9
Counting

In which our heroes encounter many choices, some of which may lead them
to live more happily than others, and a precise count of their number of
options is calculated.
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902 CHAPTER 9. COUNTING

9.1 Why You Might Care

How do I love thee? Let me count the ways.

Elizabeth Barrett Browning (1806-1861)

This chapter is devoted to the apparently trivial task of counting. By “counting,”
we mean the following problem: given a potentially convoluted description of a set
S, compute the cardinality of S—that is, compute the number of elements in S. It may
seem bizarre that counting could somehow be harder than at the preschool level (just
count! one, two, three), but it will turn out that we can solve surprisingly subtle prob-
lems with some useful and general (and subtle) techniques.

We’ll start in Section 9.2 by introducing basic counting techniques—how to compute
the cardinality of a union A U B of two sets, or sequences from the Cartesian product
A x B of two sets. We then turn in Section 9.3 to one of the best counting strategies:
being lazy! If we can show that |A| = |B| and we already know the value of |B|, then
figuring out |A| is easy; we’ll often use functions to relate two sets so that we can then
lazily compute the size of the apparently harder-to-count set. Finally, in Section 9.4, we
will explore combinations (“how many ways are there to choose an unordered collec-
tion of k items out of a set of n possibilities?”) and permutations (“how many ways are
there to put a set of # items into some order?”).

Why does counting matter in computer science? There are, again, surprisingly
many applications. Here are a few examples. One common (though very basic) style of
algorithm is a brute-force algorithm, which finds the best whatzit by trying every possible
whatzit and seeing which one is best. Determining whether a brute-force algorithm
is fast enough depends on counting how many possible whatzits there are. A more
advanced algorithmic design technique, called dynamic programming, can be used to
design efficient recursive solutions to problems—as long as there aren’t too many
distinct subproblems. Counting techniques are even powerful enough to establish a
mind-bending result about computability: we will be able to prove that there are more
problems than computer programs—which means that there are some problems that
cannot be solved by any program!

Probability (see Chapter 10) has a plethora of applications in computer science,
ranging from randomized algorithms in sorting (algorithms that process their input
by making random decisions about how to act) to models of random noise in speech
recognition or random errors in typing (if I'm trying to type the letter p, what is the
chance that I accidentally type o instead?). We can think of the probability of some
event X happening, roughly, as two counting problems: the numerator and denomina-
tor of the ratio

the number of ways X can happen
the number of ways X can either happen or not happen’

There are many other applications of counting scattered throughout computer sci-
ence, and we will discuss a few more along the way: breaking cryptographic systems,
compressing audio/image/ video files, and changing the addressing scheme on the
internet because we’ve run out of smaller addresses, to name a few.
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9.2. COUNTING UNIONS AND SEQUENCES 903

9.2 Counting Unions and Sequences

If a man who cannot count finds a four-leaf clover, is
he entitled to happiness?

Stanislaw J. Lec (1909-1966)

Suppose that we have two sets A and B from which we must choose an element.
There are two different natural scenarios that meet this one-sentence description:
we must choose a total of one element from either A or B, or we must choose one el-
ement from each of A and B. For example, consider a restaurant that offers soups A =
{chicken noodle, beer cheese, minestrone, ...} and salads B = {caesar, house, arugula, . ..}.
A lunch special that includes soup or salad involves choosing an x € AU B. A dinner
special including soup and salad involves choosing an x € A and also choosing a
y € B—thatis, choosing an element (x,y) € A x B. In Section 9.2.1, we'll start with two
basic rules for computing these cardinalities:

e Sum Rule: If A and B are disjoint, then |[A U B| = |A| +|B]|.
e Product Rule: The number of pairs (x,y) withx € Aandy € Bis |A x B| =|A| - |B|.

These rules will handle the simple restaurant scenarios above, but there are a pair
of extensions that we’ll introduce to handle slightly more complex situations. The first
(Section 9.2.2) extends the Sum Rule to allow us to calculate the cardinality of a union
of two sets even if those sets may contain elements in common:

‘ o Inclusion—Exclusion: |A UB| =|A| +|B| — |[ANB]. |

The second extension (Section 9.2.3) generalizes the Product Rule to allow us to calcu-
late the cardinality of a set of pairs (x, y) even if the choice of x changes the list (but not
the number) of possible choices for y:

e Generalized Product Rule: Consider pairs (x,y) of the following form: we can choose
any x € A, and, for each such x, there are precisely n different choices for y. Then

the total number of pairs meeting this description is |A| - n.

The remainder of this section will give the details of these four rules, and how to use
these rules individually and in combination.

9.2.1 The Basics: The Sum and Product Rules

Sum RULE: COUNTING UNIONS
Our first rule addresses the union of two sets: if two sets A and B are disjoint, then
the cardinality of their union is simply the sum of their sizes:

Theorem 9.1 (Sum Rule)
Let A and B be sets. If ANB =@, then |AU B| =|A| +|B|.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.



904 CHAPTER 9. COUNTING

More generally, consider a collection of k > 1 sets Ay, Ay, ..., Ay. If these sets are all
disjoint—that is, if A; N A; = & whenever i # j—then the cardinality of their union is
the sum of their cardinalities: |[A1 UAy, U+ UAg| = |A1] +|Az| +- - - +|Ax|.

The Sum Rule captures an intuitive fact: if a box contains some red things and some
blue things, then the total number of things in the box is the number of red things plus
the number of blue things. Here are a few examples that use this rule:

Example 9.1 (Counting disjoint unions)

e LetA:={1,2} and B :={3,4,5,6}. Thus |A| =2 and |B| =4. Observe that the sets
A and B are disjoint. By the sum rule, |A UB| = |A| +|B| =2 +4 = 6. Indeed, we
have AUB ={1,2,3,4,5, 6}, which contains 6 elements.

e There are 11 starters on your school’s women’s soccer team. Suppose there are 8
nonstarters on the team. The total number of people on the team is 19 =11 +8.

e Ata certain school in the midwest, there are currently 30 computer science majors
who are studying abroad. There are 89 computer science majors who are studying
on campus. Then the total number of computer science majors is 119 =89 +30.

e Consider a computer lab that contains 32 Macs and 14 PCs and 1 PDP-8 (a 1960s-
era machine, one of the first computers that was sold commercially). Then the total
number of computers in the lab is 47 =32 +14 +1.

Example 9.2 (Students in classes)

Problem: During this term, there are 19 students taking Data Structures, and 39 stu-
dents taking Mathematics of Computer Science. Let S denote the set of students
taking Data Structures or Mathematics of Computer Science this term. What is |S|?

Solution: There isn’t enough information to answer the question!

e [f there are no students who are taking both classes (that is, if DS N MOCS = @),
then |S| = |DS| +|MOCS| =19 +39 =58.

e But, for all we know from the problem statement, every student in Data Struc-
tures is also taking Mathematics of Computer Science. In this case, we have
DS C MOCS and thus S =DS UMOCS = MOCS; therefore |S| = |MOCS| =39.

(The Inclusion—Exclusion Rule, in Section 9.2.2, formalizes the calculation of |A U B|
in terms of |A|, |B|, and |A N B|, in the manner that we just considered.)

Taking it further: The logic that we used in Example 9.2 to conclude that there were at most 58 students
in the two classes combined is an application of the general fact that |A U B| < |A| +|B|. While this

fact is pretty simple, it turns out to be remarkably useful in proving facts about probability. The Union
Bound states that the probability that any of Ay, Ay, ..., A, occurs is at most p; +p, +- - - +pk, where

pi denotes the probability that A; occurs. The Union Bound turns out to be useful when each A; is a

“bad event” that we're worried might happen, and these bad events may have complicated probabilistic
dependencies—but if we can show that the probability that every particular one of these bad events is
some very small €, then we can use the Union Bound to conclude that the probability of experiencing any
bad event is at most k - €. (See Exercise 10.141, for example.)
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9.2. COUNTING UNIONS AND SEQUENCES 905

UsiNG THE SuM RULE IN LESS OBVIOUS SETTINGS

As a general strategy for solving counting problems, we can try to find a way to
apply the Sum Rule—even if it does not superficially seem to be applicable. If we
can find a way to partition an apparently complicated set S into simple disjoint sets
S1,Sy,..., Sk such that U, S; =S, then we can use the Sum Rule to find |S|.

In this spirit, here’s a somewhat 11000000 01100000 00110000 00011600 00001160 00000110 00000011
more complex example of using 10100000 01010000 00101000 00010160 00001010 00000101
10010000 01001000 00100100 00010010 00001001

the Sum Rule, where we have to 10001000 ©1000160 00100010 00010001

figure out the subsets ourselves: let’s 10000100 01000010 00100001
. —_— 10000010 01000001

determine how many 8-bit strings 10000001

contain precisely two ones. (The full

li f the bi . . hi diti in Fi 1 Figure 9.1: All

ist of the bitstrings meeting this condition appears in Figure 9.1.) bitstrings in {0,1}®

that contain exactly
Example 9.3 (8-bit strings with exactly 2 ones) two ones.

Problem: How many elements of {0, 1 1% have precisely two 1s?

Solution: Obviously, we can just count the number of bitstrings in Figure 9.1, which
yields the answer: there are 28 such bitstrings. But let’s use the Sum Rule instead.
What does a bitstring x € {0, 1 }® with two ones look like? There must be two
indices i and j—say with i > j—such that x; =x; =1, and all other components of x

must be 0:
one in position j one in position i
= =
x = 00---0 1 00---0 1 00---0.
——— ——— ———
j—1zeros i—j—1zeros 8 — i zeros

Problem-solving
(For example, the bitstring 01601000 has ones in positions j =2 and i = 5, inter- tip: When you're

spersed with an initial block of j — 1 =1 zero, a block of i — j — 1 =2 between-the- trying to find the

ones zeros, and a block of 8 — i =3 final zeros.) cardinality of a
We are going to divide the set of 8-bit strings with two 1s based on the index i.

That is, suppose that x € {0, 1}8 contains two ones, and the second 1 in x appears in

bit position #i. Then there are i — 1 positions in which the first one could appear—

any of theslotsj € {1,2,...,i — 1} that come before i. (See Figure 9.1, where the

(i — 1)st column contains all i — 1 bitstrings whose second 1 appears in position

#i. For example, column #3 contains the 3 bitstrings with x4 578 = 10000: that is,

10010000, 01010000, and 00110000.) Because every x with exactly two ones has an

index i of its second 1, we can use the Sum Rule to say that the answer to the given

question is

8 8

) [number of bitstrings with the second 1 in positioni] = ) (i — 1)

i=1 i=1
=041+ +7
= 28.

(We'll also see another way to solve this example later, in Example 9.39.)

complicated set S,
try to find a way

to split S into a
collection of simpler
disjoint sets, and
then apply the Sum
Rule.
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906 CHAPTER 9. COUNTING

Let’s also generalize this example to bitstrings of arbitrary length:

Example 9.4 (k-bit strings with exactly 2 ones)

Consider the set S := {x € {0,1}" : x has precisely two 1s}. As in Example 9.3, every
bitstring x € S has an index i of its second 1; we’ll use the value of i to partition S into
sets that can be easily counted, and then use the Sum Rule to find |S|. Specifically, for
each index i with 1 < i < k, define the set

Si={x€S:x;=land x;y =x;p =--- =x, =0}.
={x€{0,1}": [3/ <i—1:x =x =1and x has no other 1s] } .

Observe that |S;| =i — 1: there are i — 1 different possible values of j. Also, observe
that S ={J*_, S; and that, for any i #/, the sets S; and S, are disjoint. Thus

_k(k—1)

k k
S| = =) ISl =) (—1) B (*)
i=1 i=1

k
Us
i=l

by the Sum Rule and the formula for the sum of the first n integers (Example 5.4).

As a check of our formula, let’s verify our solution for some small values of k:
e For k =2, (x) says there are Z(ZT*D =1 strings with two 1s. Indeed, there’s just one:
Problem-solving
11. !
tip: Check to make
sure your formulas

e For k =3, indeed there are 3(3T71) =3 strings with two 1s: 011, 101, and 116.

e For k =4, there are 42;3 = 6 such strings: 1100, 1010, 6116, 1001, 0101, and 0011. are reasonable by
testing them for

Note that (x) matches Example 9.3: for k =8, we have 28 = 87 strings with two 1s. small inputs (as we
did in Example 9.4).

PropucT RULE: COUNTING SEQUENCES

Our second basic counting rule addresses the Cartesian product of sets. Recall that,
for sets A and B, the Cartesian product A x B consists of all pairs (a,b) witha € A and
b € B. (For example, {1,2,3} x {x,y} ={(1,x), (1,¥),(2,%),(2,y),(3,%),(3,y)}.) The
cardinality of A x B is the product of the cardinalities of A and B:

Theorem 9.2 (Product Rule)
Let A and B be sets. Then |A x B| =|A| - |B|.

More generally, consider a collection of k arbitrary sets A1, Ay, ..., Ay, and consider the
set of k-element sequences where, for each i, the ith component is an element of A;.
The number of such sequences is given by the product of the sets’ cardinalities:

[Ap X Ag > X A = [Ag] - [Ag] - - - A

Here are a few examples of counting using the Product Rule:
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9.2. COUNTING UNIONS AND SEQUENCES 907

Example 9.5 (Counting sequences)

e LetA :={1,2} and B := {3,4,5,6}. By the productrule, |[A x B| = |A|-|B| =
2.4 =8. Indeed, A x B ={(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6)}, which
contains 8 elements.

e Ata certain school in the midwest, there are currently 56 senior computer science
majors and 63 junior computer science majors. Then the number of ways to choose
a pair of class representatives, one senior and one junior, is 56 - 63 =3528.

e Consider a tablet computer that is sold with three different options: a choice of
protective cover, a choice of stylus, and a color. If there are 7 different styles of
protective cover, 5 different styles of stylus, and 3 different colors, then there are
7 -5 -3 =105 different configurations of the computer.

Like the Sum Rule, the Product Rule should be reasonably intuitive: if we are choosing
a pair (a,b) from A x B, then we have |A| different choices of the first component a—
and, for each of those |A| choices, we have |B| choices for the second component b.
(Thinking of A as A ={ay,a,, . ..,a‘A‘}, we can even view {(a,b) :a € A,b € B} as

{(a1,b) :b € BYU{(ay,b) :b € BYU -~ U{{aja)b) :b € B}.

By the Sum Rule, this set has cardinality |B| +|B| +- - - +|B|, with one term for each ele-
ment of A—in other words, it has cardinality |A| - |B|.) Here are a few more examples:

Example 9.6 (32-bit strings) 0000
Problem: How many different 32-bit strings are there? 0001
0010
Solution: The set of 32-bit strings is {0, 1}32—that is, elements of 0011
0100
{0,1} x {0,1} x {0,1} x --- x {0,1}. 0161
0110
32 times 0111
Because | {0,1} | =2, the Product Rule lets us conclude that [{0,1}°| is 1000
1001
2.2.2. ... .2 =232 1010

-
32 times 1ot
1100
(We can use the same type of analysis to show that there are 2* = 16 strings of 4 1161
bits; for concreteness, they're all listed in Figure 9.2.) iﬂ?

Figure 9.2: The set
of all 4-bit strings.

Example 9.7 (Number of possible shortened URLs)

A URL-shortening service like bit. ly or snipurl. com allows a user to compress a long
URL into a much shorter sequence of characters. (The shorter URL can then be used

in emails or tweets or other contexts in which a long URL is unwieldy.) For example,
by entering the URL of Alan Turing’s Wikipedia page into bit.ly, I got the URL
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http://bit.1ly/106HPM as a shortened form of http://en.wikipedia.org/wiki/
Alan_Turing.

If a shortened URL consists of 6 characters, each of which is a digit, lowercase let-
ter, or uppercase letter, the number of possible shortened URLSs is, using the Product
Rule,

ICxCxCxCxCxC| =|C|-|C|-|C|-|C|-|C|-|C|] =]|C®,

where C ={0,...,9} U{a,...,z} U{A,...,Z} is the set of possible characters. Because
|C| =10 426 +26 =62 via the Sum Rule, we know that there are 62° =56,800,235,584
possible shortened 6-character URLs.

Taking it further: The point of a URL-shortening service is to translate long URLs into short ones, but
it’s theoretically impossible for every URL to be shortened by this service: there are more possible URLs
of length k than there are URLs of length strictly less than k. A similar issue arises with file compression
algorithms, like ZIP, that try to reduce the space required to store a file. See the discussion on p. 938.

Propuct RULE: COUNTING SEQUENCES FROM A FIXED SET

This use of the Product Rule—to count the number of sequences of length k with
elements all drawn from a fixed set S, rather than having a different set of options for
each component—is common enough that we’ll note it as a separate rule:

Theorem 9.3 (Product Rule: sequences of elements from a single set S) A notational re-
For any set S and any k € Z=", the number of k-tuples from the set S* =S x S x - -+ x S is minder regarding
‘ " —_——— Theorem 9.3: S* is
|S | =|S| 0 k times the set
Sx8x---xS§,
Here’s another example using this special case of the Product Rule:
that is, the set of
k-tuples where each
Example 9.8 (MAC addresses) component is an
Problem: A media access control address, or MAC address, is a unique identifier for a e}lleme;lt O}f‘ 5. C?ns .
network adapter, like an ethernet card or wireless card. A MAC address consists of :S fh(;tn(:m]j; ‘ S|\ |
a sequence of six groups of pairs of hexadecimal digits. (A hexadecimal digit is one raised to the kth
of 0123456789 ABCDEEF. ) For example, F7:DE:F1:B6:A4:38 is a MAC address. (The power.

pairs of digits are traditionally separated by colons when written down.) How
many different MAC addresses are there?

Solution: There are 16 different hexadecimal digits. Thus, using the Product Rule,
there are 16 - 16 = 256 different pairs of hexadecimal digits, ranging from
00 to FE. Using the Product Rule again, as in Example 9.7, we see that there
are 256° different sequences of six pairs of hexadecimal digits. Thus there are
256° =[162]° =[(2*Y]° =2% =281,474,976,710,656 total different MAC addresses.

Taking it further: In addition to the numerical addresses assigned to particular hardware devices—
the MAC addresses from Example 9.8—each device that’s connected to the internet is also assigned an
address, akin to a mailing address, that’s used to identify the destination of a packet of information. But
we’ve had to make a major change to the way that information is transmitted across the internet because
of a counting problem: we’ve run out of addresses! See the discussion on p. 919.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.



9.2. COUNTING UNIONS AND SEQUENCES 909

9.2.2  Inclusion—Exclusion: Unions of Nondisjoint Sets

The counting techniques that we’ve introduced so far have some important restric-
tions. We can only use the Sum Rule to calculate |A U B| when A and B are disjoint.
And we are only able to use the Product Rule to calculate the number of sequences
when the set of options for the second component does not depend on the choice that
we made in the first component. In the remainder of this section, we will extend our
techniques to remove these restrictions so that we can handle more general problems.
Let’s start with a specific example of the cardinality of the union of nondisjoint sets:

Example 9.9 (Primes and odds)
Consider the set O = {1,3,5,7,9} of odd numbers less than 10 and the set
P ={2,3,5,7} of prime numbers less than 10. What is |O U P|?

It might be tempting to use the Sum Rule to conclude that |[OU P| = |O| +|P| =
5 +4 =9. But this conclusion is incorrect, because PN O = {3,5,7} # &, so the Sum
Rule doesn’t apply. In particular, OUP ={1,2,3,5,7,9},s0 |OUP| =6.

The issue with the naive applica-
tion of the Sum Rule in Example 9.9

-

is called double counting: in the ex-
pression |O| +|P|, we counted the
elements in the intersection O N P
twice, which gave us the incorrect

@D+

-

total count. The idea underlying the
Inclusion-Exclusion Rule is to correct
for this error: to compute the size of
the union of two sets A and B, we
extend the Sum Rule to correct for

(:()_

-

the double counting by subtracting

(a) Two sets A and B; we seek |A U B].

&>

(b) Calculating |A| +|B| counts elements in the dark-shaded region A N B twice.

@

(c) We correct for the double-counted intersection by subtracting its cardinality.

|A N B| from the final result. (See
Figure 9.3.) This counting rule is called inclusion—-exclusion because we include (add)
the cardinalities of the two individual sets, and then exclude (subtract) the cardinality
of the intersection of the pairs:

Theorem 9.4 (Inclusion-Exclusion)
Let A and B be sets. Then |AUB| = |A| +|B| — |JANB.

Here are a few small examples:

Example 9.10 (Counting not necessarily disjoint unions)

o LetA:={1,2,3} and B:={3,4,5,6}. Thus ANB ={3},and so |A| =3 and |B| =4
and |A N B| = 1. By the inclusion—-exclusion rule, |[A UB| = |A| +|B| — |[ANB| =
3+4 —1=6. Indeed, we have A UB ={1,2,3,4,5,6}, which contains 6 elements.

Figure 9.3: The
Inclusion—Exclusion
Rule.

Problem-solving

tip: Sometimes the
easiest way to solve
a problem—in CS
or in life!—is to
find an imperfect
approximation

to the solution,
and then correct
for whatever
inaccuracies result.
Inclusion—Exclusion
is a good example
of this estimate-
and-fix strategy.
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e Ata certain school in the midwest, there are 119 computer science majors and 65
math majors. There are 7 students double majoring in CS and math. Thus a total
of 119 +65 — 7 =177 different students are majoring in either of the two fields.

e There are 21 consonants (BCDFGHIKLMNPQRSTVWXYZ) in English. There are 6 vowels
in English (AEIOUY). There is one letter that’s both a vowel and a consonant (Y).
Thus there are 21 +6 — 1 =26 total letters.

o Let E be the set of even integers between 1 and 100. Let O be the set of odd inte-
gers between 1 and 100. Note that |E| = 50, |O| = 50, and |[EN O| = 0. Thus
|[EU O] =50 +50 — 0 =100.

Here’s an example that uses Inclusion-Exclusion to compute the cardinality of a
slightly more complicated set:

Example 9.11 (ATM machine PIN numbers)

Problem: A certain bank’s customers can select a 4-digit number (called a PIN) to
access their accounts, but the bank insists that the PIN may not start with the same
digit repeated three times (for example, 7770) or end with the same digit repeated
three times (for example, 0111). How many invalid PINs are there?

Solution: Let S denote the set of PINs that start with three repeated digits. Let E
denote the set of PINs that end with three repeated digits. Then the set of invalid
PINsis SUE.

e Note that |S| = 100: we can view a PIN in S as a sequence of two digits
(x,y) €{0,1,..., 9}2, with x repeated three times in the PIN. (So (3,1) corre-
sponds to the PIN 3331.) By the Product Rule, there are 10> =100 such codes.

e Similarly, |E| =100: we can think of an element of E as a sequence of two digits
(x,y) € {0,1,...,9}?, where y is repeated three times in the PIN.

first three positions match

If S N E were empty, then we could apply the Sum Rule to compute |S U E|. But

there are PINs that are in both S and E:

e A 4-digitnumber (x,y,z,w)isin SN Eifand only ifx = y = z (because
(x,y,z,w) € S)andy =z = w (because (x,y,z,w) € E). Thatis, any 4-digit
number that consists of the same digit repeated four times is in S N E. Thus

SN E ={0000,1111, 2222, 3333, 4444, 5555, 6666, 7777,8888,9999 } ,

last three positions match

and [SNE| =10.
(See Figure 9.4 for S, E, and S N E.) Applying the Inclusion-Exclusion rule, we see
that the set SUE of invalid PINs has cardinality |S| +|E| — [SNE| =100+100 —10 = Figure 9.4: Invalid
190. (So 10,000 — 190 = 9810 PINss are valid.) PINs, starting or
ending with the
same digit repeated
The basic Sum Rule is actually a special case of the Inclusion-Exclusion Rule: if A and three times.

B are disjoint, then |[ANB| =@, so |[AUB| =|A| +|B| — |ANB| =|A| +|B| —0 =|A| +|B]|.
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INCLUSION-EXCLUSION FOR THREE SETS
Theorem 9.4 describes how to calculate the cardinality of the union of two sets,
but this idea can be generalized. The basic idea is simple: we will try counting in the
easiest way possible, and then we’ll correct for any overcounting or undercounting.
For example, we can compute the

cardinality of the union of three sets

A UBU C using a more complicated

version of Inclusion-Exclusion: + + =
e We add (include) the three single-

ton sets (JA| +|B| +|C|), but this (a) If we start to compute |A U B U C| as |A| +|B| +|C|, we correctly count the
light-shaded regions, but we count elements in the medium-shaded regions
twice, and elements in the dark-shaded region three times.

sum counts any element contained
in more than one of the three sets

more than once.
e So we subtract (exclude) the
three pairwise intersections

(‘A n B‘ + |A n C| + ‘B n C‘ ) from (b) Subtracting the sum of the sizes of the pairwise intersections
the sum. But we're not done: |ANB|+|BNC|+|ANC| almost corrects for the double counting from (a), but it

imagine an element contained in also triple counts the elements of ANBNC.

all three of A, B, and C; such an

element was included three times

and then excluded three times, so B * -
it hasn’t been counted at all.

(c) The result of (a) minus (b) hasn’t counted the elements of AN BN C atall, so

* Soweadd (include) the three-way we can achieve the final count by adding |[ANBNC|.

intersection |[ANBNC|.

Figure 9.5: The
Inclusion-Exclusion
Figure 9.5 for a visual illustration of why this calculation is correct.) Rule for three sets
A, B, and C. See
Theorem 9.5.

This calculation yields the following three-set rule for inclusion—exclusion. (Or see

Theorem 9.5 (Inclusion-Exclusion for three sets)
Let A, B, and C be sets. Then |AU B U C| is given by

|A| +|B| +|C| = |[ANB|—|ANC|—|BNC|+|]ANBNC|.

Here are a couple of small examples of the three-set version of inclusion—exclusion:

Example 9.12 (Counting three-set unions)
o LetA:={0,1,2,3,4} and B:={0,2,4,6} and C :={0,3,6}. Then

|JAUBUC
=5 + 4 + 3 — 3 — 2 — 2 + 1
<~ =~ <~ <~ <~ ——
|A] |B| C] |ANB|=[{024}| [ANC|=[{0,3}| [BNC|={0,6}| [ANBNC|=[{0}|
=12—-7+1 =6,
by Inclusion-Exclusion. Indeed, AUBUC ={0,1,2,3,4,6}. (See Figure 9.6.) Figure 9.6: Some

small sets.
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912 CHAPTER 9. COUNTING

e Consider the words ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, and EIGHT. Let E be the
set of these words containing at least one E, let T be the words containing a T, and
let R be the words containing an R. Then

[EUT UR]
=5+3 + 2 - 2 - 1 - 1 + 1
~ O~ N~ =~ ~— ~—

E=tonE, T=tmwo, R=(THREE, ENT =(tHret, ENR=(THreE} TNR=tmreey  ENTNR=(THReE}
THREE, THREE, FOUR} EIGHT}
FIVE, EIGHT}
SEVEN,
EIGHT}

=V

and, indeed, seven of the eight words are in EU T UR (the only one missing is SIX).

We'll close with a slightly bigger example, about integers divisible by 2, 3, or 5:

Example 9.13 (Divisibility)
Problem: How many integers between 1 and 1000, inclusive, are evenly divisible by
any of 2, 3, or 5?

Solution: Define the following sets:

A={ne{1,...,1000}:2|n}
B={ne{1,...,1000}:3|n}
C={ne{1,...,1000}:5|n}.

We must compute |[AUBUC]|.

e It’s fairly easy to see that |A| = 500, |B| = 333,and |C| = 200, because
A={2n:1<n<500},B={3n:1<n<2333},and C={5n:1 < n < 200}.

e Observe that A N B is the set of integers between 1 and 1000 that are divisible by

both 2 and 3—that is, the set of integers divisible by 6. By the same logic that we

used to compute |A|, |B|, and |C|, we see

— |[ANB|=|{6n:1<n<166}| =166,
- |ANC| =]{10n:1 < n < 100} | =100, and
— [BNC|=|{15n:1<n < 66}| =66.

e And, using the same approach, we can conclude that ANBNC ={n:30|n} =
{30n:1<n<33},s0|ANBNC| =33.

Therefore, using the Inclusion—-Exclusion Rule, |[A UB U C]| is
500 + 333 +200 — 166 — 100 — 66 + 33 =734
O~ S~ N~ =~

Al Bl IC| |AnB| |AnC| |BNC| |ANBNC

We can further generalize the inclusion—exclusion principle to calculate the cardinality
of the union of an arbitrary number of sets. (See Exercises 9.30 and 9.181.)

Problem-solving

tip: To verify a
calculation like
this one, it’s a good
idea (and very
easy!) to write a
short program.
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9.2.3 The Generalized Product Rule

The Product Rule (Theorem 9.2) tells us how to compute the number of 2-element
sequences where the first element is drawn from the set A and the second from the

set B—specifically, it says that |[A x B|is |A| - |B|. But there are many types of se-
quences that do not precisely fit this setting: the Product Rule only describes the set

of sequences where each component is selected from a fixed set of options. If the set of
options for choice #2 depends on choice #1, then we cannot directly apply the Product
Rule. However, the basic principle of the Product Rule still applies if the number of dif-
ferent choices for the second component is the same regardless of the choice of the first
component, even if the particular set of choices can differ:

Theorem 9.6 (Generalized Product Rule)

Let S denote a set of sequences, each of length k, where for each index i € {1,...,k} the
following condition holds: for each choice of the first i — 1 components of the sequence, there
are exactly n; choices for the ith component. Then |S| =TT% n;.

Here are a few examples using the Generalized Product Rule:

Example 9.14 (Gold, silver, and bronze)

Problem: A set S of eight sprinters qualify for the finals of the 100-meter dash in the
Olympics. One will win the gold medal, another the silver, and a third the bronze.
How many different trios of medalists are possible?

Solution: It “feels” like we can solve this problem using the Product Rule, by choos-
ing a sequence of three elements from S, where we forbid duplication in our
choices. But our choice of gold, silver, and bronze medalists would be from

S x (S — {the gold medalist}) x (S — {the gold and silver medalists})

and the Product Rule doesn’t permit the set of choices for the second component to
depend on the first choice, or the options for the third choice to depend on the first
two choices.

Instead, observe that there are 8 choices for the gold medalist. For each of those
choices, there are 7 choices for the silver medalist. For each of these pairs of gold
and silver medalists, there are 6 choices for the bronze medalist. Thus, by the
Generalized Product Rule, the total number of trios of medalists is 8 - 7 - 6 =336.

Example 9.15 (Opening moves in a chess game)
In White’s very first move in a chess game, there are n; = 10 pieces that can move:
any of White’s 8 pawns or 2 knights. Each of these pieces has n, =2 legal moves: the

pawns can move forward either 1 or 2 squares, and the knights can move either 9 or
F. (See Figure 9.7.) Thus there are 17 - n, =10 - 2 =20 legal first moves.

Figure 9.7: The
valid first moves in
a chess game.
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Example 9.16 (Students in classes)
At a certain school in the midwest, each of 2023 students enrolls in exactly 3 classes
per term. The set

Enrollments :={(s,c) : s is a student enrolled in class ¢ during the current term}

has cardinality 2023 - 3 = 6069, by the Generalized Product Rule: for each of the

n1 = 2023 choices of student, there are n, = 3 choices of classes. (Note that the
original Product Rule does not apply, because the set Enrollments is not a Cartesian
product: in general, two students are not enrolled in the same classes—just the same
number of classes.)

Although we didn’t say we were doing so, we actually used the underlying idea of the
Generalized Product Rule in Example 9.11. Let’s make its use explicit here:

Example 9.17 (4-digit PINs starting with a triplicated digit)
LetS C {0,1,...,9}* denote the set of 4-digit PINs that start with three repeated
digits. We claim that |S| =100, as follows:

e There are 77 =10 choices for the first digit.

o There is only 1, =1 choice for the second digit: it must match the first digit.
e There’s also only n3 =1 choice for the third digit: it must match the first two.
o There are n4 =10 choices for the fourth digit.

Thus there are nqy - ny - n3 - ng =10-1-1-10 =100 elements of S.

PERMUTATIONS
The Generalized Product Rule sheds some light on a concept that arises in a wide
range of contexts: a permutation of a set S, which is any ordering of the elements of S.

Definition 9.1 (Permutation)
A permutation of a set S is a sequence of elements from S that is of length |S| and contains
no repetitions. In other words, a permutation of S is an ordering of the elements of S.

As a first example, let’s list all the permutations of the set {1,2,...,n} for a few small
values of n:

e forn =1, there’s just one ordering: (1).

e forn =2, there are two orderings: (1,2) and (2,1).

e forn =3, there are six: (1,2,3), (1,3,2),(2,1,3),(2,3,1),(3,1,2),and (3,2,1).

o for n = 4, there are twenty-four: six with 1 as the first element (which can then be
followed by any of the six permutations of (2,3, 4)), six with 2 as the first element,
six with 3 first, and six with 4 first, yielding a total of 4 - 6 =24 orderings.
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How many permutations of an n-element set are there? There are several ways to see
the general pattern, including recursively, but it may be easiest to use the Generalized
Product Rule to count the number of permutations:

Theorem 9.7 (Number of permutations)
Let S be any set, and write n := |S|. The number of different permutations of S is n!.

Proof. There are n choices for the first element of a permutation of S. For the second
element, there are n — 1 choices (all but the element chosen first). There are n — 2
choices for the third slot (all but the elements chosen first and second). In general, for
the ith element, there are n — i 4+1 choices. Thus the number of permutations of S is

n n

[[o—i+1)=]]j=n

i=1 j=l
by the Generalized Product Rule. O

Here’s a small example for a concrete set S:

Example 9.18 (10-digit numbers)
Problem: What fraction of integers between 0 and 9,999,999,999 (all written as 10-digit
numbers, including any leading zeros) have no repeated digits?

Solution: We seek a 10-digit sequence with no repetitions—that is, a permutation of
{0,1,...,9}. There are 10! = 3,628,800 such permutations, by Theorem 9.7. There
are a total of 1010 integers between 0 and 9,999,999,999, by the Product Rule. Thus
the fraction of these integers with no repeated digits is % ~ 0.00036 - - -, about
one out of every 2750 integers in this range.

Taking it further: A permutation of a set S is an ordering of that set S—so thinking about permutations
is closely related to thinking about sorting algorithms that put an out-of-order array into a specified
order. By using the counting techniques of this section, we can prove that algorithms must take a certain
amount of time to sort; see the discussion on p. 920.

We will also return to permutations frequently later in the chapter. For example, in Section 9.4, we
will address counting questions like the following: how many different 13-card hands can be drawn from a
standard 52-card deck of playing cards? (Here’s one way to think about it: we can lay out the 52 cards in any
order—any permutation of the cards—and then pick the first 13 of them as a hand. We'll have to correct
for the fact that any ordering of the first 13 cards—and, for that matter, any ordering of the last 39—will
count as the same hand. But permutations will also help us to think about this correction!)

9.2.4 Combining Products and Sums

Suppose that we select a pair (a,b) from a set of possible choices. The Product Rule
tells us how many ways to make these choices if the particular choice of 2 does not
affect the set of options from which b is chosen. The Generalized Product Rule tells us
how many ways to make these choices if the particular choice of 2 does not affect the
size of the set of options from which b is chosen. But if the number of options for the
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choice of b differs based on the choice of 4, even the Generalized Product Rule does
not apply. In this case, we can use a combination of the Sum Rule and the Generalized
Product Rule to calculate the number of results. We'll close this section with a few
examples of these somewhat more complex counting questions.

Example 9.19 (Ordering coffee)
A certain coffeeshop sells the following espresso-based drinks:

americano®, cappuccino, espresso”, latte, macchiato, mocha.

The drinks marked with an asterisk do not contain milk; the others do. All drinks
can be made with either decaf or regular espresso. All milk-containing drinks can be
made with any of {soy, skim, 2%, whole} milk. How many different drinks are sold
by this coffeeshop?

We can think of a chosen drink as a sequence of the form

(drink type, milk type (or “none”), espresso type).

There are 4 - 4 - 2 =32 choices of milk-based drinks (4 drink types, 4 milk types, and 2
espresso types). There are 2 - 1 - 2 =4 choices of non-milk-based drinks (2 drink types,
1 “milk” type [“none”], and 2 espresso types). Thus the total number of different
drinks sold by this coffeeshop is 32 +4 =36.

Example 9.20 (Text numbers)

Problem: In the United States, a text message can be sent either to a regular 10-digit
phone number, or to a so-called short code which is a 5- or 6-digit number. Neither
a phone number nor a short code can start with a 0 or a 1. How many different
textable numbers are there in the United States?

Solution: Let D ={2,3,...,9}. Note |D| =8. The set of valid textable numbers is:

Dx (DU{0,1}¥ U Dx DU{0,1})* U Dx (DU{0,1}).

phone numbers 5-digit short codes 6-digit short codes

The Product Rule tells us that |D x (DU {0,1}Y| =|D|- DU {0,1} |* =810’ for any
i. (To be totally pedantic: we're using the Sum Rule to conclude that [D U {0,1} | =
ID| +|{0,1} | =10, because D and {0, 1} are disjoint.) Therefore:

‘D x (DU{0,1}Y UD x DU {0,1})*UD x (Du{o,l}ﬂ

=‘D>< OU{0,1}°| +|Dx O U{0, 1) +

Dx (DU {0,1})5‘

Sum Rule: the three types of nunbers are disjoint because they have different lengths
=8-10° +8-10* +8-10°
=8,000,880,000.

Product Rule, as described in the previous paragraph

Problem-solving

tip: When you're
confronted with a
counting problem
that appears com-
plicated, try to find
a nice way of split-
ting the problem
into several disjoint
options. Often a
difficult counting
problem is actually
the sum of two
simple counting
problems.
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COMBINING SUMS AND PRODUCTS: PREFIX-FREE CODES
We’ll end the section with two somewhat more complicated counting problems,
where we’re asked to calculate the number of objects meeting some particular con-
dition: sets of bitstrings such that no string is a prefix of another, and results of a
best-of-five series of games. In both cases, we can give a solution based entirely on a
brute-force approach by simply enumerating all possible sequences, eliminating any
that don’t meet the stated condition, and counting the uneliminated sequences one by
one. But there are also ways to break down the set of objects of interest into subsets
that we can count using the Sum and (Generalized ) Product Rules.
A prefix-free code is a set
g : 01 |oojo1|10[11][ok? 0|1 |00j01|10[11[[ok? 0 ]1]00|01[10]11]jok? O |1 |00]01]1011]|ok?
C of bitstrings with the ~ 7 — 7 — 717 7
property thatnox € C 414 v i v W o Y|V v |1
. . v v 4 v 10 v v v 44 v 10
is a prefix of any other s\ /| [l v s\l vl | Iviv]fo
(For example. if v v v| |v oo v o v |v 01
y € C. (For example, i /| vl Al Wl A ] e ve] ] o
010 € C, then we must a4 v A 10 v 'ars 01 W VIV 01
W Amrararanu v v |V |V ||01 A 4mrarardion
have 0101 ¢ C, because v v sl ; vl 0 vl 00
010 is a prefix of 0101.) v/ 44 44 411 Y /|00 V||V v (|00
, T a4 v W 10 4B4mrs 00 IV 00
Let’s compute the number | iviv | [vlvifo  v| || |viv]joo  viviv| v
e a4 v a4 4 | VIV 00 4444 00
of prefix-free codes where iRV Arlel 1ol vl vl vl vz el b lloo
all of the codewords are 4amits JIVIiVIV |l v [V |0 vV IV |00
. W rarararany V| [VIV|V|V]]|00 WV ||00
only 1 or 2 bits long:

Example 9.21 (Prefix-free codes)
One simple way to find the number of prefix-free codes C C {0,1}! U {0,1}* is
to write down all subsets of S := {0,1}! U {0,1}?, and then check each subset to
eliminate any set that violates the prefix rule. (See Figure 9.8, which was generated
by a computer program; there are 25 codes in the table that pass the prefix test.)
There are 2/5| =26 = 64 subsets of S: we can describe each subset of S as an element
of {yes,no} I where the ith component tells us whether the ith element of S is in the
set. The Product Rule tells that |{yes, no}ls | | =2% =64. (See Lemma 9.10.)

Here’s a different approach, involving more thinking and less brute-force calcula-
tion. Let’s partition the set of valid codes into four classes based on whether 0 € C
and1 € C:

If 0 ¢ Cand 1 ¢ C, then any subset of {00,01,10,11} can be in C.
If 0 ¢ Cand 1 € C, then any subset of {00,01} can also be in C.
If0 € Cand 1 ¢ C, then any subset of {10, 11} can also be in C.
If 0 € Cand 1 € C, then no 2-bit strings can be included.

By the Product Rule, there are, respectively, 2* and 22 and 2% and 2° choices corre-
sponding to these classes. (The four classes correspond to the four columns of Fig-
ure 9.8.) By the Sum Rule, the total number of prefix-free codes using 1- and 2-bit

strings is 16 +4 +4 +1 =25.

Figure 9.8: All

64 subsets of
{0,1,00,01,10,11},
with indication of
whether the subset
is prefix-free or
not. In each row (a
subset), if the set is
not prefix-free, then
one violation found
in the set is listed.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.



918 CHAPTER 9. COUNTING

Taking it further: Prefix-free codes are useful in that they can be transmitted unambiguously, without
a special marker that separates codewords. For example, consider the prefix-free code {0,10,11}. Then
a sequence 0101111100 can only be interpreted as 0[/10||11]|11||10]|0. If a code is not prefix-free—like
the English language!—then a sequence of codewords cannot be unambiguously decoded: for example,
THEME might be one word (theme) or it might be two (the me).

Huffman coding—named after David Huffman, a 20th-century American computer scientist—is
an algorithm for computing a prefix-free code that can be used for data compression for English (for
example), by allowing us to translate each letter into a corresponding code word. Huffman coding
carefully assigns shorter codewords to more commonly used letters, and thus has a special property:
among all prefix-free codes, its codewords have the smallest length, on average. A Huffman code can be
constructed using a simple greedy approach; for more, see a good textbook on algorithms.

COMBINING SUMS AND PRODUCTS: A BEST-OF-FIVE SERIES
Here’s one more example of using our counting rules in combination:

A B

A B
A B A
A B A B A B
AAA
A B A B A B A B A
A B A B A B A B A B
| AABBA | | AABBB | | ABABA ‘ | ABABB | ‘ ABBAA | | ABBAB | | BAABA | | BAABB | | BABAA | | BABAB |

| BBAAA | | BBAAB |

Example 9.22 (A best-of-five series)

Problem: Suppose that two teams A and B play a best-of-five series of games: the
teams play until one team has won three games, at which point the match is over,
and that team is the winner. How many different sequences of outcomes are there?

Solution: The simplest approach is to use brute force: simply write out all possible
sequences of outcomes, and count them up. This approach is shown in Figure 9.9.
However, there’s another way to count. Suppose that team A wins the series:

e There’s 1 outcome in which A never loses: A wins games 1, 2, and 3.

e There are 3 outcomes in which A loses once: A loses immediately before its first
win (BAAA), before its second win (ABAA), or before its third win (AABA).

o If A loses twice, then A must have won the fifth game, and exactly two of the
first four. Thinking of the outcomes of the first four games as 4-bit strings with
1s denoting A’s wins, Example 9.4 says there are precisely 6 such outcomes.

In sum, there are 1 +3 +6 =10 ways for A to win the series. There are 10 analogous
ways for B to win, so there are 20 outcomes in total.

Figure 9.9: A tree
representing each
best-of-five series
of games between
two teams, A and
B. The branch
points correspond
to the games,

and are labeled
by the winner of
the game. The 20
different sequences
of outcomes are
shown at the
bottom of the tree.
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CoMPUTER ScIENCE CONNECTIONS I

RunnNiING ouT oF IP ADDRESSES, AND [Pv6

A crucial component of the internet is the assignment of an address to
every machine connected to the network. This address is called an IP address,
where “IP” stands for Internet Protocol—the algorithm by which packets of
information are handled while they’re being transmitted across the internet.
Each packet of information to be transmitted stores a variety of pieces of
information, including (1) some basic header information; (2) a source address
(the sender of the information); (3) a destination address (the intended recipient
of the information); and (4) the data to be transmitted (the “payload”).

The subfield of computer science called computer networking is devoted to
everything about how the internet (or some smaller network) works: design

of the network, physical systems, protocols for routing, and more." Here we For more, see a good textbook on
are going to concentrate on the IP address itself, and a particular issue related computer networks, like
to how many—or how few!—addresses there are. ! James F. Kurose and Keith W. Ross.

Computer Networking: A Top-Down
Approach. Addison-Wesley, 6th edition,
2013.

Each device on the internet that can send or receive information needs an
address by which to do so. For almost the entire history of the internet, an
IP address has simply been a 32-bit string. These IP addresses are typically
represented as an element of {0, .. .,255}4 instead of as an element of {0, 1}32,
by converting 8 bits at a time into base-10 numbers, and then writing each
8-bit chunk separated by periods. For example, the site cs.carleton.edu is
associated with the IP address

10001001 . 00010110 . 00000100 . 00010111.
137 22 4 23

You can find the IP address of your favorite site using a tool called nslookup
on most machines, which checks a so-called name server to translate a site’s
name (like whitehouse.gov) into an IP address (like 173.223.132.110).
As an easy counting problem, we can check that there only 232 —4,294,967,296
different possible 32-bit IP addresses—about 4.3 billion addresses. Every ma-
chine connected to the internet needs to be addressable to receive data, so that
means that we can only support about 4.3 billion connected devices. In the There are some strategies from com-

1990s and 2000s, more and more people began to have machines connected to puter networking for conserving ad-
dresses by “translation,” so that several
computers cy, cy, ... can be connected
via an access point p—where p is the

the internet, and each person also began to have more and more devices that
they wanted to connect. It became clear that we were facing a dire shortage

of IP addresses! As such, a new version of the Internet Protocol (version six, only machine that has a public, visible
hence called IPv6) has been introduced. IP address. All of those computers’
In IPv6, instead of using 32-bit addresses, we now use 128-bit addresses. traffic is handled by p, but p must be

There are some tricky elements to the transition from 32-bit to 128-bit addresses— Az it s s e e 1 iessiye (o
the correct one of the ¢; computers. For

your computer better keep working!—but there are now 2!28 different ad- more information, see the Kurose—Ross
dresses available. That's 340,282,366,920,938,463,463,374,607,431,768,211,456 ~ textbook cited previously.
3.4 x 108, which should hold us for a few millennia. For example, whitehouse.
gov is associated with a 32-bit address 173.223.132.110, and a 128-bit ad-
dress 2600:1408:0010:019a:0fc4, represented by 5 blocks of 4 hexadecimal
numbers—that is, as an element of
4 5
[{0, 1,2,3,4,5,6,7,8,9,a,b,c,d,e, f} ] .
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CoMPUTER ScIENCE CONNECTIONS I

A Lower BounD FOR CoOMPARISON-BASED SORTING

Most people who encounter the sorting problem—given an array A[1...n],
rearrange A so that it’s in ascending order—initially devise a quadratic-time
algorithm. (For simplicity, suppose that we're sorting distinct elements.) The selectionSort(A[1...17]):
most common examples of @(1?)-time algorithms are Selection Sort, Insertion 1: for i:=1tomn
Sort, and Bubble Sort. Then, after a lot of thought (and, usually, some help), 2: minI?zdex. =i
those people often are able to devise a O(nlog n)-time sorting algorithm, like for. J=itlton:

if A[j] < A[minIndex] then
Merge Sort, Quick Sort, or Heap Sort. (See Section 6.3.) minlndex :=j

But suppose that you were extra impatient with the speed of your sorting swap A[i] and A[minIndex]
algorithm, and you were extra, extra clever. Could you do asymptotically
better than O(nlog n) in the worst case? The answer, we’ll show, is no—with a
footnote: any “comparison-based” sorting algorithm requires Q)(nlog n) time.

(The footnote is that it depends on what we mean by “sort,” as we'll see.)

Figure 9.10: Selection Sort.

A WARM-UP: SELECTION SORT

First, recall Selection Sort, shown in Figure 9.10. One way to analyze its
running time is as we did in Example 6.7: there are # iterations, and in the
(n — i)th iteration we require i steps. In other words, the running time of
Selection Sort is )} ; i. We could repeat the straightforward inductive proof
that Y/, i = n(n +1)/2, but instead Figure 9.11 gives a more visual way
of seeing this result. Figure 9.11(a) shows a shaded triangle that represents
the running time of selection sort: /', i, where row i of the triangle has i
steps in it. Figure 9.11(b) shows that this triangle is contained within an n-by-n
square and also contains an §-by-% square. Thus the area of the triangle is upper
bounded by 1 - n =n? and lower bounded by % - 4 = "{, and therefore is @(1?).
This picture is a visual representation of a more algebraic proof:

n n n n n n2
Yii<Yn=n’, and Yix> ) i> Y} b=
i i=1 i i i

n rows

(a) Selection Sort’s running time.

While the analysis of Selection Sort isn’t necessary for our main proof, the
style of analysis from Figure 9.11 will be useful in a moment.

TaERE ARE No O(n) COMPARISON-BASED SORTING ALGORITHMS .es

All of the sorting algorithms that we’ve encountered in the book are ceeee

comparison-based sorting algorithms: they proceed by repeatedly comparing RARARAH
the values of two elements x; and x; from the input array without considering
the values themselves. Depending on the result of the comparison, the algorithm . : .

. . Figure 9.11: A visual representation
may then swap some elements of the array. (Comparison-based sorting algo- of the proof that Selection Sort runs in
rithms probably include every sorting algorithm that you’ve ever seen, except @(?) time.
counting, radix, and bucket sorts.)

One way to view a comparison-based sorting algorithm is through a deci-
sion tree, like the one shown in Figure 9.12 for Selection Sort on a 3-element
array. The internal nodes encode the comparisons made by the algorithm. The
leaves correspond to sorted orders—the output of the sorting algorithm.

(b) The analysis of the running time.
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CoMPUTER ScIENCE CONNECTIONS I

SorTING LowER BOUNDS, CONTINUED

Figure 9.12: The decision tree for Se-
lection Sort on the input array (a, b, c).
Selection Sort first does two compar-
isons to find the minimum value of
{a,b,c}, and subsequently compares the
b>c remaining two elements to decide on
the final order. The two lighter-shaded
branches of the tree are logically incon-
b<m sistent, but Selection Sort reexecutes the
a-versus-b comparison in those cases.

a<c

a is min

>c . b <
c is min b is min

b<c

(a,b,c) (a,c,b) (c,a,b) (b,a,c) (b, c,a) (c,b,a)

The running time of the sorting algorithm whose input corresponds to a
particular leaf is Q(mumber of comparisons on that root-to-leaf path) because,
although the algorithm might do more than compare—in fact, it must (for
example, it has to perform swaps)—it must do at least these comparisons.

We will use the decision tree to establish a lower bound on the running
time of comparison-based sorting algorithms:

Theorem 9.8
Any comparison-based sorting algorithm requires Q(nlog n) time.

The crucial fact here is precisely analo-

Proof. Consider the decision tree T of the sorting algorithm. First, observe gous to the one in Figure 9.11:
that T must have at least n! leaves. There are n! different permutations of the ﬁi - ﬁ . ﬁ P
input, and a correct algorithm must be capable of producing any of these o = 27520

i=f -+ i=5+1
permutations as output. Second, observe that T has at most 2 nodes at depth d. ’ ’

(It’s a binary tree!) Thus the height 1 of T satisfies 2k > nl. Taking logarithms
of both sides, we have

The only difference is that here we're
using products instead of summations.

h>log,(n!)=log, [n-(n—1)- n—2)- - - (z+1)-(3): --- -1]
> logy [ (1= 1)+ (1=2)- - - (3 +1)]
2 log, [(% )(n/2)] countingSort(A[l...n]):
_(ny. Input: array (A[1...n]) where each
(3)-log, (n/2) Alil € {1,2,...,c}.
=Q(nlogn). (| 1: for v:=1toc:
2:  count[v]:=0
A LiNEAR-TIME SORTING ALGORITHM i for i:=lAto.n:. P
While we’ve now shown that every comparison-based sorting algorithm 5 i .:Ciunt[ (1} :=count A[i]] +
takes Q)(n log n) time, there are faster algorithms for special cases. Figure 9.13 6 f(;r 2 =1 o
shows one, called counting sort, which allows us to sort without comparing 7. for t:=1to count[v]:
elements to each other. As long as the elements of the array are integers from 8: Ali]:=0
a small range, then this algorithm is fast: the running time is ®(c +#) (the last 9: =i

nested loop requires Y, count[v] =n time); as long as c is small, this algorithm Figure 9.13: Counting Sort.
runs in linear time.
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9.2.5 Exercises

9.1 A tweet (a message posted on Twitter) is a sequence of at most 140 characters. Assuming there are
256 valid different characters that can appear in each position, how many distinct tweets are possible?

Cars in the United States display license plates containing an alphanumeric code, whose format varies from state to
state. Each of the following questions describes the format of currently issued license plates by some state. For each,
determine the number of different license plate codes (often misleadingly called license plate numbers despite the
presence of letters) of the listed form. All letters in all codes are upper case.

9.2 Minnesota: digit-digit-digit-letter-letter-letter (as in 400GPA).

9.3 Pennsylvania: letter-letter-letter-digit-digit-digit-digit (as in EEE2718).

9.4 Connecticut: digit-letter-letter-letter-letter-digit (as in 4FIVE6).

9.5 You have been named Secretary of Transportation for the State of [Your Favorite State]. Congrat-

ulations! You're considering replacing the current license plate format ABCD-1234 (4 letters followed by 4
digits) with a sequence of any k symbols, each of which can be either a letter or a digit. How large must k be

so that your new format has at least as many options as the old format did?

9.6 Until recently, France used license plates that contain codes of any of the following forms:
digit-digit-digit-letter-digit-digit.

digit-digit-digit-letter-letter-digit-digit, where the first letter is alphabetically < P.
digit-digit-digit-digit-letter-letter-digit-digit, where the first letter is alphabetically > Q.
digit-digit-digit-letter-letter-letter-digit-digit.

How many license plates, in total, met the French requirements?

9.7 A particular voicemail system allows numerical passwords of length 3, 4, or 5 digits. How many
passwords are possible in this system?
9.8 What about numerical passwords of length 4, 5, or 6?

A contact lens is built with the following parameters: a (spherical) power (for correcting near- or farsightedness); and,
possibly, a cylindrical power and an axis (for correcting astigmatism). For a particular brand of contacts, the possible
parameters for a lens that corrects near- or farsightedness only are

o a power between —6.00 and +6.00 inclusive in 0.25 steps (excluding 0.00); between 6.50 and 8.00 inclusive in 0.50

steps; and between —6.50 and —10.00 inclusive in 0.50 steps,

and the parameters for a lens that corrects astigmatism are

o one of the powers listed previously;

o a cylindrical power in {—0.75, —1.25, —1.75, —2.25}; and

o an axis between 10° and 180° in steps of 10°.

9.9 How many different contact lenses are there?

9.10 A patient needing vision correction in both eyes may get different contact lenses for each eye. A
prescription assigns a lens for the left eye and for the right eye. How many contact prescriptions are there?

9.11 During the West African Ebola crisis that started in 2014, geneticists were working to trace the

spread of the disease. To do so, they acquired DNA samples of the viruses from a number of patients, and

affixed a unique “tag” to each patient’s sample.? A fag is a sequence of 8 nucleotides—each an element of 2 Richard Preston.

{A, C, G, T}—attached to the end of a virus sample from each patient, so that subsequently it will be easy to The Ebola wars.

identify the patient associated with a particular sample. How many different such tags are there? The New Yorker, 27
October 2014.

9.12 In a computer science class, there are 14 students who have previously written a program in Java,

and 12 students who have previously written a program in Python. How many students have previously
written a program in at least one of the two languages? (If you can’t give a single number as a definitive
answer, give as narrow a range of possible values as you can.)

9.13 True story: a relative was given a piece of paper with the password to a wireless access point that
was written as follows: al54bc0401011. But she couldn'’t tell from this handwriting whether each “1” was

1 (one), 1 (ell), or I (eye); or whether “0” was 0 (zero) or 0 (oh). How many possible passwords would she
have to try before having exhausted all of the possibilities?

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.



9.2. COUNTING UNIONS AND SEQUENCES 923

A Rubik’s cube—named after the 20th-century Hungarian architect Erndé Rubik—
is a 3-by-3-by-3 grid of cells, where any of the six nine-cell faces (top, bottom, left,
right, front, back) can be rotated 90° clockwise or counterclockwise in a single move.
(See Figure 9.14.) Each face of each cell is colored with one of six colors (blue, red,
green, yellow, white, and orange); initially, all nine cell-faces on each cube-face have
the same color, but the cube can then be scrambled. The challenge is to use rotations
to configure a scrambled cube such that each face of the cube contains nine cells of
the same color.

9.14 How many Rubik’s cube moves are there?

9.15 It is known that, from any configuration, 26 moves suffice to solve

the cube. (Note that we're counting every 90° rotation as a move; if you rotate the same face 180° by using Figure 9.14: A
two consecutive 90° moves, it counts as two moves.) How many sequences of 26 moves are possible? Rubik’s cube
9.16 It’s useless to rotate a face clockwise in one move, and rotate the same face counterclockwise in with the top face
the next move. (You've just undone the previous move.) A counterclockwise move followed by a clockwise (and one cell
move is analogous. How many sequences are there of 26 moves that never undo the previous move? in particular)

highlighted, and
the result of a single
move—rotating the
top face clockwise.

Emacs is a widely used software program for—among other things—editing text documents (including this book!).
Here’s a mildly simplified description of Emacs (fo make this problem more manageable). In Emacs, a command
character is produced by pressing a letter key while holding down either the Control key, the Meta key, or both. (For
example, Control+Y or Meta+B or Control+Meta+U are command characters.)

9.17 How many command characters are there in Emacs?

Emacs is complicated enough that it needs more commands than Exercise 9.17 allows. To allow for more commands,
Emacs has been extended, as follows. Meta+X and Control+X—as in eXtended—are command prefixes, so that

neither Meta+X nor Control+X is a valid command, but, for example, “Control+X Control” is (and it’s different from
Control+U). A valid command can be formed by Control+X or Meta+X followed by any letter or any command character
(including Control+X or Meta+X). All other command characters from Exercise 9.17 are still valid.

9.18 How many command characters are there now?

9.19 Argue that, for any sets A and B, |[AUB| =|A — B| +|B — A| +|ANB|. (Use the Sum Rule.)

9.20 How many 100-bit strings have at most 2 ones? (Use Example 9.4.)

9.21 Determine how many k-bit strings have exactly three 1s using the approach in Example 9.4—that
is, by dividing the set of bitstrings based on the position of the third one.

9.22 (programming required) Write a program, in a language of your choice, to enumerate all bitstrings

in {0, 1}16 and count the number that have 0, 1, 2, and 3 ones. Use this program to verify your answer to the
last exercise and your approach to Exercise 9.20.
9.23 The following is a simpler “solution” to Example 9.4, where we computed the number of elements
of {0, 1}k that have precisely two 1s. What, exactly, is wrong with this argument?

We wish to determine |S|, where S is the set of k-bit strings with exactly 2 ones. Define S; :={x € S : x; =1}, for
eachi € 1,2,...,k. Observe that S = \J*_; S; and that |S;| =k — 1. Therefore, by the Sum Rule, |S| =YX, |S;| =
ik —1) =k(k — 1)

Unicode is a character set frequently used on the web; it supports hundreds of thousands of characters from many
languages—English, Greek, Chinese, Arabic, and all other scripts in current use. A very common encoding scheme
for Unicode, called UTF-8, uses a variable number of bits to represent different characters (with more commonly used
characters using fewer bits). Valid UTF-8 characters can be of any of the following forms, using 1, 2, 3, or 4 bytes, and
have one of the following forms (where x represents an arbitrary bit):

OXXXXXXX

1I1OXXXXX LOXXXXXX

1110xxXX 1OXXXXXX 1OXXXXXX

11110yyy 10yyxxxx 1OXxxxxx 1Oxxxxxx, with a further restriction: the first five bits (marked yyyyy) must be
either of the form @xxxx or 10000.

The ith character in the Unicode character set is encoded by the ith legal UTF-8 representation, resulting from convert-
ing i into binary and filling in the x (and y) bits from the templates.

9.24 How many characters can be encoded using UTF-8?

9.25 There’s a rule for Unicode that doesn't allow excess zero padding: if a character can be encoded
using one byte, then the two-byte encoding is illegal. For example, 1010101 encodes the same character

as 11000001 10010101; thus the latter is illegal. How many of the characters from the last exercise can be
encoded without violating this rule?
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9.26 A rook in chess can move any number of spaces horizontally or vertically. (See Figure 9.15.) How
many ways are there to put one black rook and one white rook on an 8-by-8 chessboard so they can’t capture
each other (that is, neither can move onto the other’s square)?

9.27 A queen in chess can move any number of spaces horizontally, vertically, or diagonally. (Again,
see Figure 9.15.) How many ways are there to put one black queen and one white queen on an 8-by-8 chess-
board so they can’t capture each other (that is, neither can move onto the other’s square)? (Hint: think about
how far the black queen is from the edge of the board.)

9.28 (programming required) Write a program to verify your solution to the previous exercise. 7
6
9.29 You have a wireless-enabled laptop, phone, and tablet. Each device needs to be assigned a unique o
“send” frequency and a unique “receive” frequency to communicate with a base station. Let S :={1,...,8} :
denote send frequencies and R := {a,...,h} receive frequencies. A frequency assignment is an element of 7
S x R. A set of frequency assignments is noninterfering if no elements of S or R appears twice. How many D)
noninterfering frequency assignments are there for your three devices? abedefon
Figure 9.15: Two
9.30 Write down an inclusion—exclusion formula for [AUBUCUD|. chess boards,
showing the legal
9.31 How many integers between 1 and 1000, inclusive, are divisible by one or more of 3, 5, and 7? m;)ves for ZrOOk
9.32 How many integers between 1 and 1000, inclusive, are divisible by one or more of 6, 7, and 8? Elielcgvi)) and queen
9.33 How many integers between 1 and 10000, inclusive, are divisible by at least one of 2, 3, 5, or 7? ’

In Chapter 7, we encountered the totient function p : Z=1 — Z.=9, defined as
(1) :=the number of k with 1 < k < n such that k and n have no common divisors.

We can always compute the totient of n by brute force (just test all k € {1,...,n} for common divisors using the
Euclidean algorithm, for example). But the next few exercises will give a hint at another way to do this computation
more efficiently. For a fixed integer n:

9.34 Suppose m € Z>! evenly divides n. Define M :={k € {1,...,n} : m|k}. Argue that [M| = Z.
9.35 (A number-theoretic interlude.) Let the prime factorization of n be n =p{! - pi? - - - pif, for distinct
prime numbers {py,...,p,; } and integers ey, ..., e, > 1. Letk < n be arbitrary. Argue that k and n have no
common divisors greater than 1 if and only if, for all i, we have p; fk.

9.36 Let n be an integer such that n = p'g/ for two distinct prime numbers p and g, and integers

i > landj > 1. (For example, we can write 544 = 171 . 25; herep =17,9 =2,i =1,andj = 5.) Let
P:={ke{l,...,n}:plk}and Q :={k € {1,...,n} : q|k}. Argue that p(n) = n(l — %)(l - %)byusing
Inclusion—Exclusion to compute |P U Q)|. (You should find the last two exercises helpful.)

In the sport of cricket, a team consists of 11 players who come up to bat in pairs. Initially, players #1 and #2 bat. When
one of those two players gets out, then player #3 replaces the one who got out. When one of the two batting players—
player #3 and whichever player of {#1,#2} didn’t get out—gets out, then player #4 joins the one who isn’t out. This
process continues until the 10th player gets out, leaving the last player not out (but stranded without a partner).

Thus, in total, there are 11 players who bat together in 10 partnerships. As an example, consider the lineup Anil,
Brendan, Curtly, Don, Eoin, Freddie, Glenn, Hansie, Inzamam, Jacques, Kumar. We could have the following batting
partnerships: Anil & Brendan; Anil & Curtly; Anil & Don; Don & Eoin; Don & Freddie; ...; Don & Kumar.

9.37 How many different partnerships (pairs of players) are possible?

9.38 How many different sequences of partnerships (like the example list of partnerships given previ-
ously) are possible? (It doesn’t matter which of the last two players gets out.)

9.39 A team’s batting lineup may be truncated (by winning the game or by choosing not to bat any

longer) at any point after the first pair starts batting. Now how many different sequences of partnerships are
possible? Here, it does matter whether one of the last two players gets out or not (but not which of the two
was the one who got out).

9.40 Suppose that, as in Example 9.11, a bank allows 4-digit PINs, but doesn’t permit a PIN that starts
with the same digit repeated twice (for example, 7730) or ends with the same digit repeated twice (for
example, 0122). Now how many invalid PINs are there?

9.41 Let S; denote the set of PINs that are k digits long, where the PIN may not start with three re-
peated digits or end with three repeated digits. In terms of k, what is |Sg|? (Example 9.11 computed |S4|.)
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Checkers is a game, like chess, played on an 8-by-8 grid. Chinook, a recently built checkers-playing program that never

loses a game,® computes all possible board positions with up to k tokens, for small k. Over the next few exercises, you'll 3 Jonathan Schaeffer,

compute the scope of that task for very small k—namely, k € {1,2}. Figuring out how many board positions have two Neil Burch, Yngvi

tokens—note that two tokens can’t occupy the same square!—uwill take a little more work. Bjornsson, Akihiro
Briefly, the rules of checkers are as follows. Two players, Red and Black, move tokens diagonally on an 8-by-8 grid; Kishimoto, Martin

tokens can only occupy shaded squares. There are two types of tokens: pieces and kings. Any piece that has reached the Muller, Rob Lake,

opposite side of the board from its starting side (row 8 or row 1) becomes a king. (So Black cannot have a piece in row 8, Paul Lu, and Steve

because that piece would have become a king.) Note that Black occupying square C3 is different from Red occupying C3. Sutphen. Checkers

(See Figure 9.16.) is solved. Science,

9.42 How many board positions have exactly one token (of either color)? 317(5844):1518-

9.43 How many board positions have two kings, one of each color? 1522, 14 September

9.44 How many board positions have two Red kings? (Notice that two Red kings cannot be distin- 2007.

guished, so it doesn’t matter “which” one comes first.)

9.45 How many board positions have two Black pieces? j

9.46 How many board positions have two pieces, one of each color? o

9.47 How many board positions have one Red king and one Red piece? 5

9.48 How many board positions have one Black king and one Red piece? ;

9.49 Use the last six exercises to determine how many total board positions have two tokens. o

9.50 (programming required) Write a program, in a language of your choice, to verify your answer to the '8 )

last few exercises (particularly the total count, in the last exercise). rhede
Figure 9.16: A
checker board.
Pieces can occupy
any shaded square;
a black piece that
reaches row 8 or

a red piece that
reaches row 1
becomes a king.

9.51 How many subsets of {0,1}' U {0,1}* U {0, 1}? are prefix free? (See Example 9.21.) You will
probably find it easiest to solve this problem by writing a program.

A text-to-speech system takes written language (text) and reads it aloud as audio (speech). One of the simplest ways
to build a text-to-speech system is to prerecord each syllable, and then paste together those sounds. (Pasting separate
recordings is difficult, and this system as described will produce very robotic-sounding speech. But it’s a start.) A
syllable consists of a consonant or cluster of consonants called the onset, then a vowel called the nucleus, and finally
the consonant (s) called the coda. In many languages, only some combinations of choices for these parts are allowed—
there are fascinating linguistic constraints based on ordering or place of articulation (for example, English allows stay
but not tsay, and allows clay and play but not tlay) that we’re almost entirely omitting here.

9.52 A consonant can be described by a place of articulation (one of 11 choices: the lips, the palate,
etc.); a manner of articulation (one of 8 choices: stopping the airflow, stopping the oral airflow with the nasal
passage open, etc.); and a voicing (the vocal cords are either vibrating, or not). According to this description,
how many consonants are there?

9.53 A vowel can be described as either lax or tense; as either high or mid or low; and as either front or
central or back. According to this description, how many vowels are there?

9.54 As a (very!) rough approximation, Japanese syllables consist of one of 25 consonants followed
by one of 5 vowels, with one consonant that can appear as a coda (or the coda can be left off). How many
Japanese syllables are there?

9.55 As a rough (even rougher!) approximation, English syllables consist of an onset that is either
one of 25 consonants or a cluster of any two of these consonants, followed by one of 16 vowels, followed
optionally by one of 25 consonants. How many English syllables are there?

9.56 To cut down on the large number of syllables that you found in the last exercise, some systems are
instead based on demisyllables—the first half or the second half of a syllable. (We glue the sounds together
in the middle of the vowel.) That is, a demisyllable is either a legal onset followed by a vowel, or a vowel
followed by a legal coda. How many demisyllables are there in English (making the same very rough
assumptions as the last question)?
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9.3 Using Functions to Count

The sun’s shining bright
Everything seems all right
When we're poisoning pigeons in the park.

Tom Lehrer (b. 1928), “Poisoning Pigeons In The Park”

Our focus in Section 9.2 was on counting sequences of choices (the Generalized
Product Rule) and choices of choices (the Sum Rule). But what about counting other
kinds of sets? Our basic plan is simple: be lazy! In this section, we’ll introduce ways
of counting the cardinality of a given set A in terms of | B| for some other set B, by using
functions that translate between the elements of A and the elements of B:

e Mapping Rule: There exists a bijection f : A — B if and only if |A| =|B|. Similarly,
there exists an onto function f : A — B if and only if |[A| > |B|, and there exists a
one-to-one function f : A — B if and only if |A| < |B|.

o Division Rule: Suppose there exists a function f : A — B such that, for every b € B,
we have |{a € A:f(@)=b}| =k. Then |A| =k - |B|.

In particular, we’ll hope to “translate” a choice from an arbitrary set into a sequence of
choices from very simple sets—which, using the tools from Section 9.2, we know how
to count. Here’s a first example to illustrate the basic idea:

Example 9.23 (Number of valid Hamming codewords)

Problem: In Section 4.2, we introduced the Hamming code, an error-correcting
code that encodes any 4-bit message m € {0, 1}4 as a 7-bit codeword x € {0, 1}7.
Specifically, the encoding function encode : {0, 1}4 — {0, 1}7 maps (a,b,c,d) to
(a,b,c,d,b®cDd,adbdd,adbdd), where @ is exclusive or. That is, a valid
Hamming codeword x is an element of {0, 1 I satisfying three conditions:

Xo +X3 +X4 =2 X5 X1 +X3 +X4 =2 Xg X1 +Xp +X4 =5 X7.
How many different valid codewords does the Hamming code have?

Solution: We can count the number of valid codewords by looking at all 27 = 128

elements of {0,1}” and testing these three conditions (v' =pass; X =fail): Problem-solving tip:
codeword |[codeword |codeword |codeword |codeword [codeword [codeword |codeword Use programming
0000000 vvv[0010000 xxv[0100000 xvx[0110000 vxx[1000000 vxx[1010000 xvx|1100000 xx,|1110000 vvv to help you! If

<

0000001 vvx|0010001 xxx|0100001 xvv|0110001 vxv[1000001 vxv[1010001 xvv|1100001 xxx[1110001 vvx you're going to
0000010 vxv(0010010 xvv[0100010 xxx]0110010 vvx|1000010 vvx[1010010 xxx|1100010 xvv|1110010 vxv/

0000011 vxx|0010011 xvx|0100011 xxv|0110011 vvv|1000011 vvv|1010011 xxv|1100011 xvx|1110011 vxx use the simple-

0000100 xv+v|0010100 vxv|0100100 vvx|0110100 xxx{1000100 xxx|1010100 vvx|1100100 vxv|1110100 xvv but-tedious way
0000101 xvx[0010101 vxx{0100101 vvv|0110101 xxv|1000101 xxv (1010101 vvv[1100101 vxx|1110101 xvx to count legal
0000110 xxv|0010110 vvv(0100110 vxx[{0110110 xvx[{1000110 xvx|1010110 vxx|1100110 vvv|1110110 xxv Hamming code
0000111 xxx|0010111 vvx|0100111 vxv|0110111 xvv|1000111 xvv|1010111 vxv[1100111 vvx[1110111 xxx codewords, via
0001000 xxx|0011000 vvx|0101000 vxv|0111000 xvv|1001000 xvv|1011000 vxv[1101000 vvx|1111000 xxx >
0001001 xx.|0011001 vvv|0101001 vxx|0111001 x+x[1001001 xvx|1011001 vxx|1101001 vvv|1111001 xxv enumeration,
0001010 xvx]0011010 vxx|0101010 +vv|0111010 xx~[{1001010 xxv~ (1011010 vvv|1101010 vxx[1111010 xvx write a program
0001011 x+v|0011011 vxv[0101011 vvx|0111011 xxx|1001011 xxx[1011011 vvx[1101011 vx/|1111011 xvv rather than doing
0001100 vxx|0011100 x~x|0101100 xxv|0111100 vvv|1001100 vvv|1011100 xxv[1101100 xvx|1111100 vxx it by hand. (For
0001101 vxv|0011101 x+v|0101101 xxx|0111101 vvx|1001101 vvx|1011101 xxx[1101101 xvv|1111101 vxv :
0001110 vvx[0011110 xxx|0101110 xvv|0111110 vx|1001110 vx/|1011110 xvv|1101110 xxx|1111110 vvx example, the table

0001111 vvv|001TT11 xx/|0T0111T xv/x|0111TTT vxx|1001111 v xx|101111T x/x|[1101111 xx/|1111111 vvv in Example 9.23 was
generated with a
Python program!)

By checking every entry in the table, we see that there are 16 valid codewords.
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This table-based approach is fine, but here’s a less tedious way to count. By the
definition of the encoding function, every possible message in {0, 1}* is encoded
as a different codeword in {0, 1}7. Furthermore, every valid codeword is the en-
coding of a message in {0, 1 }4. Thus the number of valid codewords equals the
number of messages, and there are |{0,1}*| =16 valid codewords.

9.3.1 The Mapping Rule

The approach that we used in Example 9.23 is based on functions that translate from
one set to another. In the remainder of this section, we will formalize this style of
reasoning as a general technique for counting problems. To build intuition about how
to use functions to count, let’s start with some small, informal examples:

Example 9.24 (Some mappings, informally)
e Let S be a collection of documents, where each document is labeled with one of 5
genres: poem, essay, memoir, drama, or novel.

— Suppose every genre appears as the label for at least one document. Then
|S| > 5. (We see 5 different kinds of labels on documents, and every document
has only one label. Thus there must be at least 5 different documents.)

— Suppose there’s no genre that appears as the label for two distinct documents.
Then |S| < 5. (No label is reused—that is, no label appears on more than one
document—so we can only possibly observe 5 total labels. Every document is
labeled, so we can’t have more than 5 documents.)

e You're taking a class in which no two students’ last names start with the same
letter. Then there are at most 26 students in the class.

e You're in a club on campus that has at least one member from every state in the
U.S. Then the club has at least 50 members.

e You're out to dinner with friends, and you and each of your friends order one of 8
desserts on the menu. Suppose that each dessert is ordered at least once, and no
two of you order the same dessert. Then your group has exactly 8 people.

Taking it further: The document/ genre scenario in Example 9.24 is an example of a classification problem,
where we must label some given input data (“instances”) as belonging to exactly one of k different

classes. Classification problems are one of the major types of tasks encountered in the subfield of CS
called machine learning. In machine learning, we try to build software systems that can “learn” how to
better perform a task on the basis of some training data. Other problems in machine learning include
anomaly detection, where we try to identify which instances from a set “aren’t like” the others; or clustering
problems (see p. 234), where we try to separate a collection of instances into coherent subgroups—for
example, separating a collection of documents into “topics.” Classification problems are very common

in machine learning: for example, we might want to classify a written symbol as one of the 26 letters of
the alphabet (optical character recognition); or classify a portion of an audio speech stream as one of 40,000
common English words (speech recognition); or classify an email message as either “spam” or “not spam”
(spam detection).
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FORMALIZING THE RULE

How can we generalize the intuition of Example 9.24 into a rule for counting? Think
about the first scenario, the documents and the genres: we can view the labels on the
documents in S as being given by a function

label : S — {poem, essay, memoir, drama, novel } .

If there exists any function that behaves in the way that label did in Example 9.24—that
is, either “covering” all of the possible outputs at least once each, or covering all of
the possible outputs at most once each—then we can infer whether the set of possible
inputs or the set of possible outputs is bigger.

The formal statements of the counting

Definition reminder: onto, one-to-one, and bijective functions.
Let A and B be two sets, and let f : A — B be a function. Then:

e fisontoif, for all b € B, there exists an a € A such that f (a) =b.
functions that we defined in Chapter 2: o fisone-to-oneif foralla € Aandda’ € A, iff(a) =f (@) thena =a’.

onto functions, one-to-one functions, e f is a bijection if it is both one-to-one and onto.

and bijections. (See Figure 9.17 for a Sl.lghtly less for;nflly: the fur}ctl(?n f is onto if every p0551.ble ogt’pgt 1s.h1t ;
f is one-to-one if “no output is hit more than once”; and f is a bijection if

rules based on this intuition rely on
the definition of three special types of

reminder of the definitions.) Formally, “every output is hit exactly once.”
the existence of a functionf : A — B Figure 9.17: A
with one of these properties will let us relate |A| and |B|: reminder of Defini-
tions 2.49, 2.50, and
: 2.51 (onto, one-to-
Theorem 9.9 (Mapping Rule) one, and bijective
Let A and B be arbitrary sets. Then: functions).

e An onto function f : A — B exists if and only if |A| > |B|.
o A one-to-one function f : A — B exists if and only if |A| < |B].
o A bijection f : A — B exists if and only if |A| =|B].

See Figure 9.18 for a
visual representation of A B A B A B
the Mapping Rule, and —  f

for the intuition as why B - I I

by N by

arrows leaving A is precisely — [ bs | by b by

it’s correct: the number of L b,

|A|; if |A| arrows are enough

to “cover” all elements of B, L ) Lo Lo
n n n
then |B| < |A|; and if |A|
arrows can be directed into
. (@) f is onto: every element  (b) f is one-to-one: no (c) f is a bijection: every
‘B| elements without any of B has an incoming arrow,  element of B has more than ~ element of B has exactly one
duplication, then |B ‘ > ‘A‘ so |A| > |B|. one incoming arrow, so incoming arrow, so
(And, actually, the third Al < [B|. Al =1B].
part of the Mapping Rule Figure 9.18: The
is implied by the first two parts: if there’s a bijection f : A — B then f is both onto Mapping Rule. The

number of arrows

and one-to-one, so the first two parts of the Mapping Rule imply that |[A| > |B| and equals |A].

|A| < |B|, and thus that |A| =|B|.)
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A FEW EXAMPLES
We'll start with another example—Ilike those in Example 9.24—of the logic underly-
ing the Mapping Rule, but this time using function terminology:

Example 9.25 (Students and assignments)

Let S be a set of 128 students in a computer science class, let A be a set of program-
ming assignments, and suppose that mine : S — A is a function so that mine(s) is the
assignment that has the name of student s written on it. (Because mine is a function,
each student’s name is by definition on one and only one submitted assignment.)

e Suppose the function mine is onto. Then every assignment in A has at least one
student’s name on it—and therefore there are at least as many students as assign-
ments: each name is written only once, and every assignment has a name on it.
So |A| < 128. (There could be fewer than 128 if, for example, assignments were
allowed to be submitted by pairs of students.)

e Suppose the function mine is one-to-one. Then no assignment has more than one
name on it—and therefore there are at least as many students as assignments: each
assignment has at most one name, so there can’t be more names than assignments.
So |A| > 128. (There could be more than 128 if, for example, there are assignments
in the pile that were submitted by students in a different section of the course.)

e Suppose the function mine is both onto and one-to-one. Then each assignment has
exactly one name written on it, and thus |A| =|S| =128.

Let’s also rewrite two of the informal scenarios from Example 9.24 to explicitly use
functions and the Mapping Rule:

Example 9.26 (Classes, names, and states, formalized)

o Let S be the set of students taking a particular class. Define the function
f:S— {A,B,...,2}, where f (s) is the first letter of the last name of student s. If
no two students’ last names start with the same letter, then f (s) = f (s') only when
s = s'—in other words, the function f is one-to-one. Then, by the Mapping Rule,
|S| < |{A,B,...,Z} |: there are at most 26 students in the class.

e Let T be the set of people in a particular club. Let T’ C T be those people in T who
are from one of the 50 states. Because T’ C T, we have |T| > |T’|.

Define the functiong : T' — {Alabama, Alaska, ..., Wyoming}, where g (x)

is the home state of person x. If there is at least one student from every state,
then foralls € {Alabama, Alaska, ..., Wyoming} there’sanx € T’ such that
g(x) = s—in other words, the function g is onto. Then, by the Mapping Rule,
|T’| > | {Alabama, Alaska, . .., Wyoming} |: there are at least 50 people in the club.

We'll close this section with an example of using the Mapping Rule to count the
cardinality of a set that we have not yet been able to calculate. We’ll do so by giving a
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bijection between this new set (with previously unknown cardinality) and a set whose
cardinality we do know.

The set that we’ll analyze here is the power set of a set X—the set of all subsets of
X, defined as Z(X) := {Y : Y C X}. (See Definition 2.31.) For example, #2({0,1})is
{{},{0},{1},{0,1} }. Let’s look at the power set of {1,2,...,8}:

Example 9.27 (Power set of {1,2,...,8})
Problem: Whatis |2({1,2,...,8})|?

Solution: We’ll give a bijection between {0, 1 }8 and #Z({1,2,...,8})—thatis, we’ll
define a function b : {0,1}®* — 2({1,2,...,8}) that’s a bijection. Here is the
correspondence: for every 8-bit stringy € {0, 118, define b(y) to be the subset
Y € {1,2,...,8} such that i € Y if and only if the ith bit of y is 1. For example:

y =11101010 — Y ={1,2,3,5,7} that is, b(11101010) = {1,2,3,5,7},
y =00001000 — Y ={5} and b(00001000) = {5},
y =00000000 — Y ={} and b(00000000) = {}.

Because every subset corresponds to some bitstring, and no subset corresponds to
more than one bitstring, the function b : {0,1}* — 22({1,2,...,8})is a bijection
between {0, 1}8 and Z({1,2,...,8}).

Because a bijection from {0, 1 }8 to #({1,2,...,8})exists, the Mapping Rule says
that |2({1,2,...,8})| =|{0,1}®| =28 =256.

The idea of the mapping from Example 9.27 applies for an arbitrary finite set X. Here
is the general result:

Lemma 9.10 (Cardinality of the Power Set)
Let X be any finite set. Then | 2 (X)| = 21X Lemma 9.10 is

the reason for the
power set’s name:

Proof. Letn = |X|. Let X = {x1,x,...,x,} be an arbitrary ordering of the elements of the cardinality of

P (X)is 2 to th
X. Define a function f : {0,1}" — 2(X) as follows: pozE)er) i)sf DEO\.t ‘

fy)={x;:theithbitof yis1}.

It is easy to see that f is onto: for any subset Y of X, there existsay € {0,1}" such that
f{y) =Y. Itis also easy to see that f is one-to-one: if y # ' then there exists an i such
thaty; #y),so [x; € f(y)] #[xi € f(y')]. Therefore f is a bijection, and by the Mapping
Rule we can conclude | 22(X)| =| {0, 1}X/| =2/XI. O

Taking it further: Although our focus in this chapter is on finding the cardinality of finite sets, we can
also apply the Mapping Rule to think about infinite cardinalities. Infinite sets are generally more the
focus of mathematicians than of computer scientists, but there are some fascinating (and completely
mind-bending) results that are relevant for computer scientists, too. For example, we can prove that the
number of even integers is the same as the number of integers (even though the former is a proper subset
of the latter!). But we can also prove that |R| > |Z|. More relevantly for computer science, we can prove
that there are strictly more problems than there are computer programs, and therefore that there are problems
that cannot be solved by a computer. See the discussion on p. 937.
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9.3.2 The Division Rule

When we introduced the Inclusion-Exclusion Rule, we used an approach to counting
that we might call count first, apologize later: to compute the cardinality of a set A U B,
we found |A| +|B| and then “fixed” our count by subtracting the number of elements
that we’d counted twice—namely, subtracting |A N B|. Here we'll consider an analo-
gous count-and-correct rule, called the Division Rule, that applies when we count every
element of a set multiple times (and where each element is recounted the same num-
ber of times); we’ll then correct our total by dividing by this “redundancy factor.” Let’s
start with some informal examples:

Example 9.28 (Some redundant counting, informally)
e Suppose that the Juggling Club on campus sells 99 juggling torches to its mem-
bers, in sets of three. Then there are 33 people who purchased torches.

o There are 42 people at a party. Suppose that every person shakes hands with every
other person. How many handshakes have occurred? There are many ways to
solve this problem, but here’s an approach that uses division: each person shakes
hands with all 41 other people, for a total of (42 people) - (41 shakes/ person) =
1722 shakes. But each handshake involves two people, so we’ve counted every
shake exactly twice; thus there are actually a total of 861 = 1222 = 241 handshakes.

o In Game 5 of the 1997 NBA Finals, the Chicago Bulls had 10 players who were on
the court for some portion of the game. The number of minutes played by these
ten were (45,44, 26,24,24,24,23,23,4,3). The total number of minutes played was
45 +44 +26 +24 424 +24 +23 +23 +4 +3 = 240. In basketball, five players are on
the court at a time. Thus the game lasted % =48 minutes.

We'll phrase the Division Rule using the same general structure as the Mapping Rule,
in terms of a function that maps from one set to another. Specifically, if we have a
function f : A — B that always maps exactly the same number of elements of A to each
element of B—for instance, exactly three torches are mapped to any particular juggler
in Example 9.28—then |A| and |B| differ exactly by that factor:

Theorem 9.11 (Division Rule)

Let A and B be arbitrary sets. Suppose that there exists a function f : A — B such that,
for every b € B, there are exactly k elements ay, ..., ar € A such that f(a;) = b. (That is,
|[{a € A:f(a)=b}| =k forallb € B.) Then |A| =k - |B|.

(The Division Rule with k =1 simply is the bijection case of the Mapping Rule: what it
means forf : A — B to be a bijection is precisely that |[{a € A : f(a) =b}| =1 for every
b € B. If such a function f exists, then both the Mapping Rule and the Division Rule
say that [A| =1-|B|.)

Here are two simple examples to illustrate the formal version of the Division Rule:
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Example 9.29 (Redundant counting, formally)

o Let M be the set of members of the Juggling Club, and let T be the set of torches
bought by the members of the club. Consider the function boughtBy : T — M.
Assuming that each member bought precisely three torches—that is, assuming
that | {t € T : boughtBy(t) =m} | =3 for every m € M—then |T| =3 - |[M].

e Consider thesets A = {0,1,...,31}and B = {0,1,...,15}. Define the function
f:A—= Basf(n)=|n/2]. For each b € B, there are exactly two input values whose
output under f is b, namely 2b and 2b +1. Thus by the Division Rule |[A| =2- |B|.

This basic idea—if we’ve counted each thing k times, then dividing our total count
by k gives us the number of things—is pretty obvious, and it’ll also turn out to be
surprisingly useful. Here’s a sequence of examples, starting with a warm-up exercise
and continuing with two (slightly less obvious) applications of the Division Rule:

Example 9.30 (Rearranging PERL, PEER, and SMALLTALK)
Problem: How many different ways can you arrange the letters of . ..

1. ... the name of the programming language PERL?
2. ...the word PEER?
3. ...the name of the programming language SMALLTALK?

Solution: PERL: There are 4 different letters, and any permutation of them is a differ-
ent ordering. Thus there are 4! =4 -3 - 2- 1 =24 orderings. (See Theorem 9.7.)

PEER: We’ll answer this question using the solution for PERL. Define the func-
tion L->E as follows: given a 4-character input string, it produces a 4-character
output string in which every L has been replaced by an E. For example,
L->E(PERL) = PERE. Let S denote the orderings of the word PERL, and let T de-
note the orderings of PEER. Note that the function L->E : S — T has the property
that, for every t € T, there are exactly two strings x € S such that L->E(x) = f.
(For example, L->E(PERL) = PERE and L->E(PLRE) = PERE.) See Figure 9.19. Thus,

by the Division Rule, there are % = 74 =12 ways to order the letters of PEER.

SMALLTALK: There are 9! different orderings of the nine “letters” in the word

S M AL L, T Ay Lz K. (We are writing Ly and L, and L3 to denote three

different “letters,” and similarly for A; and Ay.) We will use the Division Rule

repeatedly to “erase” subscripts:

e The function that erases subscripts on the As maps two inputs to each output:
one with A; before A,, and one with A, before A;. Thus there are % different
orderings of the “letters” inthewordS M A Lj L, T A Lj K.

e The function that takes an orderingofS M A Lj L, T A Lz Kand
erases the subscripts on the Ls maps precisely six inputs to each output: one
for each of the 3! possible orderings of the Ls.

Thus there are % = % = 30,240 different orderings of the letters in the

wordS M A L L T A L K

ELPR
LEPR)EEPR

EE?E)EERP
EEEE)EPER
EESE)EPRE
EEEE)EREP
EEEE)ERPE
EEIEE)PEER
EEEE)PERE
EEEE)PREE
EEEE)REEP
REPL

RLPE)REPE

RPEL
RPLE)RPEE

Figure 9.19: The 24
different orderings
of PERL and the 12
different orderings
of PEER. The func-
tion that replaces L
by E is displayed by
the arrows.
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COUNTING ORDERINGS WHEN SOME ELEMENTS ARE INDISTINGUISHABLE

Although we phrased Example 9.30 in terms of the number of ways to rearrange the
letters of some particular words, there’s a very general idea that underlies the PEER and
SMALLTALK examples. We'll state the underlying idea as a theorem:

Theorem 9.12 (Rearranging with duplicates)
The number of ways to rearrange a sequence containing k different distinct elements
{x1,...,xx}, where element x; appears n; times, is

(ny +np +- - - +my)!
(m!)- () - - (ml)

For example, PERL has k =4 distinct elements, which appear np =ng =ng =n_ =1 time
each; the theorem says that there are % = 4! ways to arrange the letters. On the
other hand, SMALLTALK has k = 6 distinct elements, which appear ny =2, n. =3, and
ns =ny =nr =ng = 1 times each; the theorem says that there are % = 2,9—'3,

ways to arrange the letters. Let’s prove the theorem:

Proof of Theorem 9.12. Let’s handle a simpler case first: suppose that we have n differ-
ent elements that we can put into any order, and precisely k of these 1 elements are
indistinguishable. Then there are exactly J; different orderings of those 1 elements.
To see this fact, imagine “decorating” each of those k items with some kind of arti-
ficial distinguishing mark, like the numerical subscripts of the letters of SMALLTALK
from Example 9.30. Then there are n! different orderings of the n elements. The erase
function that eliminates our artificial distinguishing marks has k! inputs that yield the
same output—namely, one for each ordering of the k artificially marked elements. There-
fore, by the Division Rule, there are Z—,' different orderings of the elements, without the
distinguishing markers.

The full theorem is just a mild generalization of this argument, to allow us to con-
sider more than one set of indistinguishable elements. (In particular, we could give
a formal proof by induction on the number of elements with n; > 2.) In total, there
are (] +ny +- - - +ny)! different orderings of the elements themselves, but there are
n1! equivalent orderings of the first element, 15! of the second, and so forth. The func-
tion that “erases subscripts” as in Example 9.30 has (n1!) - (np!)- -+ - (n!) different
equivalent orderings, and thus the total number of orderings is, by the Division Rule,

(ny +np +- - - +ng)!

(m2!)- (ma!)- - - ()

Here’s another simple example that we can solve using this theorem:

O

Example 9.31 (Writing 232,848 as a sequence of prime factors)

Problem: How many ways can we write 232,848 as a product p1p» - - - px, where each
pi is prime? (The set of prime factors, and the number of occurrences of each factor, are
the same in every product, because the prime factorization of any positive integer
is unique. But the order may change: for example, we can write 6 =3-20r6 =2-3.)
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Solution: The prime factorization of 232,848 is 232,848 = 24.33.72.11. Thus a
product of primes that equals 232,848 consists of 4 copies of two, 3 copies of three,

2 copies of seven, and one copy of eleven—in some order. (For example, 2-2-7 -3 -

3-7-2-11-3-2.) By Theorem 9.12, the number of orderings of these elements is

@+3+2+1) 10! 3,628,800
41302011 413021 24-6-2

=12,600.

A SLIGHTLY MORE COMPLICATED EXAMPLE

Here is one final example of the Division Rule, in which we’ll use this approach on a

slightly more complicated problem:

Example 9.32 (Assigning partners)

Problem: The professor divides the n students in a CS class into 5 partnerships,
with two students per partnership. (Assume that 7 is even.) The order of part-
ners within a pair doesn’t matter, nor does the order of the partnerships. (That is,
the listings

Problem-solving tip:
There are often
many different
ways to solve a
given problem—
and you can use
whatever approach
makes the most
sense to you! For
example, Exer-
cise 9.106 explores
a completely dif-
ferent way to solve
Example 9.32,
based on the Gen-
eralized Product

Paul and George and Ringo and John 151.11§ '%nstead of the
John and Ringo George and Paul ivision Rule.
represent exactly the same set of partnerships.) How many ways are there to di-
vide the class into partnerships? ¢ [
Solution: Let’s line up the students in some order, and then pair the first two stu- § § § é
dents, then pair the third and fourth, and so on. There are n! different orderings :g gg :g gg
of the students, but there are fewer than n! possible partnerships, because we’ve gi g‘g :g gg AB
double counted each set of pairs in two different ways: gg QAB gg 25 s
o there are two equivalent orderings of the first pair of students, and two equiva- gg Q/E gg QE
lent orderings of the second pair, and so on.
e the ordering of the pairs doesn’t matter, so the partnerships themselves can be :g BD]]:; :g Eg
listed in any order at all (without changing who's paired with whom). D AR AS | Ac
Each of the 7 pairs can be listed in 2 orders, so—by the Product Rule—there are gi BD]g :g gg BD
2""/2 different possible within-pair orderings. And there are (1/2)! different order- gg éi gg Qg
ings of the pairs. Applying the Division Rule, then, we see that there are
AD BC|AD BC
n! AD CB|AD BC
@ an © I aRbean [ap
total possible ways to assign partners. SE SAD ES 23 BC
Let’s make sure that (x) checks out for some small values of n. For n =2, there’s g: <BZ(1§ :g gg
just one pairing, and indeed () is % =3 =1. For n = 4, the formula (x) yields Figure 9.20: Part-

% = % = 3 pairings; indeed, for the quartet Paul, John, George, and Ringo, there

nerships for n =4
students: the 4!
orderings, then the
orderings sorted
within pairs, and
then with the pairs
sorted.

are three possible partners for Paul (and once Paul is assigned a partner there are
no further choices to be made). See Figure 9.20 for an illustration: we try all 4! =24
orderings of the four people, then we reorder the names within each pair, and
finally we reorder the pairs.
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9.3.3  The Pigeonhole Principle

We'll close this section with a very simple—but also surprisingly useful—theorem
based on the Mapping Rule, called the pigeonhole principle. Here are a few informal
examples to introduce the underlying idea:

Example 9.33 (What happens when there are more things than kinds of things)
o If there are more socks in your drawer than there are colors of socks in your
drawer, then you must have two socks of the same color.

e If there are only 5 possible letter grades and there are 6 or more students in a class,
then there must be two students who receive the same letter grade.

e If you take 9 or more CS courses during the 8 semesters that you're in college, then
there must be at least one semester in which you doubled up on CS courses.

e In the antiquated language in which this result is generally stated: if there are n
pigeonholes, and n +1 pigeons that are placed into those pigeonholes, then there
must be at least one pigeonhole that contains more than one pigeon.

Here is the general statement of the theorem, along with its proof:

Theorem 9.13 (Pigeonhole Principle)
Let A and B be sets with |A| > |B|, and let f : A — B be any function. Then there exist
distinct elements a € A and a’ € A such that f (a) =f (@)

Proof. We can prove the Pigeonhole Principle using the Mapping Rule. Given the sets
A and B, and the function f : A — B, the Mapping Rule tells us that

if f : A — Bis one-to-one, then |A| < |B]. 1)

Taking the contrapositive of (1), we have

if |A| > |B|, thenf : A — B is not one-to-one. 2)

By assumption, we have that |A| > |B|,sof : A — B is not one-to-one. The theorem
follows by the definition of a one-to-one function: the fact thatf : A — B is not one-
to-one means precisely that there is some b € B that’s “hit” twice by f. In other words,

there exist distincta € A and a’ € A such thata #a’ and f (@) =f (@'). O

A slight generalization of this idea is also sometimes useful: if there are # total
objects, each of which has one of k types, then there must be a type that has at least
[n/k] objects. (We'll omit the proof, but the idea is very similar to Theorem 9.13.)

Theorem 9.14 (Pigeonhole Principle: Extended Version)
Let A and B be sets, and let f : A — B be any function. Then there exists some b € B such
that the set {a € A : f(a) =b} contains at least [|A|/|B|] elements.

A pigeonhole refers
to one of the “cells”
in a grid of com-
partments that are
open in the front,
and which can
house either snail
mail or, back in

the day, roosting
pigeons. (There’s
also a related verb:
to pigeonhole some-
one/something is to
categorize that per-
son/ thing into one
of a small number
of—misleadingly
simple—groups.)
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(Another less formal way of stating this fact is “the maximum must exceed the aver-
age”: the number of elements in A that “hit” a particular b € Bis |A|/|B| on average,
and there must be some element of B that’s hit at least this many times.)

We'll start with two simpler examples of the pigeonhole principle, and close with a
slightly more complicated application. (In the last example, the slightly tricky part of
applying the pigeonhole principle is figuring out what corresponds to the “holes.”)

Example 9.34 (Congressional voting)

Suppose that there were 5 different bills upon which the House of Representa-

tives voted yesterday. (There are 435 representatives in the U.S. House.) The pi-
geonhole principle implies that there are two representatives who voted identi-

cally on yesterday’s bills. A representative’s vote can be expressed as an element of
{aye, nay, abstain}”, which has cardinality 3° =243. Because 243 < 435, the pigeonhole
principle says that there are two representatives with the same voting record.

Example 9.35 (Logical equivalence)

Let S be a set of 17 different logical propositions over the Boolean variables p and 4.
A truth table for a proposition ¢ € S is an element of {True, False}4 (the rows

of the truth table correspond to each of the four truth assignments for p and ¢), and

there are only |{True, False}!| =2* = 16 different such values. Therefore, our 17 dif-

ferent propositions have only 16 different possible truth tables—so, by the pigeonhole °
[ ]
principle, there must be two different propositions that have the same truth table. LINC I
i ° ol
L]
[ b ..
Example 9.36 (Points in a square) (@) 17 points in
Problem: Suppose that there are n? +1 points in a 1-by-1 square, as in Figure 9.21(a). al-by-1 square.
Show that there must be two points within distance # of each other. .
[J
Solution: We will use the pigeonhole principle. Divide the unit square into n? equal- N
sized disjoint subsquares—each with dimension %-by—%. (To prevent overlap, we'll * | e °
say that every shared boundary line is included in the square to the left or below 2 2
the shared line.) There are n? subsquares, and n? +1 points. By the pigeonhole c(ib) Ehfi squarle6
vided nt
principle, at least one subsquare contains two or more points. (See Figure 9.21(b).) S&zgqiaf;;and
Notice that the farthest apart that two points in a subsquare can be is when one of the
" ’ 1 A several doubly
they are at oppolslte corners of the subsquare. In this case, they are ;; apartin x occupied
coordinate and ; apart in y-coordinate—in other words, they are separated by a subsquares.

distance of

/(l )2 +(l )2 _ /2 _\2 Figure 9.21: Putting
n n/ —\/ w2 n- n? +1 points in the

unit square.

Taking it further: The pigeonhole principle can be used to show that compression of data files (for
example, ZIP files or compressed image formats like GIF) must either lose information about the original
data (so-called lossy compression) or must, for some input files, actually cause the “compressed” version to
be larger than the original file. See the discussion on p. 938.
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CoMPUTER ScIENCE CONNECTIONS I

937

INFINITE CARDINALITIES (AND PROBLEMS THAT CAN'T BE SOLVED BY ANY PROGRAM)

Recall the Mapping Rule: for any two sets A and B, a bijectionf : A — B
exists if and only if |A| =|B|. Although we were thinking about finite sets when
we stated this rule, the statement holds even for infinite sets A and B; we can
even think of this rule as defining what it means for two sets to have the same
cardinality. Those sets S such that |S| = |Z|, called countable sets, will turn
out to be particularly important. Surprisingly, some sets that “seem” much
bigger or much smaller than the integers have the same cardinality as Z. For
example, the set of nonnegative integers has the same cardinality as the set
of all integers! (See Figure 9.22 for a bijection between these sets.) This fact is
very strange—after all, we're looking at sets A and B where A is a proper subset
of B and we’ve now established that |A| = |B|! But, indeed, because we have a
bijection between A and B, they really are the same size.

Define the function f : Z=0 — Z as
fm)=[%]- (—=1)". Then:

f(0)=f%W(*1)° =0-1= 0
f)= [ZW =1-1=-1
f(2)=f§W(*1)2—1 =1
fB)= [ZW (1P =2--1=-2
f@=031--1=2-1= 2

Figure 9.22: A bijection between Z=0
and Z. Thus |Z=°| =|Z|.

p r i n t " h e 1
112 114 105 110 116 32 34 104 101 108

1

108
1110000 1110010 1101001 1101110 1110100 100000 100010 1101000 1100101 1101100 1101100 1101111 100000 1110111 1101111

0 w 0
111 32 119 111

Or consider a Python program p. Think of the source code of p as a file—
which thus represents p as a sequence of characters, each of which is repre-
sented as a sequence of bits, which can therefore be interpreted as an integer
written in binary. (See Figure 9.23.) Therefore there is a bijection f between the
integers and the set of Python programs, where f (i) is the ith-largest Python
program (sorted numerically by its binary representation).

With all of these sets that have the same cardinality, it might be tempting to
think that all infinite sets have the same cardinality as Z. But they don't!

Theorem 9.15
The set of all subsets of Z=—that is, 2 (Z=°)—is strictly bigger than Z=°.

Proof. Suppose for a contradiction thatf : Z=0 — 22(Z=%)is an onto
function. We’ll show that there’s a set S € #(Z=") such that for every n € Z=°
we have f (n) #S. Define the set S as follows:

S:={ie Z29 ;i ¢ f)} (Soi € S < the set f (i) does not contain i.)

Observe that the set S differs from f (i) for every i: specifically, for every i we have
i €S < i ¢ f(i) Thus S is never “hit” by f—contradicting the assumption
that f was onto. Therefore there is no onto function f : 720 ,@(ZZO), and,
by the Mapping Rule, |Z=°| < |22 (Z>°)|. (This argument is called a proof by
diagonalization; see Figure 9.24.) O

We can think of any subset of Z as defining a problem that we might want
to write a Python program to solve. For example, the set {0,2,4,6,...} is
the problem of identifying even numbers. The set {1,2,4, 8,16, ...} is exact
powers of 2. The set {2,3,5,7,11, ...} is prime numbers. What does all of this
say? There are more problems than there are Python programs! And thus there are
problems that cannot be solved by any program!*

Figure 9.23: Converting a Python
program into an integer. This pro-
gram corresponds to the integer
whose binary representation is
1110000 1110010 1101001 1101110 - - - .

0 1 2 3 4
£0) 1 0 1 0 1
f@) 0 0 0 1 1
f@) 0 1 1 0 1
@) 1 1 0 1 1
@) 1 0 1 0 0

Figure 9.24: Diagonalization. Suppose
thatf : ZZ0 — 2(Z=°). In a table,
write row 1 corresponding to f (1 )—so
thatf (1) has a “1” in column j when

j € f(n). Define S :={i:i ¢ f(i)}—that
is, the opposite of the diagonal element.
For this table we have 0 ¢ S (because
0€f(0)),1€S (because 1 ¢ f(1)), etc.

Problems that can’t be solved by any
computer program are called uncom-
putable. Section 4.4.4 identifies some
particular uncomputable problems, or
see a good book on computability, like

* Dexter Kozen. Automata and Com-
putability. Springer, 1997; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.



938 CHAPTER 9. COUNTING

CoMPUTER ScIENCE CONNECTIONS I

Lossy aND LossLEss COMPRESSION

The task in compression is to take a large (potentially massively large!) piece
of data and to represent it, somehow, using a smaller amount of space. Com-
pression techniques are tremendously common, for a wide variety of data:
text, images, audio, and video, for example. There are two fundamentally dif-
ferent approaches to compression of an original data file d into a compressed
form d’: lossy and lossless compression.

Lossy ComprEssioN. In lossy compression, d’ does not represent exactly all

of the information in d—that is, we’ve “lost” some information through com-
pression. (That’s why the compression is called “lossy.”) In fact, many of the
standard file formats for images, audio, and video are just standard methods
for lossy compression. For example, JPEG is a lossy image compression for-
mat, and MP3 is a lossy audio compression format. The general goal with a
lossy compression technique is to maintain, to the extent possible, “perceptual
indistinguishability.” For example, a digital audio stream can be represented
precisely as a sequence of intensities at each time t (“how loud is the sound at
time £?”). A lossy compression technique for sound might round the intensi-
ties: instead of representing an intensity as one of 2® values (“a 16-bit sound,”
which is CD quality), we could round to the nearest of 28 values. (This idea is
called quantization; see Example 2.56.) As long as the lost precision is smaller
than the level of human perception, the new audio file would “sound the
same” as the original.

LossLess CoMPRESSION. In lossless compression, the precise contents of the
original data file d can be reconstructed when the compressed data file d’ is
uncompressed. This approach is the one commonly used, for example, when
compressing text using a program like ZIP.

The typical idea of lossless compression is to exploit redundancy in the
stored data and to avoid wasting space storing the “same” information twice.
For example, take the complete works of Shakespeare. By replacing every
occurrence of the with QQ (two letters that don’t occur consecutively in Shake-
speare) the resulting file takes “only” about 99.2% of the original size. We can
then set up a “translation table” telling us that QQ — the when we’re decom-
pressing. One interesting fact about lossless compression, though, is that it is
impossible to actually compress every input file into a smaller size:

Theorem 9.16
Let C be any lossless compression function. Then there exists an input file d such
that C(d) takes up at least as much space as d.

Proof. Suppose that C compresses all n-bit inputs into 7 — 1 or fewer bits. That
is, C : {0,1}" — U;‘:Bl {0,1}'. Observe that the domain has size 2" and the
range has size Z?:Bl 2! = 2" — 1. By the pigeonhole principle, there must be
two distinct input files dq and d;, such that C(d;) = C(dp). But this C cannot be
a lossless compression technique: if the compressed versions of the files are
identical, the decompressed versions must be identical too! O

The word the appears over 20,000 times
in the complete works of Shakespeare.
The words thee, them, their, they,
there, and these also appear over 1000
times each.

Here’s an example of a lossless “com-
pression” function making a file bigger:
I downloaded the complete works of
Shakespeare from Project Gutenberg,
http://www.gutenberg.org. It took
5,590,193 bytes uncompressed, and
2,035,948 bytes when run through
gzip. But shakespeare.zip.zip.zip
(2,035,779 bytes), run through gzip
three times, is actually bigger than
shakespeare.zip.zip (2,035,417 bytes).
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9.3.4 Exercises

9.57 Use the idea of Example 9.23 to determine how many bitstrings x € {0, 1}7 fail all three Hamming
code tests—those marked “X X X” in the table in Example 9.23, or satisfying these three conditions:

Xp +X3 +X4 FEo X5 X1 +X3 +X4 F2 X X1 +Xp +Xxg4 2 X7,
9.58 Prove that the set P of legal positions in a chess game satisfies |P| < 13%4. (Hint: Define a one-to-one

function from {1,2,...,13}%* to P.)

Let X. be a nonempty set. A string over X is a sequence of elements of Y—that is, x € X" for some n > 0.

9.59 How many strings of length n over the alphabet {A,B, ...,Z, .} are there? How many contain
exactly 2 “words” (that is, contain exactly one space ., that is not in the first or last position)?
9.60 Letn > 3. How many n-symbol strings over this alphabet contain exactly 3 “words”? (Hint:

use Example 9.4 to account for n-symbol strings with exactly two _s; then use Inclusion—Exclusion to prevent ini-
tial ffinal fconsecutive spaces, as in JABC- - -, - - - XYZ,_, and - - - JKLL_MNO- - -.)

A string over the alphabet {[,1} is called a string of balanced parentheses if two conditions hold: (i) every [ is later
closed by a 1; and (ii) every | closes a previous [. (You must close everything, and you never close something you didn’t
open.) Let B, C {I[,1}" denote the set of strings of balanced parentheses that contain n symbols.

9.61 Show that |By,| < 2": define a one-to-one function f : B, — {0,1}" and use the Mapping Rule.

9.62 Show that |B,| > 2"/4 by defining a one-to-one function g : {0,1}"/* — B, and using the
Mapping Rule. (Hint: consider [1[1 and [[1].)

A certain college in the midwest requires its users’ passwords to be 15 characters long. Inspired by an XKCD comic (see
http://xkcd.com/936/), a certain faculty member at this college now creates his passwords by choosing three 5-letter
English words from the dictionary, without spaces. (An example password is ADOBESCORNADORN, from the words ADOBE
and SCORN and ADORN.) There are 8636 five-letter words in the dictionary that he found.

9.63 How many passwords can be made from any 15 (uppercase-only) letters? How many passwords
can be made by pasting together three 5-letter words from this dictionary?
9.64 How many passwords can be made by pasting together three distinct 5-letter words from this

dictionary? (For example, the password ADOBESCUBAADOBE is forbidden because ADOBE is repeated.)

The faculty member in question has a hard time remembering the order of the words in his password, so he’s decided
to ensure that the three words he chooses from this dictionary are different and appear in alphabetical order in his
password. (For example, the password ADOBESCUBAFOXES is forbidden because SCUBA is alphabetically after FOXES.)
9.65 How many passwords fit this criterion? Solve this problem as follows. Let P denote the set

of three-distinct-word passwords (the set from Exercise 9.64). Let A denote the set of three-distinct-
alphabetical-word passwords. Define a function f : P — A that sorts. Then use the Division Rule.

9.66 After play-in games, the NCAA basketball tournament involves 64 teams, ar- A
ranged in a bracket that specifies who plays whom in each round. (The winner of each game B}
goes on to the next round; the loser is eliminated. See Figure 9.25.) How many different C
outcomes (that is, lists of winners of all games) of the tournament are there? D}
E

A palindrome over X is a string x € X" that reads the same backward and forward—TIike 8110, F}
TESTSET, or (ignoring spaces and punctuation) SIT ON A POTATO PAN, OTIS!. G
9.67 How many 6-letter palindromes (elements of {A, B, ..., Z}°)are there? H}
9.68 How many 7-letter palindromes (elements of {4,B, ..., Z}7) are there? Fieure 9.25: An
9.69 Letn > 1be an integer, and let P,, denote the set of palindromes over X of length n. Define a 8—tge am té u r nament
bijectionf : P, — X (for some k > 0 that you choose). Prove that f is a bijection, and use this bijection to bracket. In the first
write a formula for |P,| for arbitrary n € Z=1. round, A plays B

ST ) . ) ) ) ) , C plays D, etc. The
Let n be a positive integer. Recall an integer k > 1 is a factor of n if k | n. The integer n is called squarefree if there’s A/B winner plays

no integer m > 2 such that m* | n. the C/ D winner in

9.70 How many positive integer factors does 100 have? How many are squarefree? the second round
9.71 How many positive integer factors does 12! have? (Hint: calculate the prime factorization of 12!.) and so forth. ’
9.72 How many squarefree factors does 12! have? Explain your answer.

9.73 (programming required) Write a program that, given n € Z=1, finds all squarefree factors of 1.
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9.74 Consider two sets A and B. Consider the following claim: if there is a function f : A — B thatis
not onto, then |A| < |B|. Why does this claim not follow directly from the Mapping Rule?

The genre-counting problem (Example 9.24) considered a function f : {1,2,...,n} — {1,2,3,4,5}. Whenn =5...

9.75 How many different functions f : {1,2,...,5} — {1,2,...,5} are there?

9.76 How many one-to-one functions f : {1,2,...,5} = {1,2,...,5} are there?

9.77 How many bijections f : {1,2,...,5} — {1,2,...,5} are there?

9.78 Letn > 1and m > nbe integers. Consider the set G of functions g : {1,2,...n} — {1,2,...,m}.
How many functions are in G? How many one-to-one functions are there in G? How many bijections?

9.79 Show that the number of bijections f : A — B is equal to the number of bijections g : B — A. (Hint:
define a bijection between {bijections f : A — B} and {bijections g : B — A}, and use the bijection case of the mapping
rulel)

9.80 A Universal Product Code (UPC) is a numerical representation of the bar codes used in stores, with

an error-detecting feature to handle misscanned codes. A UPC is a 12-digit number (x1, xp, ..., x12) where
[2?21 3x2i—1 +x2;] mod 10 = 0. (That is, the even-indexed digits plus three times the odd-indexed digits
should be divisible by 10.) Prove that there exists a bijection between the set of 11-digit numbers and the set
of valid 12-digit UPC codes. Use this fact to determine the number of valid UPC codes.

9.81 A strictly increasing sequence of integers is (i1, i, ..., i) where iy < iy < --- < ix. How many
strictly increasing sequences start with 1 and end with 1024? (That is, we have i; =1 and iy =1024. The value
of k can be anything you want; you should count both (1,1024) and (1,2,3,4,...,1023,1024).)

A subsequence of a sequence X = (X1,%Xa,...,Xn) is a sequence (Xi,, Xi,, ..., X, ) of k > 0 elements of x, where
(i1, 12, ..., i) is a strictly increasing sequence. For example, PYTHON is a subsequence of PYTHAGOREAN and BASIC is a
subsequence of BRAINSICKNESS.

9.82 Suppose the components of x = (x1,x3, ..., x,) are all different (as in PYTHON but not PYTHAGOREAN).
Use the Mapping Rule to figure out how many subsequences of x there are.
9.83 Suppose the components of x = (x1,x,...,x,) are all different, except for a single pair of identical

elements that are separated by k other elements. For example, PYTHAGOREAN has n =11 and k = 4, because there
are four entries (GORE) between the As (at index 5 and 10), which are the only repeated entries. In terms of n
and k, how many subsequences of x are there?

The Hamming code
For the message m = (a,b, ¢, d), we compute three parity bits:

As Example 9.23 describes, the Hamming Code adds 3 different parity bits | o parity bit #1: b & c & d
to a 4-bit message m, where each added bit corresponds to the parity of a o parity bit#2: adcdd
carefully chosen subset of the message bits, creating a 7-bit codeword c. o parity bit#3:a@ b d
Let k and n, respectively, denote the number of bits in the message and the . . .
codeword. (For the Hamming Code, we have k =4 and n =7.) and send ¢ := (a,b, ¢, d, parity #1, parity #2, parity #3).

A decoding algorithm takes a received (and possibly corrupted) Having received a (possibly corrupted) codeword ¢, we com-
codeword ¢’ and determines which message has a corresponding codeword pute what the parity bits would have been for the received
¢ that is most similar to ¢’. (See Section 4.2, or Figure 9.26 for a brief message bits, and check for mismatches between the computed
reminder. See also Exercises 4.25—4.28.) We can view the decoding and received parity bits:
algorithm as a function decode : #(1,2,...,n—k)— {0,1,2,...,n}—
where decode(S) tells us which bit (if any) to flip in the received codeword parity bit mismatches | error (which bit to flip)
when S is the set of mismatched parity bits. (If decode(S) =0, then no {} no error!
bits should be flipped.) {1} parity #1
9.84 Argue using the Mapping Rule (that is, without refer- {2} parity #2
ence to the precise function in Figure 9.26) that for the Hamming {3} parity #3
Code’s parameters (n = 7 and k = 4) that there exists a bijection {1,2} bitc
decode : 2({1,2,...,n—k})— {0,1,2,...,n}. {1,3} bit b
9.85 Suppose that we choose 7 =9 and k =4. Does there exist {2,3} bit a
a bijection from #({1,2,...,n —k})t0 {0,1,2,...,n}? Why or why {1,2,3} bit d
not?
9.86 Suppose that we choose n = 31. For what value(s) Figure 9.26: De-
of k does there exist a bijection from #({1,2,...,n —k})to coglng the Ham-
{0,1,2,...,n}? Prove your answer. ming Cc?de. Evgry
9.87 Prove that, for any # that is not one less than a power of 2, there does not exist a bijection from single-bit error is
2({1,2,...,n—k})t0{0,1,2,...,n}. corrected.
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In the corporate and political worlds, there’s a dubious technique called URL squatting, where someone creates a
website whose name is very similar to a popular site and uses it to skim the traffic generated by poor-typing internet
users. For example, Google owns the addresses gogle. com and googl. com, which redirect to google. com. (But, as of
this writing, someone else owns oogle. com, goole.com, and googe.com.) Consider an n-letter company name. How
many single-typo manglings of the name are there if we consider the following kinds of errors? Consider only uppercase
letters throughout. (If your answers depend on the particular n-letter company name, then say how they depend on
that name. Note that no transposition errors are possible for the company name MMM, for example.)

9.88 one-letter substitutions

9.89 one-letter insertions

9.90 one-pair transpositions (two adjacent letters written in the wrong order)
9.91 one-letter deletions

How many different ways can you arrange the letters of the following words?

9.92 PASCAL 9.94 ALANTURING 9.96 ADALOVELACE
9.93 GRACEHOPPER 9.95 CHARLESBABBAGE 9.97 PEERTOPEERSYSTEM
9.98 (programming required) Write a function that, given an input string, computes the number of ways

to rearrange the string’s letters. Use your program to verify your answers to the last few exercises.

9.99 (programming required) In Example 9.31, we analyzed the number of ways to write a particular
integer n as the product of primes. (Because the prime factorization of # is unique, the only difference
between these products is the order in which the primes appear.) Write a program, in a language of your
choice, to compute the number x,, of ways we can write a given number n as py - pa - - - pr, Where each p; is
prime. For what number n < 10,000 is x;,, the greatest?

In Chapter 3, we discussed the application of Boolean logic to Al-based approaches
to playing games like Tic-Tac-Toe. (See p. 344, or Figure 9.27 for a 2-by-2 version
of the game [Tic-Tac; the 3-by-3 version is Tic-Tac-Toe].)

Specifically, recall the Tic-Tac-Toe game tree: the root of the tree is the empty
board, and the children of any node in the tree are the boards that result from any
move made in any of the empty squares. We talked briefly about why chess is hard
to solve using an approach like this. (In brief: it’s huge.) The next few problems
will explore why a little bit of cleverness helps a lot in solving even something as
simple as Tic-Tac-Toe.

9.100 Tic-Tac-Toe ends when either player completes a row, column,
or diagonal. But for this question, assume that even after somebody wins
the game, the board is completely filled in before the game ends. (That
is, every leaf of the game tree has a completely filled board.) How many
leaves are in the game tree?

9.101 Continue to assume that the board is completely filled in before the game ends. How many Figure 9.27: A
distinct leaves are there in the tree? (That is, suppose that the order in which O fills his or her squares doesn’t portion of the
matter; if the same squares are filled, the boards count as the same.) game tree for Tic-
9.102 Continue to assume that the board is completely filled in before the game ends. Extend your Tac. (The missing
answer to Exercise 9.100: how many total boards appear in the game tree (as leaves or as internal nodes)? 75% is rotated,
(Hint: it may be easiest to compute the number of boards after k moves, and add up your numbers for k =0,1,...,9.) but otherwise
9.103 Continue to assume that the board is completely filled in before the game ends. How many identical.)

distinct total boards—internal nodes or leaves—are there in the tree?

There are still two optimizations left that we haven't tried. The first is using the symmetry of the board to help us: for
example, there are really only three first moves that can be made in Tic-Tac-Toe: a corner, the middle of the board, and the
middle of a side. The second optimization is to truncate the tree when there’s a winner. These are both a bit tedious to
track by hand, but it's manageable with a small program.

9.104 (programming required) We can cut the size of the game tree down to less than a third of the orig-
inal size—actually substantially more!—by exploiting symmetry in plays. (We're down to a third of the
original size just within the first move.) Write a program to compute the entire Tic-Tac-Toe game tree, and
use it to determine the number of unique boards (counting as equivalent two boards that match with respect
to rotational or reflectional symmetry) in the game tree. How many boards are now in the tree?

9.105 (programming required) We can reduce the size of the game tree just a bit further by not expanding
the portions of the game tree where one of the players has already won. Extend your implementation from
the last exercise so that no moves are made in any board in which O or X has already won. How many
boards are in the tree now?
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942 CHAPTER 9. COUNTING

Recall Example 9.32: we must put n students (where n is even) into & partnerships. (We don’t care about the order of
the partnerships, nor about the order of partners within a pair.) Here is an alternative way of solving this problem:
9.106 Consider sorting the 1 people alphabetically by name. Repeat the following 7 times: for the
unmatched person p whose name is alphabetically first, choose a partner for p from the set of all other
unmatched people. How many choices are there in iteration i? How many choices are there, in total?

9.107 Algebraically prove the following identity. (Hint: what does (n/2)! - 2"/ 2 represent?)

n/2 n!
—2i+l)=—7—7>
L[(” i+1) (n/2)!~2”/2

Think of an n-gene chromosome as a permutation of the numbers {1,2,...,n}, representing the order in which these
n genes appear. The following questions ask you to determine how many chromosome-level rearrangement events of a
particular form there are. (See, for example, Figure 3.38.)

9.108 A prefix reversal inverts the order of the first j genes, for some j > 1 and j < n. For example, for the
chromosome (5,9,6,2,1,4,7,3,8) we could get the result (6,9,5,2,1,4,7,3,8) or (1,2,6,9,5,4,7,3,8) from a
prefix reversal. How many different prefix reversals are there for a 1000-gene chromosome?

9.109 A reversal inverts the order of the genes between index i and index j, for some iandj > i.

For example, for the chromosome (5,9,6,2,1,4,7,3,8) we could get the result (6,9,5,2,1,4,7,3,8) or
(5,9,6,4,1,2,7,3,8) from a reversal. How many different reversals are there for a 1000-gene chromosome?
9.110 A transposition takes the genes between indices i and j and places them between indices k and
k+1,forsomeiandj > iand k ¢ {i,i+1,...,j}. For example, for the chromosome (5,9,6,2,1,4,7,3,8) we
could get the result (5,1,4,7,3,9,6,2.8) or (.1,4,5,9,6,2,7,3,8) from a transposition. How many different
transpositions are there for a 1000-gene chromosome?

A cellular automaton is a formalism that’s sometimes used to model complex systems—Tlike the spatial distribution of
populations, for example. Here is the model, in its simplest form. We start from an n-by-n toroidal lattice of cells: a
two-dimensional grid, that “wraps around” so that that there’s no edge. (Think of a donut.) Each cell is connected to its
eight immediate neighbors.

Cellular automata are a model of evolution over time: our model
will proceed in a sequence of time steps. At every time step, each cell

EEEN
EEEN
T
I
I

u is in one of two states: active or inactive. A cell’s state may change -

from time t to time t +1. More precisely, each cell u has an update rule

that describes u's state at time t 41 given the state of u and each of u’s L

neighbors at time t. (For example, see Figure 9.28.) Figure 9.28: In the
9.111 An update rule is a function that takes the state of a cell and the state of its eight neighbors as Game of Life, each
input, and produces the new state of the cell as output. How many different update rules are there? cell has an identical
9.112 Let’s call an update rule a strictly cardinal update rule if—as in the Game of Life—the state of a update rule: an

cell u at time f +1 depends only the following: (i) the state of cell u at time f, and (ii) the number of active
neighbors of cell u at time t. How many different strictly cardinal update rules are there?

Suppose that we have an 10-by-10 lattice of 100 cells, and we have an update rule f,, for every cell u. (These update
rules might be the same or differ from cell to cell.) Suppose the system begins in an initial configuration My. Suppose
we start the system at time t =0 in configuration My, and derive the configuration M; at time t > 1 by computing

M (u) =fu (the states of u’s neighbors in M;_1).

Let’s consider the possible outcomes of the sequence My, My, My, .. .. Say that this sequence exhibits eventual conver-
gence if the following holds: there exists a time t > 0 such that, for all times t' > t, we have My = M. (So the Life
example in Figure 9.28 exhibits eventual convergence.) Otherwise, we’ll say that this sequence oscillates.

9.113 Given My and the f,’s, we’d like to know what the long-run behavior of this system is: does it
eventually converge or does it oscillate? Prove that, for a sufficiently large value of K, we have eventual
convergence if and only if the following algorithm returns True. Also compute the smallest value of K for
which this algorithm is guaranteed to be correct.

e Start with M :=Mj and ¢ :=0.

e Repeat the following K times: update M to the next time step (that is, for each u compute the updated
M’ (u) by evaluating f,, on u’s neighbor cells in M).

o If M would be unchanged by one additional round of updates, return True. Else return False.

9.114 Suppose that we place 1234 items into 17 buckets. (For example, consider hashing 1234 items
into a 17-cell hash table.) Call the number of items in a bucket its occupancy, and the maximum occupancy the
number of items in the most-occupied bucket. What'’s the smallest possible maximum occupancy?

active cell with <1
live neighbors dies
(from “loneliness”),
a live cell with > 4
live neighbors dies
(from “overcrowd-
ing”), and a dead
cell with exactly
three living neigh-
bors becomes alive.
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9.115 Consider a function f : A — B. Fill in the blank with a statement relating |A| and |B|, and then
prove the resulting claim: if ___, then, for some b € B, we have |{a € A: f(a) =b} | > 202.

9.116 Suppose that we quantize a set of values from S = {1,2,...,n} into {ki,ky,...,ks} C S. (See
Example 2.56.) Namely, we choose these 5 values and then define a function g : S — {ki,ky,...,ks}. The
maximum error of this quantization is maxyeg |x — q(x)|. Use the Pigeonhole Principle (or the “the maximum
must exceed the average” generalization) to determine the smallest possible maximum error.

Imagine a round-robin chess tournament for 150 players, each of whom plays 7 games. (In other words, each player is
guaranteed to participate in precisely 7 games with 7 different opponents. Remember that each game has two players.)
9.117 There are 20 possible first moves for White in a chess game, and 20 possible first moves for Black
in response. (See Example 9.15.) Prove that there must be two different games in the tournament that began
with the same first two moves (one by White and one by Black).

9.118 Suppose that would-be draws in this tournament are resolved by a coin flip, so that every game
has a winner and a loser. Prove that there must be two participants in such a tournament who have precisely
the same sequence of wins and losses (for example, WWWLLLW).

A win-loss record reports a number of wins and a number of losses (for example, 6 wins and 1 loss, or 3 wins and 4
losses), without reference to the order of these results.

9.119 Continuing to suppose that there are no draws in this tournament, identify as large a value of k
as you can for which the following claim is true, and prove that it’s true for your value of k: there is some
win-loss record that is shared by at least k competitors.

9.120 Now suppose that draws are allowed, so that competitors have a win-loss—-draw record (for
example, 2 wins, 1 loss, and 4 draws). Identify the largest k for which there is some win-loss—draw record
that is shared by at least k competitors, and prove that this claim holds for the k you've identified.
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9.4 Combinations and Permutations

Not everything that can be counted counts, and not
everything that counts can be counted.

William Bruce Cameron (1921-2002)

So far in this chapter, we’ve been working to develop a toolbox of general techniques
for counting problems: the Sum Rule and Inclusion-Exclusion, the (Generalized) Prod-
uct Rule, the Mapping Rule, and the Division Rule. This section will be different; in-
stead of a new technique, here we will devote our attention to a particularly common
kind of counting problem: the number of ways to choose a subset from a given set of
candidate elements. Let’s start with an illustrative example:

Example 9.37 (Printing t-shirts)

Problem: Suppose you run a t-shirt shop. There is a collection of jobs that you're
asked to run, but there’s limited time so you must choose which ones to actually
print. There are 17 requested jobs {a,b, ..., q}, but there is only time to print 4
different jobs. How many ways are there to select 4 of these 17 candidate jobs?

Solution: There are two answers, depending on how we interpret the problem:
does the order of the printed jobs matter, or does it only matter whether a job was
printed? (Are we choosing an ordered 4-tuple? Or an unordered subset of size 4?)

Order matters: Then the Generalized Product Rule immediately gives us the
answer: there are 17 choices for the first job, 16 for the second job, 15 for the
third, and 14 for the fourth; thus there are 17 - 16 - 15 - 14 total choices.

Another way to write 17 - 16 - 15 - 14 is % every multiplicand between 1 and
13 appears in both the numerator and denominator, leaving only {17,16,15,14}
uncancelled. We can justify the % version of the answer using the Division
Rule: we choose one of the 17! orderings of all 17 jobs, and then print the first

4 jobs in this order—but we’ve counted each 4-job ordering 13! times (once for
each ordering of the 13 unprinted jobs), so we must divide by 13!.

Order doesn’t matter: As in the previous case, there are %: ways of choosing an

ordered sequence of 4 jobs. Because order doesn’t matter, we have counted each
set of four chosen jobs 4! times, once for each ordering of them. By the Division
Rule, then, there are % ways of selecting 4 unordered jobs from a set of 17.

Two different fundamental notions of choice are illustrated by Example 9.37: permu-
tations, in which the order of the chosen elements matters, and combinations, in which
the order doesn’t matter. These two notions will be our focus in this section. Here’s
another example to further illustrate combinations:

Example 9.38 (Arranging letters of a bitstring)
Problem: How many different ways can you arrange the symbols in the “word”
000111? What about the “word” 00...011...1 containing k zeros and 7 — k ones?
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Solution: This problem is just another application of the techniques we used for PERL
and PEER and SMALLTALK in Example 9.30. (We can think of the word 000111 just
like a word like DEEDED: two different letters, appearing three times each.) There
are 6 total characters in the word, each appearing 3 times, so the total number of
arrangements is % (See Theorem 9.12.)

For the general version of the problem—the word 00...011...1, with k zeros
and n — k ones—we have a total of n characters, so there are n! ways of writing
them down. But k! orderings of the zeros, and (n — k)! orderings of the ones, are
identical. Hence, by the Division Rule, the total number of orderings is #Lk),

COMBINATIONS

The quantity that we computed in Example 9.38 is called the number of combinations The quantity (})
is also sometimes
called a binomial co-
efficient, for reasons
Definition 9.2 (Combinations) that we'll see in Sec-
. L. : . n\ : ; tion 9.4.3. It’s also
Consider nonnegative integers n and k with k < n. The quantity ( k) is defined as cometimes denoted
C(n, k) (“C” asin

of k elements chosen from a set of n candidates:

|
i o = “Combination”).
k) Tk -k
. g 77

and is read as “n choose k. 11090000
" 10100000
As we just argued in Example 9.38, the quantity (;) denotes the number of ways to 10010000
choose a k-element subset of a set of 1 elements. For convenience, define (}) := 0 10601000
10000100
whenever n < 0 or k < 0 or k > n: there are zero ways to choose a k-element subset of a 10000010
set of 1 elements under these circumstances. 10000001
01100000
Taking it further: When there are annoying complications (or divide-by-zero errors or the like) in the 01010000
boundary cases of a definition, it’s often easiest to tweak the definition to make those cases less special. 01001000
(Here, for example, instead of having (g) be undefined, we treat (g) as 0.) 01000100
A similar idea in programming can make life much simpler when you encounter data structures with 01000010
complicated edge conditions—for example, a node in a linked list that might not have a successor. A 01000001
sentinel is a “fake” element that you might add to the boundary of a data structure that makes the edge 00110000
elements of the data structure less special. For example, in image processing, we might augment an 00101000
n-by-m image with an extra Oth and (m +1)st column, and an extra Oth and (1 +1)st row, of blank pixels. 00100100
Once these “border pixels” are added, every pixel in the image has a neighbor in each cardinal direction. Thus 00100010
there’s no special code required for edge pixels in code to, for example, apply a blur filter to the image. 00100001
00011000
Here are a few small examples of counting problems that use combinations: 00010100
00010010
. . . 00010001
Example 9.39 (8-bit strings with 2 ones) 00001100
How many different 8-bit strings have exactly 2 ones? 00001010
. . . . . 00001001
We solved this precise problem in Example 9.3 using the Sum Rule, but combina- 00000110
tions give us an easier way to answer this question. We must choose 2 out of 8 indices 00000101
8\ _ 8! _ 8 _ 87 _ ; : ; 00000011

to make equal to one. There are (2) =E2 —re = 2 = 28 such choices of indices,

Figure 9.29: All
A 8-bit bitstrings with
in Figure 9.29. exactly 2 ones.

and thus (5) different 8-bit bitstrings with exactly 2 ones. These 28 strings are shown
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Example 9.40 (32-bit strings with < 3 ones)
How many different 32-bit strings have fewer than 3 ones?

We will use the Sum Rule, plus the formula for combinations. (We can partition
the set of 32-bit strings that have fewer than 3 ones into those with 0, 1, or 2 ones.)
Thus there are () + (%) +(3) =1+32+ %'31 =1+32 +496 =529 total such strings.

(Recall that 0! =1, so (302) R = ooat = 82 32 1)

= 0r@z—oy ~ 0032 — 1320 T 320 =

Finally, here’s an example of counting using combinations that relates counting to
probability. (There’s much more about probability in Chapter 10.) If we flip an un-
biased coin (in other words, a coin that comes up heads with probability % and tails
with probability % each time we flip it), then every sequence of coin flips is equally
likely. The probability that an “event” E happens when we flip an unbiased coin is the
fraction of possible flip sequences for which E actually occurs.

Example 9.41 (Exactly 50% heads)
Suppose we flip an unbiased coin 10 times. What is the probability that precisely 5
flips come up heads?

There are 2'0 = 1024 total sequences, of which (150) = % = 252 have precisely 5
heads. Thus there’s a 120% ~ 0.2461 chance of exactly half of the flips being heads.

9.4.1 Four Different Ways to Select k out of n Options

= =

O 5

S S

. . . . S s S

In Example 9.37, we saw two different ways in which we can imag- E = < 8 w3
) . - - e S o 5 S S
ine choosing a subset of k distinct elements from a set S of n candi- % 58 SRS SIS
X A A I ]| = T = T =

dates, depending on whether the order in which we choose those k g8 g8 EE £ 8
=R =R =~ B =R

elements matters. 38 38 T8 T
) . o . SIS SIS s ® ISER
There is another dichotomy that can arise in counting problems: O ways) 6 ways) Gways) | Gwaps)

we can imagine circumstances in which we choose k elements from | A thenA Aand A
A, then B A, then B Aand B Aand B
B, then A B, then A
same element more than once). In other scenarios, repetition might | A thenC | A thenC | AandC | AandcC

a set S, but where repetition is allowed (that is, we can choose the

not make sense. Here are some examples of all four situations (see gf :Eeng C, then A & and B
, then an
also Flgure 9'30): B, then C B, then C Band C Band C
e You order a two-scoop ice cream cone from a list of flavors. C thenB | C thenB
. . C, then C Cand C
Order matters: a chocolate scoop on top of a mint scoop #mint on
top of chocolate. Repetition is allowed: you can choose vanilla for both scoops. Figure 9.30: Four

L ways of choosing
e Your soccer game is tied, and you must choose 5 of your 11 players to take penalty 2 elements from
kicks to break the tie. Order matters: the kicks are taken in sequence, so Pelé then the candidates A, B,
and C—depending
on whether we can
take only one kick. choose the same

e You order a three-salad salad sampler from a list of salads. Order doesn’t matter: element more than
once, and whether

the order of choices
is allowed: you can choose the Caesar as two or all three of your salads. matters.

Maradona #Maradona then Pelé. Repetition is forbidden: each player is allowed to

salads are served on a round plate, so it doesn’t matter which one is “first.” Repetition
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9.4. COMBINATIONS AND PERMUTATIONS 947

e You select a starting lineup of 5 basketball players from your 13-person team. Or-
der doesn’t matter: all 5 chosen players are equivalent in starting the game. Repetition
is forbidden: you must choose five different players.

Here we will consider all four types of

counting problems—ordered/ unordered order matters

choice with/ without repetition—and

order doesn’t matter

n!

repetition forbidden m

do a few examples. See Figure 9.31 for a

n
k

summary of the number of ways to make

repetition allowed nk

)

these different types of choices.

WHEN ORDER MATTERS AND REPETITION IS FORBIDDEN

Suppose that we choose a sequence of k distinct elements from a set S: that is, the or-
der of the selected elements matters and repetition is not allowed. (For example, in a player
draft for a sports league, no player can be chosen more than once—"repetition is
forbidden”—and the outcome of the draft depends not just on whether Babe Ruth
was chosen, but also whether it was the Eagles or the Wildcats that selected him.)

In other words, we make k successive selections from S, but no candidate can be
chosen more than once. Such a sequence is sometimes called a k-permutation of S—an
ordered sequence of k distinct elements of S. (Recall from Definition 9.1 that a permuta-
tion of a set S is an ordering of S’s elements.)

There are (n”T'k), different k-permutations of an n-element set S, by the Generalized
Product Rule. (Specifically, there are

), ~ (n—1)

~——
choices of first element choices of second element

(n—k+1)
——
choices of kth element

totalchoices,and(nf—!k)!:n-(n—l)-(n—2)~ <o - (m—k+1).)

Example 9.42 (4 of 10)

Suppose that you are asked to place four of the cards {AQ,20, ... ,100} on the

table, arranged from left to right in an order of your choosing. There are 10-9 -8 -7 =
10!

{0—ay such arrangements: order matters (A2340 # 432AQ0)and repetition is not

allowed (4444Q isn’t a valid arrangement, because you only have one 4% card).

WHEN ORDER MATTERS AND REPETITION IS ALLOWED

Suppose that we simply choose a sequence of k (not necessarily distinct) elements:
that is, order matters and repetition is allowed. In other words, we make k successive
selections from S, and we’re allowed to make the same choice multiple times. (For
example, suppose you and k — 1 friends go to a Chinese restaurant with # items on the
menu, and each of you orders something for dinner. You're allowed to order the same
dish as your friends—"repetition is allowed”—but you getting the Tofu with Black
Bean Sauce and your vegan friend getting Twice-Cooked Pork is definitely different
from the other way around.)

Figure 9.31: Four
ways of selecting k
of n items, and the
number of ways to
make that selection.

Some people denote
the number of ways
of choosing an
ordered sequence
of k distinct selec-
tions from a set of n
options by P(n, k),
because “permu-
tation” starts with
apr
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948 CHAPTER 9. COUNTING

Then there are 1* different ways to make this choice, by the Product Rule: at every
stage, there are n possible choices, and there are k stages.

Example 9.43 (4 of 10, a second way)
Suppose that you are asked to create a 4-digit integer. There are 10* such integers:
order matters (1234 #4321) and repetition is allowed (4444 is a valid 4-digit number).

WHEN ORDER DOESN’'T MATTER AND REPETITION IS FORBIDDEN
Suppose that we choose an unordered set of k distinct elements: that is, order does
not matter and repetition is not allowed. (For example, suppose you and n — 1 friends

enter a raffle in which k identical new cell phones will be given away. Each of you puts

your name on one of n cards that are placed in a hat, and k cards are drawn to choose
the winners. Cards for winners are not put back into the hat after they’re drawn, so
nobody can win twice—"repetition is forbidden”—but Alice and Bob winning is the
same as Bob and Alice winning.)

When we choose an unordered set of k distinct elements from a set of n options,
there are (}) different ways to make this choice, by the definition of combination.
Such a subset is sometimes called a k-combination of S—an unordered set of k distinct
elements of S. (Recall from Definition 9.2 that a combination of elements from a set S is
precisely an unordered subset of elements from S.)

Example 9.44 (4 of 10, another way)

Suppose that you're asked to create a 10-bit number with exactly 4 ones. You do so
by starting with 0000000000 and choosing 4 indices to change from 0 to 1. There are
(140) such bitstrings: the order in which you choose a bit to make a 1 doesn’t matter
(changing bit #2 and then bit #7 to 1 yields the same bitstring as changing bit #7 and
then bit #2 to 1) and repetition is not allowed (you have to change 4 different bits to 1).

WHEN ORDER DOESN’T MATTER AND REPETITION IS ALLOWED

While these three types of selecting k out of n elements are the most frequent, the
fourth possibility can sometimes arise, too: order doesn’t matter but repetition is allowed.
Let’s build some intuition for this case with a longer example:

Example 9.45 (Taking notes on six sheets of paper in three classes)

Problem: You discover that your school notebook has only k =6 sheets of paper left in
it. You are attending n =3 different classes today: Archaeology (A), Buddhism (B),
and Computer Science (C). How many ways are there to allocate your six sheets of
paper across your three classes? (No paper splitting or hoarding: each sheet must
be allocated to one and only one class!)

(Here’s another way to phrase the question: you must choose how many pages to
assign to A, how many to B, and how many to C. That is, you must choose three
nonnegative integers a, b, and ¢ with a +b +c =6. How many ways can you do it?)

Problem-solving

tip: When you
encounter a prob-
lem that seems
completely novel,
run through the
techniques you
know about and try
them on for size,
even if they’re not
an obvious fit. The
type of counting

in Example 9.45
doesn’t seem like it
has a lot to do with
combinations, but
by changing the
way you view this
problem it can be
transformed into

a problem you've
seen before.
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Solution: The 28 ways of allocating your paper are shown in the following tables,
sorted by the number of pages allocated to Archaeology (and breaking ties by the
number of pages allocated to Buddhism). The allocations are shown in three ways:

e Pages are represented by the class name.

o Pages are represented by O, with | marking divisions between classes: we
allocate the number of pages before the first divider to A, the number between
the dividers to B, and the number after the second divider to C.

e Pages are represented by 0, with 1 marking divisions between classes: as in the
O-and-| representation, we allocate pages before the first 1 to A, those between
the 1s to B, and those after the second 1 to C.

Here are the 28 different allocations:

A |B |C
AAAAAA Dooooo| | 00000011
AMAAA B ooooo (O | 00000101
AAAAA C ooooo | = 00000110
AAAA BB oooo oo | 00001001
AAAA B C oooo o = 00001010
AAAA cc oooo | |00 00001100
AAA BBB 0oo |ooo | 00010001
AAA BB C ooo 0o = 00010010
AAA B cc ooo = [al= 00010100
AAA cce ooo | |ooo 00011000
AA BBBB oo |ooog | 00100001
AA BBB C oo |0oo = 00100010
AA BB cc oo |oo [al= 00100100
AA B cce oo |0 |ooo 00101000
AA ccec oo | |oooo 00110000
A BBBBB O |ooooo | 01000001
A BBBB C O |oooo O 01000010
A BBB cc O |0oo 0o 01000100
A BB cce O |oo |ooo 01001000
A B ccee O |0 |0ooo 01010000
A ceecc O [ |ooooo 01100000
BBBBBB |0ooooo| 10000001
BBBBB  C |0oooo |o 10000010
BBBB cc |Dooo (oo 10000100
BBB cce |0oo |ooo 10001000
BB ccec oo |oooo 10010000
B ccecc |O |00000 10100000
ceceece [ |oooooo 11000000

All three versions of this table accurately represent the full set of 28 allocations,
but let’s concentrate on the representation in the second and third columns—
particularly the third. The 0-and-1 representation in the third column contains
exactly the same strings as Figure 9.29, which listed all 28 = (3) of the 8-bit strings
that contain exactly 2 ones.

In a moment, we'll state a theorem that generalizes this example into a formula for the
number of ways to select k out of n elements when order doesn’t matter but repetition
is allowed. But, first, here’s a slightly different way of thinking about the result in
Example 9.45 that may be more intuitive.
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Suppose that we're trying to allocate a total of k pages among n classes.

Imagine placing the k pages into a three-ring binder along with n — 1 “di- = = 5 5
vider tabs” (the kind that separate sections of a binder), as in Figure 9.32. > > > >
There are now n +k — 1 things in your binder. (In Example 9.45, there were = ° °

6 pages and 2 dividers, so 8 total things are in the binder.) The ways of al- : : :
locating the pages precisely correspond to the ways of ordering the things

in the binder—that is, choosing which of the n +k — 1 things in the binder should be Figur? 9‘32; 6Any
blank sheets of paper, and which should be dividers. So there are ("#,{;1) ways of do- ;ie;r:;gf ;aper
ing so. In Example 9.45, we had n =3 and k = 6, so there were (2) =28 ways of doing and 2 divider

tabs defines three
sections (before,
While the description in Example 9.45 wasn't stated in precisely these terms, our between, and after

this allocation.

paper-allocation task was really a task about choosing with repetition: six times (once the dividers).
for each piece of paper), we select one of the elements of the set { A, B, C} of classes.

We may select the same class as many times as we wish (“repetition is allowed”), and

the pieces of paper are indistinguishable (“order doesn’t matter”). Here is the general

statement of the number of ways to select k out of n elements for this scenario:

Theorem 9.17 (Choosing with repetition when order doesn’t matter)

The number of ways to select k out of n elements when order doesn’t matter but repetition is

allowed is ("*4,‘(_1) ;

Proof. We'll give a proof based on the Mapping Rule. We can represent a particular
choice of k elements from the set of n candidates as a sequence x € (Z=°)" such that
Yitq xi =k. (Specifically, x; tells us how many times we chose element i.) Define

X:={x e @ : ¥y, x =k}
and S :={x € {0, 1}'“4“1 : x contains exactly n — 1 ones and k zeros} .

We claim that there is a bijection between X and S. Specifically, definef : X — S as

fe1,x,...,x,)=00---0 1 00---0 1 --- 1 00---0
~— —— ——
x1 times xp times x, times

(This representation is precisely the one in Example 9.45.) It’s easy to see that f is a
bijection: every element of S corresponds to one and only one element of X. As we
argued in Example 9.38, the cardinality of S is ("*1). a

Here’s another example of this type of choice:

Example 9.46 (4 of 10, one last way)

Suppose that you have decided to buy 4 total drinks for a group of 10 of your friends.
(You may buy multiple drinks for the same friend.) You can think of lining your
friends up and performing a total of 13 successive actions, each of which is either (a)
buying a drink for the friend immediately in front of you, or (b) shouting “next!”. Of
your 13 actions, 4 must be drink purchases. (The other 9 must be shouts of “next!”)
There are (143) ways to choose these actions.
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CHOOSING k OF 1 ELEMENTS, SUMMARIZED

We’ve now discussed four notions of choosing k elements from a set of n candidates,
depending on whether we could choose the same option more than once and whether
the order of our choices mattered:

e order matters and repetition is allowed: n* ways.

e order matters and repetition is forbidden: (nﬁ—'k)' ways.
e order doesn’t matter and repetition is allowed: (”#;:1) ways.

e order doesn't matter and repetition is forbidden: (}) ways.

(Or see Figure 9.31 for a summary.) We’ve also considered the same example—choosing
4 of 10 options—in each setting, and the number of ways to do so was different in each
of the four different scenarios:

e order matters and repetition is allowed: 10,000 = 10* ways.

e order matters and repetition is forbidden: 5040 =10-9 - 8 - 7 ways.

e order doesn’t matter and repetition is allowed: 715 = (143) ways.

e order doesn’t matter and repetition is forbidden: 210 = (140) ways.

Taking it further: In CS, we frequently encounter tasks where we must identify the best solution from
a set of possibilities. For example, we might want to find the longest increasing subsequence (LIS) of a
sequence of n integers. A brute-force algorithm is one that solves the problem by literally trying every
possible solution and selecting the best. (For LIS, there are 2" subsequences, so this algorithm is very
slow.) But if there’s a certain kind of structure and enough repetition in the subproblems that arise in a
naive recursive solution, a more advanced algorithmic design technique called dynamic programming can
yield a much faster algorithm. And counting the number of subproblems—and the number of distinct
subproblems!—is what establishes when algorithms using brute force or dynamic programming are
good enough. See the discussion on p. 959.

9.4.2  Some Properties of (), and Combinatorial Proofs

Of the four ways of choosing k elements from n candidates that we explored in Sec-
tion 9.4.1, perhaps the most common is the setting when order doesn’t matter and rep-
etition is forbidden. In this section, we’ll explore some of the remarkable mathematical
properties of the numbers—the values of (})—that arise in this scenario.

The properties that we’ll prove here (and those that you'll establish in the exercises)
will be equalities of the form x =y for two expressions x and y. We'll generally be able
to give two very different styles of proof that x = y. One type of proof uses algebra,
typically using the definition of (}) and algebraic manipulations to show that x and
y are equal. The other type of proof will be a more story-based approach, called a
combinatorial proof, where we argue that x =y by explaining how x and y are really just
two ways of looking at the same set:

Definition 9.3 (Combinatorial Proof)
A combinatorial proof establishes that two quantities x and y are equal by defining a set S
and proving that |S| =x and |S| =y by counting |S| in two different ways.

The algebraic approach is perhaps apparently more straightforward, but combinatorial
proofs can be more fun. Here’s a first example:
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Theorem 9.18 (A symmetry in choosing)
For any positive integer n and any integer k € {0,1,...,n}, we have (7) = (,,",)-

Proof #1 of (}) = (,";), via algebra. We simply follow our noses through the definition:

(n n!
= definition of combinations
k) Tk (n—k)
n!
= commutativity of multiplication
(n— k)l k!
n!

antisimplification: k =n — (n — k)

-k (- (m—k)

n
= . ([l definition of combinations
n—k

Here is a second proof of Theorem 9.18—this time a combinatorial proof. The basic
idea is that we will construct a set S such that we can prove that |S| = (}) and we can
prove that |S| = (,," ;). (Thus we can conclude (}) =(,";).)

Proof #2 of (¥) = (,,"x), via a combinatorial proof: Suppose that n students submit imple-
mentations of Bubble Sort in a computer science class. The instructor has k gold stars,
and he will affix a gold star to each of k different implementations. Let S be the set of
ways to affix gold stars. Here are two ways of computing |S|:

e First, we claim that |S| = (}). Specifically, the instructor will choose k of the 1 sub-
missions and affix gold stars to the k chosen elements. There are () ways of doing
sO.

e Second, we claim that |S| = ( nﬁk)' Specifically, the instructor will choose 1 — k of
the n submissions that he will not adorn with gold stars. The remaining unchosen
submissions will be adorned. There are (,," ) ways of choosing the unadorned
submissions.

But |S] is the same regardless of how we count it! So (}) =S| =(,,”,) and the theorem

follows. O Problem-solving tip:
The hard part in
(Another way to think about the combinatorial proof: an n-bit string with k ones is an a combinatorial

proof is coming up

n-bit string with n — k zeros; the number of choices for where the ones go is identical with a story that

to the number of choices for where the zeros go.) explains both sides
A combinatorial proof requires creativity—uwhat set S should we consider?—but the of the equation.
Understanding
argument that the proof is correct is generally comparatively straightforward. Thus what the more
the challenge in proving an identity with a combinatorial proof is a challenge of narra- complicated side of

the equation means
is often a good
described by that story. place to start.

tive: we must find a story in which the two sides of the equation both capture the set

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.



9.4. COMBINATIONS AND PERMUTATIONS 953

Pascal’s IDENTITY
Here’s another example claim with both algebraic and combinatorial proofs:

Theorem 9.19 (Pascal’s Identity)
For any integer n > 1 and any k € {0,1,...,n}:

n—1 n—1\ (n
k * k—1) \k)° Pascal’s identity

is named after
Blaise Pascal, a

Proof #1 of Pascal’s Identity (algebra). Observe thatif k = 0 or k = n, the identity fol- 17th-century French
. . . N n _ 1 _ _ (n—1 n—1 P mathematician.
I?lws 1mmed1ate1y;1]3%1 deﬁnnil’?on, we have (§) =1=1+0=(", ), +( 71‘) and similarly The programming
(1) =1=0+1=(",") +(}_1). For the non-boundary cases, we'll manipulate the left- language Pascal was
hand side until it’s equal to the right-hand side: *;180 named in his
onor.
n—1 + n—1
k k—1
__ -1 @) I
= (1’1 —1_ k)! (k — 1)! - (}’l — k)! efinition of combinations
_ (n—1) n—k N (n—1) k it b —
Tkm—1-K n—k T k—1-m—k! k kY Py T =5
_(m—=1)-(n—k) m—1"k
= k'(l’l—k)' + k'(ﬂ—k)’ (k—=1)-k=kland (n—1—k)!-(n—k)=@mn—k)!
_(m—=1)[(n—k)+k] o
= Il (}’l — k)! factoring
n!
:m n—k+k=n,and (n—1)-n=n!
= (Z) . ([l definition of combinations

Proof #2 of Pascal’s Identity (combinatorial proof). For the case of k = O ork = n, the
argument is the same as in Proof #1. Otherwise, consider a set of n > 1 employees,
one of whom is named Babbage. How many ways can we select a subset of k different
employees? Here are two different ways of counting the number of these subsets:

e We choose k of the n employees. There are (}) ways to do so.
e We decide whether to include Babbage, and then fill in the rest of the team:

- If we pick Babbage, we need to pick k — 1 further employees from the n — 1
other (non-Babbage) employees; thus there are (Zj) ways to select a team that
includes Babbage.

- If we don’t pick Babbage, we pick all k employees from the n — 1 others; thus
there are (') ways to select a team that does not include Babbage.

By the Sum Rule, there are therefore (Zj) + (Zj) ways to choose a team.
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Because we’ve counted the cardinality of one set in two different ways, the two sizes
n—1

must be equal. Therefore (}) = ({"1) +(";') and the theorem follows. O

Taking it further: World War II was perhaps the first major historical moment in which computer
science—and, by the end of the war, the computer—was central to the story. The German military used
a complex cryptographic device called the Enigma machine for encryption of military communication
during the war. The Enigma machine, which was partially mechanical and partially electrical, had a
large (though not unfathomably large) set of possible physical configurations, each corresponding to a
different cryptographic “key.” Among the first applications of an electronic computer—and the reason
that one of the first computers was designed and built in the first place—was in breaking these codes, in
part by exhaustively exploring the set of possible keys. As such, understanding the number of different
keys in the system (a counting problem!) was crucial to the Allies” success in breaking the Enigma code.
For more, see the discussion on p. 960.

9.4.3 The Binomial Theorem

The quantity (Z) is sometimes called a binomial coefficient, for reasons that we’ll see

in this section. First, a reminder: the product of two binomials (x +y)and (@ +b) is A binomial (Latin
xa +xb +ya +yb. (You may have once learned the “FOIL” mnemonic for the terms of b;atg‘l’;’);’;m
the product: first = xa; outer = xb; inner = ya; and last = yb.) Thus when we square special kind of
x +y—that is, multiply it by itself—we get polynomial—poly

“many” +nom
“name”—that has

(x+y)- (x+y) = xx+xy+yx+yy = 1- ¥ +2 xy+1- yZ' precisely two terms.
Observe that the three coefficients of these terms, in order, are (1,2,1) = <(é), (%), (%))
The binomial theorem is a general statement of this pattern: when we multiply out the
expression (x +y)", the coefficient of the x*y" ¥ term is (}):

Theorem 9.20 (The Binomial Theorem)
Foranya € R,any b € R, and any n € Z=°, we have

@+b)y' = Z (Ma'b" .

i=0

Before we prove the binomial theorem, let’s start with some intuition about why these
coefficients arise. For example, let's compute (x +y)* = (x +y)- (x +y)- (x +y)- (x +y),
without doing any simplification by combining like terms:

X +y)- (@ +y)- (x+y)- X +y)

= (0 +xy +yx +yy) - W +Y) - (X +y)

= (XXX +XYx +YxXX +Yyyx +xxy +xyy +yxy +yyy) - (x +y)

= XXXX +XYXX +YXXX +YYXX +XXYX +XYYX +YXYX +Yyyx
+XxXXY +XYXY +YxXxy +yyxy +xxyy +xyyy +yxyy +yyyy.

Every term of the resulting expression consists of 4 multiplicands, one from each of
the 4 copies of (x +y). How many of these 16 terms contain, say, 2 copies of x and 2
copies of y? There are 6—yyxx, xyyx, yxyx, xyxy, yxxy, and xxyy—which is just the
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number of elements of {x, y}4 that contain precisely two copies of x. While the sym-
bols are different, it’s easy to see that this quantity is precisely the number of elements
of {0,1}* that contain precisely two ones—which is just (3).

We will prove the Binomial Theorem in generality in a moment, but to build a little
bit of intuition for the proof, let’s look at a special case first:

Example 9.47 (The coefficients of (x +1)*)
We're going to show that (x +y)*> =x> +3x%y +3xy? +y> in the same style that we'll use in
the full proof of the Binomial Theorem. We'll start with the observation, made previously,
that (x +y)* = 22 +2xy +2 = (5)x® + (})xy + (5)y>. A key step will make use of
Theorem 9.19 to move from the coefficients of (x +y)? to the coefficients of (x +y)°.
(c+yP =@ +y): @ +y)
=@+ [0 + @y + O]
=+ +Q + @Y+’ +Q)y’

(@R Grv+Gr?) v (Er2+Grv+Gr?)

which, collecting like terms, simplifies to

P = Q)2+ [} +Q)] v+ Q) + )] w2+ Q).

By Theorem 9.19, we have that G) + (S) = G) and (%) + G) = (3), so

w4y = (02 +0)*%y + Q) w* + )y
Because (;) =1and () =1 for any 1, we have that (é) = (8) and (%) = (g), and thus

@ +y) = ()% +(0)x%y + Q)w? + By’
=x3 +3x2y +3xy2 +y3. O

The combination notation can sometimes obscure the structure of the proof; for fur-
ther intuition, here is what this proof looks like, without the notational overhead:

(c+y) = 0c+y) - (@ +y)
=X +y)- (¢ +2xy +2)
= (3 +2¢%y +x?) + Py +2xy° +1°)
=3+ Q241w + (1 +2)wy? +¢°
= 2% +3x%y +3xy* +1°.

Proor oF THE BiNoMIAL THEOREM
We’re now ready to give a proof of the general form of the Binomial Theorem. Our

Problem-solving tip:
When you're asked
to solve a problem
for a general value
of n, one good way
to get started is to
try to solve it for a
specific small value
of n—and then

try to generalize
your solution to

an arbitrary n.

It’s often easier to
generalize from

a particular # to

a general n than

to give a fully
generally answer
“from scratch.”
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proof will use mathematical induction on the exponent, and the structure of the induc-
tive case of the proof will precisely mimic that of Example 9.47.

Proof of Binomial Theorem. Leta and b be arbitrary real numbers. We wish to prove
that, for any integer n > 0,
n
@+by" =Y (Ha'b" .
i=0
We proceed by induction on n.
The base case (n =0) is straightforward: anything to the Oth power is 1, so in partic-
ular @ +b)° =1. And Y05 (D)ait® = (§)-1-1 =1.
For the inductive case (n > 1), we assume the inductive hypothesis (@ +b)"~! =
Yl (M 1) a1 We must prove that (2 +b)" =YLy (?)a'b" . Our proof echoes the
structure of Example 9.47:

(ﬂ +b)n = (Cl +b) . (Cl +b)n71 definition of exponentiation
n—1 ) )
= (Cl +b) . 2 (nzl)albnilil inductive hypothesis
i=0
n—1 ) ) n—1 ) )
=a- 2 (nlfl)albnilil +b- Z (nil)albnll‘| distributing the multiplication
i=0 i=0
n—1 ) ) n—1 ) )
= [Z (nil)a1+lbnll] + Z (nil)albnl] distributing the multiplication, again
i=0 i=0
= |JZ (?ll)ﬂ]bn]] + Z (nil)ﬂlbnl‘| . reindexing the first summation (j :=i+1)
i=1 i=0

By separating out the i = 0 andj = n terms from the two summations, and then
combining like terms, we have

+ (Z:%)anbnfn + (nal)aobnfo

oo <[ o] o[

j= i=1

= [nil (G=H+7h) afb”‘fl + (a4 (1) %O,

=

Applying Theorem 9.19 to substitute (}) for (7:11) + ("]fl) and using the fact that
(1) =1 = (1) and (") =1 = (), we have

n—1
kS 1 1y 0410
@+b)' =} (a7 |+ ()" "+ (" )ab" () =G0+
Lj=
[n—1 ) ) 0 0
n - n - n - n— n n— "
= (b7 +()a"b" ™" + (g)a’t" (D) =1=()and (1) =1= ()
L/=
. ' ‘
= Z (?)ﬂ]bnij , incorporating the j =0 and j = n terms back into the summation
Lj=0
which proves the theorem. O
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9.4.4 Pascal’s Triangle

Much of this section has been devoted to understanding the binomial coefficients, Like Pascal’s
through the Binomial Theorem and through combinatorial proofs of a number of 1d_entl’iy' Pascal Sd
. . , . . . . . . . riangle 1s name
their other properties. We'll close our discussion of binomial coefficients with a visual after the 17th-
representation of these quantities, called Pascal’s triangle. Pascal’s triangle arranges the century French
mathematician

binomial coefficients in a classical and very useful way: the nth row of Pascal’s triangle
consists of all of the n +1 binomial coefficients (), (1), - - -, (}), in order. Figure 9.33
shows the first nine rows of Pascal’s triangle:

Blaise Pascal.

Figure 9.33: The
(8) 1 first several rows
of Pascal’s triangle,
((1)) 6) 1 1 in bofh ”choo.se”
o6 o R il o,
® @ @ & 1 3 3 1
o O & 6 6 1 4 6 4 1
@ 6 60 @ @ 6 1 5 10 10 5 1
© @ 6@ 6@ @ 6 @ 1 6 15 20 15 6 1
@ O 6 6@ @ 6 6@ 6 17 21 3 3 20 7 1
© O 66 O 6 @ 6 @ | 1 8 2 5 70 5 28 8 I

Many of the properties of the binomial coefficients that we’ve established previously
can be seen by looking at patterns visible in Pascal’s triangle—as can some others that
we’ll prove here, or that you'll prove in the exercises.

For example, Figure 9.34
gives visualizations of two
properties that we’ve already ©) 1
proven. Theorem 9.18 states BENG 11
. 0 1
that (}) = (,",); this theorem B H+0 . H-B
is reflected by the fact that the oA \/
3 3 3
numerical values of Pascal’s G O 6 6 o3 8 1
triangle are symmetric around @ O G 6 O 1 4 6 4 1
a vertical line drawn down G O O+ O 0 1 5 10410 5 1
through the middle of the tri- N N/
8 © © 0 6@ O 6 @ 1 6 15 20 15 6 1

angle. And Theorem 9.19 (“Pas-
cal’s Identity”), which states that

n—1 n—1\ _ (m\ .. - S by : Figure 9.34: Theo-
(") +(21) = (}),is illustrated by the fact that each entry in Pascal’s triangle is the rens 9.18 and 9.19
sum of the two elements immediately above it (up-and-left and up-and-right). reflected in Pascal’s

There are many other notable properties of the binomial coefficients, many of which triangle.
we can see more easily by looking at Pascal’s triangle. Here’s one example; a number
of other properties are left to you in the exercises. Let’s look at the row sums of Pas-
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n

cal’s triangle—that is, computing (i) + (}) +- - - + (};) for different values of n. (See
Figure 9.35.)

From calculating the row sum for a few small values of #n, we see that 1 =1
the nth row appears to have value equal to 2". (Incidentally, the sum of 1 1;1 1 22
the squares of the numbers in any particular row in Pascal’s triangle also 14343 +1 -8
has a special form, as you'll see in Exercise 9.170.) Indeed, the power- T+4+6+4+1 =16

, X . 14+5+10+10+5+1 =32
of-two pattern for the row sums of Pascal’s triangle that we observe in 146415420415 4+641 =64

Figure 9.35 holds for arbitrary n—and we’ll prove this theorem here, in

several different ways.

Figure 9.35: The

Theorem 9.21 (Sum of a row of Pascal’s triangle) row sums of Pas-
- cal’s triangle.
4 N =2"
i=0 (z) :

Proof #1 (algebraic finductive) [sketch]. We can gain a bit of intuition for this claim from
Theorem 9.19 (Pascal’s Identity): each entry (}) in the nth row is added into exactly two
entries in the (1 +1)st row, namely ("}") and (}1]). Therefore the values in row #n of
Pascal’s triangle each contribute twice to the values in row #(n +1), and therefore the
(n +1)st row’s sum is twice the sum of the nth row. This intuition can be turned into an

inductive proof, which you'll give in Exercise 9.169. O

Proof #2 (combinatorial). LetS :={1,2,...,n} be a set with n elements. Let’s count the
number of subsets of S in two different ways.

On one hand, there are 2" such subsets: there is a bijection between subsets of S and
|S|-bit strings. (See Lemma 9.10.)

On the other hand, let’s account for the subsets of S by first choosing a size k of the
subset, and then counting the number of subsets of that size. By the Sum Rule, the
total number of subsets of S is exactly

n

2 (the number of subsets of S of size k).
k=0

By definition, there are exactly (}) subsets of size k. Therefore the total number of

subsets is Y} (). Thus 2" =Y 7, (}). H

Proof #3 (making clever use of the Binomial Theorem). We'll start from the right-hand side
of the theorem statement, and begin with a completely unexpected, but obviously true,

antisimplification:
2" = (1 +1 )n obviously 2 =1 +1; therefore2" = (1 +1)"
n . .
= Z (rzl) e binomial theorem
i=0
n
:Z (Tll) U 1% =1 for any value of k
i=0

You'll explore some of the many other interesting and useful properties of Pascal’s
triangle, and of the binomial coefficients in general, in the exercises.
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CoMPUTER ScIENCE CONNECTIONS I

BrutkE Force ALGoriTHMS AND DyNaMICc PROGRAMMING

In an optimization problem, we're given a set S of valid solutions and some
measure of quality f : S — IR, and asked to compute the element x € S that’s
the best according to f. (That is, we want to find the x € S that optimizes f (x).)
Two examples are shown in Figure 9.36: the traveling salesman problem (TSP )—
the problem solved every day by delivery drivers, who have to visit a given
list of addresses and return to the depot—and the cheapest vertical seam (CVS)
problem, which arises in a remarkable computer graphics application.” (For
an example of the latter problem, see Figure 9.37.)

For both TSP and CVS, there are very simple, but very slow, brute-force
algorithms that solve the problem by computing the list of all possible solutions
(all orderings of the cities; all top-to-bottom paths) and identifying the best of
these possible solutions. It’s by now a reasonably straightforward counting
exercise to show that there are n! orderings and between 2" - n and 3" - n paths
(it takes some work to avoid counting paths that fall off the left/ right edges of
the grid). These running times are unimpressive—even n around 100 would
require decades of computing time—and this is, more or less, the best known
algorithm for TSP! (See p. 326.)

But we can do better for CVS, with another view of the problem. Given
a grid G, define best (i, j) as the cost of the cheapest path from grid cell (i, j) to
the bottom of the grid. Then we can solve the CVS problem using a recursive
algorithm that computes best(i, ) for every cell (i, ), as in Figure 9.38. Unfortu-
nately, this algorithm is just as slow as the brute-force approach: to compute
best (i, j), we make three recursive calls, at least two of which remain inside
the grid. Thus the running time T (/) to find best (1 — i, j) with i rows beneath
cell (7, f) is given by the recurrence T(1) =1 and T(i) > 2T (i — 1) +1—which
satisfies T (n) > 2", just as slow as before.

But a key algorithmic observation is that the number of different cells in
the grid is much smaller—only n? different cells! So, while the algorithm
in Figure 9.38 does take Q)(2") time, it actually “should” require only @ (1?)
time—uas long as we avoid recomputing best(i, j) multiple times for the same value
of (i,j)! Once we've figured out best(3,7) (because we needed that value to
figure out best(4, 6)), we don’t bother recomputing best(3,7) when we need
it again (while we're computing best(4,7) and best(4, 8)); instead, we just
remember the value and reuse it without doing any further computation.

The most straightforward way to implement this basic idea is called mem-
oization: we build a data structure in which we check to see whether we’ve
already stored the value of best(i, j) before computing the value via the three
recursive calls, and we always add all values we compute to the data structure
before returning them. A slightly more efficient way of implementing this
idea is called dynamic programming, where we transform this recursive solution
into one using loops—and build up the values of best(i, j) from the bottom up.
(See Figure 9.39).

In general, dynamic programming is an algorithmic design technique that
can save us a massive amount of computation—as long as the number of
different problems encountered in the recursive solution is small.

Traveling Salesman Problem (TSP):

Input: A set C of n cities, and distance
function d giving the driving time
between any two cities.

Output: An ordering 7 of C such
that the sum of the driving times
Y. d(mi, mi41) is minimized.

Cheapest Vertical Seam (CVS):

Input: An n-by-n grid of integers.

Output: A path from the top row to
the bottom row, moving in direc-
tion {,/, ], \,} at each step, such
that the sum of the integers along
the path is minimized.

Figure 9.36: Two problems.

®Shai Avidan and Ariel Shamir. Seam
carving for content-aware image resiz-
ing. In ACM SIGGRAPH, 2007.

[ESAF =1 SRR §iNe}
QN |00 | W |0
[NSEIGREG RIS RN}
| W |0\ |\O |
|0 |~ [\O

Figure 9.37: A small example of CVS.

best(i,j):  //Assume Gi_p1. . is given.
1. if i =n then
return G;; (in the last row)
elseif j <Oorj > n then
return +oo (outside the grid)
else
return the minimum of:

{ Gz‘,j +best (i il = 1),

Gi,j +best(i +1,j),
Gjj +best(i +1,j +1).

Figure 9.38: A recursive algorithm for
CVS. (To solve CVS itself, return the
smallest best (1, j) for every 1 <j < n.)

CVS<G1“An,1...n)1
1: forj:=1,...,m
2: T[Vl,j] = Gi,]'
3: fori:=n—1,...,1:
4: forj:=1,...,m:
5% T[i,j] :=the minimum of:
(Treat T[-,j] = co if j out of range.)

Gi,j +T[i +1,j — 1]/
Gz‘,j +T[i+1,j],
Gi,j +T[i +1,j +1].

6: return min; T[1,j].

Figure 9.39: A dynamic programming
algorithm for CVS.
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CoMPUTER ScIENCE CONNECTIONS I

Tae ENicMA MAcCHINE AND THE FIRst COMPUTER

The Enigma machine was a physical cryptographic device used by the
Germans during World War II to communicate between German high com-
mand and their military units in the field. The basic structure of the machine
involved rotors and cables. A rotor was a 26-slot physical wheel that encoded a
permutation 7; when the wire corresponding to input i is active, the output
wire corresponding to ; is active. A plugboard allowed an arbitrary matching
of keys on the keyboard to the inputs to the rotors—a cable was what actually
connected a key to the first rotor. (The machine did not require any cables
in the plugboard; if there was no cable, then the key pressed was what went
into the rotor in the first place.) The basic encryption in the Enigma machine
proceeded as follows:

1. The user pressed a key, say A, on the keyboard. If there was a cable from
the A key, then the key would be remapped to the other end of the cable;
otherwise the procedure proceeded using the A. (See Figure 9.40.)

2. The pressed key was permuted by rotor #1; the output of rotor #1 was per-
muted by rotor #2; the output of rotor #2 was permuted by rotor #3. (See
Figure 9.41.) The output of rotor #3 was “reflected” by a fixed permutation,
and then the reflector’s output pass through the three rotors, in reverse
order and backward: the output of the reflector was permuted by rotor #3,
then by #2, and then by #1. (See Figure 9.42.)

3. Alight corresponding to the output of rotor #1, passed through the plug-
board cable if present, lights up; the illuminated letter is the encoding.

The tricky part is that the rotors rotate by one notch when the key is pressed,
so that the encoding changes with every keypress.

The “secret key” that the two communicating entities needed to agree
upon was which rotors to use in which order (5 - 4 - 3 = 60; there were 5
standard rotors in an Enigma), what the initial position of the rotors should be
(26° =17,576), and what plugboard matching to use (3255 ~ 8 x 10! choices
if all 26 letters were matched; see Example 9.32). Interestingly, almost all of the
complexity came from the plugboards.

Perhaps surprisingly, the fact that there were so many possible settings for
the Enigma led to the invention of one of the first programmable computers,
by Alan Turing at Bletchley Park, in England, during the war. Turing built
a machine that could test many of these configurations, by brute force. (If
there were fewer possibilities, it could have been cracked by hand; if there
were many more, it couldn’t have been cracked by brute force.) Turing and his
team developed a device called the Bombe to exhaustively try to compute the
shared German secret key—each day!

Many other cryptographic tricks related to the way the Enigma was being
used were also part of the analysis. For example, the construction of the
device meant that no letter could encrypt to itself; this fact was exploited in
the analysis. Another crucial part of the code breaking was a known plaintext
attack on the Enigma: the British also used knowledge of what the Germans
tended to communicate (like weather reports) to narrow their search.

[X] C K

Figure 9.40: The effect of the plugboard.
Each of the 26 keys is either mapped

to itself (like W here), or is matched
with another key (like Q <+ D here).
Pressing an unmatched key x yields x
itself; pressing a matched key x yields
whatever letter is matched to x.

B C

Figure 9.41: The effect of a rotor. Each
rotor encodes a permutation of the
letters; when the input letter i comes
into the rotor, the output m; comes out.
(Here, for example, an input B turns into
an output of H.) After each keypress, the
top portion of the rotor would rotate

by one notch, so that B would now turn
into G.

A Q

—

Figure 9.42: The Enigma machine’s op-
eration. The operator types an A, which
(after going through the plugboard) is
permuted by rotor #1, rotor #2, rotor #3,
the fixed permutation of the machine,
rotor #3, rotor #2, and rotor #1. It then
(after passing through the plugboard)
lights up the output, Q. The rotors
advance by one notch, and encoding
continues with the next letter.
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9.4.5 Exercises

For two strings x and y, let’s call a shuffle of x and y any interleaving of the letters of the two strings (that maintains
the order of the letters within each string, but may repeatedly alternate between blocks of x letters and blocks of y
letters). For example, the words ALE and LID can be shuffled into ALLIED or ALLIDE or ALLIDE or LIDALE. How many

different strings can be produced as shuffles of the following pairs of words?

9.121 BACK and FORTH 9.124 LIFE and DEATH

9.122 DAY and NIGHT 9.125 ON and ON

9.123 SUPPLY and DEMAND 9.126 0UT and OUT

9.127 (programming required) Write a program, in a language of your choice, that computes all shuffles of

two given words x and y. A recursive approach works well: a shuffle consists either of the first character of x
followed by a shuffle of x,_| and y, or the first character of y followed by a shuffle of x and y, |,|. (Be sure
to eliminate any duplicates from your resulting list.)

The next few questions ask you to think about shuffles of generic strings, instead of particular words. (Assume that the
alphabet is an arbitrarily large set—you are not restricted to the 26 letters in English.) Consider two strings x and y,
and let n := |x| +|y| be the total number of characters between them. Note that the number of distinct shuffles of x and
y may depend both on the lengths of x and y and on the particular strings themselves; for example, if some letters are
shared between or within the two strings, there may be fewer possible shuffles.

9.128 In terms of n, what is the maximum possible number of different shuffles of x and y?

9.129 In terms of n, what'’s the minimum possible number of distinct shuffles of x and y?

9.130 What is the largest possible number of different shuffles of three strings of length a, b, and ¢?

9.131 How many 42-bit strings have exactly 16 ones?

9.132 How many 23-bit strings have at most 3 ones? (The coincidental arithmetic structure of the
answer actually turns out to be helpful for error-correcting codes; see Exercise 4.30.)

9.133 How many 32-bit strings have a number of ones within 42 of the number of zeros?

9.134 The set of 64-bit strings with k ones is largest for k =32. What’s the smallest 1 for which
| {the number of 64-bit strings with < m ones} | > | {the number of 64-bit strings with 32 ones} |?

9.135 What is the smallest even integer n for which the following statement is true? If we flip an unbi-
ased coin 1 times, as in Example 9.41, the probability that we get exactly 5 heads is less than 10%.

A bridge hand consists of 13 cards from a standard 52-card deck, with 13 ranks (2 through ace) and 4 suits (&, <, O,
and ). (That is, the cards in the deck are {2,3,...,10,],Q, K, A} x {&, $,Q, &}.) How many different bridge hands
are there that meet the following conditions?

9.136 A void in spades: a 13-card hand that contains only cards from the suits &, <, and ©.

9.137 A singleton in hearts: exactly one of the 13 cards comes from the suit ©.

9.138 All four kings.

9.139 No queens at all.

9.140 Exactly two jacks.

9.141 Exactly two jacks and exactly two queens.

9.142 A bridge hand has high honors if it contains the five highest-ranked cards {10,],Q,K, A} in the
same suit. How many bridge hands have high honors? (Warning: be careful about double counting!)

Many bridge players evaluate their hands by the following system of points. First, give yourself one high-card point
for a jack, two for a queen, three for a king, and four for an ace. Furthermore, give yourself three distribution points
for each void (a suit in which you have zero cards), two points for a singleton (a suit with one card), and one point for a
doubleton (a suit with two cards).

9.143 How many bridge hands have a high-card point count of zero?

9.144 How many bridge hands have a high-card point count of zero and a distribution point count of
zero? What fraction of all bridge hands is this?

How many ways are there to choose 32 out of 202 options if ...

9.145 ... repetition is allowed and order matters?

9.146 ... repetition is forbidden and order matters?

9.147 ... repetition is allowed and order doesn’t matter?
9.148 ... repetition is forbidden and order doesn’t matter?
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The first 10 prime numbers are {2,3,5,7,11,13,17,19,23,29}. How many different integers have exactly ...

9.149 ... 5 prime factors (all from this set), where all of these factors are different?

9.150 ... 5 prime factors (all from this set)? (Note that32 =2-2-2-2-2 is an example.)

How many different integers have exactly 10 prime factors ...

9.151 ... all of which come from the set of the first 20 prime numbers?

9.152 ... all of which come from the set of the first 20 prime numbers, and where all 10 of these factors

are different from each other?

Suppose that we have two sequences (x1,Xy, ..., Xy) and (Y1, Y2,...,Yon) of

data points—perhaps representing a sequence of intensities from two streams of
speech. We wish to align x to y by matching up elements of x to elements of y. (For
example, y might represent a reference stream, where we're trying to match x up to
it.) We insist that each element of x is assigned to one and only one element of y.
(See Figure 9.43.)

9.153 How many ways are there to assign each of the n elements of x to
one of the 21 elements of y?
9.154 How many ways are there to assign each of the 1 elements of x to

one of the 21 elements of y so that no element of y is matched to more than

(@) An alignment that doesn’t respect order.

one element of x?

In many applications, we can only consider alignments of the elements of x and y
that “maintain order”: that is, we can’t have x5 assigned to an element of y that

comes after the element assigned to xg. (Iff : {1,...,n} — {1,...,2n} represents
the alignment, then we require that i < j implies that f (i) < f(j).)

9.155 How many ways are there to assign each of the 1 elements of x to
one of the 2n elements of y in a way that maintains order?
9.156 How many ways are there to assign each of the 1 elements of x to

X4
)

Y8 Y10
@ |

one of the 2n elements of y in a way that maintains order so that no element

(b) An alignment that does respect order.

of y is matched to more than one element of x?

9.157 Consider the equation a +b +c¢ = 202. How many solutions are there where 4, b, and c are all
nonnegative integers?

9.158 How many different solutions are there to the equation a +b +c +d +e =8, where all of {a,b,c,d, e}
have to be nonnegative integers?

9.159 What about for a +b +c +d +e =88, again where all variables must be nonnegative integers?

9.160 What about for a 4+-2b +c =128, again where a, b, and ¢ must be nonnegative integers? (Hint: sum

over the possible values of b and use Theorem 9.17.)

The Association for Computing Machinery (the ACM)—a major professional society for computer scientists—puts
on student programming competitions regularly. Teams of students spend a few hours working on some programming
problems (of various levels of difficulty).

9.161 Suppose that, at a certain college in the midwest, there are 141 computer science majors. A
programming contest team consists of 3 students. How many ways are there to choose a team?
9.162 Suppose that, at a certain programming contest, teams are given 10 problems to try to solve.

When the contest begins, each of the 3 members of the team has to choose a problem to think about first.
(More than one team member can think about the same problem.) How many ways are there for the 3 team
members to choose a problem to think about first?

9.163 In most programming contests, teams are scored by the number of problems they correctly solve.
(There are tiebreakers based on time and certain penalties.) A team can submit multiple solutions to the
same problem. Suppose that a particular team has calculated that they have time to code up and submit 20
different attempted answers to the 10 questions in the contest. How many different ways can they allocate
their 20 submissions across the 10 problems? (The order of their submissions doesn’t matter.)

9.164 Solve the following problem, posed by Adi Shamir in his original paper on secret sharing:*

Eleven scientists are working on a secret project. They wish to lock up the documents in a cabinet
so that the cabinet can be opened if and only if six or more of the scientists are present. What is the
smallest number of locks needed? What is the smallest number of keys to the locks each scientist
must carry?

Figure 9.43: An
alignment between
two sequences, for
Exercises 9.153—
9.156. (Thanks to
Roni Khardon, from
whom I learned

a version of the
exercises.)

See the discussion
on p. 730, or

% Adi Shamir.
How to share a
secret. Communi-
cations of the ACM,
22(11):612-613,
November 1979.
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9.165 In machine learning, we try to use a collection of training data—for example, a large collection of
(image, letter) pairs of images of handwritten letters and the English letter that they represent—to compute
a predictor that will do well on predicting answers on a set of novel test data. One danger in such a system is
overfitting: we might build a predictor that’s overly affected by idiosyncrasies of the training data. One way
to address the risk of overfitting is a technique called cross-validation: we divide the training data into several
subsets, and then, for each subset S, train our predictor based on ~S and test it on S. We might then average
the parameters of our predictor across the subsets S. In ten-fold cross-validation on a n-element training set,
we would split our # training examples into disjoint sets S, S, ..., S19 where |S;| = {5.

How many ways are there to split an n-element set into disjoint subsets S1, S, ..., S1p of size {jj each?
(Note the order of the subsets themselves doesn’t matter, nor does the order of the elements within a subset.)

9.166 Consider the set of bitstrings x € {0, l}"+k with 1 zeros and k ones with the additional condition
that o ones are adjacent. (For n =3 and k =2, for example, the legal bitstrings are 00101, 01601, 01610, 16001,
10010, and 10100.) Prove by induction on 7 that the number of such bitstrings is (";").

9.167 Consider the set of bitstrings x € {0, l}"+k with 1 zeros and k ones with the additional condition

that every block of ones has even length. (For n =3 and k =2, for example, the le(gal bitstrings are 00011, 00116,
01100, 11000.) Prove that, for any even k, the number of such bitstrings is (” + n/ 2)).

9.168 Prove thatk - () =n- (}]) twice, using both an algebraic and a combinatorial proof.
9.169 Using induction on 1, prove Theorem 9.21—that is, prove that
n
L () =2"
i=0
9.170 Prove the following identity about the squares of the binomial coefficients. (For example, for

n =4, this identity states that (3)2 + (‘;)2 + (%)2 + (g)2 + (3)2 =12 +42 +6% +4% +12 =70 is equal to (Z). And,
indeed, (§) = ;& =70.) Use a combinatorial proof.

9.171 Prove the following identity by algebraic manipulation:
—k
() (6) = () G-
9.172 Now prove the identity from Exercise 9.171 with a combinatorial proof. (Hint: think about choosing
a team of m people from a pool of n candidates, and picking k managers from the team that you've chosen.)

9.173 Prove the following identity, using an algebraic, inductive, or combinatorial proof:
< k +1
n
Z (m) = (m+1)'
k=0

Recall that (;) =0 for any b < 0 or b > a, so many of the terms of the summation are zero. For example, for
m =3 and n =5, the claim states that (2) = (g) + (;) + (%) + @) + (g) + (g) =0+0+0+ (g) + (g) + (g)

9.174 Prove the following identity about the binomial coefficients and the Fibonacci numbers (where f;
is the ith Fibonacci number), by induction on #:

|n/2]

Y () =fun

k=0

9.175 Prove van der Monde’s identity:
k
(=165 ().
r=0

(Hint: suppose you have a deck of n red cards and m black cards, from which you choose a hand of k total cards.)
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A common subsequence of two strings x and y is a string z that’s a subse-

quence of both. A subsequence of an n-character string corresponds to a subset of 1: for each subsequence a of x:
{1,2,...,n}, indicating which indices are included (and which aren’t). (See Exer- 2:  for each subsequence b of y:

cise 9.82.) For example, BASIC is a common subsequence of BRAINSICKNESS and 3: check ifa =b

BIOACOUSTICS. (@) A brute-force algorithm.

9.176 Suppose that you have been asked to find the number of common
subsequences of two n-character strings x,y € X, by brute force. An algo-
rithm to do so is shown in Figure 9.44(a). How many times do we execute
Line 3 (testing whether a =b)? for each subsequence b of y of length k:
9.177 Using the fact that common subsequences must have the same checkifa =b

length, we can modify the algorithm as shown in Figure 9.44(b). Now how () A length-aware brute-force algorithm.
many times do we execute Line 4 (testing whether a =b)?
9.178 Using Stirling’s approximation of the factorial function, which Figure 9.44: Two
states that ! &~ v/27n(n/e)! (Where 7 =3.1415- - - and ¢ =2.7182- - - ), argue algorithms for com-
that Figure 9.44(b) is an improvement on Figure 9.44(a). mon subsequences.

s fork =0...m:
for each subsequence a of x of length k:

LAl

9.179 Use the Binomial Theorem to prove the following identity:

n

Y1 () =o.

k=0

9.180 Use the Binomial Theorem to prove the following identity:
LY-0
i 2
9.181 In Section 9.2.2, we introduced the Inclusion—Exclusion rule for counting the union of 2 or 3 sets:
|AUB| =|A| +|B| — |ANB|
|JAUBUC| =|A|+|B| +|C| = |ANB|—|ANC|—|BNC|+|ANBNC|
Exercise 9.30 asked you to give a formula for a 4-set intersection, but here’s a completely general solution:

k
U4
i=1

k

:Z {(l)ﬂl' Z ‘Ajl ﬂAj2ﬂ~~~ﬂAj,| .

i=1 N1<p2<-<ji

(Recall that %, A; =A; UA, U - - - UAy.) Argue that this formula correctly expresses the Inclusion-Exclusion
Rule for any number of sets. (Hint: figure out how many £-set intersections each element x appears in. Then use the
Binomial Theorem—specifically, Exercise 9.179.)

9.182 In Example 8.4, we looked at the subset relation for a set S: that is, we defined the set of pairs
subset :={(A,B) € P(S)x P(S):[Vx€S:x€ A=x€B]}.

For any particular set B € 2(S), the number of sets A such that (A, B) € subset is precisely 2/Pl. The total
number of pairs in the subset relation on S is thus 2* times the number of subsets of S of size k, summed over all
k. We've already seen that the number of subsets of S of size k is (‘i‘). Thus the total number of pairs in the
subset relation on S is

&l Bl
Z(number of subsets of S of size k)- 2¥ = E (‘z‘) .ok,
k=0 k=0

Use the Binomial Theorem to compute a simple formula for this summation.
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9.5 Chapter at a Glance

Counting is the problem of, given a potentially convoluted description of a set S, com-
puting the cardinality of S. Our general strategy for counting is to develop techniques
for counting simple sets like unions and sequences, and then to handle more compli-
cated counting problems by “translating” them into these simple problems.

Counting Unions and Sequences

The Sum Rule describes how to compute the cardinality of the union of sets: if A and B
are disjoint sets, then |A U B| = |A| +|B|. More generally, if the sets A1, Ay, ..., Ay are
all disjoint, then [Ué‘:l Ai’ =Y*_ |Ai|. If the sets A and B are not disjoint, then the Sum
Rule doesn’t apply. Instead, we can use Inclusion—Exclusion to count |A U B|. This rule
states that |[A U B| =|A| +|B| — |A N B for any sets A and B. For three sets,

JAUBUC| =|A| +|B| +|C| — |ANB| —]JANC| — |BNC| +]ANBNC].

To compute the cardinality of the Cartesian product of sets, we can use the Product
Rule: for sets A and B, we have |A x B| = |A| - |B|. More generally, for arbitrary sets
A1, Ay, ..., A, we have |A] x Ay x - -+ x A| =15 |Ai|. Applying the Product Rule to
asetS x S x --- xS, we see that, for any set S and any k € Z=!, we have |S¥| = |S|¥. If
the set of options for one choice depends on previous choices, then we cannot directly
apply the Product Rule. However, the basic idea still applies: the Generalized Product
Rule says that |S| = [T, n; if S denotes a set of sequences of length k, where, for each
choice of the first i — 1 components of the sequence, there are exactly n; choices for the
ith component.

A permutation of a set S is sequence of elements from S that contains no repetitions
and has length |S|. In other words, a permutation of S is an ordering of the elements of
S. By the Generalized Product Rule, there are preciselyn! =n-(n—1)- (n —2)- --- -1
permutations of an n-element set.

Using Functions to Count

Let A and B be arbitrary sets. We can use a function f : A — B to relate |A| and |B|. The
Mapping Rule says that:

e There exists a function f : A — B that’s onto if and only if |A| > |B].
e There exists a function f : A — B that’s one-to-one if and only if [A| < |B|.
e There exists a function f : A — B that’s a bijection if and only if |A| = |B|.

The Mapping Rule implies, among other things, that the power set #(S) of a set S has
cardinality |22 (S)| =2/5I.

The Division Rule says the following: suppose that there exists a functionf : A — B
such that, for every b € B, there are exactly k elements a1, ...,a;, € A such thatf(a;) =b.
Then |A| = k - |B|. The Division Rule implies, among other things, that the number
of ways to rearrange a sequence containing k different distinct elements {xy,...,xx},
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966 CHAPTER 9. COUNTING

where element x; appears n; times, is

(np+np + -+ +my)
CONCORESE D)

The pigeonhole principle says that if A and B are sets with |A| > |B|,andf : A — B,
then there exist distinct a and a4’ € A such that f (@) = f(@’). That is, if there are more
pigeons than holes, and we place the pigeons into the holes, then there must be (at

least) one hole containing more than one pigeon.

Combinations and Permutations

Consider nonnegative integers n and k with k < n. The quantity (}) is defined as

(&) =

and is read as “n choose k.” The quantity (}}) denotes the number of ways to choose
a k-element subset of a set of n elements, called a combination, when each element can
only be selected at most once and the order of the selected elements doesn’t matter.
The quantity (}) is also sometimes called a binomial coefficient.

Depending on whether we allow the same candidate to be chosen more than once
and whether we care about the order in which the candidates are chosen, there are
many versions of selecting k out of a set of n candidates:

o If the order of the selected elements doesn’t matter and repetition of the chosen
elements is not allowed, then there are (Z) ways to choose.

o If order matters and repetition is not allowed, there are (nf—'k), ways.

e If order matters and repetition is allowed, there are 1 ways.
e If order doesn’t matter and repetition is allowed, there are (”#,{;1) ways.

A combinatorial proof establishes that two quantities x and y are equal by ©)

0 G

the binomial coefficients, among others: @ 3 6

(k) = (2 (&) =) + () o (1) =2" ® 6 66
HNORGRONH
HNGNENERHNE

defining a set S and proving that |S| = x and |S| = y by counting |S| in two
different ways. We can give combinatorial proofs of the following facts about

The binomial theorem states that, for any a,b € R and any n € 720,

n

a+by" =Y (Ma'b"
@by =) () HOOOOOO0
We can prove the binomial theorem by induction on the exponent 7.
Many of the interesting properties of the binomial coefficients can be seen Figure 9.45: The
by looking at patterns visible in Pascal’s triangle, which arranges the bino- first several rows of

mial coefficients so that the nth row contains the n +1 binomial coefficients Pascal’s triangle.

(6), (1),---, (). See Figure 9.45 for the first few rows of Pascal’s triangle.
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Key Terms and Results
Key Terms Key Results
CountiNG UNIONS AND SEQUENCES CounTING UNIONS AND SEQUENCES
e Sum Rule 1. The Sum Rule: if the sets A1, Ay, ..., Ay are all disjoint,
e Product Rule then ‘Ué‘:l Ai| =Y% |A;|. The Inclusion-Exclusion Rule
e double counting allows us to handle nondisjoint sets; for example, for any
e Inclusion-Exclusion sets A, B we have |[AUB| =|A| +|B| — |[ANB|.
° Generahz‘ed Product Rule 2. The Product Rule: |[A; x Ay x - - - x Ag| =15, |A;|. For
* permutation any set S and any k € Z>1, we have |S¥| =S|,

3. The Generalized Product Rule: if S is a set of sequences of
Using Funcrions To CouNTt

length k, where, for each choice of the firsti — 1
e Mapping Rule

components of the sequence, there are exactly #; choices
e Division Rule

for the ith component, then |S| =TT5; ;.
e pigeonhole principle

Using FuncTtions To COUNT

COMBINATIONS AND PERMUTATIONS

. 1. The Mapping Rule: an onto function f : A — B means
° combmat%ons |A| > |B|; a one-to-one function f : A — B means
* permutations |A| < |B|; and a bijection f : A — B means |A| =|B|.
e (}) / binomial coefficient ) T S 125y =ols]
e binomial theorem - Forany set 5, [#(5)] =2".
e combinatorial proof 3. The Division Rule: 1ff : A — B satisfies

e Pascal’s triangle |[{a € A:f@)=0b}| =k forallb € B, then |A| =k - |B].

4. The number of ways to arrange a sequence containing

elements {x1, ..., X}, where x; appears n; times, is
(1 +H1p+ -+ )!
(D) (2D (i)

5. Pigeonhole principle: if f : A — B and |A| > |B|, then
there exista,a’ #a € A such thatf (@) =f(@).

COMBINATIONS AND PERMUTATIONS

1. There are four versions of selecting k out of n candidates,
depending on whether the order of the chosen elements
matters and whether we can choose the same element
twice. (See Figure 9.31.) The binomial coefficient (})
denotes the number of ways to choose when repetition is
forbidden and order doesn’t matter (called combinations).

2. Some useful properties: () =(,",) and
(") +(21) = () and K (7) =2"
3. The binomial theorem: (@ +b)* =Y (7)a'b" .
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