grid. Then we can solve the CVS problem using a recursive

algorithm that computes best(i, j) for every cell ⟨i, j⟩:
(1) if i = n (we’re reached the bottom row), the cost is just Gi,j;

(2) if j ≤ 0 or j ≥ n (we’ve fallen off the sides of the grid), the cost is ∞; and

(3) otherwise, the cost is Gi,j plus the smallest of best(i+ 1, j− 1) and best(i+ 1, j) and best(i+ 1, j+ 1).

Unfortunately, this algorithm is as slow as brute force (in fact, it is the brute-force algorithm): to compute best(i, j), we

make three recursive calls, at least two of which remain inside the grid. The running time T(i) to find best(n−i, j)with

i rows beneath cell ⟨i, j⟩ is given by the recurrence T(1) = 1 and T(i) ≥ 2T(i− 1) + 1—which satisfies T(n) ≥ 2n.

CVS(G1...n,1...n):

1 for j := 1, . . . , n:

2 T[n, j] := Gi,j

3 for i := n− 1, . . . , 1:

4 for j := 1, . . . , n:

5 T[i, j] := Gi,j +min(T[i+ 1, j− 1]

below left

,T[i+ 1, j]

below

,T[i+ 1, j+ 1]

below right

)

(Treat T[·, j] = ∞ if j is out of range.)6 return minj T[1, j]

Figure 9.34 A dynamic programming algorithm for CVS.

But a key algorithmic observation is that

the number of different cells in the grid is

much smaller than 2n—there are only n2

different cells! So, while the recursive algo-

rithm is very slow, it “should” require only

Θ(n2) time—as long as we avoid recom-

puting best(i, j) multiple times for the same

value of ⟨i, j⟩! Once we’ve figured out, say,

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-74

9-74 Counting

best(3, 7) (because we needed that value to

figure out best(4, 6)), we don’t bother recom-

puting best(3, 7) when we need it again; instead, we just remember the value and reuse it without doing any further

computation. The most straightforward way to implement this basic idea is calledmemoization: we build a data struc-

ture in which we check to see whether we’ve already stored the value of best(i, j) before computing the value via the

three recursive calls, and we always add all values we compute to the data structure before returning them. A slightly

more efficient way of implementing this idea is called dynamic programming, where we transform this recursive

solution into one using loops—and build up the values of best(i, j) from the bottom up. (See Figure 9.34). In general,

dynamic programming is an algorithmic design technique that can save us a massive amount of computation—as

long as the number of different problems encountered in the recursive solution is small.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-75

9.4 Combinations and Permutations 9-75

Computer Science Connections

The Enigma Machine and a First Computer

Im
ag

e
ad

ap
te
d
fr
om

th
e
C
IA

M
us

eu
m

ht
tp

s:
//

ww
w.

ci
a.

go
v/

le
ga

cy
/m

us
eu

m/ A

Q

Figure 9.35 An Enigma machine, and a schematic of its
operation. The operator types a letter (say, A), which goes
through the plugboard, and is then permuted by rotor #1,
rotor #2, rotor #3, the fixed permutation of the machine,
rotor #3, rotor #2, and rotor #1. It then (after passing
through the plugboard) lights up the output, say Q. The
rotors advance by one notch, and encoding continues.

The Enigma machine was a physical cryptographic

device used by the Germans during World War II

to communicate between German high command and

their military units in the field. The basic structure of

the machine involved rotors and cables. A rotor was a

26-slot physical wheel that encoded a permutation π;

when the wire corresponding to input i is active, the

output wire corresponding to πi is active. A plugboard

allowed an arbitrary matching of keys on the keyboard

to the inputs to the rotors—a cable was what actually

connected a key to the first rotor. (The machine did not

require any cables in the plugboard; if there was no

cable, then the key pressed was what went into the rotor

in the first place.) The basic encryption in the Enigma

machine proceeded as follows (see Figure 9.35):

(1) The user pressed a key, say A, on the keyboard.

If there was a cable from the A key, then the key would be remapped to the other end of the cable; otherwise the

procedure proceeded using the A. (See Figure 9.36.)

Q W E R T

A S D F G

P Y X C V

Each of the 26 keys is

either mapped to itself

(like W here), or is

matched with another

key (like Q ↔ D here).

Pressing an unmatched

key x yields x itself;

pressing a matched key x

yields whatever letter is

matched to x.

A B C
D

E
F

G
H
I

J
KLMNOP

Q
R

S
T

U
V
W

X Y Z

A B C D
E

F
G
H
I

J
KLMNOPQ

R
S

T
U
V
W

X Y Z

Each rotor encodes a

permutation of the

letters; when the input

letter i comes into the

rotor, the output πi comes

out. (Here, for example,

an input V turns into an

output of M.) After each

keypress, the top portion

of the rotor rotates by a

notch, so V would now

turn into N.

Figure 9.36 The plugboard (above) and a rotor (below).

(2) The pressed key was permuted by rotor #1; the

output of rotor #1 was permuted by rotor #2; the output

of rotor #2 was permuted by rotor #3. (Again, see Fig-

ure 9.36.) The output of rotor #3 was “reflected” by a

fixed permutation, and then the reflector’s output pass

through the three rotors, in reverse order and backward:

the output of the reflector was permuted by rotor #3,

then by #2, and then by #1.

(3) A light corresponding to the output of rotor #1,

passed through the plugboard cable if present, lights

up; the illuminated letter is the encoding.

The tricky part is that the rotors rotate by one notch,

a bit like an odometer, when the key is pressed, so that

the encoding changes with every keypress. The “secret

key” that the two communicating entities needed to

agree upon was which rotors to use in which order

(5 · 4 · 3 = 60; there were 5 standard rotors in an

Enigma), what the initial position of the rotors should

be (263 = 17,576), and what plugboard matching to

use (26!
13!·213 ≈ 8 × 1012 choices if all 26 letters were matched; see Example 9.34). Interestingly, almost all of the

complexity came from the plugboards.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-76

9-76 Counting

Perhaps surprisingly, the fact that there were so many possible settings for the Enigma led to the invention of one

of the first programmable computers, by a team including Alan Turing at Bletchley Park, in England, during the war.

They built a machine to test many of these configurations, by brute force. (If there were fewer possibilities, it could

have been cracked by hand; if there were many more, it couldn’t have been cracked by brute force.) Turing and his

team developed a device called the Bombe to exhaustively try to compute the shared German secret key—each day!

Many other cryptographic tricks related to the way the Enigma was being used were also part of the analysis.

For example, the construction of the device meant that no letter could encrypt to itself; this fact was exploited in the

analysis. Another crucial part of the code breaking was a known plaintext attack on the Enigma: the British also used

knowledge of what the Germans tended to communicate (like weather reports) to narrow their search.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-77

Exercises 9-77

EXERCISES

For two strings x and y, let’s call a shuffle of x and y any interleaving of the letters of the two strings (that maintains the order

of the letters within each string, but may repeatedly alternate between blocks of x letters and blocks of y letters). For example, the

words ALE and LID can be shuffled into

A L L I E D or A L L I D E or A L L I D E or L I D A L E .

How many different strings can be produced as shuffles of the following pairs of words?

9.124 BACK and FORTH

9.125 DAY and NIGHT

9.126 SUPPLY and DEMAND

9.127 LIFE and DEATH

9.128 ON and ON

9.129 OUT and OUT

9.130 (programming required.) Write a program, in a language of your choice, that computes all shuffles of two given words x and y. A

recursive approach works well: a shuffle consists either of the first character of x followed by a shuffle of x2...|x| and y, or the first

character of y followed by a shuffle of x and y2...|y|. (Be sure to eliminate any duplicates from your resulting list.)

The next few questions ask you to think about shuffles of generic strings, instead of particular words. (Assume that the alphabet is

an arbitrarily large set—you are not restricted to the 26 letters in English.) Consider two strings x and y, and let n = |x|+ |y| be
the total number of characters between them. Note that the number of distinct shuffles of x and y may depend both on the lengths

of x and y and on the particular strings themselves; for example, if some letters are shared between or within the two strings, there

may be fewer possible shuffles.

9.131 In terms of n, what is the maximum possible number of different shuffles of x and y?

9.132 In terms of n, what’s the minimum possible number of distinct shuffles of x and y?

9.133 What is the largest possible number of different shuffles of three strings of length a, b, and c?

9.134 How many 42-bit strings have exactly 16 ones?

9.135 How many 23-bit strings have at most 3 ones? (The coincidental arithmetic structure of the answer actually turns out to be helpful

for error-correcting codes; see Exercise 4.30.)

9.136 How many 32-bit strings have a number of ones within ±2 of the number of zeros?

9.137 The set of 64-bit strings with k ones is largest for k = 32. What’s the smallest m for which

| {the number of 64-bit strings with ≤ m ones} | ≥ | {the number of 64-bit strings with 32 ones} |?

9.138 What is the smallest even integer n for which the following statement is true? If we flip an unbiased coin n times, as in Example 9.43,

the probability that we get exactly n
2 heads is less than 10%.

A bridge hand consists of 13 cards from a standard 52-card deck, with 13 ranks (2 through ace) and 4 suits (♣, ♢, ♡, and ♠).

(That is, the cards in the deck are {2, 3, . . . , 10, J,Q,K,A}× {♣,♢,♡,♠}.) How many different bridge hands are there that meet

the following conditions?

9.139 A void in spades: a 13-card hand that contains only cards from the suits ♣, ♢, and ♡.

9.140 A singleton in hearts: exactly one of the 13 cards comes from the suit ♡.

9.141 All four kings.

9.142 No queens at all.

9.143 Exactly two jacks.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-78

9-78 Counting

9.144 Exactly two jacks and exactly two queens.

9.145 A bridge hand has high honors if it contains the five highest-ranked cards {10, J,Q,K,A} in the same suit. Howmany bridge hands

have high honors? (Warning: be careful about double counting!)

Many bridge players evaluate their hands by the following system of points. First, give yourself one high-card point for a jack, two

for a queen, three for a king, and four for an ace. Furthermore, give yourself three distribution points for each void (a suit in which

you have zero cards), two points for a singleton (a suit with one card), and one point for a doubleton (a suit with two cards).

9.146 How many bridge hands have a high-card point count of zero?

9.147 How many bridge hands have a high-card point count of zero and a distribution point count of zero? What fraction of all bridge

hands is this?

9.148 How many ways are there to choose 32 out of 202 options if repetition is allowed and order matters?

9.149 How many ways are there to choose 32 out of 202 options if repetition is forbidden and order matters?

9.150 How many ways are there to choose 32 out of 202 options if repetition is allowed and order doesn’t matter?

9.151 How many ways are there to choose 32 out of 202 options if repetition is forbidden and order doesn’t matter?

9.152 The first 10 prime numbers are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}. How many different integers have exactly 5 prime factors (all

from this set), where all of these factors are different?

9.153 Howmany different integers have exactly 5 prime factors (all from the {2, 3, 5, 7, 11, 13, 17, 19, 23, 29})? (Note that 32 = 2·2·2·2·2
is an example.)

9.154 How many different integers have exactly 10 prime factors that all come from the set of the first 20 prime numbers?

9.155 How many different integers have exactly 10 prime factors that all come from the set of the first 20 prime numbers, and where all

10 of these factors are different from each other?

Suppose that we have two sequences ⟨x1, x2, . . . , xn⟩ and ⟨y1, y2, . . . , y2n⟩ of data points—perhaps representing a sequence of

intensities from two streams of speech. We wish to align x to y by matching up elements of x to elements of y. (For example, y might

represent a reference stream, where we’re trying to match x up to it.) We insist that each element of x is assigned to one and only

one element of y. (See Figure 9.37. Thanks to Roni Khardon, from whom I learned a version of the exercises.)

9.156 How many ways are there to assign each of the n elements of x to one of the 2n elements of y?

9.157 How many ways are there to assign each of the n elements of x to one of the 2n elements of y so that no element of y is matched to

more than one element of x?

In many applications, we can only consider alignments of the elements of x and y that “maintain order”: that is, we can’t have x5

assigned to an element of y that comes after the element assigned to x6. (If f : {1, . . . , n} → {1, . . . , 2n} represents the alignment,
then we require that i ≤ j implies that f(i) ≤ f(j).)

9.158 How many ways are there to assign each of the n elements of x to one of the 2n elements of y in a way that maintains order?

x1

x2
x3

x4 x5

y1
y2 y3 y4 y5 y6

y7
y8

y9
y10

(a) An alignment that doesn’t respect order.

x1

x2
x3

x4 x5

y1
y2 y3 y4 y5 y6

y7
y8

y9
y10

(b) An alignment that does respect order.

Figure 9.37 An alignment between two sequences, for Exercises 9.156–9.159.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-79

Exercises 9-79

9.159 How many ways are there to assign each of the n elements of x to one of the 2n elements of y in a way that maintains order so that

no element of y is matched to more than one element of x?

9.160 Consider the equation a+ b+ c = 202. How many solutions are there where a, b, and c are all nonnegative integers?

9.161 How many solutions are there to the equation a+ b+ c+ d+ e = 8, where all of {a, b, c, d, e} must be nonnegative integers?

9.162 What about for a+ b+ c+ d+ e = 88, again where all variables must be nonnegative integers?

9.163 What about for a+ 2b+ c = 128, again where a, b, and c must be nonnegative integers? (Hint: sum over the possible values of b

and use Theorem 9.16.)

The Association for Computing Machinery—a major professional society for computer scientists—puts on student programming

competitions regularly. Teams of students spend a few hours working on some programming problems (of various levels of difficulty).

9.164 Suppose that, at a certain college in the midwest, there are 141 computer science majors. A programming contest team consists of

3 students. How many ways are there to choose a team?

9.165 Suppose that, at a certain programming contest, teams are given 10 problems to try to solve. When the contest begins, each of the 3

members of the team has to choose a problem to think about first. (More than one team member can think about the same problem.)

How many ways are there for the 3 team members to choose a problem to think about first?

9.166 In most programming contests, teams are scored by the number of problems they correctly solve. (There are tiebreakers based on

time and certain penalties.) A team can submit multiple solutions to the same problem. Suppose that a particular team has calculated

that they have time to code up and submit 20 different attempted answers to the 10 questions in the contest. How many different

ways can they allocate their 20 submissions across the 10 problems? (The order of their submissions doesn’t matter.)

9.167 Solve the following problem, posed by Adi Shamir in his original paper on secret sharing (see p. 7-36, or [113]). Eleven scientists

are working on a secret project. They wish to lock up the documents in a cabinet so that the cabinet can be opened if and only if

six or more of the scientists are present. What is the smallest number of locks needed? What is the smallest number of keys to the

locks each scientist must carry?

9.168 In machine learning, we try to use a collection of training data—for example, a large collection of ⟨image, letter⟩ pairs of images

of handwritten letters and the English letter that they represent—to compute a predictor that will do well on predicting answers on a

set of novel test data. One danger in such a system is overfitting:we might build a predictor that’s overly affected by idiosyncrasies

of the training data. One way to address the risk of overfitting is a technique called cross-validation: we divide the training data

into several subsets, and then, for each subset S, train our predictor based on ∼S and test it on S. We might then average the

parameters of our predictor across the subsets S. In ten-fold cross-validation on a n-element training set, we would split our n

training examples into disjoint sets S1, S2, . . . , S10 where |Si| = n
10 . How many ways are there to split an n-element set into disjoint

subsets S1, S2, . . . , S10 of size n
10 each? (Note the order of the subsets themselves doesn’t matter, nor does the order of the elements

within a subset.)

9.169 Consider the set of bitstrings x ∈ {0, 1}n+k with n zeros and k ones with the additional condition that no ones are adjacent. (For

n = 3 and k = 2, for example, the legal bitstrings are 00101, 01001, 01010, 10001, 10010, and 10100.) Prove by induction on n

that the number of such bitstrings is
(n+1

k

)
.

9.170 Consider the set of bitstrings x ∈ {0, 1}n+k with n zeros and k ones with the additional condition that every block of ones has even

length. (For n = 3 and k = 2, for example, the legal bitstrings are 00011, 00110, 01100, 11000.) Prove that, for any even k, the

number of such bitstrings is
(n+(k/2)

n

)
.

9.171 Prove that k ·
(n
k

)
= n ·

(n−1
k−1

)
twice, using both an algebraic and a combinatorial proof.

9.172 Using induction on n, prove Theorem 9.21—that is, prove that
n∑

i=0

(n
i

)
= 2n.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-80

9-80 Counting

9.173 Using a combinatorial proof, prove the following identity about the squares of the binomial coefficients:

n∑

k=0

(n
k

)2
=

(2n
n

)
.

(For example, for n = 4, this identity states that
(4
0

)
2 +

(4
1

)
2 +

(4
2

)
2 +

(4
3

)
2 +

(4
4

)
2 = 12 + 42 + 62 + 42 + 12 = 70 is equal to

(8
4

)
.

And, indeed,
(8
4

)
= 8!

4!·4! = 70.)

9.174 Prove the following identity by algebraic manipulation:

(n
m

)(m
k

)
=

(n
k

)(n−k
m−k

)
.

9.175 Now prove the identity from Exercise 9.174 with a combinatorial proof. (Hint: think about choosing a team of m people from a

pool of n candidates, and picking k managers from the team that you’ve chosen.)

9.176 Prove the following identity, using an algebraic, inductive, or combinatorial proof:

n∑

k=0

(k
m

)
=

(n+1
m+1

)
.

Recall that
(a
b

)
= 0 for any b < 0 or b > a, so many of the terms of the summation are zero. For example, for m = 3 and n = 5,

the claim states that
(6
4

)
=

(0
3

)
+
(1
3

)
+
(2
3

)
+
(3
3

)
+
(4
3

)
+
(5
3

)
= 0+ 0+ 0+

(3
3

)
+
(4
3

)
+
(5
3

)
.

9.177 Prove the following identity about the binomial coefficients and the Fibonacci numbers (where fi is the ith Fibonacci number), by

induction on n:

⌊n/2⌋∑

k=0

(n−k
k

)
= fn+1.

9.178 Prove van der Monde’s identity:

(n+m
k

)
=

k∑

r=0

(m
k−r

)
·
(n
r

)
.

(Hint: suppose you have a deck of n red cards and m black cards, from which you choose a hand of k total cards.)

A common subsequence of two strings x and y is a string z that’s a subsequence of both. A subsequence of an n-character string

corresponds to a subset of {1, 2, . . . , n}, indicating which indices are included (and which aren’t). (See Exercise 9.85.) For example,
BASIC is a common subsequence of BRAINSICKNESS and BIOACOUSTICS.

9.179 Suppose that you have been asked to find the number of common subsequences of two n-character strings x, y ∈ Σn, by brute force.

An algorithm to do so is shown in Figure 9.38a. How many times do we execute Line 3 (testing whether a = b)?

9.180 Using the fact that a subsequence of x and a subsequence of y cannot be equal unless they have the same length, we can modify the

algorithm as shown in Figure 9.38b. Now how many times do we execute Line 4 (testing whether a = b)?

9.181 Using Stirling’s approximation of factorial, which states that n! ≈
√
2πn · (n/e)n (where π = 3.1415 · · · and e = 2.7182 · · ·), argue

that Figure 9.38b improves on Figure 9.38a in terms of the number of subsequences compared.

9.182 Use the Binomial Theorem to prove the following identity:
n∑

k=0
(−1)k ·

(n
k

)
= 0.

9.183 Use the Binomial Theorem to prove the following identity:

n∑

k=0

(n
k

)

2k
=

(3
2

)n
.

9.184 In Section 9.2.2, we introduced the Inclusion–Exclusion rule for counting the union of 2 or 3 sets:

|A ∪ B| = |A|+ |B| − |A ∩ B|

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-81

Exercises 9-81

(a)

1 for each subsequence a of x:
2 for each subsequence b of y:
3 check if a = b

(b)

1 for k := 0, 1, . . . , n:
2 for each subsequence a of x of length k:
3 for each subsequence b of y of length k:
4 check if a = b

Figure 9.38 Two algorithms for common subsequences: (a) brute force, and (b) a length-aware version of brute force.

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|

Exercise 9.33 asked you to give a formula for a 4-set intersection, but here’s a completely general solution:

∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣ =
k∑

i=1


(−1)i+1 ·

∑

j1<j2<···<ji

|Aj1 ∩ Aj2 ∩ · · · ∩ Aji |


 .

(Recall that
⋃k

i=1 Ai = A1 ∪ A2 ∪ · · · ∪ Ak.) Argue that this formula correctly expresses the Inclusion–Exclusion Rule for any

number of sets. (Hint: figure out how many ℓ-set intersections each element x appears in. Then use the Binomial Theorem—

specifically, Exercise 9.182.)

9.185 In Example 8.4, we looked at the subset relation for a set S: that is, we defined the set of pairs

subset = {⟨A,B⟩ ∈ P(S)× P(S) : [∀x ∈ S : x ∈ A ⇒ x ∈ B]} .

For any particular set B ∈ P(S), the number of sets A such that ⟨A,B⟩ ∈ subset is precisely 2|B|. The total number of pairs in the

subset relation on S is thus 2k times the number of subsets of S of size k, summed over all k. We’ve already seen that the number of

subsets of S of size k is
(|S|

k

)
. Thus the total number of pairs in the subset relation on S is

|S|∑

k=0

(number of subsets of S of size k) · 2k =
|S|∑

k=0

(|S|
k

)
· 2k.

Use the Binomial Theorem to compute a simple formula for this summation.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-82

9-82 Counting

9.5 Chapter at a Glance

Counting refers to the task of, given a potentially convoluted description of a set S, computing the cardi-

nality of S. Our general strategy for counting is to develop techniques for counting simple sets like unions

and sequences, and then to handle more complex problems by “translating” them into these simpler ones.

Counting Unions and Sequences

The Sum Rule describes how to compute the cardinality of the union of sets: if A and B are disjoint sets, then

|A∪B| = |A|+ |B|. More generally, if the sets A1,A2, . . . ,Ak are all disjoint, then
∣∣∣
⋃k

i=1 Ai

∣∣∣ =
∑k

i=1 |Ai|. If
the sets A and B are not disjoint, then the Sum Rule doesn’t apply. Instead, we can use Inclusion–Exclusion

to count |A ∪ B|. This rule states that |A ∪ B| = |A|+ |B| − |A ∩ B| for any sets A and B. For three sets,

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|.

To compute the cardinality of the Cartesian product of sets, we can use the Product Rule: for sets

A and B, we have |A × B| = |A| · |B|. More generally, for arbitrary sets A1,A2, . . . ,Ak, we have that

|A1 × A2 × · · · × Ak| is
∏k

i=1 |Ai|. Applying the Product Rule to a set S × S × · · · × S, we see that, for

any set S and any k ∈ Z≥1, we have |Sk| = |S|k. If the set of options for one choice depends on previous

choices, then we cannot directly apply the Product Rule. However, the basic idea still applies: the Gener-

alized Product Rule says that |S| = ∏k
i=1 ni if S denotes a set of sequences of length k, where, for each

choice of the first i− 1 components of the sequence, there are exactly ni choices for the ith component.

A permutation of a set S is sequence of elements from S that contains no repetitions and has length |S|.
In other words, a permutation of S is an ordering of the elements of S. By the Generalized Product Rule,

there are precisely n! = n · (n− 1) · (n− 2) · · · · · 1 permutations of an n-element set.

Using Functions to Count

Let A and B be arbitrary sets. We can use a function f : A → B to relate |A| and |B|. The Mapping Rule

says that:

• There exists a function f : A→ B that’s onto if and only if |A| ≥ |B|.
• There exists a function f : A→ B that’s one-to-one if and only if |A| ≤ |B|.
• There exists a function f : A→ B that’s a bijection if and only if |A| = |B|.

The Mapping Rule implies, among other things, that the power set P(S) of a set S (the set of all subsets

of S) has cardinality |P(S)| = 2|S|.

The Division Rule says the following: suppose that there exists a function f : A→ B such that, for every

b ∈ B, there are exactly k elements a1, . . . , ak ∈ A such that f(ai) = b. Then |A| = k · |B|. The Division

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-83

9.5 Chapter at a Glance 9-83

Rule implies, among other things, that the number of ways to rearrange a sequence containing k different

distinct elements {x1, . . . , xk}, where element xi appears ni times, is

(n1 + n2 + · · · + nk)!
(n1!) · (n2!) · · · · · (nk!)

.

The pigeonhole principle says that if A and B are sets with |A| > |B|, and f : A → B, then there exist

distinct a and a′ ∈ A such that f(a) = f(a′). That is, if there are more pigeons than holes, and we place the

pigeons into the holes, then there must be (at least) one hole containing more than one pigeon.

Combinations and Permutations

Consider nonnegative integers n and k with k ≤ n. The quantity
(n
k

)
is defined as

(n
k

)
= n!

k!·(n−k)! ,

and is read as “n choose k.” The quantity
(n
k

)
denotes the number of ways to choose a k-element subset of a

set of n elements, called a combination,when each element can only be selected at most once and the order

of the selected elements doesn’t matter. The quantity
(n
k

)
is also sometimes called a binomial coefficient.

Depending on whether we allow the same candidate to be chosen more than once and whether we care

about the order in which the candidates are chosen, there are many versions of selecting k out of a set of n

candidates:

• If the order of the selected elements doesn’t matter and repetition of the chosen elements is not allowed,

then there are
(n
k

)
ways to choose.

• If order matters and repetition is not allowed, there are n!
(n−k)! ways.

• If order matters and repetition is allowed, there are nk ways.

• If order doesn’t matter and repetition is allowed, there are
(n+k−1

k

)
ways.

A combinatorial proof establishes that two quantities x and y are equal by defining a set S and proving

that |S| = x and |S| = y by counting |S| in two different ways. We can give combinatorial proofs of the

following facts about the binomial coefficients, among others:

(n
k

)
=
(n
n−k

) (n
k

)
=
(n−1

k

)
+
(n−1
k−1

) ∑n
i=0

(n
i

)
= 2n.

The binomial theorem states that, for any a, b ∈ R and any n ∈ Z≥0,

(a+ b)n =
n∑

i=0

(n
i

)
aibn−i.

We can prove the binomial theorem by induction on the exponent n.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-84

9-84 Counting

Many of the interesting properties of the binomial coefficients can be seen by looking at patterns visible

in Pascal’s triangle,which arranges the binomial coefficients so that the nth row contains the n+1 binomial

coefficients
(n
0

)
,
(n
1

)
, · · · ,

(n
n

)
. See Figure 9.39 for the first few rows of Pascal’s triangle.

(0
0

)

(1
0

) (1
1

)

(2
0

) (2
1

) (2
2

)

(3
0

) (3
1

) (3
2

) (3
3

)

(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)

(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

(6
0

) (6
1

) (6
2

) (6
3

) (6
4

) (6
5

) (6
6

)

(7
0

) (7
1

) (7
2

) (7
3

) (7
4

) (7
5

) (7
6

) (7
7

)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 9.39 The first several rows of Pascal’s triangle, in both “choose” notation and in numerical form.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-85

9.5 Chapter at a Glance 9-85

Key Terms and Results

Key Terms

Counting Unions and Sequences

• Sum Rule

• Product Rule

• double counting

• Inclusion–Exclusion

• Generalized Product Rule

• permutation

Using Functions to Count

• Mapping Rule

• Division Rule

• pigeonhole principle

Combinations and Permutations

• combinations

• permutations

•
(n
k

)
/ binomial coefficient

• binomial theorem

• combinatorial proof

• Pascal’s triangle

Key Results

Counting Unions and Sequences

1 The Sum Rule: if the sets A1,A2, . . . ,Ak are all disjoint,

then
∣∣∣
⋃k

i=1 Ai

∣∣∣ =
∑k

i=1 |Ai|. The Inclusion–Exclusion

Rule allows us to handle nondisjoint sets; for example,

for any sets A,B we have |A ∪ B| = |A|+ |B| − |A ∩ B|.
2 The Product Rule: |A1 × A2 × · · · × Ak| =

∏k
i=1 |Ai|.

For any set S and any k ∈ Z≥1, we have |Sk| = |S|k.
3 The Generalized Product Rule: if S is a set of sequences

of length k, where, for each choice of the first i− 1

components of the sequence, there are exactly ni choices

for the ith component, then |S| =∏k
i=1 ni.

Using Functions to Count

1 The Mapping Rule: an onto function f : A→ B means

|A| ≥ |B|; a one-to-one function f : A→ B means

|A| ≤ |B|; and a bijection f : A→ B means |A| = |B|.
2 For any set S, |P(S)| = 2|S|.

3 The Division Rule: if f : A→ B satisfies

|{a ∈ A : f(a) = b}| = k for all b ∈ B, then |A| = k · |B|.
4 The number of ways to arrange a sequence containing

elements {x1, . . . , xk}, where xi appears ni times, is
(n1+n2+ ··· +nk)!
(n1!)·(n2!)· ··· ·(nk!) .

5 Pigeonhole principle: if f : A→ B and |A| > |B|, then
there exist a, a′ ̸= a ∈ A such that f(a) = f(a′).

Combinations and Permutations

1 There are four versions of selecting k out of n

candidates, depending on whether the order of the

chosen elements matters and whether we can choose the

same element twice. (See Figure 9.28.) The binomial

coefficient
(n
k

)
denotes the number of ways to choose

when repetition is forbidden and order doesn’t matter

(called combinations).

2 Some useful properties:
(n
k

)
=
(n
n−k

)
and

(n−1
k

)
+
(n−1
k−1

)
=
(n
k

)
and

∑n
i=0

(n
i

)
= 2n.

3 The binomial theorem: (a+ b)n =
∑n

i=0

(n
i

)
aibn−i.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-9-86

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

