
preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-1

8 Relations

In which our heroes navigate a sea of many related perils, some of

which turn out to be precisely equivalent to each other.

8-1

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-2

8-2 Relations

8.1 Why You Might Care

People respond in accordance to how you relate to them.

Nelson Mandela (1918–2013), on choosing reconciliation over vengeance
Interview with Reader’s Digest (April 2005)

Imagine writing a program to implement a student registration system at a college or university. When

a student is registering for classes, you’ll need to be answer questions of the form “is Alice eligible to be

added to the roster for Price Theory?” to decidewhether to allow her to click to add that particular course. To

do so, you’ll need to know Price Theory’s prerequisites: what classes must you have already taken passed

before you can take Price Theory? And you’ll need corresponding data about Alice’s academic history:

what classes has Alice already taken? You’d most likely use a database to actually store all of the necessary

records, but at its heart the key information is just two sets: a set prerequisiteOf ⊆ Courses × Courses,

and a set passed ⊆ Students×Courses. (Depending on the school’s rules, you might need some numerical

information, too, to ensure both that there’s an unfilled seat in the class that Alice can occupy, and that

Alice has room in her schedule for another class.) Then Alice is eligible to register for Price Theory only

if ⟨Alice, c⟩ ∈ passed for every course c such that ⟨c, Price Theory⟩ ∈ prerequisiteOf.

In this chapter, we’ll explore a generalization of functions, called relations, that—like prerequisiteOf

and passed—represent arbitrary subsets of A×B. (In Chapter 2, we saw functions,which map each element

of some input set A to an element of an output set B. A function is a special kind of relation where each

input element is related to one and only one element of the output set. For example, a large retailer might

be interested in the relation purchased, a subset of Customers× Products; notice that the same customer

may have purchased many different products—or one, or none at all—so purchased is not a function.)

Relations are the critical foundation of relational databases, an utterly widespread modern area of CS,

underlying many of the tools we all use regularly. (One classical special-purpose programming language

for relational databases is called SQL, for “structured query language”; there are other platforms, too.) A

relational database stores a (generally quite large!) collection of structured data. Logically, a database is

organized as a collection of tables, each of which represents a relation, where each row of a table represents

an element contained in that relation. Fundamental manipulations of these relations can then be used to

answer more sophisticated questions about the underlying data. For example, using standard operations in

relational databases (and the relations prerequisiteOf and passed above), we could compute things like (i)

a list of every class c for which you have satisfied all prerequisites of c but have not yet passed c; or (ii)

a list of people with whom you’ve taken at least one class; or (iii) a list of people p with whom you’ve

taken at least one class and where p has also taken at least one class that meets condition (i). (Those are the

friends you could ask for help when you take that class.) Or that large retailer might want, for a particular

user u, to find the 10 products not purchased by u that were most frequently purchased by other users who

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-3

8.1 Why You Might Care 8-3

share, say, at least half of their purchases with u. All of these queries—though sometimes rather brutally

complicated to state in English—can be expressed fairly naturally in the language of relations.

We’ll start in Section 8.2 with an introduction to the fundamental definitions relevant to relations. In

Section 8.3, we’ll look at a few properties—reflexivity, symmetry, and transitivity—that some relations

have. Finally, in Section 8.4, we’ll look at the special types of relations that result particular combinations

of those properties: equivalence relations (which divide the world into collections of mutually equivalent

items) and order relations (which rank everything the world according to the relation, possibly with ties).

And, along the way, we’ll encounter relational databases, along with regular expressions, algorithmic bias,

and applications to topics like asymptotics, voting, and computer graphics.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-4

8-4 Relations

8.2 Formal Introduction
A man is a bundle of relations, a knot of roots, whose flower and fruitage is the world.

Ralph Waldo Emerson (1803–1882)
“History,” Essays: First Series (1841)

Informally, a (binary) relation describes a pairwise relationship that holds for certain pairs of elements

from two sets A and B. As an example, here is one particular relation, expressing the “is a component of”

relationship between primary and secondary colors:

{⟨blue, green⟩, ⟨blue, purple⟩, ⟨red, orange⟩, ⟨red, purple⟩, ⟨yellow, green⟩, ⟨yellow, orange⟩}

In other words, these pairs represent a particular relation on the sets A = {red, yellow, blue} and

B = {green, purple, orange}. This description of a relation—a pairwise relationship between some of

the elements of two sets A and B—is obviously very general. But let’s start by considering a few specific

examples, which together begin to show the range of the kinds of properties that relations can represent:

Example 8.1: Satisfaction.

Let A = {f : truth assignments for p and q} and B = {φ : propositions over p and q}. One interesting

relation between elements of A and B denotes whether a particular truth assignment makes a particular

proposition true. (This relation is usually called satisfies.) For a propositionφ, a truth assignment f either

satisfies φ or it doesn’t satisfy φ. For example:

• the truth assignment [p = T; q = F] satisfies p ∨ q (as do all truth assignments save [p = F; q = F]);

• the truth assignment [p = T; q = F] satisfies p ∧ ¬q (and no other truth assignment does);

• every truth assignment in A satisfies p ∨ ¬p; and
• no truth assignment in A satisfies q ∧ ¬q.

(Thus an element of B might be satisfied by zero, one, or more elements of A. Similarly, an element of A

might satisfy many different elements of B.)

Example 8.2: Numbers that are not too different.

We’ll say that two real numbers x ∈ R and y ∈ R are withinHalf of each other if |x − y| ≤ 0.5.

Thus withinHalf is a relation between pairs of real numbers. For example, withinHalf(2.781828, 3.0) and

withinHalf(3.14159, 3.0) and withinHalf(2.5, 3.0) and withinHalf(2.5, 2.0).

Note that withinHalf(x, x) holds for any real number x.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-5

8.2 Formal Introduction 8-5

Example 8.3: Being related to.

In keeping with the word “relation,” we actually use the phrase “is related to” in English to express one

specific binary relation on pairs of people—”being in the same family as” (or “being a (blood) relative

of”). For example, we can make the true claim that Rosemary Clooney is related to George Clooney.

(A related statement is also true: George Clooney is related to Rosemary Clooney. The fact that these

two statements convey the same information follows from the fact that the is related to relation has a

property called symmetry: for any x and y, it’s the case that x is related to y if and only if y is related to x.

Not all relations are symmetric, as we’ll see in Section 8.3.)

Some qualitatively different types of relations are already peeking out in these few examples (and more

properties of relations will reveal themselves as we go further).

Sometimes the relation contains a finite number of pairs, as in the example of primary and secondary

colors; sometimes the relation contains an infinite number of pairs, as inwithinHalf. Sometimes a particular

element x is related to every candidate element, sometimes to none.

Sometimes a relation connects elements from two different sets, as in Example 8.1 (satisfaction, which

connected truth assignments to propositions); sometimes it connects two elements from the same set, as in

Example 8.3 (“is a (blood) relative of,” which connects people to people).

And sometimes the relation has some special properties like reflexivity, in which every x is related to x

itself (as in withinHalf), or symmetry (as in “is a (blood) relative of”).

8.2.1 The Definition of a Relation, Formalized

Technically, a binary relation is simply a subset of the Cartesian product of two sets:

Definition 8.1: (Binary) relation.

A (binary) relation on A× B is a subset of A× B.

Often we’ll be interested in a relation on A× A, where the two sets are the same. If there is no danger

of confusion, we may refer to a subset of A× A as simply a relation on A.

Here are a few formal examples of relations:

Example 8.4: A few relations, formally.

• {⟨12, 1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 5⟩, ⟨5, 6⟩, ⟨6, 7⟩, ⟨7, 8⟩, ⟨8, 9⟩, ⟨9, 10⟩, ⟨10, 11⟩, ⟨11, 12⟩} is a relation

on {1, . . . , 12}. (Informally, this relation expresses “is one hour before.”)

• | (“divides”) is a relation on Z, where | denotes the set {⟨d, n⟩ : n mod d = 0}.

• ≤ is a relation on R, where ≤ denotes the set {⟨x, y⟩ : x is no bigger than y}.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-6

8-6 Relations

• As a reminder, the power set of a set S, denoted P(S), is the set of all subsets of S. For any set S, then,

we can define ⊆ as a relation on P(S), where ⊆ denotes the set

⊆ = {⟨A,B⟩ ∈P(S)×P(S) : [∀x ∈ S : x ∈ A⇒ x ∈ B]} .

For the set S = {1, 2}, for example, the relation ⊆ is

⊆ =

{
⟨∅,∅⟩, ⟨∅, {1}⟩, ⟨∅, {2}⟩, ⟨∅, {1, 2}⟩,
⟨{1} , {1}⟩, ⟨{1} , {1, 2}⟩, ⟨{2} , {2}⟩, ⟨{2} , {1, 2}⟩, ⟨{1, 2} , {1, 2}⟩

}
.

• {⟨Ron Rivest, 2002⟩, ⟨Adi Shamir, 2002⟩, ⟨Len Adleman, 2002⟩, ⟨Alan Kay, 2003⟩, ⟨Vint Cerf, 2004⟩,
⟨Robert Kahn, 2004⟩, ⟨Peter Naur, 2005⟩, ⟨Frances Allen, 2006⟩} is a relation on the set People ×
{2002, 2003, 2004, 2005, 2006}, representing the relationship between people and any year in which

they won a Turing Award.

Taking it further: Rivest, Shamir, and Adleman won Turing Awards for their work in cryptography; see Section 7.5. Kay was an

inventor of the paradigm of object-oriented programming. Cerf and Kahn invented the communication protocols that undergird

the Internet. Naur made crucial contributions to the design of programming languages, compilers, and software engineering.

Allen made foundational contributions to optimizing compilers and parallel computing.

Example 8.5: Bitstring prefixes.

Let isPrefix denote the following relation: for two bitstrings x and y, we have ⟨x, y⟩ ∈ isPrefix if and only

if the bitstring y starts with precisely the symbols contained in x. (After the bits of x, the bitstring y may

contain zero or more additional bits.) For example, 001 is a prefix of 001110 and 001, but 001 is not a

prefix of 1001. Write down the relation isPrefix on bitstrings of length ≤ 2 explicitly, using set notation.

(Write ϵ to denote the empty string.)

Solution.

isPrefix =





⟨ϵ, ϵ⟩, ⟨ϵ, 0⟩, ⟨ϵ, 1⟩, ⟨ϵ, 00⟩, ⟨ϵ, 01⟩, ⟨ϵ, 10⟩, ⟨ϵ, 11⟩,
⟨0, 0⟩, ⟨0, 00⟩, ⟨0, 01⟩, ⟨1, 1⟩, ⟨1, 10⟩, ⟨1, 11⟩,
⟨00, 00⟩, ⟨01, 01⟩, ⟨10, 10⟩, ⟨11, 11⟩





For some relations—for example, | and≤ and⊆ from Example 8.4—it’s traditional to write the symbol

for the relation between the elements that are being related, using so-called infix notation. (So we write

3 ≤ 3.5, rather than ⟨3, 3.5⟩ ∈ ≤.) In general, for a relation R, we may write either ⟨x, y⟩ ∈ R or x R y,

depending on context.

Taking it further: Most programming languages use infix notation in their expressions: that is, they place their operators

between their operands, as in (5 + 3) / 2 in Java or Python or C to denote the value 5+3
2 . But some programming languages,

like Postscript (the language commonly used by printers) or the language of Hewlett–Packard calculators, use postfix notation,

where the operator follows the operands. Other languages, like Scheme, use prefix notation, in which the operator comes before

the operands. (In Postscript, we would write 5 3 add 2 div; in Scheme, we’d write (/ (+ 5 3) 2).) While we’re all much

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-7

8.2 Formal Introduction 8-7

more accustomed to infix notation, one of the advantages of pre- or postfix notation is that the order of operations is unambiguous:

compare the ambiguous 5 + 3 / 2 to its two unambiguous postfix alternatives, namely 5 3 2 div add and 5 3 add 2 div.

Taking it further: Recall from Chapter 3 that we defined a predicate as a Boolean-valued function—that is, P is a func-

tion P : U → {True,False} for a set U, called the universe. (See Definition 3.20.) For example, we considered the predicate

Palphabetical(x, y) = “string x is alphabetically before string y.” Binary predicates—when the universe is a set of pairsU = A×B—

are very closely related to binary relations. Themain difference is that in Chapter 3 we thought of a binary predicateP as a function

P : A×B → {True,False}, whereas here we’re thinking of a relation R on A×B as a set R ⊆ A×B of ordered pairs. For example,

the relation Ralphabetical is the set {⟨AA, AAH⟩, ⟨AA, AARDVARK⟩, . . . , ⟨ZYZZYVA, ZYZZYVAS⟩}. And Palphabetical(AA, AAH) = True,

Palphabetical(AA, ZYZZYVA) = True, and Palphabetical(BEFORE, AFTER) = False.

But there’s a direct translation between these two worldviews. For a relation R ⊆ A× B, define the predicate PR as

PR(a, b) =





True if ⟨a, b⟩ ∈ R

False if ⟨a, b⟩ /∈ R.

The function PR is known as the characteristic function of the set R: that is, it’s the function such that PR(x) = True if and only

if x ∈ R. (Palphabetical is the characteristic function of Ralphabetical.)

We can also go the other direction, and translate a Boolean-valued binary function into a relation. Given a predicate P : A×B →
{True,False}, define the relation RP = {⟨a, b⟩ : P(a, b)}—that is, define RP as the set of pairs for which the function P is true.

In either case, we have a direct correspondence between (i) the elements of the relation, and (ii) the inputs to the function that

make the output true.

Visualizing binary relations

For a relation R on A×B where both A and B are finite sets, instead of viewing R as a list of pairs, it can be

easier to think of R as a two-column table, where each row corresponds to an element ⟨a, b⟩ ∈ R. Alterna-

tively, we can visualize relations in a way similar to the way that we visualized functions in Chapter 2: we

Month Days

Jan 31
Feb 28
Feb 29
Mar 31
Apr 30
May 31
Jun 30
Jul 31
Aug 31
Sep 30
Oct 31
Nov 30
Dec 31

(a) The relation as a table.

Jan
Feb
Mar
Apr
May

Jun
Jul
Aug
Sep

Oct
Nov
Dec

28

29

30

31

(b) The relation, shown visually.

Days Month

31 Jan
28 Feb
29 Feb
31 Mar
30 Apr
31 May
30 Jun
31 Jul
31 Aug
30 Sep
31 Oct
30 Nov
31 Dec

(c) The inverse of the relation.

Figure 8.1 In (a) and (b), the relation indicating the number of days per month. (Note that Feb is related to both 28 and
29.) The inverse of the relation (see Definition 8.2) is shown in (c).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-8

8-8 Relations

place the elements of A in one column, the elements of B in a second column, and draw a line connecting

a ∈ A to b ∈ B whenever ⟨a, b⟩ ∈ R. Note that when we drew functions using these two-column pictures,

every element in the left-hand column had exactly one line leaving it. That’s not necessarily true for a

relation; elements in the left-hand column could have none, one, or two or more lines leaving them.

Figures 8.1a and 8.1b shows a relation represented in these two ways. (For a relation that’s a subset of

A×A, the graphical version of this two-column representation is less appropriate because there’s really only

one kind of element; see Section 8.3 for a different way of visualizing these relations, and see Figure 8.10a

for isPrefix as a specific example.)

8.2.2 Inverse and Composition of Binary Relations

Because a relation on A× B is simply a subset of A× B, we can combine relations on A× B using all the

normal set-theoretic operations: if R and S are both relations on A × B, then R ∪ S, R ∩ S, and R − S are

also relations on A× B, as is the set ∼R = {⟨a, b⟩ ∈ A× B : ⟨a, b⟩ /∈ R}.
But we can also generate new relations in ways that are specific to relations, rather than being generic

set operations. Two of the most common are the inverse of a relation (which turns a relation on A× B into

a relation on B × A by “flipping around” every pair in the relation) and the composition of two relations

(which turns two relations on A × B and B × C into a single relation on A × C, where a and c are related

if there’s a “two-hop” connection from a to c via some element b ∈ B).

Inverting a relation

Here is the formal definition of the inverse of a relation:

Definition 8.2: Inverse of a relation.
Let R be a relation on A × B. The inverse R−1 of R is a relation on B × A defined by R−1 =

{⟨b, a⟩ ∈ B× A : ⟨a, b⟩ ∈ R}.

Here are a few examples of the inverses of relations:

Example 8.6: Some inverses.

• The inverse of the relation ≤ is the relation ≥.
• The inverse of the relation = is the relation = itself. (That is, = is its own inverse.)

• The inverse of the month–day relation from Figure 8.1a is shown in Figure 8.1c.

• Define the relation

R = {⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, ⟨1, 5⟩, ⟨1, 6⟩, ⟨2, 2⟩, ⟨2, 4⟩, ⟨2, 6⟩, ⟨3, 3⟩, ⟨3, 6⟩, ⟨4, 4⟩, ⟨5, 5⟩, ⟨6, 6⟩} .

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-9

8.2 Formal Introduction 8-9

The inverse of R is the relation

R−1 = {⟨2, 1⟩, ⟨3, 1⟩, ⟨4, 1⟩, ⟨5, 1⟩, ⟨6, 1⟩, ⟨2, 2⟩, ⟨4, 2⟩, ⟨6, 2⟩, ⟨3, 3⟩, ⟨6, 3⟩, ⟨4, 4⟩, ⟨5, 5⟩, ⟨6, 6⟩} .

(Note that R is {⟨d, n⟩ : d divides n}, and R−1 is {⟨n, d⟩ : n is a multiple of d}.)

Note that, as in the month–day example, the inverse of any relation shown in table form is simply the

relation resulting from swapping the two columns of the table.

Composing two relations

The second way of creating a new relation from existing relations is composition,which, informally, repre-

sents the successive “application” of two relations. Two elements x and y are related under the relation S◦R,
denoting the composition of two relations R and S, if there’s some intermediate element b that connects x

and y under R and S, respectively. (We already saw how to compose functions, in Section 2.5, by applying

one function immediately after the other. Functions are a special type of relation—see Section 8.2.3—and

the composition of functions will similarly be a special case of the composition of relations.) Let’s start

with an informal example to build some intuition:

Example 8.7: Relation composition, informally.

Consider two relations: allergicTo on People× Ingredients and containedIn on Ingredients× Entrees.

Then the composition of allergicTo and containedIn is a relation on People × Entrees identifying pairs

⟨p, e⟩ for which entree e contains at least one ingredient to which person p is allergic.

Here’s the formal definition:

Definition 8.3: Composition of two relations.

Let R be a relation on A × B and let S be a relation on B × C. The composition of R and S is a relation

on A× C, denoted S ◦ R, where ⟨a, c⟩ ∈ S ◦ R if and only if there exists b ∈ B such that ⟨a, b⟩ ∈ R and

⟨b, c⟩ ∈ S.

Warning! The composition of R and S is, as with functions, denoted S ◦ R: the function g ◦ f first applies f and then applies g, so

(g ◦ f)(x) gives the result g(f(x)). The order in which the relations are written may initially be confusing.

Perhaps the easiest way to understand the composition of relations is through the picture-based view that

we introduced in Figure 8.1b: the relation S ◦ R contains pairs of elements that are joined by “two-hop”

connections, where the first hop is defined by R and the second hop is defined by S. (See Figure 8.2a.)

Some examples of composing relations

Here are a few examples of the composition of some relations:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-10

8-10 Relations

•
a

•
b

•
c

R S

S ◦ R
(a) (b)

a

b

c

d

0

1

π

√
2

√
3

R S

0

1

π

√
2

√
3

R S

0

1

π

√
2

√
3

S ◦ R

Figure 8.2 The composition of two relations. In (a), the definition: a pair ⟨a, c⟩ is in S ◦ R when, for some b, both
⟨a, b⟩ ∈ R and also ⟨b, c⟩ ∈ S. In (b), a particular example. (See Example 8.8.)

Example 8.8: The composition of two small relations.

Let R = {⟨0, a⟩, ⟨0, b⟩, ⟨0, c⟩, ⟨1, c⟩, ⟨1, d⟩} be a relation on {0, 1} × {a, b, c, d}.
Let S = {⟨b, π⟩, ⟨b,

√
3⟩, ⟨c,

√
2⟩, ⟨d,

√
2⟩} be a relation on {a, b, c, d} × R.

Then S ◦R ⊆ {0, 1}×R is the relation that consists of all pairs ⟨x, z⟩ such that there exists an element

y ∈ {a, b, c, d} where ⟨x, y⟩ ∈ R and ⟨y, z⟩ ∈ S. That is,

S ◦ R =

{
⟨0, π⟩

because of b
, ⟨0,

√
3⟩

because of b
, ⟨0,

√
2⟩

because of c
, ⟨1,

√
2⟩

because of c and d

}
.

See Figure 8.2b for the visual representation of this composition: because there are “two-hop” paths from

0 to {π,
√
3,
√
2} and from 1 to {

√
2}, the relation S◦R is as described. (Again: the relation S◦R consists

of pairs related by a two-step chain, with the first step under R and the second under S.)

Here’s a second example, this time where the relations being composed are more meaningful:

Example 8.9: Relations in the U.S. Senate.

The U.S. Senate has two senators from each state, each of whom is affiliated with zero or one political

parties. See Figure 8.3 for two relations: the relation S, between all U.S. states whose names start with

the letter “I” and the senators who represented them in the year 1993 (after the 1992 elections, which

more than doubled the number of women in the Senate); and the relation T, between senators and their

political party. Figure 8.3c shows the composition of S and T, which is a relation between IStates and

Parties, where ⟨state, party⟩ ∈ T ◦ S if one or both of the senators from state are affiliated with party.

Taking it further: The relation T ⊆ Senators × Parties, between senators and their political party, is way of representing

what’s sometimes called an affiliation network: we have a collection of individuals (the senators) and groups/organizations (the

parties), and information about which individuals are part of which groups (T). Affiliations in other context make sense, too; for

example, you might define a relation R on students and university organizations, so that R tells you which people are members

of the ballroom dance team or the robotics club and so forth. Some companies have tried to use a relation like R as part of a

system to automate their résumé-screening and hiring processes—to some disastrous effects around algorithmic bias (in which,

unintentionally, the automated system turned out to be making sexist and racist hiring decisions). See p. 8-19 for more.

So far we’ve considered composing relations on A × B and B × C for three distinct sets A, B, and C. But

we can also consider a relation R ⊆ A× A, and in this case we can also compose R with itself.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-11

8.2 Formal Introduction 8-11

Dirk Kempthorne

Larry Craig

Paul Simon

Carol Moseley Braun

Richard Lugar

Dan Coats

Tom Harkin

Chuck Grassley

Senators

Idaho

Illinois

Indiana

Iowa

States

(a)

Dirk Kempthorne

Larry Craig

Paul Simon

Carol Moseley Braun

Richard Lugar

Dan Coats

Tom Harkin

Chuck Grassley

Senators

Democratic

Republican

Parties

(b)

Idaho

Illinois

Indiana

Iowa

States
Democratic

Republican

Parties

(c)

Figure 8.3 Two relations and their composition: (a) the relation S ⊆ IStates× Senators of each state’s senators; (b) the
relation T ⊆ Senators× Parties of each senator’s party affiliation; and (c) their composition T ◦ S ⊆ IStates× Parties.

Problem-solving tip: Just as you do with a program, always make sure that your mathematical expressions “type check.” (For

example, just as the Python expression 0.33 * "atomic" doesn’t make sense, the composition R ◦ R for the relation R =

{⟨1, A⟩, ⟨2, B⟩} doesn’t denote anything useful.)

Example 8.10: Composing a relation with itself.

For each of the following relations R on Z≥1, describe the relation R ◦ R:

1 successor, namely the set {⟨n, n+ 1⟩ : n ∈ Z≥1}.
2 =, namely the set {⟨n, n⟩ : n ∈ Z≥1}.
3 relativelyPrime = {⟨n,m⟩ : GCD(n,m) = 1}, the set of pairs of relatively prime (positive) integers.

Solution. For successor: by definition, ⟨x, z⟩ ∈ successor◦ successor if and only if there exists an integer

y such that both ⟨x, y⟩ ∈ successor and ⟨y, z⟩ ∈ successor. Thus the only possible y is y = x+ 1, and the

only possible z is z = y+ 1 = x+ 2. Thus successor ◦ successor = {⟨n, n+ 2⟩ : n ∈ Z≥1} .

For equality (we’ll write equals instead of =; otherwise the notation becomes indecipherable): by def-

inition, the pair ⟨x, z⟩ is in the relation equals ◦ equals if and only if there exists an integer y such that

x = y and y = z. But that’s true if and only if x = z. That is, ⟨x, z⟩ ∈ equals ◦ equals if and only if

⟨x, z⟩ ∈ equals. Thus composing equals with itself doesn’t do anything: equals ◦ equals = equals.

For relative primality: we must identify all pairs ⟨x, z⟩ ∈ Z≥1 × Z≥1 such that there exists an integer y

where ⟨x, y⟩ ∈ relativelyPrime and ⟨y, z⟩ ∈ relativelyPrime. But notice that y = 1 is relatively prime

to every positive integer. Thus, for any ⟨x, z⟩ ∈ Z≥1 × Z≥1, we have that ⟨x, 1⟩ ∈ relativelyPrime and

⟨1, z⟩ ∈ relativelyPrime. Thus relativelyPrime ◦ relativelyPrime = Z≥1 × Z≥1.

An example of composing a relation with its own inverse

We’ll close with one last example of composing relations, this time by taking the composition of a relation

R and its inverse R−1:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-12

8-12 Relations

Jan Jan
Feb Feb
Mar Mar
Apr Apr
May May

Jun Jun
Jul Jul
Aug Aug
Sep Sep

Oct Oct
Nov Nov
Dec Dec

28

29

30

31

R R−1(a) (b)




⟨Jan, Jan⟩, ⟨Jan,Mar⟩, ⟨Jan,May⟩, ⟨Jan, Jul⟩, ⟨Jan,Aug⟩, ⟨Jan,Oct⟩, ⟨Jan,Dec⟩,
⟨Mar, Jan⟩, ⟨Mar,Mar⟩, ⟨Mar,May⟩, ⟨Mar, Jul⟩, ⟨Mar,Aug⟩, ⟨Mar,Oct⟩, ⟨Mar,Dec⟩,
⟨May, Jan⟩, ⟨May,Mar⟩, ⟨May,May⟩, ⟨May, Jul⟩, ⟨May,Aug⟩, ⟨May,Oct⟩, ⟨May,Dec⟩,
⟨Jul, Jan⟩, ⟨Jul,Mar⟩, ⟨Jul,May⟩, ⟨Jul, Jul⟩, ⟨Jul,Aug⟩, ⟨Jul,Oct⟩, ⟨Jul,Dec⟩,
⟨Oct, Jan⟩, ⟨Oct,Mar⟩, ⟨Oct,May⟩, ⟨Oct, Jul⟩, ⟨Oct,Aug⟩, ⟨Oct,Oct⟩, ⟨Oct,Dec⟩,
⟨Dec, Jan⟩, ⟨Dec,Mar⟩, ⟨Dec,May⟩, ⟨Dec, Jul⟩, ⟨Dec,Aug⟩, ⟨Dec,Oct⟩, ⟨Dec,Dec⟩,

⟨Apr,Apr⟩, ⟨Apr, Jun⟩, ⟨Apr,Sep⟩, ⟨Apr,Nov⟩,
⟨Jun,Apr⟩, ⟨Jun, Jun⟩, ⟨Jun,Sep⟩, ⟨Jun,Nov⟩,
⟨Sep,Apr⟩, ⟨Sep, Jun⟩, ⟨Sep,Sep⟩, ⟨Sep,Nov⟩,
⟨Nov,Apr⟩, ⟨Nov, Jun⟩, ⟨Nov,Sep⟩, ⟨Nov,Nov⟩,

⟨Feb,Feb⟩





Figure 8.4 R−1 ◦ R, for the relations R and R−1 from Figure 8.1, shown in two ways. In (a), the composition consists of
every pair of elements joined by a two-hop path; in (b), the set R−1 ◦ R is listed explicitly.

Example 8.11: Composing a relation and its inverse.

Let R ⊆ M × D be the relation between the months and the numbers of days in that month, and let

R−1 ⊆ D×M be its inverse. (See Figure 8.1.) What is R−1 ◦ R?

Solution. Because R ⊆ M×D and R−1 ⊆ D×M, we know that R−1 ◦ R ⊆ M×M. We have to identify

⟨x, y⟩ ∈ M×M such that ∃z ∈ D : ⟨x, z⟩ ∈ R and ⟨z, y⟩ ∈ R−1

⇔ ∃z ∈ D : ⟨x, z⟩ ∈ R and ⟨y, z⟩ ∈ R. definition of inverse

In other words, we seek pairs of months that are related by R to at least one of the same values. The

exhaustive list of pairs in R−1 ◦ R is shown in Figure 8.4.

Note that R−1 ◦R is different from R◦R−1: the latter is the set of numbers that are related by R−1 to at

least one of the same months, while the former is the set of months that are related by R to at least one of

the same numbers. Thus R ◦ R−1 = {⟨31, 31⟩, ⟨30, 30⟩, ⟨29, 29⟩, ⟨28, 28⟩, ⟨28, 29⟩, ⟨29, 28⟩}. (The only

distinct numbers related by R ◦ R−1 are 28 and 29, because of February.)

The relation R−1 ◦R from Example 8.11 has a special form: this relation “partitions” the twelve months

into three clusters—the 31-day months, the 30-day months, and February—so that any two months in the

same cluster are related by R−1 ◦ R, and no two months in different clusters are related by R−1 ◦ R. (See
Figure 8.10b.) A relation with this structure, where elements are partitioned into clusters (and two elements

are related if and only if they’re in the same cluster) is called an equivalence relation; see Section 8.4.1.

8.2.3 Functions as Relations

Back in Chapter 2, we defined a function as something that maps each element of the set of legal inputs

(the domain) to an element of the set of legal outputs (the range):

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-13

8.2 Formal Introduction 8-13

Definition 2.46 (functions): Let A and B be sets. A function f from A to B, written f : A → B, assigns to each input value

a ∈ A a unique output value b ∈ B; the unique value b assigned to a is denoted by f(a). We sometimes say that f maps a

to f(a).

While we’ve begun this chapter defining relations as a completely different kind of thing from

functions, actually functions are just a special type of relation. For example, the “one hour

later than” relation {⟨12, 1⟩, ⟨1, 2⟩, . . . , ⟨10, 11⟩, ⟨11, 12⟩} from Example 8.4 really is a function

f : {1, . . . , 12} → {1, . . . , 12}, where we could write f more compactly as f(x) = (x mod 12) + 1.

In general, to think of a function f : A → B as a relation, we will view f as defining the set of ordered

pairs ⟨x, f(x)⟩ for each x ∈ A, rather than as a mapping:

Definition 8.4: Functions, viewed as relations.

Let A and B be sets. A function f from A to B, written f : A→ B, is a relation on A×B with the additional

property that, for every a ∈ A, there exists one and only one element b ∈ B such that ⟨a, b⟩ ∈ f.

That is, we view the function f : A→ B as the set F = {⟨x, f(x)⟩ : x ∈ A}, which is a subset of A× B. The

restriction of the definition requires that F has a unique output defined for every input: there cannot be two

distinct pairs ⟨x, y⟩ and ⟨x, y′⟩ in F, and furthermore there cannot be any x for which there’s no ⟨x, •⟩ in F.

Example 8.12: A function as a relation.

(Write Z11 to denote {0, 1, 2, . . . , 10}, as in Chapter 7.) The function f : Z11 → Z11 defined as f(x) =

x2 mod 11 can be written as

{⟨0, 0⟩, ⟨1, 1⟩, ⟨2, 4⟩, ⟨3, 9⟩, ⟨4, 5⟩, ⟨5, 3⟩, ⟨6, 3⟩, ⟨7, 5⟩, ⟨8, 9⟩, ⟨9, 4⟩, ⟨10, 1⟩} .

Observe that f−1, the inverse of f, is not a function—for example, the pairs ⟨5, 4⟩ and ⟨5, 7⟩ are both in

f−1, and there is no element ⟨2, •⟩ ∈ f−1. But f−1 is still a relation.

Example 8.13: Composing functions.

Suppose that f ⊆ A × B and g ⊆ B × C are functions (in the sense of Definition 8.4). Prove that the

relation g ◦ f is a function from A to C.

Solution. By definition, the composition of the relations f and g is

g ◦ f = {⟨x, z⟩ : there exists y such that ⟨x, y⟩ ∈ f and ⟨y, z⟩ ∈ g} .

Consider any x ∈ A. Because f is a function, there exists one and only one y∗ such that ⟨x, y∗⟩ ∈ f.

Furthermore, because g is a function, for this particular y∗ there is a unique z with ⟨y∗, z⟩ ∈ g. Thus there

exists one and only one z such that ⟨x, z⟩ ∈ g ◦ f. By definition, then, the relation g ◦ f is a function.

Under this functions-as-relations view, the definitions of the inverse and composition of functions—

Definitions 2.50 and 2.54—precisely line up with the definitions of the inverse and composition of relations

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-14

8-14 Relations

from this section. Furthermore, if a function is just a special type of relation, then the special types of

functions that we defined in Chapter 2—one-to-one and onto functions—are just further restrictions on

relations. Under the relation-based view of functions, the function f ⊆ A × B is called one-to-one if, for

every b ∈ B, there exists at most one element a ∈ A such that ⟨a, b⟩ ∈ f. The function f ⊆ A× B is called

onto if, for every b ∈ B, there exists at least one element a ∈ A such that ⟨a, b⟩ ∈ f.

If f ⊆ A× B is a function, then the inverse f−1 of f—that is, the set f−1 = {⟨b, a⟩ : ⟨a, b⟩ ∈ f}—is guar-

anteed to be a relation on B×A. But f−1 is a function from B to A if and only if f is both one-to-one and onto.

In Exercises 8.39–8.44, you’ll explore some other properties of the composition of functions/relations.

8.2.4 n-ary Relations

The relations that we’ve explored so far have all expressed relationships between two elements. But some

interesting properties might involve more than two entities; for example, you might assemble all of your

friends’ birthdays as a collection of triples of the form ⟨name, birthdate, birthyear⟩. Or we might consider

a relation on integers of the form ⟨a, b, k⟩ where a ≡k b. A relation involving tuples with n components,

called an n-ary relation, is a natural generalization of a (binary) relation:

Definition 8.5: n-ary relation.

An n-ary relation on the set A1 × A2 × · · · × An is a subset of A1 × A2 × · · · × An. If there is no danger

of confusion, we may refer to a subset of An as an n-ary relation on A.

(We generally refer to 2-ary relations as binary relations and 3-ary relations as ternary relations.) Here are

a few examples:

Example 8.14: Summing to 8.

Define sumsTo8 as a ternary relation on the set {0, 1, 2, 3, 4}, where

sumsTo8 = {⟨a, b, c⟩ ∈ {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4} : a+ b+ c = 8} .

Color R G B

Black 0 0 0
Blue 0 0 255
Cyan 0 255 255
Gray 128 128 128
Green 0 128 0

(continued)

Color R G B

Lime 0 255 0
Magenta 255 0 255
Maroon 128 0 0
Navy 0 0 128
Olive 128 128 0

(continued)

Color R G B

Purple 128 0 128
Red 255 0 0
Teal 0 128 128
White 255 255 255
Yellow 255 255 0

Figure 8.5 The 4-ary relation containing the full set of RGB colors with component values that are all drawn from
either {0, 128} or {0, 255}.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-15

8.2 Formal Introduction 8-15

Then sumsTo8 is
{
⟨0, 4, 4⟩, ⟨1, 3, 4⟩, ⟨1, 4, 3⟩, ⟨2, 2, 4⟩, ⟨2, 3, 3⟩, ⟨2, 4, 2⟩,
⟨3, 1, 4⟩, ⟨3, 2, 3⟩, ⟨3, 3, 2⟩, ⟨3, 4, 1⟩, ⟨4, 0, 4⟩, ⟨4, 1, 3⟩, ⟨4, 2, 2⟩, ⟨4, 3, 1⟩, ⟨4, 4, 0⟩

}
.

Example 8.15: Betweenness.

Define the set B =
{
⟨x, y, z⟩ ∈ R3 : x ≤ y ≤ z or x ≥ y ≥ z

}
. Then B is a ternary relation on R that

expresses “betweenness”—that is, the triple ⟨x, y, z⟩ ∈ B if x, y, and z are in a consistent order (either

ascending or descending).

For example, we have ⟨−1, 0, 1⟩ ∈ B and ⟨6, 5, 4⟩ ∈ B, because −1 ≤ 0 ≤ 1 and 6 ≥ 5 ≥ 4. But

⟨−7, 8,−9⟩ /∈ B, because these three numbers are neither in ascending order (because 8 ̸≤ −9) nor

descending order (because −7 ̸≥ 8).

Example 8.16: RGB colors.

A 4-ary relation onNames×{0, 1, . . . , 255}×{0, 1, . . . , 255}×{0, 1, . . . , 255} is shown in Figure 8.5: a

collection of colors, each with its official name in HTML/CSS and its red, green, and blue components—

all of which are elements of {0, 1, . . . , 255}. (HTML (hypertext markup language) and CSS (cascading

style sheet) are languages used to express the format, style, and layout of web pages.)

Taking it further: Databases—systems for storing and accessing collections of structured data—are a widespread modern

application of computer science. Databases store student records for registrars, account information for financial institutions, and

records of who liked whose posts on Facebook; in short, virtually every industrial system that has complex data with nontrivial

relationships among data elements is stored in a database. More specifically, a relational database stores information about a

collection of entities and relationships among those entities: fundamentally, a relational database is a collection of n-ary relations,

which can then be manipulated and queried in various ways. Designing databases well affects both how easy it is for a user to

pose the questions that they wish to ask about the data, and how efficiently answers to those questions can be computed. See

p. 8-17 for more on relational databases and how they connect with the types of relations that we’ve discussed so far.

Expressing n-ary relations as a collection of binary relations

Non-binary relations, like those in the last few examples, represent complex interactions among more than

two entities. For example, the “betweenness” relation

B = {⟨x, y, z⟩ ∈ R3 : x ≤ y ≤ z or x ≥ y ≥ z}

from Example 8.15 fundamentally expresses a relationship regarding triples of numbers: for any three real

numbers x, y, and z, there are triples ⟨x, y, •⟩ ∈ B and ⟨•, y, z⟩ ∈ B and ⟨x, •, z⟩ ∈ B—but whether ⟨x, y, z⟩
itself is in the relation B genuinely depends on how all three numbers relate to each other. Similarly, the

sumsTo8 relation from Example 8.14 is a genuinely three-way relationship among elements—not some-

thing that can be directly reduced to a pair of pairwise relationships. But we can represent an n-ary relation

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-16

8-16 Relations

R by a collection of binary relations, if we’re a little creative in defining the sets that are being related.

(Decomposing n-ary relations into multiple binary relations may be helpful if we store this type of data in

a database; there may be advantages of clarity and efficiency in this view of an n-ary relation.)

This idea is perhaps easiest to see for the colors from Example 8.16: because each color name appears

once and only once in the table, we can treat the name as unique “key” that allows us to treat the 4-ary

relation as three separate binary relations, corresponding to the red, green, and blue components of the

colors. (See Figure 8.6a.) But how would we represent an n-ary relation like the ternary sumsTo8 using

multiple binary relations? (Recall the relation

sumsTo8 =

{
⟨0, 4, 4⟩, ⟨1, 3, 4⟩, ⟨1, 4, 3⟩, ⟨2, 2, 4⟩, ⟨2, 3, 3⟩, ⟨2, 4, 2⟩,
⟨3, 1, 4⟩, ⟨3, 2, 3⟩, ⟨3, 3, 2⟩, ⟨3, 4, 1⟩, ⟨4, 0, 4⟩, ⟨4, 1, 3⟩, ⟨4, 2, 2⟩, ⟨4, 3, 1⟩, ⟨4, 4, 0⟩

}

from Example 8.14.) One idea is to introduce a new set of fake “entities” that correspond to each of the

tuples in sumsTo8, and then build binary relations between each component and this set of entities. For

example, define the set

E = {044, 134, 143, 224, 233, 242, 314, 323, 332, 341, 404, 413, 422, 431, 440} ,

and then define the three binary relations first, second, and third shown in Figure 8.6b. Now ⟨a, b, c⟩ ∈
sumsTo8 if and only if there exists an e ∈ E such that ⟨e, a⟩ ∈ first, ⟨e, b⟩ ∈ second, and ⟨e, c⟩ ∈ third.

(See Exercise 8.45 for a way to think of betweenness using binary relations.)

R

Black 0
Blue 0
Cyan 0
Gray 128
Green 0

...

G

Black 0
Blue 0
Cyan 255
Gray 128
Green 128

...

B

Black 0
Blue 255
Cyan 255
Gray 128
Green 0

...

(a) The colors from the 4-ary relation in Example 8.16,
represented as three binary relations.

first

044 0
134 1
143 1
224 2
233 2

...

second

044 4
134 3
143 4
224 2
233 3

...

third

044 4
134 4
143 3
224 4
233 3

...

(b) The relation sumsTo8, as three binary relations.

Figure 8.6 Representing n-ary relations as a collection of binary relations.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-17

8.2 Formal Introduction 8-17

Computer Science Connections

Relational Databases

A database is a (generally large!) collection of structured data. A user can both “query” the database (asking questions

about existing entries and edit it (adding or updating existing entries). The bulk of modern attention to databases

focuses on relational databases, based explicitly on the types of relations explored in this chapter. (Until a massively

influential early paper by Ted Codd (1923–2003) [30]—he later would win a Turing Award for this work—database

systems were generally based on rigid top-down organization of the data.)

name red green blue

Green 0 128 0

Lime 0 255 0

Magenta 255 0 255

Maroon 128 0 0

Navy 0 0 128

Olive 128 128 0

Purple 128 0 128

Red 255 0 0

Teal 0 128 128

White 255 255 255

Yellow 255 255 0

1 SELECT name, red
2 FROM colors
3 WHERE green > blue;

name red

Green 0

Lime 0

Olive 128

Yellow 255

Figure 8.7 Some RGB colors; and the SQL code and output resulting from
selecting colors with green > blue and projecting to name, red.

In a relational database, the fun-

damental unit of storage is the

table, which represents an n-ary

relation R ⊆ A1 × A2 × · · · × An.

A table consists of a collection of

columns, each of which represents

a component of R; the columns are

labeled with the name of the cor-

responding component so you can

refer to columns by name rather

than just by index. The rows of the

table correspond to elements of the

relation: that is, each row is a value

⟨a1, a2, . . . , an⟩ that’s in R. Fig-

ure 8.7 shows an example table of

this form, echoing Example 8.16.

Thus a relational database is at its essence a collection of n-ary relations. A common way to interact with this sort

of database is with a special-purpose programming language, often the language SQL. (“SQL” is short for Structured

Query Language; it’s pronounced either like “sequel” or by spelling out the letters [to rhymewith “Bless you,Mel!”].)

Operations on relational databases are based on three fundamental operations on n-ary relations. The first two basic

operations either choose some of the rows or some of the columns from an n-ary relation R ⊆ A1 × · · · × An:

• select: for a predicate φ on A1 × · · · × An, we can select those elements of R that satisfy φ.

• project: we can project R ⊆ A1 × · · · × An into a smaller set of columns by deleting some Ais.

For example, we can select colors with blue component equal to zero, or project the colors relation down to just red

and blue values. See Figure 8.7 for an example. (In SQL, select and project operations are done with unified syntax.)

S

state senator

IA Grassley

IA Harkin

ID Craig

ID Kempthorne

IL Moseley Braun

IL Simon

IN Coats

IN Lugar

T

senator party

Coats R

Craig R

Grassley R

Harkin D

Kempthorne R

Lugar R

Moseley Braun D

Simon D

1 SELECT * FROM T
2 INNER JOIN S
3 ON T.senator = S.senator;

senator party state

Coats R IN

Craig R ID

Grassley R IA
...

Figure 8.8 Joining S and T from Figure 8.3.

The third key operation in rela-

tional databases, called join, corre-

sponds closely to the composition

of relations. In a join, we combine

two relations by insisting that an

identified shared column of the two

relations matches. Unlike with the

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-18

8-18 Relations

composition of relations, we con-

tinue to include that matching col-

umn in the resulting table. For two

binary relations X ⊆ S × T and

Y ⊆ T × U, the join of X and Y

is a ternary relation on S× T× U,

defined as X 1 Y = {⟨a, c, b⟩ ∈ S× T× U : ⟨a, c⟩ ∈ X and ⟨c, b⟩ ∈ Y} . In SQL syntax, this operation is denoted

by INNER JOIN; see Figure 8.8.

(The description here barely scratches the surface of relational databases—there’s a full course’s worth of material

on databases (and then some!) that we’ve left out, including how these operations are implemented and how to design

databases to support efficient operations. For more, see a good book on databases, like [117].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-19

8.2 Formal Introduction 8-19

Computer Science Connections

Automating Decisions, Facial Recognition, and Algorithmic Bias

Images from official U.S. House of Representatives portraits

Figure 8.9 New York State’s 2021
U.S. House of Representatives
delegation, from District 1 (top left)
to District 27 (bottom right).

Imagine that you been put in charge of hiring new university graduates as soft-

ware engineers for the company where you work. The process of screening

résumés can be tedious, and it’s potentially prone to whatever implicit biases

(about, say, age, or gender, or race, or degree-granting university) you may

happen to harbor. So you might think about automating the process, to ease

your workload and try to avoid human fallibilities. Here’s one natural way

to do it: first, you apply some kind of threshold test on applicants’ academic

qualifications, and, second, you look at characteristics of applicants, and try

to infer the likelihood of success at the job for someone with those partic-

ular characteristics. There are a lot of characteristics that you might choose

to use in this kind of analysis, but one reasonable choice is to look at uni-

versity organizations that your applicants have participated in: athletic teams,

musical groups, hackathons, whatever. So, you might look at the participa-

tion relation R ⊆ Applicants × Clubs, and then, to find the most promising

applicants in the pool, you might calculate the fraction fc the fraction of your

currently employed software engineers who were in each club c. Then you

could score an applicant a by
∑

c∈Clubs:⟨a,c⟩ fc (or something similar but more

sophisticated), and interview the applicants in descending order of their score.

The automated résumé-screening system described above is very similar to

a system that Amazon tried to build and deploy in 2018—which they quickly

scrapped after discovering exactly how it was performing. More specifically,

the automated system ended up being brutally sexist: for example, the word

“women” on a résumé, as in “women’s fencing team captain,” was causing the

score of that résumé to be massively decreased. (See [35] for the Reuters story

that broke the news.) The basic reason that the system was so badly biased

because of a particular overlooked piece of logic in the system. This system

is a fancy way of reproducing the existing biases in the workforce because

it tries to predict who will be a good future software engineer by comparing

characteristics to the good current software engineers (who were hired by the

previous generations of human screeners with their own biases).

Algorithmic bias refers to automated systems making discriminatory deci-

sions, typically by reproducing existing biases in their training data. Another

prominent example, among too many, is an algorithmic system that’s been

deployed to decide whether to grant parole [7]. In it, for instance, one of inputs to the probabilistic model of recidi-

vism was the number of previous arrests for the individual—but differential policing can lead to more arrests in some

neighborhoods (correlated with race and socioeconomics).

There are other forms of algorithmic bias, too. It’s possible to build a system that looks like it does an excellent

job at some task—and yet is still profoundly biased, in that its performance is much better when, say, the input

corresponds to a white man than when the input corresponds to a person with any other demographic characteristics.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-20

8-20 Relations

For example, Joy Buolamwini and Timnit Gebru [24] showed a severe asymmetry of accuracy rates across skin tones

in modern commercial image-processing systems presented with faces, like those in Figure 8.9, as input. (These

systems can try to detect faces, or recognize faces, or predict the gender of faces, etc.—and the performance of all of

them was systematically worse when presented with images of individuals with darker skin tones.) For more on the

kinds of flaws arising in (computational and noncomputational) research resulting from building models based only

on men in training data, see Caroline Criado Perez’s Invisible Women [99]. And for more of the burgeoning research

by computer scientists on understanding and mitigating these kind of algorithmic bias issues, see the proceedings of

the ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), facctconference.org.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-21

Exercises 8-21

EXERCISES

Here are a few English-language descriptions of relations on a particular set. For each, write out (by exhaustive enumeration) the

full set of pairs in the relation, as we did in Examples 8.4 and 8.5. (Hint: It’s easy to miss an element of these relations if you solve

these problems by hand. Consider writing a small program to enumerate all pairs in these relations.)

8.1 divides, written |, on {1, 2, . . . , 8}, where ⟨d, n⟩ ∈ | if and only if n mod d = 0.

8.2 subset, written ⊂, on P({1, 2, 3}), where ⟨S,T⟩ ∈ ⊂ if and only if S ̸= T and ∀x : x ∈ S ⇒ x ∈ T.

8.3 isProperPrefix on bitstrings of length ≤ 3. A string x is a proper prefix of a string y if x starts with precisely the symbols of y,

followed by one or more other symbols. (See Example 8.5, but note that we are looking for proper prefixes here. The string x is

prefix, but not a proper prefix, of itself.)

8.4 isProperSubstring on bitstrings of length≤ 3. For two strings x and y, we say that x is a substring of y if all of x appears consecutively

somewhere in y. And x is a proper substring of y if x is a substring of y but x ̸= y.

8.5 isProperSubsequence on bitstrings of length ≤ 3. A string x is a subsequence of y if the symbols of x appear in order, but not

necessarily consecutively, in y. (For example, 001 is a substring of 1001 but not of 0101. But 001 is a subsequence of 1001 and

also of 0101.) Again, x is proper subsequence of y if x is a subsequence of y but x ̸= y.

8.6 isAnagram on bitstrings of length ≤ 3. A string x is an anagram of a string y if x contains exactly the same symbols as y (with the

same number of copies of each symbol), but not necessarily in the same order.

Let ⊆ and ⊂ denote the subset and proper subset relations on P(Z). (That is, we have ⟨A,B⟩ ∈ ⊂ if A ⊆ B but A ̸= B.) What

relation is represented by each of the following?

8.7 ⊆ ∪⊂
8.8 ⊆−⊂
8.9 ⊂−⊆

8.10 ⊂ ∩⊆
8.11 ∼⊂

Define R = {⟨2, 2⟩, ⟨5, 1⟩, ⟨2, 3⟩, ⟨5, 2⟩, ⟨2, 1⟩} and S = {⟨3, 4⟩, ⟨5, 3⟩, ⟨6, 6⟩, ⟨1, 4⟩, ⟨4, 3⟩} as two relations on the set

{1, 2, 3, 4, 5, 6}. What pairs are in the following relations?

8.12 R−1

8.13 S−1

8.14 R ◦ R
8.15 R ◦ S

8.16 S ◦ R
8.17 R ◦ S−1

8.18 S ◦ R−1

8.19 S−1 ◦ S

Five so-called mother sauces of French cooking were codified by the chef Auguste Escoffier in the early 20th century. (Many other

sauces—“daughter” or “secondary” sauces—used in French cooking are derived from these basic recipes.) They are:

• Sauce Béchamel is made of milk, butter, and flour.

• Sauce Espagnole is made of stock, butter, and flour.

• Sauce Hollandaise is made of egg, butter, and lemon juice.

• Sauce Velouté is made of stock, butter, and flour.

• Sauce Tomate is made of tomatoes, butter, and flour.

8.20 Write down the “is an ingredient of” relation on Ingredients × Sauces using the tabular representation of relations introduced in

Figure 8.1.

8.21 Writing R to denote the relation that you enumerated in Exercise 8.20, what is R ◦ R−1? Give both a list of elements and an

English-language description of what R ◦ R−1 represents.

8.22 For R from Exercise 8.20, what is R−1 ◦ R? Again, give both a list of elements and a description of the meaning.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-22

8-22 Relations

Suppose that a Registrar’s office has computed the following relations:

taughtIn ⊆ Classes× Rooms taking ⊆ Students× Classes at ⊆ Classes× Times.

For the following exercises, express the given additional relation using taughtIn, taking, and at, plus relation composition and/or

inversion (and no other tools).

8.23 R ⊆ Students× Times, where ⟨s, t⟩ ∈ R indicates that student s is taking a class at time t.

8.24 R ⊆ Rooms× Times, where ⟨r, t⟩ ∈ R indicates that there is a class in room r at time t.

8.25 R ⊆ Students× Students, where ⟨s, s′⟩ ∈ R indicates that students s and s′ are taking at least one class in common.

8.26 R ⊆ Students × Students, where ⟨s, s′⟩ ∈ R indicates that there’s at least one time when s and s′ are both taking a class (but not

necessarily the same class).

Let parent ⊆ People × People denote the relation {⟨p, c⟩ : p is a parent of c}. (For the sake of simplicity over realism, assume

that there are no divorces, remarriages, widows, widowers, adoptions, single parents, etc. That is, you should assume that each

child has exactly two parents, and any two children who share one parent share both parents.) What familial relationships are

represented by the following relations?
8.27 parent ◦ parent
8.28 (parent−1) ◦ (parent−1)

8.29 parent ◦ (parent−1)

8.30 (parent−1) ◦ parent
8.31 parent ◦ parent ◦ (parent−1) ◦ (parent−1)

8.32 parent ◦ (parent−1) ◦ parent ◦ (parent−1)

8.33 Suppose that the relations R ⊆ Z × Z and S ⊆ Z × Z contain, respectively, n pairs and m pairs of elements. In terms of n and m,

what’s the largest possible size of R ◦ S? The smallest?

8.34 For arbitrary relations R, S, and T, prove that R ◦ (S ◦ T) = (R ◦ S) ◦ T.
8.35 For arbitrary relations R and S, prove that (R ◦ S)−1 = (S−1 ◦ R−1).

8.36 Let R be any relation on A× B. Prove or disprove: ⟨x, x⟩ ∈ R ◦ R−1 for every x ∈ A.

8.37 What set is represented by the relation ≤ ◦ ≥, where ≤ and ≥ are relations on R?

8.38 What set is represented by the relation successor ◦ predecessor, for the relations successor = {⟨n, n+ 1⟩ : n ∈ Z} and

predecessor = {⟨n, n− 1⟩ : n ∈ Z}?

Suppose that R ⊆ A × B and T ⊆ B × C are relations. The first few exercises below (Exercises 8.39–8.41) ask you to prove that

some properties of R and S translate into properties of T ◦ R. The next few exercises (Exercises 8.42–8.44) ask you to address the

converse of these results. Supposing that T ◦ R has the listed property, can you infer that both relations R and T have the same

property? Only R? Only T? Neither? Prove your answers.

8.39 Prove that, if R and T are both functions, then T ◦ R is a function too.

8.40 Prove that, if R and T are both one-to-one functions, then T ◦ R is one-to-one too.

8.41 Prove that, if R and T are both onto functions, then T ◦ R is onto too.

8.42 Assume that T ◦ R is a function. Must T be a function? R? Both?

8.43 Assume that T ◦ R is a one-to-one function and that R and T are both functions. Must T be one-to-one? R? Both?

8.44 Assume that T ◦ R is an onto function and that R and T are both functions. Must T be onto? R? Both?

On p. 8-17, we introduced three operations on relations that are used frequently in relational databases:

• select(R,P): choose a subset of an n-ary relation R, according to some condition P. (A “condition” P assigns true or false to

each element of the universe.)

• project(R,K): turn an n-ary relation R into an k-ary relation for some k ≤ n, by eliminating those columns of R that aren’t in

K. (The set K ⊆ {1, 2, . . . , n} identifies which columns of R to keep.)

• join(R, S): combine two binary relations R ⊆ A× B and S ⊆ B×C into a single ternary relation containing all triples ⟨a, b, c⟩
where ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ S.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-23

Exercises 8-23

For example, let R = {⟨1, 2, 3⟩, ⟨4, 5, 6⟩}, let S = {⟨6, 7⟩, ⟨6, 8⟩}, and let T = {⟨7, 9⟩, ⟨7, 10⟩}. Then

• select(R, xzEven) = {⟨4, 5, 6⟩} for xzEven(x, y, z) = (2 | x) ∧ (2 | z).
• project(R, {1, 2}) = {⟨1, 2⟩, ⟨4, 5⟩} and project(R, {1, 3}) = {⟨1, 3⟩, ⟨4, 6⟩}.
• join(S,T) = {⟨6, 7, 9⟩, ⟨6, 7, 10⟩}.

Solve the following using the relation operators −1 (inverse), ◦ (composition), select, project, and join:

8.45 Recall from Example 8.15 the ternary “betweenness” relation B =
{
⟨x, y, z⟩ ∈ R3 : x ≤ y ≤ z or x ≥ y ≥ z

}
. Show how to con-

struct B using only ≤, the relation operators (−1, ◦, join, select, project), and standard set-theoretic operations (∪, ∩, ∼, −).

Figure 8.5 contains a reminder of the 4-ary relation C that lists several colors and their red, green, and blue components. Using

this relation C and select/project/join, write a set that corresponds to the following:

8.46 the names of all colors that have red component 0.

8.47 the names of all pairs of colors whose amount of blue is the same.

8.48 the names of all colors that are more blue than red.

Let X denote the set of color names from Figure 8.5. Define three relations Red, Green, and Blue on X× {0, 1, . . . , 255} such that
⟨x, r, g, b⟩ ∈ C if and only if ⟨x, r⟩ ∈ Red and ⟨x, g⟩ ∈ Green and ⟨x, b⟩ ∈ Blue. (In other words, Red = project(C, {1, 2}) and
Green = project(C, {1, 3}) and Blue = project(C, {1, 4}).)

8.49 Repeat Exercise 8.47 using only −1, ◦, and the relations Red, Green, Blue, ≤, and =.

8.50 Repeat Exercise 8.48 using only −1, ◦, and the relations Red, Green, Blue, ≤, and =. Or, at least, compute the set of ⟨x, x⟩ such

that x is the name of a color that’s more blue than red. (You may construct a relation R on colors, and then take R ∩=.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-24

8-24 Relations

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity

There are two ways of spreading light; to be
The candle or the mirror that reflects it.

Edith Wharton (1862–1937)
“Vesalius in Zante (1564)” (1902)

Let R ⊆ A×A be a relation on a single set A (as in the successor or≤ relations on Z, or the is a (blood)
relative of relation on people). We’ve seen a two-column approach to visualizing a relation R ⊆ A × B,

but this layout is misleading when the sets A and B are identical. (Weirdly, we’d have to draw each element

twice, in both the A column and the B column.) Instead, it will be more convenient to visualize a relation

R ⊆ A× A without differentiated columns, using a directed graph: we simply write down each element of

A, and draw an arrow from a1 to a2 for every pair ⟨a1, a2⟩ ∈ R. (See Chapter 11 for much more on directed

graphs.) A few small examples are shown in Figure 8.10.

This directed-graph visualization of relations will provide a useful way of thinking intuitively about

relations in general—and about some specific types of relations in particular. There are several important

structural properties that some relations on A have (and that some relations do not), and we’ll explore these

properties throughout this section. We’ll consider three basic categories of properties:

reflexivity: whether elements are related to themselves. Is an element x necessarily related to x itself?

symmetry: whether order matters in the relation. If x and y are related, are y and x necessarily related too?

transitivity: whether chains of related pairs are themselves related. If x and y are related and y and z are

related, are x and z necessarily related too?

These properties turn out to characterize several important types of relations—for example, some relations

divide A into clusters of “equivalent” elements (as in Figure 8.10b), while other relations “order” A in some

ϵ

0

1

00

01

10

11

(a)

Jan

Mar

May

Jul

Aug Oct

Dec

Apr

JunSep

Nov

Feb

(b)

0
1

2

3

4

56

7

8

9

10

(c)

Figure 8.10 Visualizations of three relations: (a) isPrefix from Example 8.5 (prefixes of bitstrings); (b) months of the
same length, from Example 8.11; and (c) ⟨x, x2 mod 11⟩ for x ∈ Z11, from Example 8.12.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-25

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-25

consistent way (as in Figure 8.10a)—and we’ll see these special types of relations in Section 8.4. But first

we’ll examine these three categories of properties in turn, and then we’ll define closures of relations, which

expand any relation R as little as possible while ensuring that the expansion of R has any particular desired

subset of these properties.

8.3.1 Reflexivity

The reflexivity of a relation R ⊆ A×A is based on whether elements of A are related to themselves. (Latin:

re “back” + flect “bend.”) That is, are there pairs ⟨a, a⟩ in R? The relation R is reflexive if all of those ⟨a, a⟩
pairs are in R, and it’s irreflexive if none of them are:

Definition 8.6: Reflexive and irreflexive relations.
A relation R on A is reflexive if, for every x ∈ A, we have that ⟨x, x⟩ ∈ R. A relation R on A is irreflexive

if, for every x ∈ A, we have that ⟨x, x⟩ /∈ R.

Using the visualization style from Figure 8.10, a relation is reflexive if every element a ∈ A has a “loop”

from a back to itself—and it’s irreflexive if no a ∈ A has a loop to itself. (See Figure 8.11.)

Example 8.17: Reflexivity of =, ≡17, and ⟨x, x2⟩ mod 11.

Consider relations= and≡17 on Z: that is, {⟨x, y⟩ : x = y} and {⟨x, y⟩ : x mod 17 = y mod 17}. Both of

these relations are reflexive, because x = x and x mod 17 = x mod 17 for any x ∈ Z.
But the relation R =

{
⟨x, x2 mod 11⟩ : x ∈ Z11

}
from Figure 8.10c is not reflexive, because (among

other examples) we have ⟨7, 7⟩ /∈ R.

Note that relations can be neither reflexive nor irreflexive. For example, the relation S = {⟨0, 1⟩, ⟨1, 1⟩}
on {0, 1} isn’t reflexive (because ⟨0, 0⟩ /∈ S), but it’s also not irreflexive (because ⟨1, 1⟩ ∈ S).

1

2

3 4

(a)

1

2

3 4

(b)

Figure 8.11 Reflexive and irreflexive relations: (a) a relation on A is reflexive if every a ∈ A has a self-loop (the thick
arrows); (b) a relation is irreflexive if no a ∈ A has a self-loop.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-26

8-26 Relations

Example 8.18: A few arithmetic relations.

Which of the following relations on Z≥1 are reflexive? Which are irreflexive?

R1 = {⟨n,m⟩ : m mod n = 0} divides

R2 = {⟨n,m⟩ : n > m} greater than

R3 = {⟨n,m⟩ : n ≤ m} less than or equal to

R4 =
{
⟨n,m⟩ : n2 = m

}
square

R5 = {⟨n,m⟩ : n mod 5 = m mod 5} equivalent mod 5

Solution. | is reflexive. For any positive integer n, we have that n mod n = 0. Thus ⟨n, n⟩ ∈ R1 for any n.

> is irreflexive. For any n ∈ Z≥1, we have that n ̸> n. Thus ⟨n, n⟩ /∈ R2 for any n.

≤ is reflexive. For any positive integer n, we have n ≤ n, so every ⟨n, n⟩ ∈ R3.

square is neither reflexive nor irreflexive. The square relation is not reflexive because ⟨9, 9⟩ /∈ R4 and it

is also not irreflexive because ⟨1, 1⟩ ∈ R4, for example. (That’s because 9 ̸= 92, but 1 = 12.)

≡5 is reflexive. For any n ∈ Z≥1, we have n mod 5 = n mod 5, so ⟨n, n⟩ ∈ R5.

Note again that, as with square, it is possible to be neither reflexive nor irreflexive. (But it’s not possible

to be both reflexive and irreflexive, as long as A ̸= ∅: for any specific a ∈ A, if ⟨a, a⟩ ∈ R, then R is not

irreflexive; if ⟨a, a⟩ /∈ R, then R is not reflexive.)

8.3.2 Symmetry

The symmetry of a relation R ⊆ A × A is based on whether the order of the elements in a pair matters.

(Greek: syn “same” + metron “measure.” Is R the same no matter which way you measure it?) That is, if

the pair ⟨a, b⟩ is in R, is the pair ⟨b, a⟩ always also in R? (Or is it never in R? Or sometimes but not always?)

The relation R is symmetric if, for every a and b, the pairs ⟨a, b⟩ and ⟨b, a⟩ are both in R or both not in

R. There are two accompanying notions: a relation R is antisymmetric if the only time ⟨a, b⟩ and ⟨b, a⟩ are
both in R is when a = b, and R is asymmetric if ⟨a, b⟩ and ⟨b, a⟩ are never both in R (whether a = b or

a ̸= b). Here are the formal definitions:

Definition 8.7: Symmetric, antisymmetric, and asymmetric relations.

• A relation R on A is symmetric if, for every a ∈ A and b ∈ A, if ⟨a, b⟩ ∈ R then ⟨b, a⟩ ∈ R.

• A relation R on A is antisymmetric if, for every a ∈ A and b ∈ A such that ⟨a, b⟩ ∈ R and ⟨b, a⟩ ∈ R,

we have a = b.

• A relation R on A is asymmetric if, for every a ∈ A and b ∈ A, if ⟨a, b⟩ ∈ R then ⟨b, a⟩ /∈ R.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-27

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-27

An important etymological note: anti- means “against” rather than “not.” Asymmetric (there is no ⟨a, b⟩ ∈ R when ⟨b, a⟩ ∈ R)

is different from antisymmetric (whenever ⟨a, b⟩ ∈ R and ⟨b, a⟩ ∈ R then a = b) is different from not symmetric (there is some

⟨a, b⟩ ∈ R but ⟨b, a⟩ /∈ R).

Again thinking about our visualization of relations: a relation is symmetric if every arrow a→ b is matched

by an arrow b→ a in the opposite direction. It’s antisymmetric if there are no matched bidirectional pairs

of arrows between two distinct elements a and b; and it’s asymmetric if there also aren’t even any self-

loops. (An a-to-a self-loop is, in a weird way, a “pair” of arrows a → b and b → a, just with a = b.) See

Figure 8.12.

Example 8.19: Some symmetric relations.

The relations

{⟨w,w′⟩ : w and w′ have the same length} (on the set of English words)

{⟨s, s′⟩ : s and s′ sat next to each other in class today} (on the set of students)

are both symmetric. Ifw contains the same number of letters asw′, thenw′ also contains the same number

of letters as w. And if I sat next to you, then you sat next to me!

(The first relation is also reflexive—ZEUGMA contains the same number of letters as ZEUGMA—but the

latter is irreflexive, as no student sits beside herself in class. [zeugma, n.: grammatical device in which

words are used in parallel construction syntactically, but not semantically, as in Yesterday, Alice caught

a rainbow trout and hell from Bob for fishing all day.])

Example 8.20: A few arithmetic relations, again.

Which of these relations (from Example 8.18) are symmetric? Antisymmetric? Asymmetric?

R1 = {⟨n,m⟩ : m mod n = 0} divides

R2 = {⟨n,m⟩ : n > m} greater than

R3 = {⟨n,m⟩ : n ≤ m} less than or equal to

R4 =
{
⟨n,m⟩ : n2 = m

}
square

R5 = {⟨n,m⟩ : n mod 5 = m mod 5} equivalent mod 5

Solution. | is antisymmetric. Because n mod m = 0 and m mod n = 0 if and only if n = m, we know

that if ⟨n,m⟩ ∈ R1 and ⟨m, n⟩ ∈ R1 then n = m. But the relation is neither symmetric (for example, 3 | 6
but 6 ̸ | 3) nor asymmetric (for example, 3 | 3).

> is asymmetric (and therefore antisymmetric). If x < y then y ̸< x, even if x = y. So R2 is asymmetric,

which means that it is also antisymmetric.

≤ is antisymmetric. Similar to (1), R3 is antisymmetric: if x ≤ y and y ≤ x, then x = y. (But 3 ≤ 6 and

6 ̸≤ 3, and 3 ≤ 3, so R3 is neither symmetric nor asymmetric.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-28

8-28 Relations

1

2

3 4

(a) R is symmetric if every a → b is
matched by b → a.

1

2

3 4

(b) R is antisymmetric if no a ↔ b
exists for a ̸= b. Self-loops (like the
thick arrow) are allowed.

1

2

3 4

(c) R is asymmetric if it is
antisymmetric and it also has no
self-loops.

Figure 8.12 Symmetric, antisymmetric, and asymmetric relations.

square is antisymmetric. R4 is not symmetric because ⟨3, 9⟩ ∈ R4 but ⟨9, 3⟩ /∈ R4, and it’s not asymmetric

because ⟨1, 1⟩ ∈ R4. (That’s because 32 = 9 but 92 ̸= 3, and 12 = 1.) But it is antisymmetric: the only

way x2 = y and y2 = x is if x = y (specifically x = y = 0 or x = y = 1).

≡5 is symmetric. The “equivalent mod 5” relation is symmetric because equality is: for any n and m, we

have n mod 5 = m mod 5 if and only if m mod 5 = n mod 5. But it’s not antisymmetric: ⟨17, 202⟩ ∈ R5

and ⟨202, 17⟩ ∈ R5.

Note that it is possible for a relation to be both symmetric and antisymmetric; see Exercise 8.70. And

it’s also possible for a relation R not to be symmetric, but also for R to fail to be either antisymmetric or

asymmetric:

Example 8.21: A non-symmetric, non-asymmetric, non-antisymmetric relation.

The relation R = {⟨0, 1⟩, ⟨0, 2⟩, ⟨1, 0⟩} on {0, 1, 2} isn’t symmetric (0 → 2 but 2 ̸→ 0), and it isn’t

asymmetric or antisymmetric (0→ 1 and 1→ 0 but 0 ̸= 1).

One other useful way to think about the symmetry (or antisymmetry/asymmetry) of a relation R is

by considering the inverse R−1 of R. Recall that R−1 reverses the direction of all of the arrows of R, so

⟨a, b⟩ ∈ R if and only if ⟨b, a⟩ ∈ R−1. A symmetric relation is one in which every a→ b arrow is matched

by a b→ a arrow, so reversing the arrows doesn’t change the relation. For an antisymmetric relation R, the

inverse R−1 has only self-loops in common with R. And an asymmetric relation has no arrows in common

with its inverse. (See Figure 8.13.) Specifically (see Exercises 8.67–8.69):

1

2

3 4

(a)

1

2

3 4

(b)

1

2

3 4

(c)

Figure 8.13 (a) A relation R, (b) its inverse R−1, and (c) their intersection R ∩ R−1. From (c), we see that R isn’t
symmetric (1 → 2 and 4 → 3 are missing), asymmetric (1 has a self-loop) or antisymmetric (2 ↔ 3 is present).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-29

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-29

Theorem 8.8: Symmetry in terms of inverses.

Let R ⊆ A× A be a relation and let R−1 be its inverse. Then:

• R is symmetric if and only if R ∩ R−1 = R = R−1.

• R is antisymmetric if and only if R ∩ R−1 ⊆ {⟨a, a⟩ : a ∈ A}.
• R is asymmetric if and only if R ∩ R−1 = ∅.

8.3.3 Transitivity

The transitivity of a relation R ⊆ A× A is based on whether the relation always contains a “short circuit”

from a to c whenever two pairs ⟨a, b⟩ and ⟨b, c⟩ are in R. (Latin: trans “across/through.”) An alternative

view is that a transitive relation R is one in which “applying R twice” doesn’t yield any new connections.

For example, consider the relation “lives in the same town as”: if a person x lives in the same town as a

person y you live in same town as, then in fact x directly (without reference to the intermediary y) lives in

the same town as you. Here is the formal definition:

Definition 8.9: Transitive relation.
A relation R on A is transitive if, for every a, b, c ∈ A, if ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ R, then ⟨a, c⟩ ∈ R too.

Or, using the visualization from Figure 8.10, a relation is transitive if there are no “open triangles”: if a→ b

and b → c, then a → c. (In any “chain” of connected elements in a transitive relation, every element is

also connected to all elements that are “downstream” of it.) See Figure 8.14.

Example 8.22: Some transitive relations.

The relations

{⟨w,w′⟩ : w and w′ have the same length} (on the set of English words)

{⟨s, s′⟩ : s arrived in class before s′ today} (on the set of students)

are both transitive. If w contains the same number of letters as w′, and w′ contains the same number of

letters as w′′, then w certainly contains the same number of letters as w′′ too. And if Alice got to class

before Bob, and Bob got to class before Charlie, then Alice got to class before Charlie.

1

2

3 4

(a) A relation that is not transitive (the thick arrows
form an open triangle: 1 → 3 is missing).

1

2

3 4

(b) A transitive relation, with a highlighted
closed triangle.

Figure 8.14 Transitivity of relations. A relation on A is transitive if every triangle is closed.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-30

8-30 Relations

Example 8.23: A few arithmetic relations, one more time.

Which of the relations from Examples 8.18 and 8.20 are transitive?

R1 = {⟨n,m⟩ : m mod n = 0} divides

R2 = {⟨n,m⟩ : n > m} greater than

R3 = {⟨n,m⟩ : n ≤ m} less than or equal to

R4 =
{
⟨n,m⟩ : n2 = m

}
square

R5 = {⟨n,m⟩ : n mod 5 = m mod 5} equivalent mod 5

Solution. | is transitive. Suppose that a | b and b | c. We need to show that a | c. But that’s not too hard:

by definition a | b and b | cmean that b = ak and c = bℓ for integers k and ℓ. Therefore c = a · (kℓ)—and

thus a | c. (This fact was Theorem 7.7.4.)

> is transitive. If x > y and y > z, then we know x > z.

≤ is transitive. Just as in (2), R3 is transitive: if x ≤ y and y ≤ z, then x ≤ z.

square is not transitive. The square relation isn’t transitive, because, for example, we have ⟨2, 4⟩ ∈ R4

and ⟨4, 16⟩ ∈ R4—but ⟨2, 16⟩ /∈ R4. (That’s because 22 = 4 and 42 = 16 but 22 ̸= 16.)

≡5 is transitive. The “equivalent mod 5” relation is transitive because equality is: if n mod 5 = m mod 5

and m mod 5 = p mod 5, then n mod 5 = p mod 5.

While we can understand the transitivity of a relationR directly fromDefinition 8.9, we can also think about

the transitivity of R by considering the relationship between R and R ◦ R—that is, R and the composition

of R with itself. (Earlier we saw how to view the symmetry of R by connecting R and its inverse R−1.)

Theorem 8.10: Transitivity in terms of self-composition.

Let R ⊆ A× A be a relation. Then R is transitive if and only if R ◦ R ⊆ R.

A proof of this theorem is deferred to the exercises (see Exercise 8.86).

Taking it further: Your preferences among a set of possibilities form a transitive relation: if you prefer chocolate ice cream to

mint, and mint to strawberry, then you surely prefer chocolate to strawberry, too. But if you and a bunch of friends (all of whom

may have different preferences about cuisines) want to go out to a restaurant, things become trickier; it’s possible that your

group’s collective preferences may fail to be transitive (even if each individual’s preferences are). The idea of a voting system

is to determine the group’s collective preferences based on its members’ individual preferences, and there are some troubling

paradoxes that arise in this voting context. (There’s also the related issue of how to implement actual voting systems, perhaps

electronically—while maintaining both secrecy and trust in the system.) See p. 8-38.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-31

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-31

8.3.4 Properties of Asymptotic Relationships

Now that we’ve introduced the three categories of properties of relations (reflexivity, symmetry, and tran-

sitivity), let’s consider one more set of relations in light of these properties: the asymptotics of functions.

Recall from Chapter 6 that, for two functions f : R≥0 → R≥0 and g : R≥0 → R≥0, we say that

f(n) is O(g(n)) if and only if ∃n0 ≥ 0, c > 0 : [∀n ≥ n0 : f(n) ≤ c · g(n)] .
f(n) is Θ(g(n)) if and only if f(n) is O(g(n)) and g(n) is O(f(n)).

f(n) is o(g(n)) if and only if f(n) is O(g(n)) and g(n) is not O(f(n)).

(Actually we previously phrased the definitions of Θ(·) and o(·) in terms of Ω(·), but the definition we’ve

given here is completely equivalent, as proven in Exercise 6.30.) We can view these asymptotic properties

as relations on the set F =
{
f : R≥0 → R≥0

}
of functions.

The standard asymptotic notation doesn’t match the standard notation for relations—we write f = Θ(g) rather than f Θ g or

⟨f, g⟩ ∈ Θ—but Θ genuinely is a relation on F, in the sense that some pairs of functions are related by Θ and some pairs are not.

And O and o are relations on F in the same way.

Example 8.24: O and Θ and o: reflexivity.

O is reflexive. For any function f, we can establish that f = O(f) by choosing the constants n0 = 1 and

c = 1, because it is immediate that ∀n ≥ 1 : f(n) ≤ 1 · f(n). Therefore O is reflexive, because every

function f satisfies f = O(f).

Θ is reflexive. This fact follows immediately from the fact that O is reflexive:

Θ is reflexive ⇔ ∀f ∈ F : f = Θ(f) definition of reflexivity

⇔ ∀f ∈ F : f = O(f) and f = O(f) definition of Θ

⇔ ∀f ∈ F : f = O(f). p ∧ p ≡ p

But ∀f ∈ F : f = O(f) is just the definition of O being reflexive, which we just established.

o is irreflexive. This fact follows by similar logic: for any function f ∈ F,

f = o(f)⇔ f = O(f) and f ̸= O(f),

by the definition of o(·). But p ∧ ¬p ≡ False (including when p is “f = O(f)”), so o is irreflexive.

Example 8.25: O and Θ and o: symmetry.

O is not symmetric, antisymmetric, or asymmetric. Define the functions t1(n) = n and t2(n) = n2 and

t3(n) = 2n2. O is not symmetric because, for example, t1 = O(t2) but t2 ̸= O(t1). O is not asymmetric

because, for example, t1 = O(t1). And O is not antisymmetric because, for example, t2 = O(t3) and

t3 = O(t2) but t2 ̸= t3.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-32

8-32 Relations

Θ is symmetric. This fact follows immediately by definition: for arbitrary f and g,

f = Θ(g)⇔ f = O(g) and g = O(f) definition of Θ

⇔ g = O(f) and f = O(g) p ∧ q ≡ q ∧ p

⇔ g = Θ(f). definition of Θ

(Θ is not anti/asymmetric, because t2 = Θ(t3) for t2(n) and t3(n) defined above.)

o is asymmetric. This fact follows immediately, by similar logic: for arbitrary f and g, we have f = o(g)

and g = o(f) if and only if f = O(g) and g ̸= O(f) and g = O(f) and f ̸= O(g)—a contradiction! So if

f = o(g) then g ̸= o(f). Therefore o is asymmetric.

Exercises 6.18, 6.46, and 6.47 established that O, Θ, and o are all transitive.In sum: O is reflexive and

transitive (but not symmetric, asymmetric, or antisymmetric); o is irreflexive, asymmetric, and transitive;

and Θ is reflexive, symmetric, and transitive.

Taking it further: Among the computer scientists, philosophers, and mathematicians who study formal logic, there’s a special

kind of logic called modal logic that’s of significant interest. Modal logic extends the type of logic we introduced in Chapter 3

to also include logical statements about whether a true proposition is necessarily true or accidentally true. For example, the

proposition Canada won the 2014 Olympic gold medal in curling is true—but the gold-medal game could have turned out

differently and, if it had, that proposition would have been false. But Either it rained yesterday or it didn’t rain yesterday is true,

and there’s no possible scenario in which this proposition would have turned out to be false. We say that the former statement is

“accidentally” true (it was an “accident” of fate that the game turned out the way it did), but the latter is “necessarily” true.

In modal logic, we evaluate the truth value of a particular logical statement multiple times, once in each of a set W of so-called

possible worlds. Each possible world assigns truth values to every atomic proposition. Thus every logical proposition φ of the

form we saw in Chapter 3 has a truth value in each possible world w ∈ W. But there’s another layer to modal logic. In addition

to the set W, we are also given a relation R ⊆ W ×W, where ⟨w,w′⟩ ∈ R indicates that w′ is possible relative to w. In addition

to the basic logical connectives from normal logic, we can also write two more types of propositions:

3φ “possibly φ” 3φ is true in w if ∃w′ ∈ W such that ⟨w,w′⟩ ∈ R and φ is true in w′.

2φ “necessarily φ” 2φ is true in w if ∀w′ ∈ W such that ⟨w,w′⟩ ∈ R, φ is true in w′.

Of course, these operators can be nested, so we might have a proposition like 2(3p ⇒ 2p).

Different assumptions about the relation R will allow us to use modal logic to model different types of interesting phenomena.

For example, we might want to insist that 2φ⇒ φ (“if φ is necessarily true, then φ is true”: that is, if φ is true in every world

w′ ∈ W possible relative to w, thenφ is true in w). This axiom corresponds to the relation R being reflexive: w is always possible

relative to w. Symmetry and transitivity correspond to the axioms φ⇒ 23φ and 2φ⇒ 22φ.

The general framework of modal logic (with different assumptions about R) has been used to represent logics of knowledge

(where 2φ corresponds to “I know φ”); logics of provability (where 2φ corresponds to “we can prove φ”); and logics of

possibility and necessity (where2φ corresponds to “necessarilyφ” and3φ to “possiblyφ”). Others have also studied temporal

logics (where 2φ corresponds to “alwaysφ” and3φ to “eventuallyφ”); these logical formalisms have proven to be very useful

in formally analyzing the correctness of programs. For a good introduction to modal logic, see [60].

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-33

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-33

8.3.5 Closures of Relations

Until now, in this section we’ve discussed some important properties that certain relations R ⊆ A× Amay

or may not happen to have. We’ll close this section by looking at how to “force” the relation R to have

one or more of these properties. Specifically, we will introduce the closure of a relation with respect to a

property like symmetry: we’ll take a relation R and expand it into a relation R′ that has the desired property,

while adding as few pairs to R as possible. That is, the symmetric closure of R is the smallest set R′ ⊇ R

such that the relation R′ is symmetric. Here are the formal definitions:

Definition 8.11: Reflexive, symmetric, and transitive closures.

Let R ⊆ A× A be a relation. Then:

The reflexive closure of R is the smallest relation R′ ⊇ R such that R′ is reflexive.

The symmetric closure of R is the smallest relation R′′ ⊇ R such that R′′ is symmetric.

The transitive closure of R is the smallest relation R+ ⊇ R such that R+ is transitive.

Taking it further: In general, a set S is said to be closed under the operation f if, whenever we apply f to an arbitrary element

of S (or to an arbitrary k-tuple of elements from S, if f takes k arguments), then the result is also an element of S. For example,

the integers are closed under + and ·, because the sum of two integers is always an integer, as is their product. But the integers

are not closed under /: for example, 2/3 is not an integer even though 2 ∈ Z and 3 ∈ Z. The closure of S under f is the smallest

superset of S that is closed under f.

We’ll illustrate these definitions with a small example of symmetric, reflexive, and transitive closures, and

then return to our running examples of arithmetic relations.

Example 8.26: Closures of a small relation.

Consider the relation R = {⟨1, 5⟩, ⟨2, 2⟩, ⟨2, 4⟩, ⟨4, 1⟩, ⟨4, 2⟩} on {1, 2, 3, 4, 5}. Then we have the

following closures of R. (See Figure 8.15 for visualizations.)

reflexive closure = R ∪
{

⟨1, 1⟩, ⟨3, 3⟩, ⟨4, 4⟩, ⟨5, 5⟩
}

symmetric closure = R ∪
{

⟨5, 1⟩,
because of ⟨1, 5⟩

⟨1, 4⟩
because of ⟨4, 1⟩

}

1
2

3

45

(a)

1
2

3

45

(b)

1
2

3

45

(c)

1
2

3

45

(d)

Figure 8.15 (a) A relation R, and several closures of R: (b) the reflexive closure; (c) the symmetric closure; and (d) the
transitive closure. In each, the thick arrows had to be added to R to achieve the desired property.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-34

8-34 Relations

transitive closure = R ∪
{

⟨2, 1⟩,
because of

⟨2, 4⟩ and ⟨4, 1⟩

⟨4, 4⟩,
because of

⟨4, 2⟩ and ⟨2, 4⟩

⟨4, 5⟩,
because of

⟨4, 1⟩ and ⟨1, 5⟩

⟨2, 5⟩
because of

⟨2, 4⟩ and ⟨4, 5⟩

}

It’s worth noting that ⟨2, 5⟩ had to be in the transitive closure R+ of R, even though there was no x such

that ⟨2, x⟩ ∈ R and ⟨x, 5⟩ ∈ R. There’s one more intermediate step in the chain of reasoning: the pair

⟨4, 5⟩ had to be in R+ because ⟨4, 1⟩, ⟨1, 5⟩ ∈ R, and therefore both ⟨2, 4⟩ and ⟨4, 5⟩ had to be in R+—so

⟨2, 5⟩ had to be in R+ as well.

Example 8.27: Closures of divides.

Recall the “divides” relation R = {⟨n,m⟩ : m mod n = 0}. Because R is both reflexive and transitive, the

reflexive closure and transitive closure of R are both just R itself. The symmetric closure of R is the set

of pairs ⟨n,m⟩ where one of n and m is a divisor of the other: {⟨n,m⟩ : n mod m = 0 or m mod n = 0}.

Example 8.28: Closures of >.

Recall the “greater than” relation {⟨n,m⟩ : n > m}. The reflexive closure of > is ≥—that is, the set

{⟨n,m⟩ : n ≥ m}. The symmetric closure of> is ̸=—that is, the set {⟨n,m⟩ : n > m or m > n} is exactly
{⟨n,m⟩ : n ̸= m}. The relation > is already transitive, so the transitive closure of > is > itself.

Computing the closures of a relation

How did we compute the closures in the last few examples? The approach itself isn’t too hard: starting

with R′ = R, we repeatedly look for a violation of the desired property in R′ (an element of R′ required

by the property but missing from R′), and repair that violation by adding the necessary element to R′. For

the reflexive and symmetric closures, this idea is more straightforward: the violations of reflexivity are

precisely those elements of {⟨a, a⟩ : a ∈ A} not already in R, and the violations of symmetry are precisely

those elements of R−1 that are not already in R.

For the transitive closure, things are slightly trickier: as we resolve existing violations by adding missing

pairs to the relation, new violations of transitivity can crop up. (See Figure 8.16.) But to compute the

transitive closure, we can simply iterate: starting with R′ := R, repeatedly add to R′ any missing ⟨a, c⟩
with ⟨a, b⟩, ⟨b, c⟩ ∈ R′, until there are no more violations of transitivity. (While we won’t prove it here, it’s

an important fact that the order in which we add elements to the transitive closure doesn’t affect the final

0 1 2 3

(a) The relation R.

0 1 2 3

(b) ⟨0, 1⟩ and ⟨1, 2⟩ mean
that we must add ⟨0, 2⟩.

0 1 2 3

(c) ⟨1, 2⟩ and ⟨2, 3⟩ mean
that we must add ⟨0, 2⟩.

0 1 2 3

(d) ⟨0, 2⟩, which we
added in (b), and ⟨2, 3⟩
mean that we must now
add ⟨0, 3⟩ too.We could have instead argued that we had to add ⟨0, 3⟩ because of ⟨0, 1⟩ and ⟨1, 3⟩ [from (c)]

rather than because of ⟨0, 2⟩ [from (b)] and ⟨2, 3⟩.

Figure 8.16 Computing the transitive closure of the relation {⟨0, 1⟩, ⟨1, 2⟩, ⟨2, 3⟩}.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-35

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-35

reflexive-closure(R):

Input: a relation R ⊆ A× A

Output: the smallest reflexive R′ ⊇ R

1 return R ∪ {⟨a, a⟩ : a ∈ A}

symmetric-closure(R):

Input: a relation R ⊆ A× A

Output: the smallest symmetric R′ ⊇ R

1 return R ∪ R−1

transitive-closure(R):

Input: a relation R ⊆ A× A

Output: the smallest transitive R′ ⊇ R

1 R′ := R
2 while there exist a, b, c ∈ A such that

⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ R and ⟨a, c⟩ /∈ R′:
3 R′ := R′ ∪ {⟨a, c⟩}
4 return R′

Figure 8.17 Algorithms to compute the reflexive, symmetric, and transitive closures of R ⊆ A× A, when A is finite.

result.) See Figure 8.17 for algorithms to compute these closures for R ⊆ A × A for a finite set A. (Note

that these algorithms are not guaranteed to terminate if A is infinite! Also, there are faster ways to find the

transitive closure based on graph algorithms—see Chapter 11—but the basic idea is captured here.)

Alternatively, here’s another way to view the transitive closure of R ⊆ A×A. The relation R◦R denotes

precisely those pairs ⟨a, c⟩ where ⟨a, b⟩, ⟨b, c⟩ ∈ R for some b ∈ A. Thus the “direct” violations of transi-

tivity are pairs that are in R◦R but not R. But, as we saw in Figure 8.16, the relation R ∪ (R ◦ R)might have

violations of transitivity, too: that is, a pair ⟨a, d⟩ /∈ R ∪ (R ◦ R) but where ⟨a, b⟩ ∈ R and ⟨b, d⟩ ∈ R ◦ R
for some b ∈ A. So we have to add R ◦ R ◦ R as well. And so on! In other words, the transitive closure R+

of R is given by R+ = R ∪ R2 ∪ R3 ∪ · · ·, where Rk = R ◦ R ◦ · · · ◦ R is the result of composing R with

itself k times. Thus (see Exercise 8.105):

• the reflexive closure of R is R ∪ {⟨a, a⟩ : a ∈ A}.
• the symmetric closure of R is R ∪ R−1.

• the transitive closure of R is R ∪ R2 ∪ R3 ∪ · · · .

Closures with respect to multiple properties at once

In addition to defining the closure of a relation R with respect to one of the three properties (reflexivity,

symmetry, or transitivity), we can also define the closure with respect to two or more of these properties

simultaneously. Any subset of these properties makes sense in this context, but the two most common

combinations require reflexivity and transitivity, with or without requiring symmetry:

Definition 8.12: Reflexive [symmetric] transitive closure.

Let R ⊆ A× A be a relation. Then:

The reflexive transitive closure of R is the smallest relation R∗ ⊇ R such that R∗ is both reflexive and

transitive.

The reflexive symmetric transitive closure of R is the smallest relationR≡ ⊇ R such thatR≡ is reflexive,

symmetric, and transitive.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-36

8-36 Relations

Example 8.29: Parent.

Consider the relation parent = {⟨p, c⟩ : p is a parent of c} over a set S. (This example makes sense if we

think of S as a set of people where “parent” has biological meaning, or if we think of S as a set of nodes

in a tree.) Then:

transitive closure of parent = parent ∪ grandparent ∪ greatgrandparent ∪ · · ·

reflexive transitive closure of parent = yourself ∪ parent ∪ grandparent ∪ greatgrandparent ∪ · · ·

where yourself = {⟨x, x⟩ : x ∈ S}. These closures of parent might be called ancestor: ⟨x, y⟩ is in the

(reflexive) transitive closure of parent if and only if x is a direct ancestor of y. (The reflexive transitive

closure counts you as an ancestor of yourself; the transitive closure does not.)

Example 8.30: Adjacent seating at a concert.

Consider a set S of people attending a concert held in a theater with rows of seats. Let R denote the

relation of “sat immediately to the right of,” so that ⟨x, y⟩ ∈ R if and only if x sat one seat to y’s right in

the same row. (See Figure 8.18.)

The transitive closure of R is “sat (not necessarily immediately) to the right of.” The symmetric closure

of R is “sat immediately next to.” The symmetric transitive closure of R—just like the reflexive symmetric

transitive closure—is “sat in the same row as.” (You sit in the same row as yourself.)

As we discussed previously, we can think of the transitive closure R+ of the relation R as the result of

repeating R one or more times: in other words, R+ = R ∪ R2 ∪ R3 ∪ · · ·. The reflexive transitive closure

of R also adds {⟨a, a⟩ : a ∈ A} to the closure, which we can view as the result of repeating R zero or

more times. In other words, we can write the reflexive transitive closure R∗ as R∗ = R0 ∪ R+, where

R0 = {⟨a, a⟩ : a ∈ A} represents the “zero-hop” application of R.

Taking it further: The basic idea underlying the (reflexive) transitive closure of a relation R—allowing (zero or) one or more

repetitions of a relation R—also comes up in a widely useful tool for pattern matching in text, called regular expressions. Using

regular expressions, you can search a text file for lines that match certain kinds of patterns (like: find all violations in the dictionary

of the “I before E except after C” rule), or apply some operation to all files with a certain name (like: remove all .txt files). For

more about regular expressions in general, and a little more on the connection between (reflexive) transitive closure and regular

expressions, see p. 8-40.

We’ll end with one last example of closures of an arithmetic relation:

Example 8.31: Closures of the successor relation.

The successor relation on the integers is {⟨n, n+ 1⟩ : n ∈ Z}. What are the reflexive, symmetric,

transitive, reflexive transitive, and reflexive symmetric transitive closures of this relation?

Solution. Perhaps the most interesting of these closures to think about is the transitive closure, which is

best illustrated by the infinite version of Figure 8.16. For any n, we have ⟨n, n+ 1⟩ and ⟨n+ 1, n+ 2⟩ in

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-37

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-37

(a) (b) (c) (d)

Figure 8.18 (a) The sat-immediately-to-the-right-of relation R for a three-row concert venue, and a few closures: (b)
the transitive closure of R; (c) the symmetric closure of R; and (d) the symmetric transitive closure of R.

successor, so the transitive closure includes ⟨n, n+2⟩. But ⟨n+2, n+3⟩ is in successor, so the transitive

closure also includes ⟨n, n+ 3⟩. But ⟨n+ 3, n+ 4⟩ is in successor, so the transitive closure also includes

⟨n, n+ 4⟩. And so forth! (See Exercise 8.107 for a formal proof.) Here are the sets:

reflexive closure = {⟨n,m⟩ : m = n or m = n+ 1}

symmetric closure = {⟨n,m⟩ : m = n− 1 or m = n+ 1}

transitive closure = {⟨n,m⟩ : n < m} (that is, the relation <)

reflexive transitive closure = {⟨n,m⟩ : n ≤ m} (that is, the relation ≤)

reflexive symmetric transitive closure = Z× Z (that is, every pair of integers is in this relation).

Taking it further: We can view≤ (the reflexive transitive closure of successor) as either the reflexive closure of< (the transitive

closure of successor), or we can view ≤ as the transitive closure of {⟨n,m⟩ : m = n or m = n+ 1} (the reflexive closure of

successor). (For any relation, the reflexive closure of the transitive closure equals the transitive closure of the reflexive closure.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-38

8-38 Relations

Computer Science Connections

What’s Hard about Designing Voting Systems

Imagine a collection of n people who have individual preferences over k candidates. That is, we have n relations

R1,R2, . . . ,Rn, each of which is a relation on the set {1, 2, . . . , k}. We wish to aggregate these individual preferences

into a single preference relation for the collection of people. Although this description is muchmore technical than our

everyday usage, the problem that we’ve described here is well known: it’s otherwise known as voting. (Economists

also call this topic the theory of social choice.) But voting systems are hard to design, for at least two distinct reasons:

1. Alice

2. Bob

3. Charlie

Xavier

1. Charlie

2. Alice

3. Bob

Yasmeen

1. Bob

2. Charlie

3. Alice

Zelda

Alice beats Bob
Xavier

Yasmeen

Zelda

Bob beats Charlie
Xavier

Zelda

Yasmeen

Charlie beats Alice
Yasmeen

Zelda

Xavier

Figure 8.19 The Condorcet paradox: in head-to-head
comparisons, Alice beats Bob, Bob beats Charlie, and
Charlie beats Alice (each time a 2-to-1 victory).

Aggregating preferences. Some troubling paradoxes

arise in voting problems, related to transitivity—or,

more precisely, to the absence of transitivity. Fig-

ure 8.19 gives an example, for a three-candidate

(Alice, Bob, Charlie) and three-voter (Xavier, Yas-

meen, Zelda) election. (This paradox also arises when

there are many more voters.) If the three voters have

preferences as shown in the figure, then, in head-

to-head runoffs between pairs of candidates, there’s

a “cycle” of winners. That’s pretty weird: we have

taken strict preferences (each of which is certainly

transitive!) from each of the voters, and aggregated them into a nontransitive set of societal preferences. This

phenomenon—no candidate would win a head-to-head vote against every other candidate—is called the Condorcet

paradox. (The Condorcet criterion declares the winner of a vote to be the candidate who would win a runoff election

against any other individual candidate. Here, no candidate satisfies the Condorcet criterion. Both of these notions are

named after the French philosopher/mathematician Marquis de Condorcet [rhymes with gone for hay] (1743–1794).)

The Condorcet paradox is troubling, but an even more troubling result says that, more or less, there’s no good way

of designing a voting system! Arrow’s Theorem, proven around 1950 by Kenneth Arrow (1921–2017)—an American

economist who won the 1972 Nobel Prize in Economics, largely for this theorem [10]—states that there’s no way

to aggregate individual preferences to society-level preferences in a way that’s consistent with three “obviously

desirable” properties of a voting system: (1) if every voter prefers candidate A to candidate B, then A beats B; (2)

there’s no “dictator” (a single voter whose preferences of the candidates directly determines the outcome of the vote);

and (3) “independence of irrelevant alternatives” (if candidate A beats B when candidate C is in the race, then A still

beats B if C were to drop out of the race). The simplest voting system is “plurality” (or “relative majority”) voting,

in which every voter chooses their preferred candidate, and the winner is whichever candidate gets the most votes.

But, increasingly, other voting schemes are used in some real-world elections, too: “ranked-choice” (or “instant-

runoff”) voting, where a voter ranks multiple candidates, or “Borda count” voting—named after Jean-Charles de

Borda (1733–1799)—in which candidates receive different numbers of “points” from each voter. But what Arrow’s

Theorem says is that all of these voting systems sometimes exhibit some undesirable property.

Collecting and verifying the counting of votes. There has been increasing attention in recent years to the hardware,

software, and procedures for the casting, processing, and tabulating of votes in elections. (In the U.S., this attention

began to intensify after the “butterfly ballot” controversy in Florida in the 2000 presidential election, and further

intensified during and after the 2020 presidential election. The design of the ballots themselves [did voters actually

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-39

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-39

record their intended candidate on their ballot?] was the focus in 2000—the kinds of questions of human factors

and usability that so often haunt software products, too; in 2020, the focus was more on the processes for acquiring,

casting, and counting ballots.) It has been a long-standing temptation to try to develop an electronic voting system,

perhaps using cryptographic protocols to enable individual voters to verify that their votes were cast and counted

as they were intended. But the crucial fact that ballots are meant to be secret makes the cryptographic setting very

different from traditional ones: if I can prove to you that my vote was recorded and counted for a particular candidate,

youwould be able to coerce or bribeme into voting in a particular way. Between this risk, and the inherent difficulty of

designing computer systems that are truly secure, there is a clear, strong consensus among cryptography and security

researchers advocating for (i) using paper ballots (and not electronic or, even worse, internet-based voting); and (ii)

using statistical means (and not cryptographic means) to audit election results [94].

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-40

8-40 Relations

Computer Science Connections

Regular Expressions

Regular expressions (sometimes called regexps or regexes for short) are a mechanism to express pattern-matching

searches in strings. (Their name is also a bit funny; more on that below.) Regular expressions are used by a number

of useful utilities on Unix-based systems, like grep (which prints all lines of a file that match a given pattern) and

sed (which can perform search-and-replace operations for particular patterns). And many programming languages

have a capability for regular-expression processing; they’re a tremendously handy tool for text processing.

regexp matched strings

A matches only the single character A

B matches only the single character B
...

Z matches only the single character Z

. any single character string

αβ any string xy where x matches α and y matches β

α | β any string x where x matches α or x matches β

α? any string that matches α or the empty string

α+ any string x1x2 . . . xk, with k ≥ 1, where each xi matches α

α* matches any string x1x2 . . . xk, with k ≥ 0, where each xi matches α

The + operator is roughly analogous to

transitive closure: α+ matches any string

that consists of one or more repetitions of

α—while ? is roughly analogous to the

reflexive closure and * to the reflexive

transitive closure. The only difference is

that here we’re combining repetitions by

concatenation rather than by composition.

Figure 8.20 Regular expressions: single characters, and regexp operators.

Let Σ be an alphabet of sym-

bols. (For convenience, think of

Σ = {A, B, . . . , Z}, but gener-

ally it’s the set of all ASCII char-

acters.) Let Σ∗ denote the set of

all finite-length strings of symbols

from Σ. (The ∗ notation echoes the

notation for the reflexive transitive

closure: Σ∗ is the set of elements

resulting from “repeating” Σ zero

or more times.) Some of the basic

syntax for regular expressions is

shown in Figure 8.20, which recur-

sively defines a relationMatches ⊆
Regexps× Σ∗, where certain strings match a given pattern. For example, {s : ⟨A*B+, s⟩ ∈ Matches} is precisely the

set of strings that can be written xy where ⟨A*, x⟩ and ⟨B+, y⟩ are in Matches. (And that means that strings like AB or

BBB or AAAAABBB, with any number of As and one or more Bs, matches the regular expression A*B+.) A few other

regexp operators correspond to the types of closures introduced in this section. There’s some other shorthand for

common constructions, too: for example, a list of characters in square brackets matches any of those characters (for

example, [AEIOU] is shorthand for (A|E|I|O|U)). (Other syntax allows a range of characters or everything but a

list of characters: for example, [A-Z] for all letters, and [^AEIOU] for consonants.)

W E I R D

G L A C I E R

.* (CIE|[^C]EI) .*

L E N G T H S

W I T C H C R A F T

.* [^AEIOU] [^AEIOU] [^AEIOU] [^AEIOU] [^AEIOU] .*

(a) (b)

F A C E T I O U S

A B S T E M I O U S

[^AEIOU]* A [^AEIOU]* E [^AEIOU]* I [^AEIOU]* O [^AEIOU]* U [^AEIOU]*

(c)

Figure 8.21 Three regular expressions, and two words that match each: (a)
violations of “I before E except after C”; (b) words with five consecutive
consonants; and (c) words with all five vowels, once each, in alphabetical order.

Figure 8.21 shows a few exam-

ples of regular expressions match-

ing words in a dictionary with some

vaguely interesting properties.

The odd-sounding name “reg-

ular expression” derives from a

related notion, called a regular lan-

guage. A language L ⊆ Σ∗ is

a subset of all strings; in the sub-

field of theoretical computer sci-

ence called formal language the-

ory, we’re interested in the dif-

ficulty of determining whether a

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-41

8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity 8-41

given string x ∈ Σ∗ is in L or

not, for a particular language L.

(Some example languages: the set

of words containing only type of

vowel, or the set of binary strings

with the same number of 1s and 0s.) A regular language is one for which it’s possible to determine whether x ∈ L

by reading the string from left to right and, at each step, remembering only a constant amount of information about

what you’ve seen so far. (The set of univocalic words is regular; the set of “balanced” bitstrings is not.)

(For a bit more on regular languages, regular expressions, and formal language theory see p. 8-59; for a lot more,

see a good textbook on computational complexity and formal languages, like [73] or [120].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-42

8-42 Relations

EXERCISES

8.51 Draw a directed graph representing the relation
{
⟨x, x2 mod 13⟩ : x ∈ Z13

}
.

8.52 Repeat for {⟨x, 3x mod 13⟩ : x ∈ Z15}.
8.53 Repeat for {⟨x, 3x mod 15⟩ : x ∈ Z15}.

Which of the following relations on {0, 1, 2, 3, 4} are reflexive? Irreflexive? Neither?

8.54
{
⟨x, x⟩ : x5 ≡5 x

}

8.55 {⟨x, y⟩ : x+ y ≡5 0}
8.56 {⟨x, y⟩ : there exists z such that x · z ≡5 y}
8.57

{
⟨x, y⟩ : there exists z such that x2 · z2 ≡5 y

}

Let R ⊆ A× A and T ⊆ A× A be relations. Prove or disprove:

8.58 Prove or disprove: R is reflexive if and only if R−1 is reflexive.

8.59 Prove or disprove: If R and T are both reflexive, then R ◦ T is reflexive.

8.60 Prove or disprove: If R ◦ T is reflexive, then R and T are both reflexive.

8.61 Prove or disprove: R is irreflexive if and only if R−1 is irreflexive.

8.62 Prove or disprove: If R and T are both irreflexive, then R ◦ T is irreflexive.

Which relations from Exercises 8.54–8.57 on {0, 1, 2, 3, 4} are symmetric? Antisymmetric? Asymmetric? Explain.

8.63
{
⟨x, x⟩ : x5 ≡5 x

}

8.64 {⟨x, y⟩ : x+ y ≡5 0}
8.65 {⟨x, y⟩ : there exists z such that x · z ≡5 y}
8.66

{
⟨x, y⟩ : there exists z such that x2 · z2 ≡5 y

}

Prove Theorem 8.8, connecting the symmetry/asymmetry/antisymmetry of a relation R to the inverse R−1 of R.

8.67 Prove that R is symmetric if and only if R ∩ R−1 = R = R−1.

8.68 Prove that R is antisymmetric if and only if R ∩ R−1 ⊆ {⟨a, a⟩ : a ∈ A}.
8.69 Prove that R is asymmetric if and only if R ∩ R−1 = ∅.

8.70 Be careful: it’s possible for a relation R ⊆ A× A to be both symmetric and antisymmetric! Describe, as precisely as possible, the

set of relations on A that are both.

8.71 Use Theorem 8.8 to argue that every asymmetric relation is also antisymmetric.

Consider three possibilities for a relation’s symmetry—symmetric, antisymmetric, and asymmetric—and also three possibilities

for its reflexiveness: it can be reflexive, irreflexive, or neither. For each combination, identify a relation on {0, 1} that satisfies the

given criteria, or, if the criteria are inconsistent, explain why there is no such relation.

8.72 a reflexive, symmetric relation on {0, 1}
8.73 a reflexive, antisymmetric relation on {0, 1}
8.74 a reflexive, asymmetric relation on {0, 1}
8.75 an irreflexive, symmetric relation on {0, 1}
8.76 an irreflexive, antisymmetric relation on {0, 1}
8.77 an irreflexive, asymmetric relation on {0, 1}
8.78 a symmetric relation on {0, 1} that’s neither reflexive nor irreflexive

8.79 an antisymmetric relation on {0, 1} that’s neither reflexive nor irreflexive

8.80 an asymmetric relation on {0, 1} that’s neither reflexive nor irreflexive

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-43

Exercises 8-43

Which relations from Exercises 8.54–8.57 on {0, 1, 2, 3, 4} are transitive? Explain.

8.81
{
⟨x, x⟩ : x5 ≡5 x

}
.

8.82 {⟨x, y⟩ : x+ y ≡5 0}.
8.83 {⟨x, y⟩ : there exists z such that x · z ≡5 y}.
8.84

{
⟨x, y⟩ : there exists z such that x2 · z2 ≡5 y

}
.

8.85 Prove that, if R is irreflexive and transitive, then R is asymmetric.

8.86 Prove Theorem 8.10: show that R is transitive if and only if R ◦ R ⊆ R.

8.87 Theorem 8.10 cannot be stated with an = instead of ⊆ (although I actually made this mistake in a previous draft of this chapter!).

Give an example of a transitive relation R where R ◦ R ⊂ R (that is, where R ◦ R ̸= R).

The following exercises describe a relation with certain properties. For each, say whether it is possible for a relation R ⊆ A × A

to simultaneously have all of the stated properties. If so, describe as precisely as possible what structure the relation R must have.

If not, prove that it is impossible.

8.88 Is it possible for R to be simultaneously symmetric, transitive, and irreflexive?

8.89 Is it possible for R to be simultaneously transitive and a function?

8.90 Identify all relations R on {0, 1} that are transitive.

8.91 Of the transitive relations on {0, 1} from Exercise 8.90, which are also reflexive and symmetric?

Consider the relation R = {⟨2, 4⟩, ⟨4, 3⟩, ⟨4, 4⟩} on the set {1, 2, 3, 4}.
Also consider the relation T = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 1⟩, ⟨2, 3⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 4⟩, ⟨4, 5⟩} on {1, 2, 3, 4, 5}.

8.92 What’s the reflexive closure of R?

8.93 What’s the symmetric closure of R?

8.94 What’s the transitive closure of R?

8.95 What’s the reflexive transitive closure of R?

8.96 What’s the reflexive symmetric transitive closure of R?

8.97 What’s the reflexive closure of T?

8.98 What’s the symmetric closure of T?

8.99 What’s the transitive closure of T?

8.100 What’s the symmetric closure of ≥?

The next few exercises ask you to implement relations (and the standard relation operations) in a programming language of your

choice. Don’t worry too much about efficiency in your implementation; it’s okay to run in time Θ(n3), Θ(n4) or even Θ(n5) when

relation R is on a set of size n.

8.101 (programming required.) Develop a basic implementation of relations on a set A. Also implement inverse (R−1) and composition

(R ◦ T).
8.102 (programming required.) Write functions reflexive?, irreflexive?, symmetric?, antisymmetric?, asymmetric?, and transitive?

to test whether a given relation R has the specified property.

8.103 (programming required.) Implement the closure algorithms (from Figure 8.17) for relations.

8.104 (programming required.) Using your implementation from Exercises 8.101–8.103, verify your answers to Exercises 8.72–8.80.

8.105 Prove that the transitive closure of R is indeed R+ = R ∪ R2 ∪ R3 ∪ · · ·, as follows: show that if S ⊇ R is any transitive relation,

then Rk ⊆ S. (We’d also need to prove that R+ is transitive, but you can omit this part of the proof. You may find a recursive

definition of Rk most helpful: R1 = R and Rk = R ◦ Rk−1.)

8.106 Give an example of a relation R ⊆ A× A, for a finite set A, such that the transitive closure of R contains at least c · |R|2 pairs, for

some constant c > 0. Make c as big as you can.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-44

8-44 Relations

8.107 Recall the relation successor =
{
⟨x, x+ 1⟩ : x ∈ Z≥0

}
. Prove by induction on k that, for any integer x and any positive integer

k, we have that ⟨x, x + k⟩ is in the transitive closure of successor. (In other words, you’re showing that the transitive closure of

successor is ≥. You cannot rely on the algorithm in Figure 8.17 because Z≥0 is not finite!)

8.108 We talked about the X closure of a relation R, for X being any nonempty subset of the properties of reflexivity, symmetry, and

transitivity. But we didn’t define the “antisymmetric closure” of a relation R—with good reason! Why doesn’t the antisymmetric

closure make sense?

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-45

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-45

8.4 Special Relations: Equivalence Relations and Partial/Total Orders

At the return of consciousness, that closed
Before the pity of those two relations,
Which utterly with sadness had confused me,

New torments I behold, and new tormented
Around me, whichsoever way I move,
And whichsoever way I turn, and gaze.

Dante Alighieri (1265–1321)
The Divine Comedy, “Inferno: Canto VI” (1320)

In Section 8.3, we introduced three key categories of properties that a particular relation R ⊆ A× A

might have: (ir)reflexivity, (a/anti)symmetry, and transitivity. Here we’ll consider relations R that have

one of two particular combinations of those three categories of properties. Two very different “flavors” of

relations emerge from these two particular constellations of properties.

The first special type of relation is an equivalence relation,which is reflexive, symmetric, and transitive.

Equivalence relations divide the elements of A into one or more groups of equivalent elements, so that all

elements in the same group are “the same” under R.

The second special type of relation is an order relation, which is antisymmetric, transitive, and either

reflexive or irreflexive. These relations “rank” the elements of A, so that some elements of A are “more R”

than others.

In this section, we’ll give formal definitions of these two types of relations, and look at a few applications.

8.4.1 Equivalence Relations

An equivalence relation R ⊆ A × A separates the elements of A into one or more groups, where any two

elements in the same group are equivalent according to R:

Definition 8.13: Equivalence relation.

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

The most important equivalence relation that you’ve seen is equality (=): certainly, for any objects a, b,

and c, we have that (i) a = a; (ii) a = b if and only if b = a; and (iii) if a = b and b = c, then a = c.

The relation sat in the same row as from Example 8.30 (see Figure 8.22a) is also an equivalence relation:

it’s reflexive (you sat in the same row as you yourself), symmetric (anyone you sat in the same row as also

sat in the same row as you), and transitive (you sat in the same row as anyone who sat in the same row as

someone who sat in the same row as you).

We’ve also previously seen another example in Example 8.11 (see Figure 8.22b for a reminder):

{⟨m1,m2⟩ : months m1 and m2 have the same number of days (in some years)}

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-46

8-46 Relations

(a) “In the same row as,”
from Example 8.30.

Jan

Mar

May

Jul

Aug Oct

Dec
Apr

JunSep

Nov

Feb

(b) The months-of-the-same-length relation, from
Example 8.11 and Figure 8.10b.





⟨0, 0⟩, ⟨0, 12⟩,
⟨1, 1⟩, ⟨1, 13⟩,

.

.

.
⟨11, 11⟩, ⟨11, 23⟩
⟨12, 0⟩, ⟨12, 12⟩
⟨13, 1⟩, ⟨13, 13⟩

.

.

.
⟨23, 11⟩, ⟨23, 23⟩





(c) Hours that are equivalent
on a clock.

Figure 8.22 Reminders of two equivalence relations, and one new equivalence relation.

is also an equivalence relation. It’s tedious but not hard to verify by checking all pairs that the relation is

reflexive, symmetric, and transitive. (See also Exercises 8.116–8.118.)

Here are a few more examples of equivalence relations:

Example 8.32: Some equivalence relations.

The set of pairs from {0, 1, . . . , 23} with the same representation on a 12-hour clock is an equivalence

relation. (See Figure 8.22c.)

The asymptotic relation Θ (that is, for two functions f and g, we have ⟨f, g⟩ ∈ Θ if and only if f is

Θ(g)) is an equivalence relation. Example 8.24, Example 8.25, and Exercise 6.46 established that Θ is

reflexive, symmetric, and transitive.

The relation ≡ on logical propositions, where P ≡ Q if and only if P and Q are true under precisely

the same set of truth assignments, is an equivalence relation. (We even used the word “equivalent” in

defining ≡, which we called logical equivalence back in Chapter 3.)

Example 8.33: All equivalence relations on a small set.

List all equivalence relations on the set {a, b, c}.

Solution. There are five different equivalence relations on this set:

{⟨a, a⟩, ⟨b, b⟩, ⟨c, c⟩} “no element is equivalent to any other”

{⟨a, a⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨b, b⟩, ⟨c, c⟩} “a and b are equivalent, but they’re different from c”

{⟨a, a⟩, ⟨a, c⟩, ⟨b, b⟩, ⟨c, a⟩, ⟨c, c⟩} “a and c are equivalent, but they’re different from b”

{⟨a, a⟩, ⟨b, b⟩, ⟨b, c⟩, ⟨c, b⟩, ⟨c, c⟩} “b and c are equivalent, but they’re different from a”

{⟨a, a⟩, ⟨a, b⟩, ⟨a, c⟩, ⟨b, a⟩, ⟨b, b⟩, ⟨b, c⟩, ⟨c, a⟩, ⟨c, b⟩, ⟨c, c⟩} . “all elements are equivalent”

Taking it further: A deterministic finite automaton (DFA) is a simple model of a so-called “machine” that has a finite amount

of memory, and processes an input string by moving from state to state according to a fixed set of rules. DFAs can be used for a

variety of applications (for example, in computer architecture, compilers, or in modeling simple behavior in computer games).

And they can also be understood in terms of equivalence relations. See p. 8-59.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-47

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-47

Equivalence classes

The descriptions of the quintet of equivalence relations on the set {a, b, c} from Example 8.33 makes more

explicit the other way that we’ve talked about an equivalence relation R on A: as a relation that carves up

A into one or more equivalence classes, where any two elements of the same equivalence class are related

by R (and no two elements of different classes are). Here’s the formal definition:

Definition 8.14: Equivalence class.

Let R ⊆ A × A be an equivalence relation. The equivalence class of a ∈ A is defined as the set

{b ∈ A : ⟨a, b⟩ ∈ R} of elements related to A under R. The equivalence class of a ∈ A under R is denoted

by [a]R—or, when R is clear from context, just as [a].

The equivalence classes of an equivalence relation on A form a partition of the set A—that is, every element

of A is in one and only one equivalence class. (See Definition 2.32 for the definition of a partition.)

Example 8.34: Equivalent mod 5.

Define the relation ≡5 on Z, so that ⟨x, y⟩ ∈ ≡5 if and only if x mod 5 = y mod 5. All three require-

ments of equivalence relations (reflexivity, symmetry, and transitivity) are met; see Examples 8.18, 8.20,

and 8.23. There are five equivalence classes under ≡5:

{0, 5, 10, . . .} , {1, 6, 11, . . .} , {2, 7, 12, . . .} , {3, 8, 13, . . .} , and {4, 9, 14, . . .} ,

corresponding to the five possible values mod 5.

Example 8.35: Some equivalence classes.

The five different equivalence relations on {a, b, c} in Example 8.33 correspond to five different sets of

equivalence classes:

{
{a} , {b} , {c}

}
“no element is equivalent to any other”

{
{a, b} , {c}

}
“a and b are equivalent, but they’re different from c”

{
{a, c} , {b}

}
“a and c are equivalent, but they’re different from b”

{
{a} , {b, c}

}
“b and c are equivalent, but they’re different from a”

{
{a, b, c}

}
. “all elements are equivalent”

An example: equivalence of rational numbers

Back in Chapter 2, we defined the rational numbers (that is, fractions) as the set Q = Z× Z ̸= 0: a rational

number is a two-element sequence of integers (the numerator and the denominator, respectively), where

the denominator is nonzero. (See Example 2.39.) But we haven’t yet really talked about the fact that two

rational numbers like ⟨17, 34⟩ and ⟨101, 202⟩ are equivalent, in the sense that 17
34 = 101

202 = 1
2 . Let’s do that:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-48

8-48 Relations

Example 8.36: Equivalence of rationals by reducing to lowest terms.

Formally define a relation ≡ on Q that captures the notion of equality for fractions, and prove that ≡ is

an equivalence relation.

Solution.We define two rationals ⟨a, b⟩ and ⟨c, d⟩ as equivalent if and only if ad = bc—that is, we define

the relation ≡ as the set
{〈
⟨a, b⟩, ⟨c, d⟩

〉
: ad = bc

}
.

To show that ≡ is an equivalence relation, we must prove that ≡ is reflexive, symmetric, and transitive.

These three properties follow fairly straightforwardly from the fact that the relation = on integers is an

equivalence relation. We’ll prove symmetry: for arbitrary ⟨a, b⟩ ∈ Q and ⟨c, d⟩ ∈ Q, we have

⟨a, b⟩ ≡ ⟨c, d⟩ ⇒ ad = bc definition of ≡

⇒ bc = ad symmetry of =

⇒ ⟨c, d⟩ ≡ ⟨a, b⟩. definition of ≡

(Reflexivity and transitivity can be proven analogously.)

Taking it further: Recall that the equivalence class of a rational ⟨a, b⟩ ∈ Q under ≡, denoted [⟨a, b⟩]≡, represents the set of all

rationals equivalent to ⟨a, b⟩. For example,

[⟨17, 34⟩]≡ = {⟨1, 2⟩, ⟨−1,−2⟩, ⟨2, 4⟩, ⟨−2,−4⟩, . . . , ⟨17, 34⟩, . . .} .

For equivalence relations like ≡ for Q, we may agree to associate an equivalence class with a canonical element of that class—

here, the representative that’s “in lowest terms.” So we might agree to write ⟨1, 2⟩ to denote the equivalence class [⟨1, 2⟩], for
example. This idea doesn’t matter too much for the rationals, but it plays an important (albeit rather technical) role in figuring

out how to define the real numbers in a mathematically coherent way. One standard way of defining the real numbers is as the

equivalence classes of converging infinite sequences of rational numbers, called Cauchy sequences after the French mathemati-

cian Augustin Louis Cauchy (1789–1857). (Two converging infinite sequences of rational numbers are defined to be equivalent if

they converge to the same limit—that is, if the two sequences eventually differ by less than ϵ, for all ϵ > 0.) Thus when we write

π, we’re actually secretly denoting an infinitely large set of equivalent converging infinite sequences of rational numbers—but

we’re representing that equivalence class using a particular canonical form. Actually producing a coherent definition of the real

numbers is a surprisingly recent development in mathematics, dating back less than 150 years. For more, see a good textbook on

the subfield of math called analysis. (One classic book: [109].)

Coarsening and refining equivalence relations

An equivalence relation≡ onA slices up the elements ofA into equivalence classes—that is, disjoint subsets

of A such that any two elements of the same class are related by ≡. For example, you might consider two

restaurants equivalent if they serve food from the same cuisine (Thai, Indian, Ethiopian, Chinese, British,

Minnesotan, . . .). But, given ≡, we can imagine further subdividing the equivalence classes under ≡ by

making finer-grained distinctions (that is, refining≡)—perhaps dividing Indian into North Indian and South

Indian, and Chinese into Americanized Chinese and Authentic Chinese. Or we could make≡ less specific

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-49

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-49

(a) An equivalence relation ≡. Dots
represent elements; each region
denotes an equivalence class under ≡.

(b) A coarsening of ≡: a new
equivalence relation formed by
merging equivalence classes from ≡.

(c) A refinement of ≡: a new
equivalence relation formed by
subdividing ≡’s equivalence classes.

Figure 8.23 Refining/coarsening an equivalence relation.

(that is, coarsening ≡) by combining some equivalence classes—perhaps having only two equivalence

classes, Delicious (Thai, Indian, Ethiopian, Chinese) and Okay (British, Minnesotan). See Figure 8.23.

Definition 8.15: Coarsening/refining equivalence relations.

Consider two equivalence relations ≡c and ≡r on the same set A. We say that ≡r is a refinement of ≡c,

or that ≡c is a coarsening of ≡r, if (a ≡r b)⇒ (a ≡c b) for any ⟨a, b⟩ ∈ A× A. We can also refer to ≡c

as coarser than ≡r, and ≡r as finer than ≡c.

For example, equivalence mod 10 is a refinement of equivalence mod 5: whenever n mod 10 = m mod

10 we know for certain that it will be the case that n mod 5 = m mod 5 too. (In other words, we have

(n ≡10 m)⇒ (n ≡5 m).) An equivalence class of the coarser relation is formed from the union of one

or more equivalence classes of the finer relation. Here ≡10 is a refinement of ≡5, and, for example, the

equivalence class [3]≡5 is the union of two equivalence classes from ≡10, namely [3]≡10 ∪ [8]≡10 .

Example 8.37: Refining/coarsening equivalence relations on {a, b, c}.
In Example 8.35, we considered five different equivalence relations on {a, b, c}:

{{a} , {b} , {c}}
finest

{{a, b} , {c}} {{a, c} , {b}} {{a} , {b, c}} {{a, b, c}}
coarsest

Of these, all three equivalence relations in the middle refine the one-class equivalence relation {{a, b, c}}
and coarsen the three-class equivalence relation {{a} , {b} , {c}}. (And the three-class equivalence

relation {{a} , {b} , {c}} also refines the one-class equivalence relation {{a, b, c}}.)

Taking it further: This is a very meta comment—sorry!—but we can think of “is a refinement of” as a relation on equivalence

relations on a set A. In fact, the relation “is a refinement of” is reflexive, antisymmetric, and transitive:≡ refines≡; if≡1 refines

≡2 and ≡2 refines ≡1 then ≡1 and ≡2 are precisely the same relation on A; and if ≡1 refines ≡2 and ≡2 refines ≡3 then ≡1

refines≡3. Thus “is a refinement of” is, as per the definition to follow in the next section, a partial order on equivalence relations

on the set A. That means, for example, that there is a minimal element according to the “is a refinement of” relation on the set of

equivalence relations on any finite set A—that is, an equivalence relation≡min such that≡min is refined by no relation aside from

≡min itself. (Similarly, there’s a maximal relation ≡max that refines no relation except itself.) See Exercises 8.119 and 8.120.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-50

8-50 Relations

8.4.2 Partial and Total Orders

An equivalence relation ≡ on a set A has properties that “feel like” a form of equality—differing from =

only in that there might be multiple elements that are unequal but nonetheless cannot be distinguished by

≡. Here we’ll introduce a different special type of relation, more akin to ≤ than =, that instead describes

a consistent order among the elements of A:

Definition 8.16: Partial order.
Let A be a set. A relation ⪯ on A that is reflexive, antisymmetric, and transitive is called a partial order.

(A relation ≺ on A that is irreflexive, antisymmetric, and transitive is called a strict partial order.)

(Actually, the requirement of antisymmetry in a strict partial order is redundant; see Exercise 8.85.) Here

are a few examples, from arithmetic and sets:

Example 8.38: Some (strict) partial orders on Z: |, >, and ≤.
In Examples 8.18, 8.20, and 8.23, we showed that the following relations are all antisymmetric, transitive,

and either reflexive or irreflexive:

• divides (reflexive): R1 = {⟨n,m⟩ : m mod n = 0} is a partial order.

• greater than (irreflexive): R2 = {⟨n,m⟩ : n > m} is a strict partial order.

• less than or equal to (reflexive): R3 = {⟨n,m⟩ : n ≤ m} is a partial order.

Example 8.39: The subset relation.

Consider the relation ⊆ on the set P({0, 1}), which consists of the pairs of sets shown in Figure 8.24a.

It’s tedious but not hard to verify that ⊆ is reflexive, antisymmetric, and transitive. (Perhaps the easiest

way to see this fact is via Figure 8.24b, which abbreviates the visualizations in Figure 8.10 by leaving out

an a-to-c arrow if their relationship is implied by transitivity because of a-to-b and b-to-c arrows. We’ll

see more of this type of abbreviated diagram in a moment.)

Comparability and total orders

In a partial order ⪯, there can be two elements a, b ∈ A such that neither a ⪯ b nor b ⪯ a: for the subset

relation from Example 8.39 we have {0} ̸⊆ {1} and {1} ̸⊆ {0}, and for the divides relation we have 17 ̸ |21
and 21 ̸ |17. In this case, the relation⪯ does not say which of these elements is “smaller.” This phenomenon

is the reason that ⪯ is called a partial order, because it only specifies how some pairs compare.

Definition 8.17: Comparability.

Let ⪯ be a partial order on A. We say that two elements a ∈ A and b ∈ A are comparable under ⪯ if

either a ⪯ b or b ⪯ a. Otherwise we say that a and b are incomparable.

When there are no incomparable pairs under ⪯, then we call ⪯ a total order:

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-51

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-51

(a) {} ⊆ {0} {} ⊆ {1} {} ⊆ {0, 1}
{0} ⊆ {0} {0} ⊆ {0, 1}
{1} ⊆ {1} {1} ⊆ {0, 1}

{0, 1} ⊆ {0, 1}

{0, 1}

{0} {1}

{}

For any A ∈ P(0, 1) and any
B ∈ P(0, 1), we have that
A ⊆ B if and only if we can get
from A to B by following zero or
more arrows in this diagram.

(b)

Figure 8.24 The ⊆ relation on P({0, 1}): (a) all 8 pairs of sets in the ⊆ relation, and (b) a diagrammatic
representation.

Definition 8.18: Total order.
A relation ⪯ on A is a total order if it’s a partial order and every pair of elements in A is comparable. (A

relation ≺ is a strict total order if ≺ is a strict partial order and every pair of distinct elements in A is

comparable.)

Warning! It’s easy to get muddled about incomparability because of common-language use of the word that’s related to the

technical definition but misleadingly different. In everyday usage, people may say “incomparable” (or “beyond compare”) to

mean “unequaled”—as in Cheese from France is incomparable to cheese from Wisconsin. Be careful! In the context of our work,

“incomparable” means “cannot be compared” and not “cannot be matched.”

A few examples of partial and total orders

Here are a few examples of orders, related to strings and to asymptotics:

Example 8.40: Ordering strings.

Which of the following relations (on the set of all [finite-length] strings of letters) are partial orders?

Which are total orders? Of those that are partial or total orders, which are strict?

⟨x, y⟩ ∈ R if |x| ≥ |y|. (The length of a string x—the number of letters in x—is denoted |x|.)
⟨x, y⟩ ∈ S if x comes alphabetically no later than y. (See Example 3.48.)

⟨x, y⟩ ∈ T if the number of As in x is smaller than the number of As in y.

Solution. String length. The relation {⟨x, y⟩ : |x| ≥ |y|} is reflexive and transitive, but it is not antisym-

metric: for example, both ⟨PASCAL, RASCAL⟩ and ⟨RASCAL, PASCAL⟩ are in the relation, but RASCAL ̸=
PASCAL. So this relation isn’t a partial order.

Alphabetical order. The relation “comes alphabetically no later than” is reflexive (every word w comes

alphabetically no later than w), antisymmetric (the only word that comes alphabetically no later than w

and no earlier than w is w itself), and transitive (if w1 is alphabetically no later than w2 and w2 is no later

than w3, then indeed w1 is no later than w3). Thus S is a partial order.

In fact, any two words are comparable under S: either w is a prefix of w′ (and ⟨w,w′⟩ ∈ S) or there’s

a smallest index i in which wi ̸= w′
i (and either ⟨w,w′⟩ ∈ S or ⟨w′,w⟩ ∈ S, depending on whether wi is

earlier or later in the alphabet than w′
i). Thus S is actually a total order.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-52

8-52 Relations

Number of As. The relation “contains fewer As than” is irreflexive (any word w contains exactly the same

number of As as it contains, not fewer than that!) and transitive (if we have aw < aw′ and aw′ < aw′′ ,

then we also have aw < aw′′). Therefore the relation is antisymmetric (by Exercise 8.85), and thus T is a

strict partial order. But neither ⟨PASCAL, RASCAL⟩ nor ⟨RASCAL, PASCAL⟩ are in T—both words contain

two As, so neither has fewer than the other—and thus RASCAL and PASCAL are incomparable, and T is not

a (strict) total order.

Example 8.41: O and o as orders.

We’ve argued that o is irreflexive (Example 8.24), transitive (Exercise 6.47), and asymmetric (Exam-

ple 8.25). Thus o is a strict partial order. But o is not a (strict) total order: we saw a function f(n) in

Example 6.6 such that f(n) ̸= o(n2) and n2 ̸= o(f(n)), so these two functions are incomparable.

And, though we showed that O is reflexive and transitive (Exercise 6.18), we showed that O is not

antisymmetric (Example 8.25), because, for example, the functions f(n) = n2 and g(n) = 2n2 are O of

each other. Thus O is not a partial order.

Taking it further: A relation like O that is both reflexive and transitive (but not necessarily antisymmetric) is sometimes called

a preorder. Although O is not a partial order, it very much has an “ordering-like” feel to it: it does rank functions by their growth

rate, but there are clusters of functions that are all equivalent under O. We can think of O as defining a partial order on the

equivalence classes under Θ. We saw another preorder in Example 8.40, with the relation R (“x and y have the same length”):

although there are many pairs of distinct strings x and y where ⟨x, y⟩ ∈ R and ⟨y, x⟩ ∈ R, it is only because of ties in lengths that

R fails to be a partial order—or, indeed, a total order.

Hasse diagrams

Let R be any relation on A. For k ≥ 1, we will call a sequence ⟨a1, a2, . . . , ak⟩ ∈ Ak a cycle if

⟨a1, a2⟩, ⟨a2, a3⟩, · · · , ⟨ak−1, ak⟩ ∈ R and ⟨ak, a1⟩ ∈ R. A cycle is a sequence of elements, each of which is

related by R to the next element in the sequence (where the last element is related to the first). For a partial

order ⪯, there are cycles with k = 1 (because a partial order is reflexive, a1 ⪯ a1 for any a1), but there are

no longer cycles. (See Exercise 8.133.)

Recall the “directed graph” visualization of a relation R ⊆ A × A that we introduced earlier (see Fig-

ure 8.10): we write down every element of A, and then, for every pair ⟨a1, a2⟩ ∈ R, we draw an arrow from

a1 to a2. For a relation R that’s a partial order, we’ll introduce a simplified visualization, called a Hasse

diagram, that allows us to figure out the full relation R but makes the diagram dramatically cleaner. (Hasse

diagrams are named after Helmut Hasse (1898–1979), a German mathematician.)

Let ⪯ be a partial order. Consider three elements a, b, and c such that a ⪯ b and b ⪯ c and a ⪯ c.

Then the very fact that ⪯ is a partial order means that a ⪯ c can be inferred from the fact that a ⪯ b

and b ⪯ c. (That’s just transitivity.) Thus we will omit from the diagram any arrows that can be inferred

via transitivity. Similarly, we will leave out self-loops, which can be inferred from reflexivity. Finally, as

we discussed above, there are no nontrivial cycles (that is, there are no cycles other than self-loops) in a

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-53

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-53





⟨0, 0⟩, ⟨0, 1⟩, ⟨0, 2⟩, ⟨0, 3⟩, ⟨0, 4⟩,
⟨1, 1⟩,
⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,
⟨3, 3⟩, ⟨3, 4⟩,
⟨4, 4⟩





0

1 2

3

4 Note that we’ve omitted all arrow directions (they
all point up), all five self-loops (they can be
inferred from reflexivity), and the pairs ⟨0, 3⟩,
⟨0, 4⟩, and ⟨2, 4⟩ (they can be inferred from
transitivity).

(b)(a)

Figure 8.25 (a) A partial order, and (b) a Hasse diagram representing it.

partial order. Thus we will arrange the elements so that when a ⪯ b we will draw a physically below b in

the diagram; all arrows will implicitly point upward in the diagram.

A small partial order, and a Hasse diagram for it, are shown in Figure 8.25. Here is a somewhat larger

example:

Example 8.42: Hasse diagram for divides.

A Hasse diagram for the relation | (divides) on the set {1, 2, . . . , 32} is shown in Figure 8.26. Again, the

diagram omits arrow directions, self-loops, and “indirect” connections that can be inferred by transitivity.

For example, the fact that 2 | 20 is implicitly represented by the arrows 2→ 4→ 20 (or 2→ 10→ 20).

Which arrows must be shown in a Hasse diagram? We must include all arrows that cannot be inferred

by the definition of a partial order—in other words, we must draw a direct connections for all those rela-

tionships that are not “short circuits” of pairs of other relationships. In other words, we must draw lines for

1

2 3 5 7 11 13 17 19 23 29 31

4 6 9 10 14 15 21 22 25 26

8 12 18 20 27 28 30

16 24

32

Figure 8.26 A Hasse diagram for “divides” on {1, 2, . . . , 32}. The darker lines represent the Hasse diagram; the
lighter arrows give the full picture of the relation, including all of the relationships that can be inferred from the fact that
the relation is a partial order.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-54

8-54 Relations

all those pairs ⟨a, c⟩ where a ⪯ c and there is no b /∈ {a, c} such that a ⪯ b and b ⪯ c. Such a c is called

an immediate successor of a.

Warning!When a ⪯ b holds for a partial order⪯, we think of a as “smaller” than b under⪯—a view that can be a little misleading

if, for example, the partial order in question is ≥ instead of ≤. One example of this oddity: for ≥, the immediate successor of 42

is 41.

Minimal/maximal elements in a partial order

Consider the partial order ⪯ = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 2⟩, ⟨2, 4⟩, ⟨3, 3⟩, ⟨4, 4⟩}—that is, the

divides relation on the set {1, 2, 3, 4}. There’s a strong sense in which 1 is the “smallest” element under

⪯: every element a satisfies 1 ⪯ a. And there’s a slightly weaker sense in which 3 and 4 are both “largest”

elements under⪯: no element a satisfies 3 ⪯ a or 4 ⪯ a. These ideas inspire two related pairs of definitions:

Definition 8.19: Minimum/maximum element.
For a partial order ⪯ on A:

• a minimum element is x ∈ A such that, for every y ∈ A, we have x ⪯ y.

• a maximum element is x ∈ A such that, for every y ∈ A, we have y ⪯ x.

Definition 8.20: Minimal/maximal element.
For a partial order ⪯ on A:

• a minimal element is x ∈ A such that, for every y ∈ A with y ̸= x, we have y ̸⪯ x.

• a maximal element is x ∈ A such that, for every y ∈ A with y ̸= x, we have x ̸⪯ y.

A maximal whatzit is any whatzit that loses its whatzitness if we add anything to it. A maximum whatzit is the largest possible

whatzit. If you’ve studied calculus, you’ve seen a similar distinction under a different name: maximal corresponds to a local

maximum; maximum corresponds to a global maximum.

Note that x being a minimal element does not demand that every other element be larger than x—only that

no element is smaller! (Again, we’re talking about a partial order—so x ̸⪯ y doesn’t imply that y ⪯ x.)

In other words, a minimal element is one for which every other element y either satisfies x ⪯ y or is

incomparable to x.

Example 8.43: Minimal/maximal/maximum/minimum elements in “divides”.

For the divides relation on {1, 2, . . . , 32} (Example 8.42 and Figure 8.26):

• 1 is a minimum element. (Every n ∈ {1, 2, . . . , 32} satisfies 1 | n.)
• 1 is also a minimal element. (No n ∈ {1, 2, . . . , 32} satisfies n | 1, except n = 1 itself.)

• There is no maximum element. (No n ∈ {1, 2, . . . , 32} aside from 32 satisfies n | 32, so 32 is the only

candidate—but 31 ̸ | 32.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-55

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-55

• There are a slew of maximal elements: each of {17, 18, . . . , 32} is a maximal element. (None of these

elements divides any n ∈ {1, 2, . . . , 32} other than itself.)

(You’ll prove that any minimum element is also minimal, and that there can be at most one minimum

element in a partial order, in Exercises 8.148 and 8.149.)

We’ve already seen some small partial orders that don’t have minimum or maximum elements, but every

partial order over a finite set must have at least one minimal element and at least one maximal element:

Theorem 8.21: Every (finite) partial order has a minimal/maximal element.

Let ⪯ ⊆ A× A be a partial order on a finite set A. Then ⪯ has at least one minimal element and at least

one maximal element.

Proof. We’ll prove that there’s a minimal element; the proof for the maximal element is analogous. Our

proof is constructive; we’ll give an algorithm to find a minimal element:

• let i := 1, and let x1 be an arbitrarily chosen element in A.

• while there exists any y ̸= xi with y ⪯ xi:

let xi+1 be any such y (that is, one with y ̸= xi and y ⪯ xi), and then let i := i+ 1.

• return xi.

It’s not too hard to see that if this algorithm terminates, then it returns a minimal element. After all, the

while loop only terminates when we’ve found an xi ∈ A such that there’s no y ̸= xi with y ⪯ xi—which is

precisely the definition of xi being a minimal element. Thus the real work is in proving that this algorithm

actually terminates.

We claim that after |A| iterations of the while loop—that is, after we’ve defined x1, x2, . . . , x|A|+1—we

must have found a minimal element. Suppose not. Then we have found elements x1 ⪰ x2 ⪰ · · · ⪰ x|A|+1,

where xi+1 ̸= xi for each i. Because there are only |A| different elements in A, in a sequence of |A| + 1

elements we must have encountered the same element more than once. (This argument implicitly makes

use of the pigeonhole principle, which we’ll see in much greater detail in Chapter 9.) But that’s a cycle

containing two or more elements! And Exercise 8.133 asks you to show that there are no such cycles in a

partial order.

Note that Theorem 8.21 only claimed that a minimal element must exist in a partial order on a finite set

A. The claim would be false without that assumption! If A is an infinite set, then there may be no minimal

element in A under a partial order. (See Exercise 8.146.)

We can identify minimal and maximal elements of a partial order directly from the Hasse diagram:

they’re simply the elements that aren’t connected to anything above them (the maximal elements), and

those that aren’t connected to anything below them (the minimal elements). And, indeed, there are

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-56

8-56 Relations

always topmost element(s) and bottommost element(s) in a Hasse diagram, and thus there are always

maximal/minimal elements in any partial order—if the set of elements is finite, at least!

Problem-solving tip: A good visualization of data can make an apparently complicated statement much simpler. Another way to

state Theorem 8.21 and its proof: start anywhere, and follow lines downward in the Hasse diagram; eventually, you must run out

of elements below you, and you can’t go any lower. Thus there’s at least one bottommost element in any (finite) Hasse diagram.

8.4.3 Topological Ordering

Partial orders can be used to specify constraints on the order in which certain tasks must be completed:

the printer must be loaded with paper before the document can be printed; the document must be written

before the document can be printed; the paper must be purchased before the printer can be loaded with

paper. Or, as another example: a computer science major at a certain college must take courses following

the prerequisite structure specified in Figure 8.27.

But, while these types of constraints impose on a partial order on elements, the tasks must actually be

completed in some sequence. (Likewise, the courses must be taken in some sequence—for a major who

avoids “doubling up” on CS courses in the same term, at least.) The challenge we face is to extend a partial

order into a total order—that is, to create a total order that obeys all of the constraints of the partial order,

while making comparable all previously incomparable pairs.

Definition 8.22: Consistency of a total order with a partial order.

A total order ⪯total is consistent with the partial order ⪯ if a ⪯ b implies that a⪯total b.

In general, there are many total orders that are consistent with a given partial order. Here’s an example:

Example 8.44: Ordering CS classes.

Here are two (of many!) course orderings that are consistent with the prerequisites in Figure 8.27:

Order A: (1) intro to CS, (2) data structures, (3) math of CS, (4) intro to computer systems, (5) software design,

(6) programming languages, (7) algorithms, and (8) computability & complexity.

Order B: (1) intro to CS, (2) data structures, (3) software design, (4) programming languages, (5) math of CS,

(6) algorithms, (7) computability & complexity, (8) intro to computer systems.

Order A corresponds to reading the elements of the Hasse diagram from the bottom-to-top (and left-

to-right within a “row”); Order B corresponds to completing the top row left-to-right (first recursively

completing the requirements to make the next element of the top row valid).

As in these examples, we can construct a total order that’s consistent with any given partial order on the

set A. Such an ordering of A is called a topological ordering of A. (Some people will refer to a topological

ordering as a topological sort of A.) We’ll prove this result inductively, by repeatedly identifying a minimal

element a from the set of unprocessed elements, and then adding constraints to make a be a minimum

element (and not just a minimal element).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-57

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-57

intro to CS

data structures math of CS intro to
computer systems

software design programming
languages

algorithms computability &
complexity

Figure 8.27 The CS major at a certain college in the midwest.

a∗

1 Identify some
minimal element a∗ in ⪯.

a∗

2 Turn a∗ into a
minimum element by
adding constraints (the
thick, dark lines).

a∗

3 Inductively, find a
total ordering of the
remaining partial order
(the shaded box).

Figure 8.28 A sketch of the proof of Theorem 8.23.

Theorem 8.23: Extending any partial order to a total order.

Let A be a finite set with a partial order⪯. Then there is a total order⪯total on A that’s consistent with⪯.

Proof. We’ll proceed by induction on |A|.
For the base case (|A| = 1), the task is trivial: there’s simply nothing to do! The relation ⪯ must be

{⟨a, a⟩}, where A = {a}, because partial orders are reflexive. And the relation {⟨a, a⟩} is a total order on

{a} that’s consistent with ⪯.
For the inductive case (|A| ≥ 2), we assume the inductive hypothesis (for any set A′ of size |A′| = |A|−1

and any partial order on A′, there’s a total order on A′ consistent with that partial order). We must show

how to extend⪯ to be a total order on all of A. Here’s the idea: we’ll remove some element of A that can go

first in the total order, inductively find a total order of all the remaining elements, and then add the removed

element to the beginning of the order.

More specifically, let a∗ ∈ A be an arbitrary minimal element under ⪯ on A—in other words, let a∗

be any element such that no b ∈ A − {a∗} satisfies b ⪯ a∗. Such an element is guaranteed to exist

by Theorem 8.21. Add any missing pair ⟨a∗, b⟩ to ⪯. After the additions, the relation ⪯ is still a partial

order on A: by the definition of a minimal element, we haven’t introduced any violations of transitivity or

antisymmetry. Now, inductively, we extend the partial order ⪯ on A− {a∗} to a total order; the result is a

total order on A that’s consistent with ⪯. (See Figure 8.28.)

(Slightly more formally: define ⪯′ as the relation ⪯ ∩ (A− {a∗})× (A− {a∗}), which is ⪯ restricted

to A− {a∗}. Then ⪯′ is a partial order on A− {a∗}; by the inductive hypothesis, there exists a total order

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-58

8-58 Relations

⪯′
total on A− {a∗} consistent with ⪯′. Define

⪯total = ⪯′
total ∪ {⟨a∗, y⟩ : y ∈ A} .

It’s not too hard to verify that ⪯total is a total order on A that’s consistent with ⪯.)

Taking it further: Deciding the order in which to compute the cells of a spreadsheet (where a cell might depend on a list of

other cells’ contents) is solved using a topological ordering. In this setting, let C denote the set of cells in the spreadsheet, and

define a relation R ⊆ C × C where ⟨c, c′⟩ ∈ R if we need to know the value in cell c before we can compute the value for

c′. (For example, if cell C4’s value is determined by the formula A1 + B1 + C1, then the three pairs ⟨A1, C4⟩, ⟨B1, C4⟩, and
⟨C1, C4⟩ are all in R. Note that it’s not possible to compute all the values in a spreadsheet if there’s a cell x whose value depends

on cell y, which depends on · · · , which depends on cell x—in other words, the “depends on” relationship cannot have a cycle!

Furthermore, we’re in trouble if there’s a cell x whose value depends on x itself. In other words, we can compute the values in a

spreadsheet if and only if R is irreflexive and transitive—that is, if R is a strict partial order.

Another problem that can be solved using the idea of topological ordering is that of hidden-surface removal in computer graphics:

we have a 3-dimensional “scene” of objects that we’d like to display on a 2-dimensional screen, as if it were being viewed from a

camera.We need to figure out which of the objects are invisible from the camera (and therefore need not be drawn) because they’re

“behind” other objects. One classic algorithm, called the painter’s algorithm, solves this problem using ideas from relations and

topological ordering. See p. 8-61.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-59

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-59

Computer Science Connections

Deterministic Finite Automata (DFAs)

Σ = {0, 1}
Q = {a, b, c,win, lose}
δ is defined by this table:

0 1
a b c

b win lose
c lose win
win win win
lose lose lose

If you’re currently

in state a and the

input symbol is a

1, then move to

state c.the start state is a

win is the (only) final state

a

b

c

win

lose

0

1

0

11
0

0, 1

0, 1

The start state is marked with an unattached

incoming arrow; from state q on input symbol a,

the arrow leaving q with label a points to δ(q, a).

Final states are circled.

Figure 8.29 A DFA accepting all bitstrings whose first two symbols
are the same—both by defining all five components, and by a picture.

As we hinted at previously (see the discus-

sion of regular expressions on p. 8-40), there

are some interesting computational applica-

tions of finite-state machines, a formal model

for a computational device that uses a fixed

amount ofmemory to respond to input. Varia-

tions on these machines can be used in build-

ing very simple characters in a video game,

in computer architecture, in software systems

to do automatic speech recognition, and other

tasks. They can also identify which strings

match a given regular expression—in fact,

for a set of strings L, there exists a finite-

state machineM that recognizes precisely the

strings in L if and only if there’s a regular expression α that matches precisely the strings in L. Formally, a

deterministic finite automaton (DFA)—the simplest version of a finite-state machine—is defined by five things:

• a finite set Σ (the alphabet) that defines the set of input symbols the machine can handle;

• a finite set Q (the states); the machine is always in one of these states. (The fact that Q is finite corresponds to M

having only finite memory.)

• a function δ : Q×Σ → Q (the transition function): when the machine is in state q ∈ Q and sees an input symbol

a ∈ Σ, the machine moves into state δ(q, a).

• a start state s ∈ Q, the state in which the machine begins before having seen any input.

• a set F ⊆ Q of final states. If, after processing a string x, the machine ends up in a state q ∈ F, then the machine

accepts x; if it ends in a state q /∈ F, then the machine rejects x.

An example of a DFA that accepts all bitstrings whose first two symbols are the same is shown in Figure 8.29.

0 1

1

1 0

0

The input is

divisible by three

if and only if we

end up in the

leftmost state.

Figure 8.30 A DFA for bitstrings representing multiples of 3.

We can also understand DFAs—and the

sorts of sets of strings that they can

recognize—by thinking about equivalence

relations. To see this connection, suppose

we’re trying to identify binary strings repre-

senting integers that are multiples of 3. (So

11 and 1001 and 1111 are all “yes” because

3 | 3 and 3 | 9 and 3 | 15, but 10001 is “no”

because 3 ̸ | 17.) Here’s one way to solve this problem. Let’s define an equivalence relation on binary strings, where

x ≡ y if and only if, for any bitstring z, we have that (xz is divisible by 3) ⇔ (yz is divisible by 3). In other words,

two bitstrings x and y are equivalent if, no matter what additional bitstring suffix we add to both of them, the two

resulting bitstrings are either both divisible by three or both not divisible by three. For example, it turns out that

11 ≡ 1001 (11 and 1001 are both ’yes’; 110 and 10010 are both ’yes’; 111 and 10011 are both ’no’; 1110 and

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-60

8-60 Relations

100010 are both ’no’; etc.). Similarly, we have 1000 ≡ 10. It’s not hard to prove that ≡ is an equivalence relation.

It’s also true, though a bit harder to prove, that there are only three equivalence classes for ≡. (Those equivalence

classes are: bitstrings that are 0 mod 3, those that are 1 mod 3, and those that are 2 mod 3.) Thus we can actually

figure out whether a bitstring is evenly divisible by 3 with the simple DFA in Figure 8.30. The three states of this

machine, going from left to right, correspond to the three equivalence classes for≡—namely [0], [1], and [10]. (For a

set of strings that cannot be recognized by a DFA—for example, bitstrings with an equal number of 0s and 1s—there

are an infinite number of equivalence classes for ≡.)

(These particular DFAs merely hint at the kind of problem that can be solved with this kind of machine—for much

more, see any good textbook in formal languages, such as [73] or [120].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-61

8.4 Special Relations: Equivalence Relations and Partial/Total Orders 8-61

Computer Science Connections

The Painter’s Algorithm and Hidden-Surface Removal

Figure 8.31 A house in a forest.

At a high level, the goal in computer graphics is to take

a 3-dimensional scene—a set of objects in R3 (with

differing shapes, colors, surface reflectivities, textures,

etc.)—as seen from a particular vantage point (a point

and a direction, also in R3). The task is then to project

the scene into a 2-dimensional image. There are a lot

of components to this task, and we’ve already talked

a bit about some of them: typically we’ll approximate

the shapes of the objects using a large collection of

triangles (see p. 5-36), and then compute where each

triangle shows up in the camera’s view, in R2, via

rotation (see p. 2-63). Even after triangulation and rota-

tion, we are still left with another important step: when

two triangles overlap in the 2-dimensional image, we

have to figure out which to draw—that is, which one is

obscured by the other. This task is also known hidden-

surface removal: we want to omit whatever pieces of the image aren’t visible. For example, to render the humble

forest scene in Figure 8.31, we have to draw trees in front of and behind the house, and one particular tree in front of

another. One approach to hidden-surface removal is called the Painter’s Algorithm, named after a hypothetical artist

at an easel: we can “paint” the shapes in the image “from back to front,” simply painting over faraway shapes with

the closer ones as we go, as in Figure 8.32.

Figure 8.32 Drawing the house, one piece at a time.

How might we implement this approach? Let S be

the set of shapes that we have to draw. We can com-

pute a relation obscures ⊆ S× S, where a pair ⟨s1, s2⟩
in obscures tells us that we must draw s2 before s1.

We seek a total order on S that is consistent with the

obscures relation; we’ll draw the shapes in this order.

Unfortunately obscures may not be a total order—

or even a partial order! The biggest problem with

obscures is that we can have “cycles of obscurity”—

s1 obscures s2 which obscures s3 which, eventually,

obscures a shape sk that obscures s1. (See Figure 8.33;

although it may look like an M. C. Escher drawing, there’s nothing strange going on—just three triangles that over-

lap a bit like a pretzel.) This issue can be resolved using some geometric algorithms specific to the particular task:

we’ll split up shapes in each cycle of obscurity—here, dividing one triangle into two—so that we no longer have any

cycles. (Again see Figure 8.33.)

Figure 8.33 A cycle of obscurity, and splitting one of the
cycle’s pieces to break the cycle.

We now have an expanded set S′ of shapes, and

a cycle-free relation obscures on S′. We can use this

relation to compute the order in which to draw the

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-62

8-62 Relations

shapes. First, compute the reflexive, transitive closure

of obscures on S′. (The resulting relation is a partial

order on S′.) Then, extend this partial order to a total

order on S′, using Theorem 8.23. We now have a total

ordering on the shapes that respect the obscures rela-

tion, so we can draw the shapes in precisely this order. (While the Painter’s Algorithm does correctly accomplish

hidden-surface removal, it’s pretty slow (particularly as we’ve described it here). For example, when there are many

layers to a scene, we actually have to “paint” each pixel in the resulting image many many times. Every computa-

tion of a pixel’s color before the last is a waste of time. You can learn about cleverer approaches to hidden-surface

removal, like the “z-buffer,” in a good textbook on computer graphics, such as [61].)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-63

Exercises 8-63

EXERCISES

8.109 List all equivalence relations on {0, 1}.
8.110 List all equivalence relations on {0, 1, 2, 3}.

Are the following relations on P({0, 1, 2, 3}) equivalence relations? If so, list the equivalence classes under the relation; if not,

explain why not.

8.111 ⟨A,B⟩ ∈ R1 if and only if (i) A and B are nonempty and the largest element in A equals the largest element in B, or (ii) if A = B = ∅.

8.112 ⟨A,B⟩ ∈ R2 if and only if the sum of the elements in A equals the sum of the elements in B.

8.113 ⟨A,B⟩ ∈ R3 if and only if the sum of the elements in A equals the sum of the elements in B and the largest element in A equals the

largest element in B. (That is, R3 = R1 ∩ R2.)

8.114 ⟨A,B⟩ ∈ R4 if and only A ∩ B ̸= ∅.

8.115 ⟨A,B⟩ ∈ R5 if and only |A| = |B|.

In Example 8.11, we considered the relation M = {⟨m, d⟩ : in some years, month m has d days}, and computed the pairs in the

relation M−1 ◦M. By checking all the requirements (or by visual inspection of Figure 8.10b), we see that M−1 ◦M is an equivalence

relation. But it turns out that the fact that M−1 ◦M is an equivalence relation says something particular about M, and is not true

in general. Let R ⊆ A×B be an arbitrary relation. Which of the three required properties of an equivalence relation must R−1 ◦R
have? (At least one of these is false!).

8.116 Prove or disprove: R−1 ◦ R must be reflexive.

8.117 Prove or disprove: R−1 ◦ R must be symmetric.

8.118 Prove or disprove: R−1 ◦ R must be transitive.

Let A be any set. There exist two equivalence relations ≡coarsest and ≡finest with the following property: if ≡ is an equivalence

relation on A, then (i) ≡ refines ≡coarsest, and (ii) ≡finest refines ≡.

8.119 Identify ≡coarsest, prove that it’s an equivalence relation, and prove property (i): if ≡ is an equivalence relation on A, then ≡ refines

≡coarsest.

8.120 Identify ≡finest, prove that it’s an equivalence relation, and prove property (ii): if ≡ is an equivalence relation on A, then ≡finest

refines ≡.

8.121 Write ≡k to denote equivalence mod k—that is, a ≡k b if and only if a mod k = b mod k. Consider the equivalence relation ≡60.

For what values of k is ≡k a coarsening of ≡60? For what values of k is ≡k a refinement of ≡60?

8.122 Suppose that R is an equivalence relation that coarsens ≡60. Prove or disprove: R is ≡k, for some integer k.

8.123 In many programming languages, there are two distinct but related notions of “equality”: has the same value as and is the same

object as. In Python, these are denoted as == and is, respectively; in Java, they are .equals() and ==, respectively. (Confusingly!)

(For example, in Python, [1,7,8] + [9] is [1,7,8,9] is false, but [1,7,8] + [9] == [1,7,8,9] is true.) Does one of

these equality relations refine the other? Explain.

8.124 List all partial orders on {0, 1}.
8.125 List all partial orders on {0, 1, 2}.

Are the following relations on P({2, 3, 4, 5}) partial orders, strict partial orders, or neither? Explain.

8.126 ⟨A,B⟩ ∈ R1 ⇔
∑

a∈A a ≤
∑

b∈B b

8.127 ⟨A,B⟩ ∈ R2 ⇔
∏

a∈A a ≤
∏

b∈B b

8.128 ⟨A,B⟩ ∈ R3 ⇔ A ⊆ B

8.129 ⟨A,B⟩ ∈ R4 ⇔ A ⊇ B

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-64

8-64 Relations

8.130 ⟨A,B⟩ ∈ R5 ⇔ |A| < |B|

8.131 Prove that ⪯ is a partial order if and only if ⪯−1 is a partial order.

8.132 Prove that if ⪯ is a partial order, then {⟨a, b⟩ : a ⪯ b and a ̸= b} is a strict partial order.

8.133 A cycle in a relation R is a sequence of k distinct elements a0, a1, . . . , ak−1 ∈ A where ⟨ai, ai+1 mod k⟩ ∈ R for every

i ∈ {0, 1, . . . , k− 1}. A cycle is nontrivial if k ≥ 2. Prove that there are no nontrivial cycles in any transitive, antisymmetric

relation R. (Hint: use induction on the length k of the cycle.)

Let S ∈ Z≥1 × Z≥1 be a collection of points. Define the relation R ⊆ S × S as follows: ⟨⟨a, b⟩, ⟨x, y⟩⟩ ∈ R if and only if a ≤ x

and b ≤ y. (You can think of ⟨a, b⟩ ∈ S as an a-by-b picture frame, and ⟨f, f′⟩ ∈ R if and only if f fits inside f′. Or you can think

of ⟨a, b⟩ ∈ S as a job that you’d get a “happiness points” from doing and that pays you b dollars, and ⟨j, j′⟩ ∈ R if and only if j

generates no more happiness and pays no more than j′.

8.134 Show that R might not be a total order by identifying two incomparable elements of Z≥1 × Z≥1.

8.135 Prove that R must be a partial order.

8.136 Write out all pairs in the relation represented by the Hasse diagram in Figure 8.34a.

8.137 Repeat for Figure 8.34b.

8.138 Repeat for Figure 8.34c.

8.139 Repeat for Figure 8.34d.

8.140 Draw the Hasse diagram for the partial order ⊆ on the set P(1, 2, 3).

8.141 Draw the Hasse diagram for the partial order ⪯ on the set S = {0, 1} ∪ {0, 1}2 ∪ {0, 1}3, where, for two bitstrings x, y ∈ S, we

have x ⪯ y if and only if x is a prefix of y.

Let ⪯ be a partial order on A. Recall that an immediate successor of a ∈ A is an element c such that (i) a ⪯ c, and (ii) there is no

b /∈ {a, c} such that a ⪯ b and b ⪯ c. In this case a is said to be an immediate predecessor of c.

8.142 For the partial order ≥ on Z≥1, identify all the immediate predecessor(s) and immediate successor(s) of 202.

8.143 For the partial order | (divides) on Z≥1, identify all the immediate predecessor(s) and immediate successor(s) of 202.

8.144 Give an example of a strict partial order on Z≥1 such that every integer has exactly two different immediate successors.

8.145 Prove that for a partial order ⪯ on A when A is finite there must be an a ∈ A that has fewer than two immediate successors.

8.146 Consider the partial order ≥ on the set Z≥0. Argue that there is no maximal element in Z.

8.147 Note that there is a minimal element under the partial order ≥ on Z≥0—namely 0, which is also the minimum element. Give an

example of a partial order on an infinite set that has neither a minimal nor a maximal element.

8.148 Let ⪯ be a partial order on a set A. Prove that there is at most one minimum element in A under ⪯. (That is, prove that if a ∈ A and

b ∈ A are both minimum elements, then a = b.)

8.149 Let ⪯ be a partial order on a set A, and let a ∈ A be a minimum element under ⪯. Prove that a is also a minimal element.

Here’s a (surprisingly addictive) word game that can be played with a set of Scrabble tiles. Each player has a set of words that she

“owns”; there is also a set of individual tiles in the middle of the table. At any moment, a player can form a new word by taking

both (1) one or more tiles from the middle, and (2) zero or more words owned by any of the players; and reordering those letters

to form a new word, which the player now owns. For example, from the word GRAMPS and the letters R and O, a player could make

the word PROGRAMS.

(If you’re bored and decide to waste time playing this game: it’s more fun if you forbid stealing words with “trivial” changes,

like changing COMPUTER into COMPUTERS. Each player should also get a fair share of the tiles, originally face down; anyone can

flip a new tile into the middle of the table at any time.)

Define a relation ⪯ on the set W of English words (of three or more letters), as follows: w ⪯ w′ if w′ can be formed from word

w plus one or more individual letters. For example, we showed above that GRAMPS ⪯ PROGRAMS.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-65

Exercises 8-65

1 2

3 4

5
(a)

1

2

3 4

5
(b)

1

2 3 4

5
(c)

1 2 3

4

5
(d)

Figure 8.34 Four Hasse diagrams.

8.150 Give a description (in English) of what it means for a word w to be a minimal element under ⪯, and what it means for a word w′

to be a maximal element under ⪯.

8.151 (programming required.) Write a program that, given a word w, finds all immediate successors of w. (You can find a dictionary of

English words on the web, or /usr/share/dict/words on Unix-based operating systems.) Report all immediate successors of

GRAMPS using your dictionary.

8.152 (programming required.) Write a program to find the English word that is the longest minimal element under ⪯ (that is, out of all

minimal elements, find the one that contains the most letters).

8.153 Consider a spreadsheet containing a set of cells C. A cell c can contain a formula that depends on zero or more other cells. Write

⪯ to denote the relation {⟨p, s⟩ : cell s depends on cell p}. For example, the value of cell C2 might be the result of the formula

A2 ∗ B1; here A2 ⪯ C2 and B1 ⪯ C2. A spreadsheet is only meaningful if ⪯ is a strict partial order. Give a description (in English)

of what it means for a cell c to be a minimal element under ⪯, and what it means for a cell c′ to be a maximal element under ⪯.

8.154 List all total orders consistent with the partial order in Figure 8.34a.

8.155 Repeat for the partial order in Figure 8.34b.

8.156 Repeat for the partial order in Figure 8.34c.

8.157 Repeat for the partial order in Figure 8.34d.

A chain in a partial order ⪯ on A is a set C ⊆ A such that ⪯ imposes a total order on C—that is, writing the elements of C as

C = {c1, c2, . . . , ck} [in an appropriate order], we have c1 ⪯ c2 ⪯ · · · ⪯ ck.

8.158 Identify all chains of k ≥ 2 elements in the partial order in Figure 8.34a.

8.159 Repeat for the partial order reproduced in Figure 8.34b.

An antichain in a partial order ⪯ on A is a set S ⊆ A such that no two distinct elements in S are comparable under ⪯—that is, for

any distinct a, b ∈ S we have a ̸⪯ b.

8.160 Identify all antichains S with |S| ≥ 2 in the partial order in Figure 8.34a.

8.161 Repeat for the partial order reproduced in Figure 8.34b.

8.162 Consider the set A = {1, 2, . . . , n}. Consider the following claim: there exists a relation ⪯ on the set A that is both an equivalence

relation and a partial order. Either prove that the claim is true (and describe, as precisely as possible, the structure of any such

relation ⪯) or disprove the claim.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-66

8-66 Relations

8.5 Chapter at a Glance

Formal Introduction

A (binary) relation on A × B is a subset of A × B. For a relation R on A × B, we can write ⟨a, b⟩ ∈ R or

a R b. When A and B are both finite, we can describe R using a two-column table, where a row containing

a and b corresponds to ⟨a, b⟩ ∈ R. Or we can view R graphically: draw all elements of A in one column,

all elements of B in a second column, and draw a line connecting a ∈ A to b ∈ B whenever ⟨a, b⟩ ∈ R.

We’ll frequently be interested in a relation that’s a subset of A × A, where the two sets are the same.

In this case, we may refer to a subset of A × A as simply a relation on A. For a relation R ⊆ A × A, it’s

more convenient to visualize R using a directed graph, without separated columns: we simply draw each

element of A, with an arrow from a1 to a2 whenever ⟨a1, a2⟩ ∈ R.

The inverse of a relation R ⊆ A × B is a new relation, denoted R−1, that “flips around” every pair in

R, so that the relation R−1 = {⟨b, a⟩ : ⟨a, b⟩ ∈ R} is a subset of B × A. The composition of two relations

R ⊆ A × B and S ⊆ B × C is a new relation, denoted S ◦ R, that, informally, represents the successive

“application” of R and S. A pair ⟨a, c⟩ is related under S ◦ R ⊆ A×C if and only if there exists an element

b ∈ B such that ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ S.

For sets A and B, a function f from A to B, written f : A→ B, is a special kind of relation on A×Bwhere,

for every a ∈ A, there exists one and only one element b ∈ B such that ⟨a, b⟩ ∈ f.

An n-ary relation is a generalization of a binary relation (n = 2) to describe a relationship among n-

tuples, rather than just pairs. An n-ary relation on the setA1×A2×· · ·×An is just a subset ofA1×A2×· · ·×An;

an n-ary relation on a set A is a subset of An.

Properties of Relations: Reflexivity, Symmetry, and Transitivity

A relation R on A is reflexive if, for every a ∈ A, we have that ⟨a, a⟩ ∈ R. It’s irreflexive if ⟨a, a⟩ /∈ R

for every a ∈ A. (In the visualization described above, where we draw an arrow a1 → a2 whenever

⟨a1, a2⟩ ∈ R, reflexivity corresponds to every element having a “self-loop” and irreflexivity corresponds to

no self-loops.) Note that a relation might be neither reflexive nor irreflexive.

A relation R on A is symmetric if, for every a, b ∈ A, we have ⟨a, b⟩ ∈ R if and only if ⟨b, a⟩ ∈ R.

The relation is antisymmetric if the only time both ⟨a, b⟩ ∈ R and ⟨b, a⟩ ∈ R is when a = b, and it’s

asymmetric if it’s never the case that ⟨a, b⟩ ∈ R and ⟨b, a⟩ ∈ R whether a ̸= b or a = b. Note that,

while asymmetry implies antisymmetry, they are different properties—and they’re both different from “not

symmetric”; a relation might not be symmetric, antisymmetric, or asymmetric. (In the visualization, a

relation is symmetric if every arrow a → b is matched by an arrow b → a; it’s antisymmetric if there are

no matched bidirectional pairs of arrows between a and b ̸= a; and it’s asymmetric if it’s antisymmetric

and furthermore there aren’t even any self-loops.) An alternative view is that a relation R is symmetric if

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-67

8.5 Chapter at a Glance 8-67

and only if R ∩ R−1 = R = R−1; it’s antisymmetric if and only if R ∩ R−1 ⊆ {⟨a, a⟩ : a ∈ A}; and it’s

asymmetric if and only if R ∩ R−1 = ∅.

A relation R on A is transitive if, for every a, b, c ∈ A, if ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ R, then ⟨a, c⟩ ∈ R

too. In the visualization, R is transitive if there are no “open triangles”: in a chain of connected elements,

every element is also connected to all “downstream” connections. The relation R is transitive if and only if

R ◦ R ⊆ R.

For a relation R ⊆ A× A, the closure of R with respect to some property is the smallest relation R′ ⊇ R

that has the named property. For example, the symmetric closure of R is the smallest relation R′′ ⊇ R

such that R′′ is symmetric. We also define the reflexive closure R′; the transitive closure R+; the reflexive

transitive closure R∗; and the reflexive symmetric transitive closure R≡. When A is finite, we can compute

any of these closures by repeatedly adding any missing elements to the set. The reflexive closure of R is

given by R ∪ {⟨a, a⟩ : a ∈ A}; the symmetric closure of R is R ∪ R−1; and the transitive closure of R is

R ∪ R2 ∪ R3 ∪ · · · .

Special Relations: Equivalence Relations and Partial/Total Orders

There are two special kinds of relations that emerge from particular combinations of these properties:

equivalence relations and partial/total orders.

Equivalence relations. An equivalence relation is a relation≡ that’s reflexive, symmetric, and transitive.

Such a relation partitions the elements of A into one or more categories, called equivalence classes; any

two elements in the same equivalence class are related by ≡, and no two elements in different equivalence

classes are related.

A refinement of ≡ is another equivalence relation ≡r on the same set A where a ≡ b whenever a ≡r b.

Each equivalence class of ≡ is partitioned into one or more equivalence classes by ≡r, but no equivalence

class of ≡r intersects with more than one equivalence class of ≡. We also call ≡ a coarsening of ≡r.

Partial and total orders. A partial order is a reflexive, antisymmetric, and transitive relation ⪯. (A
strict partial order ≺ is irreflexive, antisymmetric, and transitive.) Elements a and b are comparable under

⪯ if either a ⪯ b or b ⪯ a; otherwise they’re incomparable. A Hasse diagram is a simplified visual

representation of a partial order where we draw a physically below c whenever a ⪯ c, and we omit the

a→ c arrow if there’s some other element b such that a ⪯ b ⪯ c. (We also omit self-loops.)

For a partial order ⪯ on A, a minimum element is an element a ∈ A such that, for every b ∈ A, we have

a ⪯ b; a minimal element is an a ∈ A such that, for every b ∈ A with b ̸= a, we have b ̸⪯ a. (Maximum

and maximal elements are defined analogously.) Every minimum element is also minimal, but a minimal

element a isn’t minimum unless a is comparable with every other element. There’s at least one minimal

element in any partial order on a finite set.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-68

8-68 Relations

A total order is a partial order under which all pairs of elements are comparable. A total order ⪯total is

consistent with the partial order ⪯ if a ⪯ b implies that a⪯total b. For any partial order ⪯ on a finite set

A, there is a total order ⪯total on A that’s consistent with ⪯. Such an ordering of A is called a topological

ordering of A.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-69

8.5 Chapter at a Glance 8-69

Key Terms and Results

Key Terms

Formal Introduction

• (binary) relation

• inverse (of a relation)

• composition (of two relations)

• functions (as relations)

• n-ary relation

Properties of Relations

• reflexivity

• irreflexivity

• symmetry

• asymmetry

• antisymmetry

• transitivity

• closures (of a relation)

Special Relations

• equivalence relation

• equivalence class

• coarsening, refinement

• partial order

• comparability

• total order

• Hasse diagram

• minimal/maximal element

• minimum/maximum element

• consistency

(of a total order with a partial order)

• topological ordering

Key Results

Formal Introduction

1 For relations R ⊆ A× B and S ⊆ B× C, the relations

R−1 ⊆ B× A and S ◦ R ⊆ A× C—the inverse of R and

the composition of R and S—are defined as

R−1 = {⟨b, a⟩ : ⟨a, b⟩ ∈ R}
S ◦ R = {⟨a, c⟩ :

∃b ∈ B such that ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ S}.

2 A function f : A→ B is a special case of a relation on

A× B, where, for every a ∈ A, there exists one and only

one element b ∈ B such that ⟨a, b⟩ ∈ f.

Properties of Relations

1 A relation R is symmetric if and only if

R ∩ R−1 = R = R−1; it’s antisymmetric if and only if

R ∩ R−1 ⊆ {⟨a, a⟩ : a ∈ A}; and it’s asymmetric if and

only if R ∩ R−1 = ∅.

2 A relation R is transitive if and only if R ◦ R ⊆ R.

3 The reflexive closure of R is R ∪ {⟨a, a⟩ : a ∈ A}; the
symmetric closure of R is R ∪ R−1; and the transitive

closure of R is R ∪ R2 ∪ R3 ∪ · · · .

Special Relations

1 For a partial order ⪯ ⊆ A× A on a finite set A, there is at

least one minimal element and at least one maximal

element under ⪯.
2 Let A be any finite set with a partial order ⪯. Then there

is a total order ⪯total (a topological ordering of A) on A

that’s consistent with ⪯.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-8-70

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.

