
7
Number Theory

In which, after becoming separated, our heroes arrange a place to meet, by
sending messages that stay secret even as snooping spies listen in.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

702 CHAPTER 7. NUMBER THEORY

7.1 Why You Might Care
When you can measure what you are speaking about,
and express it in numbers, you know something about
it; but when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind.

Sir William Thomson, Lord Kelvin (1824–1907)

A chapter about numbers (particularly when it’s so far along in this book!) proba-
bly seems a little bizarre—after all, what is there to say about numbers that you didn’t
figure out by elementary school?!? But, more so than any other chapter of the book,
the technical material in this chapter leads directly to a single absolutely crucial (and
ubiquitous!) modern application of computer science: cryptography,which deals with cryptography

(Greek): kryptos
“concealed/secret”
+ graph “writing.”

protocols to allow multiple parties to communicate securely, even in the presence of
eavesdropping adversaries (or worse!). Cryptographic systems are used throughout
our daily lives—both in the security layers that connect us as users to servers (for ex-
ample, in banking online or in registering for courses at a college), and in the backend
systems that, we hope, protect our data even when we aren’t interacting with it.

Our goal in this chapter will be to build up the technical machinery necessary to
define and understand the RSA cryptosystem, one of the most commonly used crypto-
graphic systems today. (RSA is named after the initials of its three discoverers, Rivest,
Shamir, and Adleman.) By the end of the chapter, in Section 7.5, we’ll be able to give
a full treatment of RSA, along with sketched outlines of a few other important ideas
from cryptography. (Later in the book, in Chapter 9, we’ll also encounter the histori-
cal codebreaking work of Alan Turing and colleagues, which deciphered the German
encryption in World War II—a major part of the allied victory. See p. 960.)

To get there, we’ll need to develop some concepts and tools from number theory.
(“Number theory” is just a slightly fancy name for “arithmetic on integers.”) Our focus
will be on modular arithmetic: that is, the numbers on which we’ll be doing arithmetic
will be a set of integers {0, 1, 2, . . . , n− 1}, where—like on a clock—the numbers “wrap
around” from n− 1 back to 0. In other words, we’ll interpret numerical expressions
modulo n, always considering each expression via its remainder when we divide by
n. We begin in Section 7.2 with formal definitions of modular arithmetic, and the
adaptation of some basic ideas from elementary-school arithmetic to this new setting.
We’ll then turn in Section 7.3 to primality (when a number has no divisors other than
1 and itself) and relative primality (when two numbers have no common divisors other
than 1). Modular arithmetic begins to diverge more substantially when we start to
think about division: there’s no integer that’s one fifth of 3 . . . but, on a clock where
we treat 12:00 as 0, there is an integer that’s a fifth of 3—namely 5, because 5 + 5 + 5 is
3 (because 3:00pm is 15 hours after midnight—so 5 · 3 is 3, modulo 12). In Section 7.4,
we’ll explore exactly what division means in modular arithmetic—and some special
features of division that arise when n is a prime number.

As we go, we’ll see a few other applications of number theory: to error-correcting
codes, secret sharing, and the apparently unrelated task of generating all 4-letter se-
quences (AAAA to ZZZZ). And, finally, we’ll put the pieces together to explore RSA.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 703

7.2 Modular Arithmetic
Among those whom I like or admire, I can find no
common denominator, but among those whom I love,
I can: all of them make me laugh.

W. H. Auden (1907–1973)

We will start with a few reminders of some basic arithmetic definitions from Chap-
ter 2—about multiplication, division, and modular arithmetic—as these concepts are
the foundations for all the work that we’ll do in this chapter. We’ll also introduce a few
algorithms for computing these basic arithmetic quantities, including one of the oldest
known algorithms: the Euclidean algorithm, from about 2300 years ago, which com-
putes the greatest common divisor of two integers n and m (that is, the largest integer
that evenly divides both n and m).

7.2.1 Remainders: A Reminder
Let’s start with a few simple facts about integers. Every integer is 0 or 1 more than
some even number. Every integer is 0, 1, or 2 more than a multiple of three. Every
integer is at most 3 more than a multiple of four. And, in general, for any integer k ≥ 1,
every integer is r more than a multiple of k, for some r ∈ {0, 1, . . . , k− 1}. We’ll begin
with a precise statement and proof of the general version of this property:

Theorem 7.1 (Floors and Remainders: “The Division Theorem”)
Let k ≥ 1 and n be integers. Then there exist integers d and r such that (i) 0 ≤ r < k, and (ii)
kd + r = n. Furthermore, the values of d and r satisfying (i) and (ii) are unique.

Before we prove the theorem, let’s look at a few examples of what it claims:

Example 7.1 (Some examples of the Division Theorem)
For k = 202 and n = 379, the theorem states that there exist integers r ∈ {0, 1, . . . , 201}
and d with 202d + r = 379. Specifically, those values are r = 177 and d = 1, because
202 · 1 + 177 = 379.

Here are a few more examples, still with k = 202:

n = 55057 n = 507 n = 177 n = 404 n = −507 n = −404
d = 272 d = 2 d = 0 d = 2 d = −3 d = −2
r = 113 r = 103 r = 177 r = 0 r = 99 r = 0

You can verify that, in each of these six columns, indeed we have 202d + r = n.

Now let’s give a proof of the general result:

Proof of Theorem 7.1. Consider a fixed integer k ≥ 1. Let P(n) denote the claim

P(n) := there exist integers d and r such that 0 ≤ r < k and kd + r = n.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

704 CHAPTER 7. NUMBER THEORY

We must prove that P(n) holds for all integers n. We’ll first prove the result for nonneg-
ative n (by strong induction on n), and then show the claim for n < 0 (making use of
the result for nonnegative n).

Problem-solving
tip: To prove that
a property is true
for all inputs, it
often turns out to
be easier to first
prove a special case
and then use that
special case to show
that the property
holds in general.
(Another example:
it’s probably easier
to analyze the
performance of
Merge Sort on
inputs whose
size is an exact
power of 2, and
to then generalize
to arbitrary input
sizes.)

Case I: n ≥ 0. We’ll prove that P(n) holds for all n ≥ 0 by strong induction on n.

• For the base cases (0 ≤ n < k), we simply select d := 0 and r := n. Indeed, these
values guarantee that 0 ≤ r < k and kd + r = k · 0 + n = 0 + n = n.

• For the inductive case (n ≥ k), we assume the inductive hypotheses—namely, we
assume P(n′) for any 0 ≤ n′ < n—and we must prove P(n). Because n ≥ k and
k > 0, it is immediate that n′ := n− k satisfies 0 ≤ n′ < n. Thus we can apply the
inductive hypothesis P(n′) to conclude that there exist integers d′ and r′ such that
0 ≤ r′ < k and kd′ + r′ = n′. Select d := d′ + 1 and r := r′. Thus, indeed, 0 ≤ r < k
and

kd + r = k(d′ + 1) + r′ definition of d and r

= kd′ + k + r′ distributive property

= n′ + k n′ = kd′ + r′, by definition

= n. definition of n′ = n− k

Case II: n < 0. To show that P(n) holds for an arbitrary n < 0, we will make use of
Case I. Let r′ and d′ be the integers guaranteed by P(−n), so that kd′ + r′ = −n. We
consider two cases based on whether r′ = 0:

Case IIA: r′ 6= 0. Then let d := −d′ − 1 and let r := k− r′. (Because k > r′ > 0, we have
0 < k− r′ < k.) Thus

kd + r = k(−d′ − 1) + k− r′ definition of d and r

= −kd′ − k + k− r′

= −(kd′ + r)
= −(−n) = n. definition of d′ and r′

Case IIB: r′ = 0. Then let d := −d′ and r := r′ = 0. Therefore

kd + r = −d′k + r′ definition of d and r

= −(−n) = n. definition of d′ and r′

We have thus proven that P(n) holds for all integers n: Case I handled n ≥ 0, and Case
II handled n < 0. (We have not yet proven the uniqueness of the integers r and d; this
proof of uniqueness is left to you in Exercise 7.4.)

This theorem now allows us to give a more careful definition of modular arithmetic.
(In Definition 2.9, we gave the slightly less formal definition of n mod k as the remain-
der when we divide n by k.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 705

Definition 7.1 (Modulus (reprise))
For integers k > 0 and n, the quantity n mod k is the unique integer r such that 0 ≤ r < k
and kd + r = n for some integer d (whose existence is guaranteed by Theorem 7.1).

Incidentally, the integer d whose existence is guaranteed by Theorem 7.1 is ⌊n/k⌋: for
any k ≥ 1, we can write the integer n as

n =
⌊n
k
⌋
· k + (n mod k).

Taking it further: One of the tasks that we can accomplish conveniently using modular arithmetic is
base conversion of integers. We’re used to writing numbers in decimal (“base 10”), where each digit is
“worth” a factor of 10 more than the digit to its right. (For example, the number we write “31” means
1 · 100 + 3 · 101 = 1 + 30.) Computers store numbers in binary (“base 2”) representation, and we can
convert between bases using modular arithmetic. For more, see the discussion on p. 714.

7.2.2 Computing n mod k and ⌊ nk
⌋

So far, we’ve taken arithmetic operations for granted—ignoring how we’d figure out
the numerical value of an arithmetic expression like 21024 − 3256 · 5202, which is simple
to write—but not so instantaneous to calculate. (Quick! Is 21024 − 3256 · 5202 evenly di-
visible by 7?) Indeed, many of us spent a lot of time in elementary-school math classes
learning algorithms for basic arithmetic operations like addition, multiplication, long
division, and exponentiation (even if back then nobody told us that they were called
algorithms).

mod-and-div(n, k):
Input: integers n ≥ 0 and k ≥ 1
Output: n mod k and ⌊n/k⌋
1: r := n; d := 0
2: while r ≥ k:
3: r := r − k; d := d + 1
4: return r, d

Figure 7.1: An algo-
rithm to compute
n mod k and ⌊n/k⌋.

Thinking about algorithms for some basic arithmetic op-
erations will be useful, for multiple reasons: because they’re
surprisingly relevant for proving some useful facts about
modular arithmetic, and because computing them efficiently
turns out to be crucial in the cryptographic systems that we’ll
explore in Section 7.5.

We’ll start with the algorithm shown in Figure 7.1 that
computes n mod k (and simultaneously computes ⌊n/k⌋ too). The very basic idea for
this algorithm was implicit in the proof of Theorem 7.1: we repeatedly subtract k from
n until we reach a number in the range {0, 1, . . . , k− 1}.

Some programming
languages—Pascal,
for one (admittedly
dated) example—
use div to denote
integer division, so
that 15 div 7 is 2.

Example 7.2 (An example of mod-and-div)
Let’s compute mod-and-div(64, 5). We start with r := 64 and d := 0, and repeatedly
decrease r by 5 and increase d by 1 until r < 5. Here are the values in each iteration:

r 64 59 54 49 44 39 34 29 24 19 14 9 4
d 0 1 2 3 4 5 6 7 8 9 10 11 12 .

Thus mod-and-div(64, 5) returns 4 and 12—and, indeed, we can write 64 = 12 · 5 + 4,
where 4 = 64 mod 5 and 12 = ⌊64/5⌋.

Similarly,mod-and-div(20, 17) starts with d = 0 and r = 20, and executes one (and
only one) iteration of the loop, returning d = 1 and r = 3.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

706 CHAPTER 7. NUMBER THEORY

Themod-and-div algorithm is fairly intuitive, if fairly slow: it simply keeps remov-
ing multiples of k from n until there are no multiples of k left to remove. (For simplic-
ity, the algorithm as written in Figure 7.1 only handles the case where n ≥ 0; you’ll
extend the algorithm to handle negative n in Exercise 7.10. See Example 7.1 for some
examples of the Division Theorem with n < 0.)

Lemma 7.2 (Correctness and efficiency of mod-and-div)
For any integers n ≥ 0 and k ≥ 1, calling mod-and-div(n, k) returns n mod k and ⌊n/k⌋,
using a total of Θ(⌊n/k⌋) arithmetic operations.

Proof. We claim that, throughout the execution of the algorithm, we have dk + r = n
(and also r ≥ 0). This fact is easy to see by induction on the number of iterations of the
while loop inmod-and-div: it’s true before the loop starts (when r = n and d = 0), and
if it’s true before an iteration of the while loop then it’s true after that iteration (when
dk has increased by k, and r has decreased by k). Furthermore, when the while loop
terminates, we also have that r < k. Thus the returned values satisfy dk + r = n and
0 ≤ r < k—precisely as required by Definition 7.1.

The total number of iterations of the while loop is exactly the returned value of
d = ⌊n/k⌋, and we do three arithmetic operations per iteration: a comparison (is
r ≥ k?), a subtraction (what’s r − k?), and an addition (what’s d + 1?). Thus the total
number of arithmetic operations is 3 ⌊n/k⌋ +Θ(1) = Θ(⌊n/k⌋).

Should we consider the mod-and-div algorithm from Figure 7.1 fast? Let’s think
about how long this algorithm would take to determine whether, say, n := 123,456,789
is divisible by 7. (It isn’t: n = 17,636,684 · 7 + 1.) Our algorithm would take over 10
million iterations (⌊n/7⌋ > 70,000,000

7 = 10,000,000) iterations to compute the answer—
and that seems (and is!) very slow. One way to think about the mod-and-div(n, k)
algorithm is that it performs a linear search for the integer d such that kd ≤ n < (k + 1)d:
we keep increasing d by one until this property holds. We could instead give a much
faster algorithm based on binary search to find that value of d. (See Exercises 7.11–7.16.)
The improved algorithm requires only logarithmically many arithmetic operations—
an exponential improvement overmod-and-div.

Taking it further: What should count as an efficient algorithm when the inputs are numbers? In pre-
vious chapters, we’ve talked about the generally accepted definition of efficient as meaning “requiring a
number of steps that is polynomial in the size of the input.” That is, on an input of size n, our algorithm
should run in at most O(nc) steps, for some fixed c. (See p. 628.)

So why did we say that an algorithm like mod-and-div isn’t efficient? After all, on input n and k, the
algorithm took only about n/k steps. (See Lemma 7.2.) But the key point is that an algorithm that takes
a numerical input n does not receive an input of size n. The number 123,456,789 takes only 9 characters
(the nine digits in the number!) to write down—not 123,456,789 characters. (Unless you wrote down the
numbers in unary, using tally marks instead of digits: ;;;;;;;;;· · · .)

Generally, an algorithm that takes a number n as input receives that number n written in binary. The
binary representation of n requires ⌈log2 n⌉ bits to represent it. As usual, we consider an algorithm to be
efficient if it takes time that’s polynomial in the number of bits of the input—so we consider an algorithm
that takes a number n as input to be efficient if it requires a number of operations that is at most (log2 n)c for
some fixed c. (That is, the algorithm should run in time that is polylogarithmic in n.) Every grade-school
algorithm that you learned for arithmetic—addition, subtraction, multiplication, long division, etc.—
was efficient, requiring you to do a number of operations proportional to the number of digits in the
numbers, and not to the value of the numbers themselves.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 707

7.2.3 Congruences, Divisors, and Common Divisors
We argued in Lemma 7.2 that mod-and-div(n, k), which repeatedly subtracts k from
n in a loop, correctly computes the value of n mod k. We gave a proof by induction
in Lemma 7.2, but we could have instead argued for the correctness of the algorithm,
perhaps more intuitively, via the following fact:

For any integers a ≥ 0 and k ≥ 1, we have (a + k) mod k = a mod k.

That is, the remainder when we divide an integer a by k isn’t changed by adding an
exact multiple of k to a. This property follows from the definition of mod, but it’s also
a special case of a useful general property of modular arithmetic, which we’ll state
(along with some other similar facts) in Theorem 7.3. Here are a few examples of this
more general property:

Example 7.3 (The mod of a sum, and the sum of the mods)
Consider the following expressions of the form (a + b) mod k.

• (17 + 43) mod 7 = 60 mod 7 = 4. (Note 17 mod 7 = 3, 43 mod 7 = 1, and 3 + 1 = 4.)
• (18 + 42) mod 9 = 60 mod 9 = 6. (Note 18 mod 9 = 0, 42 mod 9 = 6, and 0 + 6 = 6.)
• (25 + 25) mod 6 = 50 mod 6 = 2. (Note 25 mod 6 = 1, 25 mod 6 = 1, and 1 + 1 = 2.)

At this point it might be tempting to conjecture that (a + b) mod k is always equal to
(a mod k) + (b mod k), but be careful—this claim has a bug, as this example shows:

• (18 + 49) mod 5 = 67 mod 5 = 2. (Note 18 mod 5 = 3, 49 mod 5 = 4, but 3 + 4 6= 2.)

Instead, it turns out that (a + b) mod k = [(a mod k) + (b mod k)] mod k—we had to
add an “extra” mod k at the end.

Here are some of the useful general properties of modular arithmetic:

Theorem 7.3 (Properties of modular arithmetic)
For integers a and b and k > 0:

k mod k = 0 (7.3.1)
a + b mod k = [(a mod k) + (b mod k)] mod k (7.3.2)
ab mod k = [(a mod k) · (b mod k)] mod k (7.3.3)
ab mod k = [(a mod k)b] mod k. (7.3.4)

We’ll omit proofs of these properties, though we could give a formal proof based on
the definitions of mod. (Exercise 7.17 asks you to give a formal proof for one of these
properties, namely (7.3.2).) Again notice the “extra” mod k at the end of the last three
of these equations—it is not the case that ab mod k = (a mod k) · (b mod k) in general.
For example, 14 mod 6 = 2 and 5 mod 6 = 5, but (2 · 5) mod 6 = 4 6= 2 · 5.

In the cryptographic applications that we will explore later in this chapter, it will
turn out to be important to perform “modular exponentiation” efficiently—that is,

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

708 CHAPTER 7. NUMBER THEORY

we’ll need to compute be mod n very quickly, even when e is fairly large. Fortunately,
(7.3.4) will help us do this computation efficiently; see Exercises 7.23–7.25.

Congruences
We’ve now talked a little bit (in Theorem 7.3, for example) about two numbers a and

b that have the same remainder when we divide them by k—that is, with a mod k =
b mod k. There’s useful terminology, and notation, for this kind of equivalence:

Typically a ≡k b
is read as “a is
equivalent to
b mod k” or “a is
congruent to b mod
k.” If you’re reading
the statement a ≡k b
out loud, it’s polite
to pause slightly,
as if there were a
comma, before the
“mod k” part.

Definition 7.2 (Congruence)
Two integers a and b are congruent mod k, written a ≡k b, if a mod k = b mod k.

Taking it further: Some people write a ≡k b using the notation
a ≡ b (mod k).

This notation is used to mean the same thing as our notation a ≡k b, but note the somewhat unusual
precedence in this alternate notation: it says that

[a ≡ b] (mod k)
(and it does not, as it might appear, say that the quantity a and the quantity [b mod k] are equivalent).

Divisors, factors, and multiples
We now return to the divisibility of one number by another, when the first is an

exact multiple of the second. As with the previous topics in this section, we gave some
preliminary definitions in Chapter 2 of divisibility (and related terminology), but we’ll
again repeat the definitions here, and also go into a little bit more detail.

Definition 7.3 (Divisibility, Factors, and Multiples (reprise))
For two integers k > 0 and n, we write k | n to denote the proposition that n mod k = 0. If
k | n, we say that k divides n (or that k evenly divides n), that n is a multiple of k, and that
k is a factor of n.

(For example, we can say that 42 | 714, that 6 and 17 are factors of 714, and that 714 is a
multiple of 7.) Here are a few useful properties of division:

Theorem 7.4 (Properties of divisibility)
For integers a and b and c:

a | 0 (7.4.1)
1 | a (7.4.2)
a | a (7.4.3)

a | b and b | c ⇒ a | c (7.4.4)
a | b and b | a ⇒ a = b or a = −b (7.4.5)
a | b and a | c ⇒ a | (b + c) (7.4.6)

a | b ⇒ a | bc (7.4.7)
ab | c ⇒ a | c and b | c (7.4.8)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 709

These properties generally follow fairly directly from the definition of divisibility.
A few are left to you in the exercises, and we’ll address a few others in Chapter 8,
which introduces relations. (Facts (7.4.3), (7.4.4), and a version of (7.4.5) are certain
standard properties of some relations that the “divides” relation happens to have:
reflexivity, transitivity, and so-called antisymmetry. See Chapter 8.) To give the flavor of
these arguments, here’s one of the proofs, that ab | c implies that a | c and b | c:
Proof of (7.4.8). Assume ab | c. Then, by definition of mod (and by Theorem 7.1), there
exists an integer k such that c = (ab) · k. Taking both sides mod a, we have

c mod a = abk mod a k is the integer such that c = (ab) · k

= [(a mod a) · (bk mod a)] mod a (7.3.3)

= [0 · (bk mod a)] mod a (7.3.1)

= 0 mod a 0 · x = 0 for any x

= 0. 0 mod a = 0 for any a

Thus c mod a = 0, so a | c. Analogously, because b · (ak) = c, we have that b | c too.

Greatest common divisors and least common multiples
We now turn to our last pair of definitions involving division: for two integers, we’ll

be interested in two related quantities—the largest number that divides both of them,
and the smallest number that they both divide.

Definition 7.4 (Greatest Common Divisor (GCD))
The greatest common divisor of two positive integers n and m, denoted gcd(n,m), is the
largest d ∈ Z≥1 such that d | n and d |m.

Definition 7.5 (Least CommonMultiple (LCM))
The least common multiple of two positive integers n and m, denoted lcm(n,m), is the
smallest d ∈ Z≥1 such that n | d and m | d.

Here are some examples of both GCDs and LCMs, for a few pairs of small numbers:

Example 7.4 (Examples of GCDs)
The GCD of 6 and 27 is 3, because 3 divides both 6 and 27 (and no integer k ≥ 4
divides both). Similarly, we have gcd(1, 9) = 1, gcd(12, 18) = 6, gcd(202, 505) = 101,
and gcd(11, 202) = 1.

Example 7.5 (Examples of LCMs)
The LCM of 6 and 27 is 54, because 6 and 27 both divide 54 (and no k ≤ 53 is divided
by both). Similarly, we have lcm(1, 9) = 9, lcm(12, 18) = 36, lcm(202, 505) = 1010, and
lcm(11, 202) = 2222.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

710 CHAPTER 7. NUMBER THEORY

Both of these concepts should be (at least vaguely!) familiar from elementary school,
specifically from when you learned about how to manipulate fractions:

• We can rewrite the fraction 38
133 as 2

7 , by dividing both numerator and denominator
by the common factor 19—and we can’t reduce it further because 19 is the greatest
common divisor of 38 and 133. (We have “reduced the fraction to lowest terms.”)

• We can rewrite the sum 5
12 + 7

18 as 15
36 + 14

36 (which equals 29
36) by rewriting both frac-

tions with a denominator that’s a common multiple of the denominators of the two
addends—and we couldn’t have chosen a smaller denominator, because 36 is the
least common multiple of 12 and 18. (We have “put the fractions over the lowest
common denominator.”)

In the remainder of this section, we’ll turn to the task of efficiently computing the great-
est common divisor of two integers. (Using this algorithm, we can also find least
common multiples quickly, because GCDs and LCMs turn out to be closely related
quantities: for any integers a and b, we have lcm(a, b) · gcd(a, b) = a · b.)

7.2.4 Computing Greatest Common Divisors
Euclid(n,m):
Input: positive integers n and m ≥ n
Output: gcd(n,m)
1: if m mod n = 0 then
2: return n
3: else
4: return Euclid(m mod n, n)

Figure 7.2: The Eu-
clidean algorithm
for GCDs.

The “obvious” way to compute the greatest common di-
visor of two positive integers n and m is to try all candidate
divisors d ∈ {1, 2, . . . , min(n,m)} and to return the largest
value of d that indeed evenly divides both n and m. This
algorithm is slow—very slow!—but there is a faster way to
solve the problem. Amazingly, a faster algorithm for com-
puting GCDs has been known for approximately 2300 years:
the Euclidean algorithm, named after the Greek geometer Euclid, who lived in the 3rd
century bce. (Euclid is also the namesake of the Euclidean distance between points in
the plane—see Exercise 2.174—among a number of other things in mathematics.) The
algorithm is shown in Figure 7.2.1

1 Donald E. Knuth.
The art of computer
programming:
Seminumerical
algorithms (Volume
2). Addison-Wesley
Longman, 3rd
edition, 1997.

Taking it further: Euclid described his algorithm in his book Elements, from c. 300 bce, a multivolume
opus covering the fundamentals of mathematics, particularly geometry, logic, and proofs. Most people
view the Euclidean algorithm as the oldest nontrivial algorithm that’s still in use today; there are some
older not-quite-fully-specified procedures for basic arithmetic operations like multiplication that date
back close to 2000 bce, but they’re not quite laid out as algorithms.

Donald Knuth—the 1974 Turing Award winner, the inventor of TEX (the underlying system that was
used to typeset virtually all scholarly materials in computer science—and this book!), and a genius of
expository writing about computer science in general and algorithms in particular—describes the history
of the Euclidean algorithm (among many other things!) in The Art of Computer Programming,1his own
modern-day version of a multivolume opus covering the fundamentals of computer science, particularly
algorithms, programming, and proofs.

Among the fascinating things that Knuth points out about the Euclidean algorithm is that Euclid’s
“proof” of correctness only handles the case of up to three iterations of the algorithm—because, Knuth
argues, Euclid predated the idea of mathematical induction by hundreds of years. (And Euclid’s version
of the algorithm is quite hard to read, in part because Euclid didn’t have a notion of zero, or the idea that
1 is a divisor of any positive integer n.)

Here are three small examples of the Euclidean algorithm in action:

“Knuth” rhymes
with “Duluth” (a
city in Minnesota
that Minnesotans
make fun of for
having harsh
weather): the “K” is
pronounced.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 711

Example 7.6 (GCDs using the Euclidean Algorithm)
Let’s compute the GCD of 17 and 42.

Euclid(17, 42) = Euclid(42 mod 17︸ ︷︷ ︸
=8

, 17) 42 mod 17 = 8 6= 0, so we’re in the else case.

= Euclid(17 mod 8︸ ︷︷ ︸
=1

, 8) 17 mod 8 = 1 6= 0, so we’re in the else case again.

= 1. 8 mod 1 = 0, so we’re done, and we return 1.

Indeed, the only positive integer that divides both 17 and 42 is 1, so gcd(17, 42) = 1.
Here’s another example, for 48 and 1024:

Euclid(48, 1024) = Euclid(1024 mod 48︸ ︷︷ ︸
=16

, 48) 1024 mod 48 = 16 6= 0, so we’re in the else case.

= 16. 48 mod 16 = 0, so we return 16.

And here’s one last example (written more compactly), for 91 and 287:

Euclid(91, 287) = Euclid(287 mod 91︸ ︷︷ ︸
=14

, 91) = Euclid(91 mod 14︸ ︷︷ ︸
=7

, 14) = 7.

Before we try to prove the correctness of the Euclidean algorithm, let’s spend a
few moments on the intuition behind it. The basic idea is that any common divisor
of two numbers must also evenly divide their difference. For example, does 7 divide
both 63 and 133? If so, then it would have to be the case that 7 | 63 and that 7 also
divides the “gap” between 133 and 63. (That’s because 63 = 7 · 9, and if 7k = 133,
then 7(k − 9) = 133 − 63.) More generally, suppose that d is a common divisor of
n and m ≥ n. Then it must be the case that d divides m − cn, for any integer c where
cn < m. In particular, d divides m− ⌊mn ⌋ · n; that is, d divides m mod n. (We’ve only
argued that if d is a common divisor of n and m then d must also divide m mod n, but
actually the converse holds too; we’ll formalize this fact in the proof.) See Figure 7.3 for
a visualization of this idea.

133
63

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135

63 63 · 2 = 126

Figure 7.3: The
intuition behind
the Euclidean
algorithm: d is a
common divisor
of 63 and 133 if
and only if d also
divides 133− 63
and 133− 63 · 2 =
133− 126. Indeed
d = 7 is a common
divisor of 63 and
133, but 9 is not
(because 9 does not
divide 133− 126 =
7).

Making the intuition formal
We will now make this intuition formal, and give a full proof of the correctness of

the Euclidean algorithm: that is, we will establish that Euclid(n,m) = gcd(n,m) for any
positive integers n and m ≥ n, with a proof by induction. There’s a crucial lemma that

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

712 CHAPTER 7. NUMBER THEORY

we’ll need to prove first, based on the intuition we just described: we need to show
that for any n and m ≥ n where m mod n 6= 0, we have gcd(n,m) = gcd(n,m mod n).
We will prove this fact by proving that the common divisors of {n,m} are identical to the
common divisors of {n,m mod n}. (Thus the greatest common divisor of these two pairs
of integers will be identical.)

Lemma 7.5 (When n 6 |m, the same divisors of n divide m andm mod n)
Let n and m be positive integers such that n ≤ m and n 6 |m. Let d | n be an arbitrary divisor
of n. Then d |m if and only if d | (m mod n).

Here’s a concrete example before we prove the lemma:

Example 7.7 (An example of Lemma 7.5)
Consider n = 42 and m = 98. Then n ≤ m and n 6 | m, as Lemma 7.5 requires. The
divisors of 42 are {1, 2, 3, 6, 7, 14, 21, 42}. Of these divisors, the ones that also divide
98 are {1, 2, 7, 14}.

The lemma claims that the common divisors of 42 and 98 mod 42 = 14 are also
precisely {1, 2, 7, 14}. And they are: because 14 | 42, all divisors of 14—namely, 1, 2, 7,
and 14—are common divisors of 14 and 42.

Proof of Lemma 7.5. By the assumption that d | n, we know that there’s an integer a such
that n = ad. Let r := m mod n, so that m = cn + r for an integer c (as guaranteed by
Theorem 7.1). We must prove that d |m if and only if d | r.

For the forward direction, suppose that d |m. (We must prove that d | r.) By defini-
tion, there exists an integer b such that m = bd. But n = ad and m = bd, so

m = cn + r ⇔ bd = c(ad) + r ⇔ r = (b− ac)d

for integers a, b, and c. Thus r is a multiple of d, and therefore d | r.
For the converse, suppose that d | r. (We must prove that d | m.) By definition, we

have that r = bd for some integer b. But then n = ad and r = bd, so

m = cn + r = c(ad) + bd = (ac + b)d

for integers a, b, and c. Thus d |m.

Corollary 7.6
Let n and m ≥ n be positive integers where n 6 |m. Then gcd(n,m) = gcd(m mod n, n).

Proof. Lemma 7.5 establishes that the set of common divisors of 〈n,m〉 is identical to
the set of common divisors of 〈n,m mod n〉. Therefore the maxima of these two sets of
divisors—that is, gcd(n,m) and gcd(m mod n, n)—are also equal.

Putting it together: the correctness of the Euclidean algorithm
Using this corollary, we can now prove the correctness of the Euclidean algorithm:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 713

Theorem 7.7 (Correctness of the Euclidean algorithm)
For arbitrary positive integers n and m with n ≤ m, we have Euclid(n,m) = gcd(n,m).

Proof. We’ll proceed by strong induction on n, the smaller input. Define the property

P(n) := for any m ≥ n, we have Euclid(n,m) = gcd(n,m).

We’ll prove that P(n) holds for all integers n ≥ 1.

Base case (n = 1): P(1) follows because both gcd(1,m) = 1 and Euclid(1,m) = 1: for
any m, the only positive integer divisor of 1 is 1 itself (and indeed 1 | m), and thus
gcd(1,m) = 1. Observe that Euclid(1,m) = 1, too, becausem mod 1 = 0 for any m.

Inductive case (n ≥ 2): We assume the inductive hypotheses—that P(n′) holds for any
1 ≤ n′ < n—and must prove P(n). Let m ≥ n be arbitrary. There are two subcases,
based on whether n |m or n 6 |m:

• If n | m—that is, if m = cn for an integer c—then m mod n = 0 and thus, by
inspection of the algorithm, Euclid(n,m) = n. Because n | n (and there is no d > n
that divides n evenly), indeed n is the GCD of n and m = cn.

• If n 6 |m—that is, if m mod n 6= 0—then

Euclid(n,m) = Euclid(m mod n, n) by inspection of the algorithm

= gcd(m mod n, n) by the inductive hypothesis P(m mod n)

= gcd(n,m). by Corollary 7.6

Note that (m mod n) ≤ n − 1 by the definition of mod (anything mod n is less
than n), so we can invoke the inductive hypothesis P(m mod n) in the second step
of this proof.

Theorem 7.7 establishes the correctness of the Euclidean algorithm, but we intro-
duced this algorithm because the brute-force algorithm (simply testing every candi-
date divisor d) was too slow. Indeed, the Euclidean algorithm is very efficient:

Problem-solving tip:
In Theorem 7.8,
it’s not obvious
what quantity upon
which to perform
induction—after
all, there are two
input variables, n
and m. It is often
useful to combine
multiple inputs into
a single “measure
of progress” toward
the base case—
perhaps performing
induction on the
quantity n +m or
the quantity n ·m.

Theorem 7.8 (Efficiency of Euclidean Algorithm)
For arbitrary positive integers n and m with n ≤ m, the recursion tree of Euclid(n,m) has
depth at most log n + logm.

(The ability to efficiently compute gcd(n,m) using the Euclidean algorithm—assuming
we use the efficient algorithm to compute m mod n from Exercises 7.11–7.16, at least—
will be crucial in the RSA cryptographic system in Section 7.5.) You’ll prove Theo-
rem 7.8 by induction in Exercise 7.34—and you’ll show that the recursion tree can be as
deep as Ω(log n + logm), using the Fibonacci numbers, in Exercise 7.37.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

714 CHAPTER 7. NUMBER THEORY

Computer Science Connections

Converting Between Bases, Binary Representation, and Generating Strings
For a combination of historical and anatomical reasons—we have ten fin-

gers and ten toes!—we generally use a base ten, or decimal, system to represent
numbers. Moving from right to left, there’s a 1’s place, a 10’s place, a 100’s Latin: decim “ten.” Note that digit is

ambiguous in English between “place in
a number” and “finger or toe.”

place, and so forth; thus 2048 denotes 8 · 1 + 4 · 10 + 0 · 100 + 2 · 1000. This rep-
resentation is an example of a positional system, in which each place/position
has a value, and the symbol in that position tells us how many of that value
the number has. Some ancient cultures used non-decimal positional sys-
tems, some of which survive to the present day: for example, the Sumarians
and Babylonians used a base 60 system—and, even today, 60 seconds make a
minute, and 60 minutes make an hour.

In general, to represent a number n in base b ≥ 2, we write a sequence of
elements of {0, 1, . . . , b− 1}—say [dkdk−1 · · · d2d1d0]b. (We’ll write the base
explicitly as a subscript, for clarity.) Moving from right to left, the ith position
is “worth” bi, so this number’s value is ∑k

i=0 bidi . For example,

[1234]5 = 4 · 50 + 3 · 51 + 2 · 52 + 1 · 53 = 4 + 15 + 50 + 125 = 194
[1234]8 = 4 · 80 + 3 · 81 + 2 · 82 + 1 · 83 = 4 + 24 + 128 + 512 = 668.

We can use modular arithmetic to quickly convert from one base to an-

baseConvert(n, b):
Input: integers n and b ≥ 2
Output: n, represented in base b
1: i := 0
2: while n > 0:
3: di := n mod b
4: n := (n− di)/b
5: i := i + 1
6: return [didi−1 · · · d1d0]b

Figure 7.4: Base conversion algorithm,
from base 10 to base b.

other. For simplicity, we’ll describe how to convert from base 10 into an ar-
bitrary base b, though it’s not that much harder to convert from an arbitrary
base instead. To start, notice that (∑k

i=0 bidi) mod b = d0. (The value bidi is
divisible by b for any i ≥ 1.) Therefore, to represent n in base b, we must
have d0 := n mod b. Similarly, (∑k

i=0 bidi) mod b2 = bd1 + d0; thus we must
choose d1 := n−d0

b mod b. (Note that n− d0 must be divisible by b, because
of our choice of d0.) An algorithm following this strategy is shown in Fig-
ure 7.4. (We could also have written this algorithm without using division;
see Exercise 7.5.) For example, to convert 145 to binary (base 2), we execute
baseConvert(145, 2). Here are the values of n, i, and di in each iteration:

n 145 72 36 18 9 4 2 1 0
i 0 1 2 3 4 5 6 7 8

di := n mod 2 1 0 0 0 1 0 0 1 — .

Thus 145 can be written as [10010001]2 .
We can use the base conversion algorithm in Figure 7.4 to convert decimal

numbers (base 10) into binary (base 2), the internal representation in comput-
ers. Or we can convert into octal (base 8) or hexadecimal (base 16), two other
frequently used representations for numbers in programming. But we can
also use baseConvert for seemingly unrelated problems. Consider the task of
enumerating all 4-letter strings from the alphabet. The “easy” way to write a
program to accomplish this task, with four nested loops, is painful to write—
and it becomes utterly unwieldy if we needed all 10-letter strings instead.
But, instead, let’s count from 0 up to 264 − 1—there are 264 different 4-letter
strings—and convert each number into base 26. We can then translate each
number into a sequence of letters, with the ith digit acting as an index into the
alphabet that tells us which letter to put in position i. See Figure 7.5.

n in
base 10 → base 26 → string
0 → [0 0 0 0]26 → AAAA

1 → [0 0 0 1]26 → AAAB

2 → [0 0 0 2]26 → AAAC
...

25 → [0 0 0 25]26 → AAAZ

26 → [0 0 1 0]26 → AABA

27 → [0 0 1 1]26 → AABB
...

1234 → [0 1 21 12]26 → ABVM
...

456,974 → [25 25 25 24]26 → ZZZY

456,975 → [25 25 25 25]26 → ZZZZ

Figure 7.5: Generating all 4-letter
strings. For each n = 0, n = 1, . . . ,
n = 456,975, we convert n to a number
in base 26; we then interpret each digit
[i]26 ∈ {0, 1, . . . , 25} as an element of
{A, B, . . . , Z}.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.2. MODULAR ARITHMETIC 715

7.2.5 Exercises

Using paper and pencil only, follow the proof of Theorem 7.1 or use mod-and-div (see Figure 7.6a) to compute
integers r ∈ {0, 1, . . . , k− 1} and d such that kd + r = n, for:
7.1 k = 17, n = 202 7.2 k = 99, n = 2017 7.3 k = 99, n = −2017
7.4 When we proved Theorem 7.1, we showed that for integers k ≥ 1 and n, there exist integers r and
d such that 0 ≤ r < k and kd + r = n. We stated but did not prove that r and d are unique. Prove that they
are—that is, prove the following, for any integers k ≥ 1, n, r, d, r′, and d′: if 0 ≤ r < k and 0 ≤ r′ < k and
n = dk + r = d′k + r′, then d′ = d and r′ = r.

7.5 The algorithm baseConvert on p. 714, which performs base conversion, is written using division.
Modify the algorithm so that it uses only addition, subtraction, mod, multiplication, and comparison.

A repdigitb is a number n that, when represented in base b, consists of the same symbol written over and over, re-
peated at least twice. (See p. 714.) For example, 666 is a repdigit10 : when you write [666]10, it’s the same digit (“6”)
repeated (in this case, three times). One way of understanding that 666 is a repdigit10 is that 666 = 6 + 60 + 600 =
6 · 100 + 6 · 101 + 6 · 102. We can write [40]10 as [130]5 because 40 = 0 + 3 · 5 + 1 · 52, or as [101000]2 because
40 = 1 · 23 + 1 · 25. So 40 is not a repdigit10 , repdigit5 , or repdigit2 . But 40 is a repdigit3 , because 40 = [1111]3 .
7.6 Prove that every number n ≥ 3 is a repdigitb for some base b ≥ 2, where n = [11 · · · 1]b.
7.7 Prove that every even number n > 6 is a repdigitb for some base b ≥ 2, where n = [22 · · · 2]b.
7.8 Prove that no odd number n is a repdigitb of the form [22 · · · 2]b, for any base b.
7.9 Write R(n) to denote the number of bases b, for 2 ≤ b ≤ n− 1, such that n is a repdigitb. Conjec-
ture a condition on n such that R(n) = 1, and prove your conjecture.

mod-and-div(n, k):
Input: integers n ≥ 0 and k ≥ 1
Output: n mod k and ⌊n/k⌋
1: r := n; d := 0
2: while r ≥ k:
3: r := r− k; d := d + 1
4: return r, d
mod-and-div-faster(n, k):
Input: integers n ≥ 0 and k ≥ 1
Output: n mod k and ⌊n/k⌋
1: lo := 0; hi := n + 1.
2: while lo < hi− 1:
3: mid :=

⌊
lo+hi
2
⌋

4: if mid · k ≤ n then
5: lo := mid
6: else
7: hi := mid
8: return (n− k · lo), lo

Figure 7.6: A re-
minder of the
algorithm to com-
pute n mod k and
⌊n/k⌋, and a faster
version.

Recall the mod-and-div(n,m) algorithm, reproduced in Figure 7.6(a), that com-
putes n mod k and ⌊n/k⌋ by repeatedly subtracting k from n until the result is less
than k.
7.10 As written, themod-and-div algorithm fails when given a neg-
ative value of n. Follow Case II of Theorem 7.1’s proof to extend the algo-
rithm for n < 0 too.
Themod-and-div algorithm is slow—this algorithm computes an integer d such
that nd ≤ m < n(d + 1) by performing linear search for d. A faster version of this
algorithm, called mod-and-div-faster, finds d using binary search instead; see
Figure 7.6(b).
7.11 The code for mod-and-div-faster as written uses division, by
averaging lo and hi. Modify the algorithm so that it uses only addition,
subtraction, multiplication, and comparison.
7.12 The code for mod-and-div-faster as written uses hi := n + 1
as the initial upper bound. Why is this assignment an acceptable for the
correctness of the algorithm? Explain briefly.
7.13 Describe an algorithm that finds a better upper bound hi, by
repeatedly doubling hi until it’s large enough.
7.14 Let k be arbitrary. Describe an input n for which the doubling
search from the last exercise yields a significant improvement on the run-
ning time of the algorithm for inputs k and n.
7.15 (programming required) Implement, in a programming language of your choice, all three of these
algorithms (mod-and-div,mod-and-div-faster, and the doubling-search tweaked version of mod-and-div-faster
from the previous exercises) to compute n mod k and ⌊n/k⌋.
7.16 Run the three algorithms from the previous exercise to compute the following values: 232 mod 202,
232 mod 2020, and 232 mod 315. How do their speeds compare?

7.17 Prove (7.3.2): for integers k > 0, a, and b, we have a + b mod k = [(a mod k) + (b mod k)] mod k.
Begin your proof as follows: We can write a = ck + r and b = dk + t for r, t ∈ {0, . . . , k− 1} (as guaranteed by
Theorem 7.1). Then usemod-and-div and Lemma 7.2.

Prove the following properties of modular arithmetic and divisibility, for any positive integers a, b, and c:
7.18 a mod b = (a mod bc) mod b
7.19 (7.4.1): a | 0
7.20 (7.4.2): 1 | a

7.21 (7.4.6): if a | b and a | c, then a | (b + c).
7.22 (7.4.7): if a | c, then a | bc.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

716 CHAPTER 7. NUMBER THEORY

mod-exp(b, e,n):
Input: integers n ≥ 1, b, and e ≥ 0
Output: be mod n
1: if e = 0 then
2: return 1
3: else if e is even then
4: result := mod-exp(b, e

2 , n)
5: return (result · result) mod n
6: else
7: result := mod-exp(b, e− 1, n)
8: return (b · result) mod n

Figure 7.7: Modular
exponentiation via
repeated squaring.

Consider the “repeated squaring” algorithm for modular exponentiation shown in
Figure 7.7. Observe that this algorithm computes be mod n with a recursion tree of
depth Θ(log e).
7.23 Use this algorithm to compute 380 mod 5 without using a calculator.
(You should never have to keep track of a number larger than 5 except for
the exponent itself when you’re doing these calculations!)
7.24 Write down a recurrence relation representing the number of
multiplications done bymod-exp(b, e, n). Prove, using this recurrence, that
the number of multiplications done is between log e and 2 log e.
7.25 (programming required) Implementmod-exp in a programming
language of your choice. Also implement a version of mod-exp that com-
putes be and then, after that computation is complete, takes the result
mod n. Compare the speeds of these two algorithms in computing 3k mod 5,
for k = 80, k = 800, k = 8000, . . . , k = 8,000,000. Explain.

There’s a category of numerical tricks often called “divisibility rules” that you may have seen—quick ways of testing
whether a given number is evenly divisible by some small k. The test for whether an integer n is divisible by 3 is this:
add up the digits of n; n is divisible by 3 if and only if this sum is divisible by 3. For example, 6,007,023 is
divisible by 3 because 6 + 0 + 0 + 7 + 0 + 2 + 3 = 18, and 3 | 18. (Indeed 3 · 2,002,341 = 6,007,023.) This test relies on
the following claim: for any sequence 〈x0, x1, . . . , xn−1〉 ∈ {0, 1, . . . , 9}n, we have

[
n−1
∑
i=0

10ixi
]
mod 3 =

[
n−1
∑
i=0

xi
]
mod 3.

(For example, 6,007,023 is represented as x0 = 3, x1 = 2, x2 = 0, x3 = 7, x4 = 0, x5 = 0, and x6 = 6.)
7.26 Prove that the test for divisibility by 3 is correct. First prove that 10i mod 3 = 1 for any integer
i ≥ 0; then prove the stated claim. Your proof should make heavy use of the properties in Theorem 7.3.
7.27 The divisibility test for 9 is to add up the digits of the given number, and test whether that sum is
divisible by 9. State and prove the condition that ensures that this test is correct.

Using paper and pencil only, use the Euclidean algorithm to compute the GCDs of the following pairs of numbers:
7.28 n = 111,m = 202
7.29 n = 333,m = 2017
7.30 n = 156,m = 360

7.31 (programming required) Implement the Euclidean algorithm in a language of your choice.
7.32 (programming required) Early in Section 7.2.4, we discussed a brute-force algorithm to compute
gcd(n,m): try all d ∈ {1, 2, . . . , min(n,m)} and return the largest d such that d | n and d |m. Implement this
algorithm, and compare its performance to the Euclidean algorithm as follows: for both algorithms, find the
largest n for which you can compute gcd(n, n− 1) in less than 1 second on your computer.

Let’s analyze the running time of the Euclidean algorithm for GCDs, to prove Theorem 7.8.
7.33 Let n and m be arbitrary positive integers where n ≤ m. Prove thatm mod n ≤ m

2 . (Hint: what
happens if n ≤ m

2 ? What happens if m
2 < n ≤ m?)

7.34 Using the previous exercise, prove that the Euclidean algorithm terminates within O(log n + logm)
recursive calls. (Actually one can prove a bound that’s tighter by a constant factor, but this result is good
enough for asymptotic work.)

Now let’s show that, in fact, the Euclidean algorithm generates a recursion tree of depth Ω(log n + logm) in the worst
case—specifically, when Euclid(fn, fn+1) is run on consecutive Fibonacci numbers fn, fn+1.
7.35 Show that, for all n ≥ 3, we have fn mod fn−1 = fn−2, where fi is the ith Fibonacci number. (Recall
from Definition 6.21 that f1 := 1, f2 := 1 and fn := fn−1 + fn−2 for n ≥ 3.)
7.36 Prove that, for all n ≥ 3, Euclid(fn−1, fn) generates a recursion tree of depth n− 2.
7.37 Using the last exercise and the fact that fn ≤ 2n (Exercise 6.95), argue that the running time of the
Euclidean algorithm is Ω(log n + logm) in the worst case.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 717

7.3 Primality and Relative Primality
Why is it that we entertain the belief that for every
purpose odd numbers are the most effectual?

Pliny the Elder (23–79)

Now that we’ve reviewed divisibility (and the related notions of factors, divisors,
and multiples) in Section 7.2, we’ll continue with a brief review of another concept
from Chapter 2: the definition of prime numbers. We’ll then introduce the related no-
tion of relatively prime integers—pairs of numbers that share no common divisors aside
from 1—and a few applications and extensions of both definitions.

7.3.1 Primality (A Reminder) and Relative Primality (An Introduction)
We begin with a reminder of the definitions from Chapter 2:

Definition 7.6 (Primes and composites (reprise))
An integer p ≥ 2 is called prime if the only positive integers that evenly divide it are 1 and p
itself. An integer n ≥ 2 that is not prime is called composite. (Note that 1 is neither prime
nor composite.)

For example, the integers 2, 3, 5, and 7 are all prime, but 4 (which is divisible by 2) and
6 (which is divisible by 2 and 3) are composite. It’s also worth recalling two results that
we saw in previous chapters:

• There are infinitely many prime numbers: Example 4.15 gave a proof by contradic-
tion to show that there is no largest prime. (That result is attributed to Euclid—the
same Euclid whose algorithm we encountered in Section 7.2.)

• Theorem 4.16 showed that any composite number n ≥ 2 is divisible by some factor
d ≤ √n. (That is, n ≥ 2 is prime if and only if d 6 | n for every d ∈ {2, 3, . . . ,√n}.)

We used the latter result to give an algorithm for the primality testing problem—that is,
determining whether a given integer n ≥ 2 is prime or composite—that performs√n
divisibility tests. (This algorithm simply exhaustively tests whether n is divisible by
any of the candidate divisors between 2 and √n.)

Taking it further: The faster divisibility algorithm that you developed in Exercises 7.11–7.16 will allow
us to test primality in Θ(√n · logk n) steps, for some constant k: faster than the naïve algorithm, but
still not efficient. There are faster algorithms for primality testing that require only polylogarithmically
many operations—that is, O(logk n), for some fixed k—to test whether n is prime. See, for example, the
discussion on p. 742 of a randomized algorithm that efficiently tests for primality, which requires only
O(logk n) steps to test whether n is prime, although it does have a small (provably small!) probability of
making a mistake. There are also deterministic algorithms to solve this problem in polylogarithmic time,
though they’re substantially more complicated than this randomized algorithm.

Prime numbers turn out to be useful in all sorts of settings, and it will sometimes
turn out to be valuable to compute a large collection of primes all at once. Of course,
we can always generate more than one prime number by using a primality-testing

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

718 CHAPTER 7. NUMBER THEORY

algorithm (like the one we just suggested) more than once, until enough numbers have
passed the test. But some of the work that we do in figuring out whether n is prime
actually turns out to be helpful in figuring out whether n′ > n is prime. An algorithm
called the Sieve of Eratosthenes, which computes a list of all prime numbers up to a
given integer, exploits this redundancy to save some computation. The Sieve generates
its list of prime numbers by successively eliminating (“sieving”) all multiples of each
discovered prime: for example, once we know that 2 is prime and that 4 is a multiple
of 2, we will never have to test whether 4 | n in determining whether n is prime. (If n
isn’t prime because 4 | n, then n is also divisible by 2—that is, 4 is never the smallest
integer greater than 1 that evenly divides n, so we never have to bother testing 4 as a
candidate divisor.) See Exercises 7.38–7.42 and Figure 7.15. 2 The Sieve of Eratos-

thenes is named
after Eratosthenes,
a Greek mathemati-
cian who lived in
the 3rd century bce.
For more, see
2 Donald E. Knuth.
The art of computer
programming:
Seminumerical
algorithms (Volume
2). Addison-Wesley
Longman, 3rd
edition, 1997.

Taking it further: The Sieve of Eratosthenes is one of the earliest known algorithms, dating back to
about 200 bce. (The date isn’t clear, in part because none of Eratosthenes’s work survived; the algorithm
was reported, and attributed to Eratosthenes, by Nicomachus about 300 years later.) The Euclidean
algorithm for greatest common divisors from Section 7.2, which dates from c. 300 bce, is one of the few
older algorithms that are known.2

The distribution of the primes
For a positive integer n, let primes(n) denote the number of prime numbers less than

or equal to n. Thus, for example, we have

0 = primes(1)
1 = primes(2)
2 = primes(3) = primes(4)
3 = primes(5) = primes(6), and
4 = primes(7) = primes(8) = primes(9) = primes(10).

Or, to state it recursively: we have primes(1) := 0, and, for n ≥ 2, we have

primes(n) :=




primes(n− 1) if n is composite
1 + primes(n− 1) if n is prime.

Figure 7.8(a) displays the value of primes(n) for moderately small n. An additional
fact that we’ll state without proof is the Prime Number Theorem—illustrated in Fig-
ure 7.8(b)—which describes the behavior of primes(n) for large n:

Theorem 7.9 (Prime Number Theorem)
As n gets large, the ratio between primes(n) and n

ln n approaches 1.

Formal proofs of the Prime Number Theorem are complicated beasts—far more com-
plicated that we’ll want to deal with here!—but even an intuitive understanding of the
theorem is useful. Informally, this theorem says that, given an integer n, approximately
a 1

ln n fraction of the numbers “close to” n are prime. (See Exercise 7.45.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 719

0

100

200

300

400

0 500 1000 1500 2000 2500n

pr
im

es(
n)

··
··
··
··

··
··

··
··

··
··

··
··

··
··

··

(a) A plot of n vs. primes(n) := | {q ≤ n : q is prime} |.

0

0.5

1.0

1.5

2.0

0 500 1000 1500 2000 2500n

pr
im

es(
n)

n ln
n

(b) A plot of n vs. the ratio of n
ln n and primes(n).

Figure 7.8: The
distribution of
primes. The Prime
Number Theorem
states that the ratio
primes(n)/ n

ln n ,
in (b), converges
(slowly!) to 1.

Example 7.8 (Using the Prime Number Theorem)
Problem: Using the estimate primes(n) ≈ n

ln n , calculate (approximately) how many
10-digit integers are prime.

Solution: By definition, there are exactly primes(999,999,999) primes with 9 or fewer
digits, and primes(9,999,999,999) primes with 10 or fewer digits. Thus the number
of 10-digit primes is

primes(9,999,999,999)− primes(999,999,999) ≈ 9,999,999,999
ln 9,999,999,999 − 999,999,999

ln 999,999,999
≈ 434,294,499− 48,254,956
= 386,039,543.

Thus, roughly 386 million of the 9 billion 10-digit numbers (about 4.3%) are prime.
(Exercise 7.46 asks you to consider how far off this estimate is.)

The density of the primes is potentially interesting for its own sake, but there’s also a

Problem-solving
tip: Back-of-the-
envelope calcu-
lations are often
great as plausibility
checks: although
the Prime Number
Theorem doesn’t
state a formal
bound on how dif-
ferent primes(n) and
n

ln n are, you can
see whether a so-
lution to a problem
“smells right” with
an approximation
like this one.

practical reason that we’ll care about the Prime Number Theorem. In the RSA cryp-
tosystem (see Section 7.5), one of the first steps of the protocol involves choosing two
large prime numbers p and q. The bigger p and q are, the more secure the encryption,
so we would want p and q to be pretty big—say, both approximately 22048. The Prime
Number Theorem tells us that, roughly, one out of every ln 22048 ≈ 1420 integers
around 22048 is prime. Thus, we can find a prime in this range by repeatedly choosing
a random integer n of the right size and testing n for primality, using some efficient
primality testing algorithm. (More about testing algorithms soon.) Approximately one
out of every 1420 integers we try will turn out to be prime, so on average we’ll only
need to try about 2840 values of n before we find primes to use as p and q.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

720 CHAPTER 7. NUMBER THEORY

Prime factorization
Recall that any integer can be factored into the product of primes. For example, we

can write 2001 = 3 · 23 · 29 and 202 = 2 · 101 and 507 = 3 · 13 · 13 and 55057 = 55057.
(All of {2, 3, 13, 23, 29, 101, 55057} are prime.) The Fundamental Theorem of Arithmetic
(Theorem 5.5) states that any integer n can be factored into a product of primes—and
that, up to reordering, there is a unique prime factorization of n. (In other words, any
two prime factorizations of an integer n can differ in the ordering of the factors—for
example, 202 = 101 · 2 and 202 = 2 · 101—but they can differ only in ordering.) We
proved the “there exists” part of the theorem in Example 5.12 using induction; a bit
later in this section, we’ll prove uniqueness. (The proof uses some properties of prime
numbers that are most easily seen using an extension of the Euclidean algorithm that
we’ll introduce shortly; we’ll defer the proof until we’ve established those properties.)

Relative primality
An integer n is prime if it has no divisors except 1 and n itself. Here we will in-

troduce a related concept for pairs of integers—two numbers that do not share any
divisors except 1:

Definition 7.7 (Relative primality)
Two positive integers n and m are called relatively prime if gcd(n,m) = 1—that is, if 1 is the
only positive integer that evenly divides both n and m.

Here are a few small examples:

Example 7.9 (Some relatively prime integers)
The integers 21 and 25 are relatively prime, as 21 = 3 · 7 and 25 = 5 · 5 have no
common divisor (other than 1). Similarly, 5 and 6 are relatively prime, as are 17 and
35. (But 12 and 21 are not relatively prime, because they’re both divisible by 3.)

There will be a number of useful facts about relatively prime numbers that you’ll prove
in the exercises—for example, a prime number p and any integer n are relatively prime
unless p | n; and, more generally, two numbers are relatively prime if and only if their
prime factorizations do not share any factors.

Taking it further: Let f (x) be a polynomial. One of the special characteristics of prime numbers is that
f (x) has some special properties when we evaluate f (x) normally, or if we take the result of evaluating the
polynomial modp for some prime number p. In particular, if f (x) is a polynomial of degree k, then either
f (a) ≡p 0 for every a ∈ {0, 1, . . . , p− 1} or there are at most k values a ∈ {0, 1, . . . , p− 1} such that
f (a) ≡p 0. (We saw this property in Section 2.5.3 when we didn’t take the result modulo the prime p.) As
a consequence, if we have two polynomials f (x) and g(x) of degree k, then if f and g are not equivalent
modulo p, then there are at most k values of a ∈ {0, 1, . . . , p− 1} for which f (a) ≡p g(a).

We can use the fact that polynomials of degree k “behave” in the same way modulo p (with respect
to the number of roots, and the number of places that two polynomials agree) to give efficient solutions
to two problems: secret sharing, in which n people wish to “distribute” shares of a secret so that any k
of them can reconstruct the secret (but no set of k − 1 can); and a form of error-correcting codes, as we
discussed in Section 4.2. The basic idea will be that by using a polynomial f (x) and evaluating f (x) mod p
for a prime p, we’ll be able to use small numbers (less than p) to accomplish everything that we’d be able
to accomplish by evaluating f (x) without the modulus. See the discussions of secret sharing on p. 730
and of Reed–Solomon codes on p. 731.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 721

7.3.2 A Structural Fact and the Extended Euclidean Algorithm
Given an integer n ≥ 2, quickly determining whether n is prime seems tricky: we’ve
seen some easy algorithms for this problem, but they’re pretty slow. And, though
there are efficient but complicated algorithms for primality testing, we haven’t seen
(and, really, nobody knows) a genuinely simple algorithm that’s also efficient. On the
other hand, the analogous question about relative primality—given integers n and m, are
n and m relatively prime?—is easy. In fact, we already know everything we need to solve
this problem efficiently, just from the definition: n and m are relatively prime if and
only if their GCD is 1, which occurs if and only if Euclid(n,m) = 1. So we can efficiently
test whether n and m are relatively prime by testing whether Euclid(n,m) = 1.

We will start this section with a structural property about GCDs. (Right now it
shouldn’t be at all clear what this claim has to with anything in the last paragraph—
but stick with it! The connection will come along soon.) Here’s the claim:

Lemma 7.10 (There are multiples of n and m that add up to gcd(n,m))
Let n and m be any positive integers, and let r = gcd(n,m). Then there exist integers x and y
such that xn + ym = r.

Here are a few examples of the multiples guaranteed by this lemma:

Example 7.10 (Some examples of Lemma 7.10)
In Example 7.9, we saw that {5, 6} and {17, 35} are both relatively prime—that is,
gcd(5, 6) = gcd(17, 35) = 1—and that gcd(12, 21) = 3. Also note that gcd(48, 1024) = 16
(from Example 7.6), and gcd(16, 48) = 16. For these pairs, we have:

(−1) · 5 + 1 · 6 = −5 + 6 = 1 = gcd(5, 6)
33 · 17 + (−16) · 35 = 561− 560 = 1 = gcd(17, 35)
2 · 12 + (−1) · 21 = 24− 21 = 3 = gcd(12, 21)

(−21) · 48 + 1 · 1024 = −1008 + 1024 = 16 = gcd(48, 1024)
1 · 16 + 0 · 48 = 16 + 0 = 16 = gcd(16, 48).

Note that for the second example in the table, the pair {17, 35}, we could have chosen
−2 and 1 instead of 33 and −16, as −2 · 17 + 1 · 35 = 1 = 33 · 17 + (−16) · 35.

Note that the integers x and y whose existence is guaranteed by Lemma 7.10 are not
necessarily positive! (In fact, in Example 7.10 the only time that we didn’t have a neg-
ative coefficient for one of the numbers was for the pair {16, 48}, where gcd(16, 48) =
16 = 1 · 16 + 0 · 48.) Also, observe that there may be more than one pair of values for
x and y that satisfy Lemma 7.10—in fact, you’ll show in Exercise 7.58 that there are
always infinitely many values of {x, y} that satisfy the lemma.

Although, if you stare at it long enough, Example 7.10 might give a tiny hint about
why Lemma 7.10 is true, a proof still seems distant. But, in fact, we’ll be able to prove
the claim based what looks like a digression: a mild extension to the Euclidean al-
gorithm. For a little bit of a hint as to how, let’s look at one more example of the Eu-
clidean algorithm, but interpreting it as a guide to find the integers in Lemma 7.10:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

722 CHAPTER 7. NUMBER THEORY

Example 7.11 (An example of Lemma 7.10, using the Euclidean algorithm)
Let’s find integers x and y such that 91x + 287y = gcd(91, 287).

By running Euclid(91, 287), we make the recursive calls Euclid(14, 91) and
Euclid(7, 14), which returns 7. Putting these calls into a small table—and using Defi-
nition 7.1’s implied equality m = ⌊mn ⌋ · n + (m mod n), slightly rearranged—we have:

m n m mod n ⌊mn ⌋ m mod n = m− ⌊mn ⌋ · n
287 91 14 3 14 = 287 − 3 · 91 (1)
91 14 7 6 7 = 91− 6 · 14 (2)
14 7 0

Notice that 7 = gcd(91, 287) = Euclid(91, 287). Using (1) and (2), we can rewrite 7 as:

7 = 91− 6 · 14 by (2)

= 91− 6 · (287− 3 · 91) = −6 · 287 + 19 · 91. by (1) and simplification

Thus x := −6 and y := 19 satisfy the requirement that 91x + 287y = gcd(91, 287).

The Extended Euclidean algorithm
extended-Euclid(n,m):
Input: positive integers n and m ≥ n.
Output: x, y, r ∈ Z where gcd(n,m) = r = xn + ym
1: if m mod n = 0 then
2: return 1, 0, n // 1 · n + 0 ·m = n = gcd(n,m)
3: else
4: x, y, r := extended-Euclid(m mod n, n)
5: return y− ⌊mn

⌋
· x, x, r

Figure 7.9: The
Extended Euclidean
algorithm.

The Extended Euclidean algorithm, shown in Figure 7.9,
follows the outline of Example 7.11, applying these algebraic
manipulations recursively. Lemma 7.10 will follow from a
proof that this extended version of the Euclidean algorithm
actually computes three integers x, y, r such that gcd(n,m) =
r = xn+ ym. Here are two examples:

Example 7.12 (Running the Extended Euclidean Algorithm I)
Evaluating extended-Euclid(12, 18) recursively computes
extended-Euclid(6, 12) = 〈1, 0, 6〉, and then computes its result from 〈1, 0, 6〉 and the
values of n = 12 and m = 18:

extended-Euclid(12, 18) (because 18 mod 12 6= 0, we make a recursive call).
extended-Euclid(18 mod 12︸ ︷︷ ︸

=6
, 12)

= 1, 0, 6 (because 12 mod 6 = 0).
= y− ⌊mn ⌋ · x, x, r where x = 1, y = 0, r = 6 and n = 12,m = 18 .
= 0− ⌊ 1812⌋ · 1, 1, 6
= −1, 1, 6.

The recursive call returned x = 1, y = 0, and r = 6, and the else case of the algorithm
tells us that our result is 〈y− ⌊mn ⌋ · x, x, r〉where m = 18 and n = 12. Plugging these
values into the formula for the result, we see that extended-Euclid(12, 18) returns
〈−1, 1, 6〉—and, indeed, gcd(12, 18) = 6 and −1 · 12 + 1 · 18 = 6.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 723

Example 7.13 (Running the Extended Euclidean Algorithm II)
For slightly more complicated example, let’s compute extended-Euclid(18, 30):

extended-Euclid(18, 30)
extended-Euclid(30 mod 18︸ ︷︷ ︸

=12
, 18)

extended-Euclid(18 mod 12︸ ︷︷ ︸
=6

, 12)

= 1, 0, 6
= −1, 1, 6 by Example 7.12.

= y− ⌊mn ⌋ · x, x, r where x = −1, y = 1, r = 6 and n = 18,m = 30 .
= 1− ⌊ 3018⌋ · (−1),−1, 6
= 1− 1 · (−1),−1, 6
= 2,−1, 6.

Again, as required, we have gcd(18, 30) = 6 and 2 · 18 +−1 · 30 = 36− 30 = 6.

We’re now ready to state the correctness of the Extended Euclidean algorithm:

Theorem 7.11 (Correctness of the Extended Euclidean Algorithm)
For arbitrary positive integers n and m with n ≤ m, extended-Euclid(n,m) returns three
integers x, y, r such that r = gcd(n,m) = xn + ym.

The proof, which is fairly straightforward by induction, is left to you as Exercise 7.60.
And once you’ve proven this theorem, Lemma 7.10—which merely stated that there Problem-solving

tip: A nice way,
particularly for
computer scientists,
to prove a theorem
of the form “there
exists x such that
P(x)” is to actually
give algorithm that
computes such an x!

exist integers x, y, rwith r = gcd(n,m) = xn + ym for any n and m—is immediate.
Note also that the Extended Euclidean algorithm is an efficient algorithm—you

already proved in Exercise 7.34 that the depth of the recursion tree for Euclid(n,m) is
upper bounded by O(log n + logm), and the running time of extended-Euclid(n,m)
is asymptotically the same as Euclid(n,m). (The only quantity that we need to use
in extended-Euclid that we didn’t need in Euclid is ⌊mn ⌋, but we already had to find
m mod n in Euclid—so if we usedmod-and-div(n,m) to compute m mod n, then we
“for free” also get the value of ⌊mn ⌋.)

7.3.3 The Uniqueness of Prime Factorization
Lemma 7.10—that there are multiples of n and m that add up to gcd(n,m)—and the
Extended Euclidean algorithm (which computes those coefficients) will turn out to
be helpful in proving some facts that are apparently unrelated to greatest common
divisors. Here’s a claim about divisibility related to prime numbers in that vein, which
we’ll be able to use to prove that prime factorizations are unique:

Lemma 7.12 (When a prime divides a product)
Let p be prime, and let a and b be integers. Then p | ab if and only if p | a or p | b.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

724 CHAPTER 7. NUMBER THEORY

Proof. We’ll proceed by mutual implication.
For the backward direction, assume p | a. (The case for p | b is strictly analogous.)

Then a = kp for some integer k, and thus ab = kpb, which is obviously divisible by p.
For the forward direction, assume that p | ab and suppose that p 6 | a. We must show

that p | b. Because p is prime and p 6 | a, we know that gcd(p, a) = 1 (see Exercise 7.47),
and, in particular, extended-Euclid(p, a) returns the GCD 1 and two integers n and m
such that 1 = pm + an. Multiplying both sides by b yields b = pmb + anb, and thus

b mod p = (pmb + anb) mod p
= (pmb mod p + anb mod p) mod p (7.3.2)

= (0 + anb mod p) mod p (7.4.7)

= (0 + 0) mod p p | ab by assumption, and (7.4.7) again

= 0.

That is, we’ve shown that if p 6 | a, then p | b. (And ¬x ⇒ y is equivalent to x ∨ y.)

We can use this fact to prove that an integer’s prime factorization is unique. (We’ll
prove only the uniqueness part of the theorem here; see Example 5.12 for the “there
exists a prime factorization” part.) Problem-solving tip:

When you define
something, you
genuinely get to
choose how to
define it! When you
can make a choice
in the definition
that makes your life
easier, do it!

Taking it further: Back when we defined prime numbers, we were very careful to specify that 1 is neither
prime nor composite. You may well have found this insistence to be silly and arbitrary and pedantic—after
all, the only positive integers that evenly divide 1 are 1 and, well, 1 itself, so it sure seems like 1 ought
to be prime. But there was a good reason that we chose to exclude 1 from the list of primes: it makes the
uniqueness of prime factorization true! If we’d listed 1 as a prime number, there would be many different
ways to prime factor, say, 202: for example, 202 = 2 · 101 and 202 = 1 · 2 · 101 and 202 = 1 · 1 · 2 · 101, and so
forth. So we’d have to have restated the theorem about uniqueness of prime factorization (“. . . is unique
up to reordering and the number of times that we multiply by 1”), which is a much more cumbersome
statement. This theorem is the reason that 1 is not defined as a prime number, in this book or in any
other mathematical treatment.

Theorem 7.13 (Prime Factorization Theorem (Reprise))
Let n ∈ Z≥1 be any positive integer. There exist k ≥ 0 prime numbers p1, p2, . . . , pk such
that n = ∏k

i=1 pi. Further, up to reordering, the prime numbers p1, p2, . . . , pk are unique.

Proof (of uniqueness). We’ll proceed by strong induction on n.
For the base case (n = 1), we can write 1 as the product of zero prime numbers—

recall that ∏i∈∅ i = 1—and this representation is unique. (The product of one or more
primes is greater than 1, as all primes are at least 2.)

For the inductive case (n ≥ 2), we assume the inductive hypotheses, namely that
any n′ < n has a unique prime factorization. We must prove that the prime factoriza-
tion of n is also unique. We consider two subcases:

Case I: n is prime. Then the statement holds immediately: the only prime factoriza-
tion is p1 = n. (Suppose that there were a different way of prime factoring n, as
n = ∏ℓ

i=1 qi for prime numbers 〈q1, q2, . . . , qℓ〉. We’d have to have ℓ ≥ 2 for this fac-
torization to differ from p1 = n, but then each qi satisfies qi > 1 and qi < n and
qi | n—contradicting what it means for n to be prime.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 725

Case II: n is composite. Then suppose that p1, p2, . . . , pk and q1, q2, . . . , qℓ are two se-
quences of prime numbers such that n = ∏k

i=1 pi = ∏ℓ
i=1 qi . Without loss of

generality, assume that both sequences are sorted in increasing order, so that
p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ qℓ. We must prove that these two
sequences are actually equal.

• Case IIA: p1 = q1. Define n′ := n
p1 = n

q1 = ∏k
i=2 pi = ∏ℓ

i=2 qi as the product of all
the other prime numbers (excluding the primes p1 and q1 = p1). By the induc-
tive hypothesis, n′ has a unique prime factorization, and thus p2, p3, . . . , pk and
q2, q3, . . . , qℓ are identical.

• Case IIB: p1 6= q1. Without loss of generality, suppose p1 < q1. But p1 | n, and
therefore p1 | ∏ℓ

i=1 qi. By Lemma 7.12, there exists an i such that p1 | qi. But
2 ≤ p1 < q1 ≤ qi. This contradicts the assumption that qi was prime.

Taking it further: How difficult is it to factor a number n? Does there exist an efficient algorithm for
factoring—that is, one that computes the prime factorization of n in a number of steps that’s propor-
tional to O(logk n) for some k? We don’t know. But it is generally believed that the answer is no, that
factoring large numbers cannot be done efficiently. The (believed) difficulty of factoring is a crucial pillar
of widely used cryptographic systems, including the ones that we’ll encounter in Section 7.5. There are
known algorithms that factor large numbers efficiently on so-called quantum computers (see the discus-
sion on p. 1016)—but nobody knows how to build quantum computers. And, while there’s no known
efficient algorithm for factoring large numbers on classical computers, there’s also no proof of hard-
ness for this problem. (And most modern cryptographic systems count on the difficulty of the factoring
problem—which is only a conjecture!)

7.3.4 The Chinese Remainder Theorem
We’ll close this section with another ancient result about modular arithmetic, called
the Chinese Remainder Theorem, from around 1750 years ago. Here’s the basic idea. The name of the

Chinese Remainder
Theorem comes
from its early
discovery by the
Chinese mathemati-
cian Sun Tzu, who
lived around the
5th century. (This
Sun Tzu is a differ-
ent Sun Tzu from
the one who wrote
The Art of War about
800 years prior.)

If n is some nonnegative integer, then knowing that, say, when n is divided by 7 its
remainder is 4 gives you a small clue about n’s value: one seventh of integers have
the right value mod 7. Knowing n mod 2 and n mod 13 gives you more clues. The
Chinese Remainder Theorem says that knowing n mod k for enough values of k will
(almost) let you figure out the value of n exactly—at least, if those values of k are all
relatively prime. Here’s a concrete example:

Example 7.14 (An example of the Chinese Remainder Theorem)
Problem: What nonnegative integers n satisfy the following conditions?

n mod 2 = 0 n mod 3 = 2 n mod 5 = 1.

Solution: Suppose n ∈ {0, 1, . . . , 29}. Then there are only six possible values
for which n mod 5 = 1, namely {0 + 1, 5 + 1, 10 + 1, 15 + 1, 20 + 1, 25 + 1} =
{1, 6, 11, 16, 21, 26}. Of these, the only even values are 6, 16, and 26. And we have
6 mod 3 = 0, 16 mod 3 = 1, and 26 mod 3 = 2. Thus n = 26.

Notice that, for any integer k, we have k ≡b k + 30 for all three moduli b ∈
{2, 3, 5}. Therefore any n ≡30 26 will satisfy the given conditions.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

726 CHAPTER 7. NUMBER THEORY

n 00 10 20 30 40 50 60 70 80 90 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
n mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
n mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
n mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

n 00 60 12 18 24 10 16 22 28 40 20 26 20 80 14 15 21 27 30 90 25 10 70 13 19 50 11 17 23 29
n mod 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n mod 3 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
n mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 7.10: The
remainders of all
n ∈ {0, 1, . . . , 29},
modulo 2, 3, and
5—sorted by n
(above) and by the
remainders (below).

The basic point of Example 7.14 is that every value of n ∈ {0, . . . , 29} has a unique
“profile” of remainders mod 2, 3, and 5. (See Figure 7.10.) Crucially, every one of the
30 possible profiles of remainders occurs in Figure 7.10, and no profile appears more
than once. (The fact that there are exactly 30 possible profiles follows from the Product
Rule for counting; see Section 9.2.1.)

The Chinese Remainder Theorem states the general property that’s illustrated in
these particular tables: each “remainder profile” occurs once and only once. Here is a
formal statement of the theorem. We refer to a constraint of the form x mod n = a as a
congruence, following Definition 7.2. We also write Zk := {0, 1, . . . , k− 1}.

Theorem 7.14 (Chinese Remainder Theorem: two congruences)
Let n and m be any two relatively prime integers. For any a ∈ Zn and b ∈ Zm, there exists
one and only one integer x ∈ Znm such that x mod n = a and x mod m = b.

Input: relatively prime n,m ∈ Z; a ∈ Zn; b ∈ Zm.
Output: x such that x mod m = a and x mod n = b.
1: c, d, r := extended-Euclid(n,m)
2: return x := (adm + bcn) mod nm

Figure 7.11: An
algorithm for the
Chinese Remainder
Theorem. (Ensure
that m ≥ n by
swapping n and m
if necessary.)

Proof. To show that there exists an integer x satisfying x mod
n = a and x mod m = b, we’ll give a proof by construction—
specifically, we’ll compute the value of x given the values of
{a, b, n,m}. The simple algorithm is shown in Figure 7.11.
We must argue that x mod n = a and x mod m = b. Note
that gcd(n,m) = 1 because n and m are relatively prime by assumption. Thus, by the
correctness of the Extended Euclidean algorithm, we have

cn + dm = 1. (∗)

Multiplying both sides of (∗) by a, we know that

acn + adm = a. (†)

Recall that we defined x := (adm + bcn) mod nm. Let’s now show that x mod n = a:

x mod n = (adm+ bcn) mod nm mod n definition of x

= (adm+ bcn) mod n Exercise 7.18

= (adm+ 0) mod n bcn mod n = 0 because n | bcn

= (adm+ acn) mod n acn mod n = 0 because n | acn too!

= a mod n (†)

= a. a ∈ {0, 1, . . . ,n− 1} by assumption, so a mod n = a

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 727

We can argue that x = adm + bcn ≡m bdm + bcn ≡m b completely analogously, where the
last equivalence follows by multiplying both sides of (∗) by b instead.

Thus we’ve now established that there exists an x ∈ Znm with x mod n = a and
x mod m = b (because we computed such an x). To prove that there is a unique such x,
suppose that x mod n = x′ mod n and x mod m = x′ mod m for two integers x, x′ ∈
Znm. We will prove that x = x′—which establishes that there’s actually only one
element of Znm with this property. By assumption, we know that (x− x′) mod n = 0
and (x− x′) mod m = 0, or, in other words, we know that n | (x− x′) and m | (x − x′).
By Exercise 7.70 and the fact that n and m are relatively prime, then, we know that
nm | (x− x′). And because both x, x′ ∈ Znm, we’ve therefore shown that x = x′.

Some examples
Here are two concrete examples of using the Chinese Remainder Theorem (and,

specifically, of using the algorithm from Figure 7.11):

Writing tip: Now
that we’ve done a
lot of manipulations
with modular
arithmetic, in proofs
we will start to
omit some simple
steps that are by
now tedious—
like those using
(7.3.2) to say that
y + z mod n is equal
to ((y mod n) +
(z mod n)) mod n.

Example 7.15 (The Chinese Remainder Theorem, in action)
Let’s use the algorithm from the proof of the Chinese Remainder Theorem to find the
integer x ∈ Z30 that satisfies x mod 5 = 4 and x mod 6 = 5.

Note that 5 and 6 are relatively prime, and extended-Euclid(5, 6) returns 〈−1, 1, 1〉.
(Indeed, we have that 5 · −1 + 6 · 1 = 1 = gcd(5, 6).) Thus we compute x from the
values of 〈n,m, a, b, c, d〉 = 〈5, 6, 4, 5,−1, 1〉 as

adm + bcn = 4 · 1 · 6 + 5 · −1 · 5 = 24− 25 = −1.

Thus x := −1 mod 30 = 29. And, indeed, 29 mod 5 = 4 and 29 mod 6 = 5.

Example 7.16 (A second example of the Chinese Remainder Theorem)
Problem: We are told that x mod 7 = 1 and x mod 9 = 5. What is the value of x?

Solution: We find extended-Euclid(7, 9) = 〈4,−3, 1〉 by tracing the algorithm’s execu-
tion. The algorithm in Figure 7.11 computes x := adm + bcn mod nm, where n = 7
and m = 9 are the given moduli; a = 1 and b = 5 are the given remainders; and c = 4
and d = −3 are the computed multipliers from extended-Euclid. Thus

x := (1 · −3 · 9) + (5 · 4 · 7) mod 7 · 9 = −27 + 140 mod 63 = 113 mod 63 = 50.

Indeed, 50 mod 7 = 1 and 50 mod 9 = 5. Thus x ≡63 50.

Generalizing to k congruences
We’ve now shown the Chinese Remainder Theorem for two congruences, but Ex-

ample 7.14 had three constraints (x mod 2, x mod 3, and x mod 5). In fact, the gener-
alization of the Chinese Remainder Theorem to k congruences, for any k ≥ 1, is also
true—again, as long as the moduli are pairwise relatively prime (that is, any two of the
moduli share no common divisors).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

728 CHAPTER 7. NUMBER THEORY

We can prove this generalization fairly directly, using induction and the two-
congruence case. The basic idea will be to repeatedly use Theorem 7.14 to combine
a pair of congruences into a single congruence, until there are no pairs left to combine.
Here’s a concrete example:

Example 7.17 (The Chinese Remainder Theorem, with 3 congruences)
Let’s describe the values of x that satisfy the congruences

x mod 2 = 1 x mod 3 = 2 x mod 5 = 4. (∗)

To do so, we first identify values of y that satisfy the first two congruences, ignor-
ing the third. Note that 2 and 3 are relatively prime, and extended-Euclid(2, 3) =
〈−1, 1, 1〉. Thus, y mod 2 = 1 and y mod 3 = 2 if and only if

y mod (2 · 3) = (1 · 1 · 3 + 2 · −1 · 2) mod (2 · 3) = 5.

In other words, y ∈ Z6 satisfies the congruences y mod 2 = 1 and y mod 3 = 2 if and
only if y satisfies the single congruence y mod 6 = 5. Thus the values of x that satisfy
(∗) are precisely the values of x that satisfy

x mod 6 = 5 x mod 5 = 4. (†)

And, in Example 7.15, we showed that values of x that satisfy (†) are precisely those
with x mod 30 = 29.

Now, using the idea from this example, we’ll prove the general version of the Chinese
Remainder Theorem:

Theorem 7.15 (Chinese Remainder Theorem: General version)
Let n1, n2, . . . , nk be a collection of pairwise relatively prime integers, for some k ≥ 1, and let
N := ∏k

i=1 ni.
For any 〈a1, . . . , ak〉 with each ai ∈ Zni , there exists one and only one integer x ∈ ZN such

that x mod ni = ai for all 1 ≤ i ≤ k.

Proof. We proceed by induction on k.

Base case (k = 1): Then there’s only one constraint, namely x mod n1 = a1, and obvi-
ously x := a1 is the only element of ZN = Zn1 that satisfies this congruence.

Inductive case (k ≥ 2): We assume the inductive hypothesis, namely that there exists a
unique x ∈ ZM satisfying any set of k− 1 congruences whose moduli have product
M. To make use of this assumption, we will convert the k given congruences into
k − 1 equivalent congruences, as follows: by Theorem 7.14, there exists a (unique)
value y∗ ∈ Zn1n2 such that y∗ mod n1 = a1 and y∗ mod n2 = a2. In Exercise 7.69
you’ll prove that n1n2 is also relatively prime to every other ni, and, in Exercise 7.79,
you will show that a value x ∈ ZN satisfies x mod n1 = a1 and x mod n2 = a2 if and

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 729

only if x satisfies x mod n1n2 = y∗. More formally, given the A-constraints (on the
left), define the B-constraints (on the right):

x mod n1 = a1 (1A)
x mod n2 = a2 (2A)
x mod n3 = a3 (3A)
x mod n4 = a4 (4A)

...
x mod nk = ak. (kA)

x mod n1n2 = y∗ (1-and-2B)

x mod n3 = a3 (3B)
x mod n4 = a4 (4B)

...
x mod nk = ak. (kB)

Observe that the product of the moduli is the same for both the A-constraints and
the B-constraints: N := n1 · n2 · n3 · · · nk for A, and (n1n2) · n3 · · · nk for B. Thus:

• By Exercise 7.79, an integer x ∈ ZN satisfies the A-constraints if and only if x
satisfies the B-constraints.

• By the inductive hypothesis—which applies by Exercise 7.69—there’s a unique
x ∈ ZN that satisfies the B-constraints.

Therefore there is a unique x ∈ ZN that satisfies the A-constraints, as desired.

Here we gave an inductive argument for the general version of Chinese Remainder
Theorem (based on the 2-congruence version), but we could also give a version of the
proof that directly echoes Theorem 7.14’s proof. See Exercise 7.107.

Taking it further: One interesting implication of the Chinese Remainder Theorem is that we could
choose to represent integers efficiently in a very different way from binary representation, instead
using something called modular representation. In modular representation, we store an integer n as a
sequence of values of n mod b, for a set of relatively prime values of b. To be concrete, consider the set
{11, 13, 15, 17, 19}, and let N := 11 · 13 · 15 · 17 · 19 = 692,835 be their product. The Chinese Remainder
Theorem tells us that we can uniquely represent any n ∈ ZN as

〈n mod 11, n mod 13, n mod 15, n mod 17, n mod 19〉.
For example, 217 = 〈7, 6, 2, 2, 10〉, and 17 = 〈6, 4, 2, 0, 17〉. Perhaps surprisingly, the representation of
217 + 17 is 〈2, 10, 4, 2, 8〉 and 17 · 217 = 〈9, 11, 4, 0, 18〉, which are really nothing more than the result of
doing component-wise addition/multiplication (modulo that component’s corresponding modulus):

mod 11 13 15 17 19
〈 7, 6, 2, 2, 10 〉

+ 〈 6, 4, 2, 0, 17 〉
= 〈 13, 10, 4, 2, 27 〉
≡ 〈 2, 10, 4, 2, 8 〉

and

mod 11 13 15 17 19
〈 7, 6, 2, 2, 10 〉

· 〈 6, 4, 2, 0, 17 〉
= 〈 42, 24, 4, 0, 170 〉
≡ 〈 9, 11, 4, 0, 18 〉.

This representation has some advantages over the normal binary representation: the numbers in each
component stay small, and multiplying k pairs of 5-bit numbers is significantly faster than multiplying
one pair of 5k-bit numbers. (Also, the components can be calculated in parallel!) But there are some
other operations that are slowed down by this representation. (See Exercises 7.145–7.146.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

730 CHAPTER 7. NUMBER THEORY

Computer Science Connections

Secret Sharing
Although encryption/decryption is probably the most natural crypto-

graphic problem, there are many other important problems in the same gen-
eral vein. Here we’ll introduce and solve a different cryptographic problem—
using a solution due to Adi Shamir (the S of the RSA cryptosystem, which
we’ll see in Section 7.5).3 Imagine a shared resource, collectively owned by 3 Adi Shamir. How to share a secret.

Communications of the ACM, 22(11):612–
613, November 1979.

some group, that the group wishes to keep secure—for example, the launch
codes for the U.S.’s nuclear weapons. In the post-apocalyptic world in which
you’re imagining these codes being used, where many top officials are proba-
bly dead, we’ll need to ensure that any, say, k = 3 of the cabinet members (out
of the n = 15 cabinet positions) can launch the weapons. But you’d also like to
guarantee that no single rogue secretary can destroy the world!

In secret sharing, we seek a scheme by which we distribute “shares” of the
secret s ∈ S to a group of n people such that the following properties hold:
1. If any k of these n people cooperate, then—by combining their k shares of

the secret—they can compute the secret s (preferably efficiently).
2. If any k′ < k of these n people cooperate, then by combining their k′ shares

they learn nothing about the secret s. (Informally, to “learn nothing” about
the secret means that no k′ shares of the secret allow one to infer that s
comes from any particular S′ ⊂ S.)

(Note that just “splitting up the bits” of the secret violates condition 2.)
The basic idea will be to define a polynomial f (x), and distribute the value

of f (i) as the the ith “share” of the secret; the secret itself will be f (0). Why will
this be useful? Imagine that f (x) = ax + b. (The secret is thus f (0) = a · 0 + b = b.)
Knowing that f (1) = 17 tells you that a + b = 17, but it doesn’t tell you anything
about b itself: for every possible value of the secret, there’s a value of a that
makes a + b = 17. But knowing f (1) = 17 and f (2) = 42 lets you solve for
a = 25, b = −8. If f (x) = ax2 + bx + c, then knowing f (x1) and f (x2) gives you
two equations and three unknowns—but you can solve for c if you know the
value of f (x) for three different values of x. In general, knowing k values of a
polynomial f of degree k lets you compute f (0), but any k − 1 values of f are
consistent with any value of f (0). And this result remains true if, instead of
using the value f (x) as the share of the secret, we instead use f (x) mod p, for
some prime p. (See p. 731.) Here’s a concrete example, to distribute shares of a
secret m ∈ {0, 1, 2, 3, 4}:
• Choose a1, . . . , ak uniformly and independently at random from {0, 1, 2, 3, 4}.
• Let f (x) = m + ∑k

i=1 aixi. Distribute 〈n, f (n) mod 5〉 as “share” #n.
For example, let k := 3, and suppose you know that f (1) mod 5 = 1 and
f (2) mod 5 = 2. These facts don’t help you figure out f (0): there are polyno-
mials {f0, f1, . . . , f4} with fb(0) = b that are all consistent with those obser-
vations! (See Figure 7.12.) To put this fact another way, given points 〈x1, y1〉
and 〈x2, y2〉 for x1, x2 6= 0, for any y-intercept b, there exists an f (x) such that
f (x1) ≡p y1, f (x2) ≡p y2, and f (0) ≡p b. But three people can reconstruct the
secret! There’s only one quadratic that passes through three given points.

f0(x) = 0 + 1x + 0x2
f1(x) = 1 + 2x + 3x2
f2(x) = 2 + 3x + 1x2
f3(x) = 3 + 4x + 4x2
f4(x) = 4 + 0x + 2x2

0
1
2
3
4

0 1 2 3 4

f0(x)

0
1
2
3
4

0 1 2 3 4

f2(x)

0
1
2
3
4

0 1 2 3 4

f4(x)

Figure 7.12: Let f (x) := a + bx + cx2.
Even knowing f (1) ≡5 1 and f (2) ≡5 2,
we don’t know f (0) mod 5; there are
polynomials consistent with f (0) ≡5 m
for every m ∈ {0, 1, 2, 3, 4}. Here we see
fb(x) mod 5. (These polynomials can be
hard to visualize, because their values
“wrap around” from 5 to 0.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 731

Computer Science Connections

Error Correction with Reed–Solomon Codes
Earlier (see Chapter 4), we discussed error-correcting codes: we encode a

message m as a codeword c(m), so that m is (efficiently) recoverable from c(m),
or even from a mildly corrupted codeword c′ ≈ c(m). (Note the difference in
motivation with cryptography: in error-correcting codes, we want a codeword
that makes computing the original message very easy; in cryptography, we
want a ciphertext that makes computing the original message very hard.)
The key property that we seek is that if m1 6= m2, then c(m1) and c(m2) are
“very different,” so that decoding c′ simply corresponds to finding the m that
minimizes the difference between c′ and c(m).

There, we discussed Reed–Solomon codes, one of the classic schemes for
error-correcting codes. Under Reed–Solomon codes, to encode a message
m ∈ Zk , we define the polynomial pm(x) := ∑k

i=1 mixi, and encode m as
〈pm(1), pm(2), . . . , pm(n)〉. (We choose nmuch bigger than k, to achieve the de-
sired error-correction properties.) For example, for the messagesm1 = 〈1, 3, 2〉
and m2 = 〈3, 0, 3〉, we have pm1 (x) = x + 3x2 + 2x3 and pm2 (x) = 3x + 3x3. For
n = 6, we have the codewords (for m1 and m2, respectively)

〈6, 30, 84, 180, 330, 546〉 and 〈6, 30, 90, 204, 390, 666〉.

The key point is that two distinct polynomials of degree k agree on at most k

Theorem 7.16
Let f (x) be a polynomial of degree k. Then
either f (a) = 0 for every a ∈ Z, or the
equation f (x) = 0 has at most k solutions
for x ∈ Z.

Corollary 7.17
Let f and g 6= f be polynomials of degree k.
Then | {x : f (x) = g(x)} | ≤ k.
Figure 7.13: The Fundamental The-
orem of Algebra. The corollary
follows because the polynomial
h(x) = f (x)− g(x) also has degree at
most k, and {x : f (x) = g(x)} is precisely
the set {x : h(x) = 0}.

inputs,which means that the codewords for m1 and m2 will be very different.
(Here pm1 (x) and pm2 (x) agree on x ∈ {1, 2}, but not on x ∈ {3, 4, 5, 6}.) The
theorem upon which this difference rests is important enough to be called the
Fundamental Theorem of Algebra; see Figure 7.13.

While this fact about Reed–Solomon codes is nice, it’s already evident
that the numbers in the codewords get really big—546 and 666 are very big
relative to the integers in the original messages! In real Reed–Solomon codes,
there’s another trick that’s used: every value is stored modulo a prime. Let q be
a prime. We’ll actually encode our messagem as

〈pm(1) mod q, pm(2) mod q, . . . , pm(n) mod q〉.

In fact, we now encode a messagem ∈ Zkq with a codeword in Znq . And it
turns out that everything important about polynomials remains true if we
take all values modulo a prime q! (See Figure 7.14.)

Theorem 7.18
Let f (x) be a polynomial of degree k, and
let q be a prime number. Then either
f (a) mod q = 0 for every a ∈ Zq, or the
equation f (x) = 0 has at most k solutions
for x ∈ Zq.

Corollary 7.19
Let f and g 6= f be polynomials of degree k.
Then |

{x : f (x) ≡q g(x)
}
| ≤ k.

Figure 7.14: The Fundamental Theorem
of Algebra, modulo a prime.

The combined message of Reed–Solomon error-correcting codes and the
Shamir secret-sharing scheme (p. 730) is the following. Suppose that there is
a degree-k polynomial p that is unknown to you, and suppose that you are
given the evaluation of this polynomial on n distinct points.
if n < k: Then you know nothing about the constant term of the polynomial.

(Secrets kept!)
if n = k: Then you can compute every coefficient of the polynomial, including

the constant term. (Secrets shared!)
if n > k: Then you can find the degree-k polynomial consistent with the

largest number of these points. (Errors corrected!)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

732 CHAPTER 7. NUMBER THEORY

7.3.5 Exercises
The Sieve of Eratosthenes returns a list of all prime numbers up to a given integer n by creating a list of candidate
primes 〈2, 3, . . . ,n〉, and repeatedly marking the first unmarked number p as prime and striking out all entries in the
list that are multiples of p. See the Sieve in action in Figure 7.15.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

...

Figure 7.15: A few
iterations of the
Sieve of Eratos-
thenes. Primes
are underlined as
they’re discovered;
numbers are writ-
ten in light gray as
they’re crossed off.

7.38 Write pseudocode to describe the Sieve of Eratosthenes.
7.39 Run the algorithm, by hand, to find all primes less than 100.
7.40 (programming required) Implement the Sieve of Eratosthenes in a programming language of your
choice. Use your program to compute all primes up to 100,000. How many are there?
7.41 (programming required) Earlier, we suggested another algorithm to compute all primes up to
n := 100,000: for each i = 2, 3, . . . , n, test whether i is divisible by any integer between 2 and

√
i. Implement

this algorithm too, and compare their execution times. What happens for n := 500,000?
7.42 Assume that each number k is crossed off by the Sieve of Eratosthenes every time a divisor of it is
found. (For example, 6 is crossed off when 2 is the prime in question, and when 3 is the prime in question.)
Prove that the total number of crossings-out by sieve(n) is ≤Hn · n, where Hn is the nth harmonic number.
(See Definition 5.4.)

Use the Prime Number Theorem to . . .
7.43 . . . estimate the number of primes between 2127 + 1 and 2128 .
7.44 . . . estimate the 2128th-largest prime.
7.45 . . . argue that, roughly, the probability that a randomly chosen number close to n is prime is about
1/ ln n. (Hint: what does primes(n)− primes(n− 1) represent?)
7.46 Using the same technique as in Example 7.8, estimate the number of 6-digit primes. Then, using
the Sieve or some other custom-built program, determine how far off the estimate was.

Let p be an arbitrary prime number and let a be an arbitrary nonnegative integer. Prove the following facts.
7.47 If p 6 | a, then gcd(p, a) = 1.
7.48 For any positive integer k, we have p | ak if and only if p | a. (Hint: use induction and Lemma 7.12.)
7.49 For any integers n,m ∈ {1, . . . , p− 1}, we have that p 6 | nm.
7.50 For any integer m and any prime number q distinct from p (that is, p 6= q), we have m ≡p a and
m ≡q a if and only if m ≡pq a. (Hint: think first about the case a = 0; then generalize.)
7.51 If 0 ≤ a < p, then a2 ≡p 1 if and only if a ∈ {1, p− 1}. (You may use Theorem 7.18 from p. 731.)

Here are some pairs of integers. Using the brute force algorithm (test all candidate divisors) and paper and
pencil only, determine whether they are relatively prime.
7.52 54321 and 12345 7.53 209 and 323 7.54 101 and 1100

Using the Extended Euclidean algorithm, compute (by hand) gcd(n,m) and integers x, y such that xn + ym =
gcd(n,m) for the following pairs of numbers:
7.55 60 and 93 7.56 24 and 28 7.57 74 and 13

Prove the following extensions to Lemma 7.10:
7.58 There are infinitely many pairs of integers x, y such that xn + ym = gcd(n,m), for any nonnegative
integers n and m.
7.59 The extension to k ≥ 2 integers: if gcd(a1 , . . . , ak) = d, then there exist integers x1, . . . , xk such that
∑k

i=1 aixi = d. (Define gcd(x1 , x2 , . . . , xk) := gcd(x1, gcd(x2, . . . , xk)) for k ≥ 3.)

7.60 Prove Theorem 7.11 (the correctness of the Extended Euclidean algorithm) by induction on n:
show that for arbitrary positive integers n and mwith n ≤ m, extended-Euclid(n,m) returns three integers
x, y, r such that r = gcd(n,m) = xn + ym.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.3. PRIMALITY AND RELATIVE PRIMALITY 733

7.61 (programming required) Write a program that implements the Extended Euclidean algorithm. (Rec-
ommended: if you did Exercises 7.11–7.16, compute m mod n and ⌊m

n ⌋ with a single call to mod-and-div-faster(m, n).)

I have a friend named Nikki, who’s from New Zealand. Nikki and I went out to eat together, and I paid for both dinners.
She was going to pay me back, in cash—but she had only New Zealand dollars [NZD]. (I was happy to take NZDs.)
Nikki had a giant supply of 5NZD bills; I had a giant supply of 5 U.S. dollar [USD] bills. At the time, the exchange
rate was 5NZD = 3USD (or close enough to 5 : 3 for two friends to call it good).
7.62 Prove that Nikki can pay me exactly 4USD in value, through only the exchange of 5NZD and
5USD bills.
7.63 In Exercise 7.62, was there something special about the number 4? Identify for which nonnegative
integers x Nikki can pay me back exactly x USD in value, through only the exchange of 5NZD and 5USD
bills, and prove your answer.
7.64 In Exercises 7.62–7.63, was there something special about the number 3? Suppose that, due to
geopolitical turmoil and a skyrocketing of the price of wool, the 5NZD bill is now worth b USDs, for some
b ≡5 3. I still have many 5USD bills, and Nikki still has the equivalent of many b USD bills. What amounts
can Nikki now pay me? Prove your answer.
7.65 In an unexpected twist, I run out of U.S. dollars and Nikki runs out of New Zealand dollars. But I
discover that I have a giant supply of identical Israeli Shekel notes, each of which is worth k USD. And Nikki
discovers that she has a giant supply of identical Thai Baht notes, each of which is worth ℓ USD. (Assume k
and ℓ are integers.) What amounts can she pay me now? Again, prove your answer.

Prove the following facts about relative primality.
7.66 Two consecutive integers (n and n + 1) are always relatively prime.
7.67 Two consecutive Fibonacci numbers are always relatively prime.
7.68 Two integers a and b are relatively prime if and only if there is no prime number p such that p | a
and p | b. (Notice that this claim differs from the definition of relative primality, which required that there be
no integer n ≥ 2 such that n | a and n | b.)

Let a and b be relatively prime integers. Prove the following facts:
7.69 Let c ∈ Z≥1 be relatively prime to both a and b. Then c and ab are also relatively prime.
7.70 For any integer n, we have that both a | n and b | n if and only if ab | n.
7.71 For every integerm, there exist integers x and y such that ax + by = m.

For the following constraints, describe the set of all x ∈ Z≥0 that satisfies them. Describe this set as {a + bk : k ∈ Z≥0},
where a is smallest x satisfying the constraints, a + b is the next smallest, a + 2b is the next smallest, etc.
7.72 x mod 13 = 6 and x mod 19 = 2
7.73 x mod 21 = 3 and x mod 11 = 2
7.74 x mod 6 = 3 and x mod 7 = 3
7.75 x mod 5 = 4 and x mod 6 = 5 and x mod 7 = 2
7.76 x mod 5 = 4 and x mod 6 = 5 and x mod 7 = 3

Show that relative primality was mandatory for the Chinese Remainder Theorem. Namely, show that, for two integers n
and m that are not necessarily relatively prime, for some a ∈ Zn and b ∈ Zm . . .
7.77 . . . it may be the case that no x ∈ Znm satisfies x mod n = a and x mod m = b.
7.78 . . . it may be the case that more than one x ∈ Znm satisfies x mod n = a and x mod m = b.

7.79 Let n and m be relatively prime, and let a ∈ Zn and b ∈ Zm. Define y∗ to be the unique value in
Znm such that y∗ mod n = a and y∗ mod m = b, whose existence is guaranteed by Theorem 7.14. Prove that
an integer x ∈ Znm satisfies x mod n = a and x mod m = b if and only if x satisfies x mod nm = y∗.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

734 CHAPTER 7. NUMBER THEORY

7.4 Multiplicative Inverses
Civilization is a limitless multiplication of unnecessary
necessities.

Mark Twain (1835–1910)
For any integer n ≥ 2, let Zn denote the set {0, 1, . . . , n− 1}. In this section, we’ll

discuss arithmetic over Zn—that is, arithmetic where we think of all expressions by
considering their value modulo n. For example, when n = 9, the expressions 4 + 6 and
8 · 7 are equivalent to 1 and 2, respectively, because 10 mod 9 = 1 and 56 mod 9 = 2.
When n = 10, the expressions 4 + 6 and 8 · 7 are equivalent to 0 and 6, respectively.

We have already encountered addition and multiplication in the world of modular
arithmetic (for example, in Theorem 7.3). But we haven’t yet defined subtraction or
division. (Theorem 7.3 also introduced exponentiation over Zn, and it turns out that,
along with division, exponentiation in modular arithmetic will form the foundation
of the RSA cryptographic system; see Section 7.5.) Subtraction turns out to be fairly
straightforward (see Exercise 7.81), but division will be a bit trickier than +, ·, and −.
In this section, we’ll introduce what division over Zn even means, and then discuss
algorithms to perform modular division.

7.4.1 The Basic Definitions
Before we introduce any of the technical definitions, let’s start with a tiny bit of intu-
ition about why there’s something potentially interesting going on with division in Zn.
For concreteness, here’s a small example in Z9:

2a a
0 0
1 5
2 1
3 6
4 2
5 7
6 3
7 8
8 4

Figure 7.16: For
each b ∈ Z9, the
value of a ∈ Z9
such that 2a = b.

Example 7.18 (Halving some numbers in Z9)
Problem: In Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, where every expression’s value is understood

mod 9, what element of Z9 is half of 6? Half of 8? Half of 5?

Solution: What number is half of 6? Well, easy: it’s obviously 3. (Why? Because 6 is
double 3, and therefore 3 is half of 6—or, in other words, 3 is half of 6 because 3 · 2
is 6.) And what number is half of 8? Easy again: it’s 4 (because 4 · 2 is 8).

Okay, what number is half of 5? The first temptation is to say that it’s 2.5 (or 5
2 ,

if you’re more of a fan of fractions)—but that doesn’t make sense as an answer:
after all, which element of {0, 1, 2, 3, 4, 5, 6, 7, 8} is 2.5?!? So the next temptation is
to say that there is no number that’s half of 5. (After all, in normal nonmodular
arithmetic, there is no integer that’s half of 5.) But that’s not right either: there is
an answer in Z9, even if it doesn’t quite match our intuition. The number that’s
half of 5 is in fact 7(!). Why? Because 7 · 2 is 5. (Remember that we’re in Z9, and
14 mod 9 = 5.) So, in Z9, the number 7 is half of the number 5. (See Figure 7.16.)

Example 7.18 illustrates the basic idea of division in Zn: we’ll define a
b as the number

k such that k · b is equivalent to a in Zn. To make this idea formal, we’ll need a few
definitions about modular arithmetic. But, first, we’ll go back to “normal” arithmetic,
for the real numbers, and introduce the two key concepts: identity and inverse.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.4. MULTIPLICATIVE INVERSES 735

Multiplicative inverses in R

The number 1 is called the multiplicative identity, because it has the property that
Problem-solving
tip: When you
encounter a new
definition, it’s often
helpful to try it out
in a setting that you
already understand
well. For example,
it’s easier under-
stand Manhattan
distance in R2

(see Example 2.40)
before trying to
understand it for
general Rn. In
this case, you’ve
grasped division
in R since, what,
second grade—so,
before trying to
make sense of the
definitions for Zn,
try to consider the
analogy of each
definition for R.

x · 1 = 1 · x = x, for any x ∈ R.

(We’ve encountered identities in a number of contexts already. In Definition 2.41, we
introduced the identity matrix I, whereMI = IM = M for any matrix M. And Exercises
3.13–3.16 explored the identities of logical connectives; for example, the identity of ∨ is
False, because p∨ False ≡ False∨ p ≡ p for any proposition p.)

The multiplicative inverse of a number x is the number by which we have to multiply
x to get 1 (that is, to get the multiplicative identity) as the result. In other words, the
multiplicative inverse of x ∈ R is the real number x−1 such that x · x−1 = 1. (We
generally denote the multiplicative inverse of x as x−1, though it may be easier to think
about the multiplicative inverse of x as 1

x , because x · 1
x = 1. Actually the “−1” notation

is in general ambiguous between denoting inverse and denoting exponentiation with
a negative exponent—though these concepts match up perfectly for the real numbers.
Exercise 7.99 addresses negative exponents in modular arithmetic.) For example, the
multiplicative inverse of 8 is 1

8 = 0.125, because 8 · 0.125 = 1.
When we think of dividing y ∈ R by x ∈ R, we can instead think of this operation as

multiplying y by x−1. For example, we have 7/8 = 7 · 8−1 = 7 · 0.125 = 0.875.
Not every real number has a multiplicative inverse: specifically, there is no number

that yields 1 when it’s multiplied by 0, so 0−1 doesn’t exist. (And we can’t divide y by
0, because 0−1 doesn’t exist.) But for any x 6= 0, the multiplicative inverse of x does
exist, and it’s given by x−1 := 1

x .

Multiplicative inverses in Zn
Now let’s turn to the analogous definitions in the world of modular arithmetic, in

Zn. Notice that 1 is still the multiplicative identity, for any modulus n: for any x ∈ Zn,
it is the case that x mod n = 1 · x mod n = x · 1 mod n. The definition of the multiplica-
tive inverse in Zn is identical to the definition in R: Writing tip: Let

a ∈ Zn. The
notation a−1 doesn’t
explicitly indicate
the modulus n
anywhere, and the
value of nmatters!
If there’s any
ambiguity about
the value of n, then
be sure to specify
it clearly in your
words surrounding
the notation.

Definition 7.8 (Multiplicative Inverse)
Let n ≥ 2 be any integer, and let a ∈ Zn be arbitrary. Themultiplicative inverse of a in Zn
is the number a−1 ∈ Zn such that a · a−1 ≡n 1. If there is no element x ∈ Zn such that
ax ≡n 1, then a−1 is undefined.

(Note that Definition 7.8 describes the multiplicative inverse as “the” a−1 that has the
desired property. In Exercise 7.92, you’ll show that there can’t be two distinct values
b, c ∈ Zn where ab ≡n ac ≡n 1.) Here are a few examples of multiplicative inverses,
and of a case where there is no multiplicative inverse:

Example 7.19 (Some multiplicative inverses)
The multiplicative inverse of 2 in Z9 is 2−1 = 5, because 2 · 5 = 10 ≡9 1, and the
multiplicative inverse of 1 in Z9 is 1−1 = 1, because 1 · 1 ≡9 1. The multiplicative

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

736 CHAPTER 7. NUMBER THEORY

inverse of 7 in Z11 is 8 because 7 · 8 = 56 ≡11 1, and the multiplicative inverse of 7 in
Z13 is 2 because 7 · 2 = 14 ≡13 1.

Example 7.20 (A nonexistent multiplicative inverse)
The number 3 has no multiplicative inverse in Z9, as the following table shows:

3 · 0 = 0 ≡9 0
3 · 1 = 3 ≡9 3
3 · 2 = 6 ≡9 6

3 · 3 = 9 ≡9 0
3 · 4 = 12 ≡9 3
3 · 5 = 15 ≡9 6

3 · 6 = 18 ≡9 0
3 · 7 = 21 ≡9 3
3 · 8 = 24 ≡9 6.

All nine of these entries are not equivalent to 1 modulo 9, so there is no 3−1 in Z9.

Example 7.21 (Multiplicative inverses in Z7)
Problem: Find the values of 0−1, 1−1, 2−1, 3−1, 4−1, 5−1, and 6−1 in Z7.

Solution: The simplest way (though not necessarily the fastest way!) to solve this
problem is by building a multiplication table for Z7, as shown in Figure 7.17.
(The entry in row a and column b of the table is the value ab mod 7—for example,
4 · 5 = 20 = 2 · 7 + 6, so the entry in row 4, column 5 is the number 6.) For each row
a, the value a−1 we seek is the column that has a 1 in it, if there is such a column in
that row. (And there is a 1 in every row except a = 0.) Thus in Z7 we have 1−1 = 1,
2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3, and 6−1 = 6—and 0−1 is undefined.

Taking it further: The field of mathematics called abstract algebra focuses on giving and analyzing very
general definitions of structures that satisfy certain properties—allowing apparently disparate objects
(like Boolean logic and Rubik’s cubes) to be studied at the same time. For example, a group is a pair
〈G, ·〉, where G is a set of objects and · is a binary operator on G, where certain properties are satisfied:
• Closure: for any a, b ∈ G, we have a · b ∈ G.
• Associativity: for any a, b, c ∈ G, we have a · (b · c) = (a · b) · c.
• Identity: there is an identity element e ∈ Gwith the property that a · e = e · a = a for every a ∈ G.
• Inverse: for every a ∈ G, there exists b ∈ G such that a · b = b · a = e (where e is the identity element).
For example, 〈Z, +〉 is a group. As we’ll see, so too is 〈Zp − {0} , ·〉, where · denotes multiplication and
p is any prime integer. Despite the very abstract nature of these definitions—and other more general or
more specific algebraic structures, like semigroups, rings, and fields—they are a surprisingly useful way of
understanding properties of Zp. See any good textbook on abstract algebra for more detail.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Figure 7.17: The
multiplication table
for Z7 .

7.4.2 When Multiplicative Inverses Exist (and How to Find Them)
Examples 7.19, 7.20, and 7.21 might inspire you to ask a question that will turn out
to be both useful and reasonably simple to answer: under what circumstances does a
particular number a ∈ Zn have a multiplicative inverse? As we saw with arithmetic over
R, there’s never a multiplicative inverse for 0 in any Zn (because, for any x, we have
x · 0 = 0 6≡n 1)—but what happens for nonzero a?

To take one particular case, we just found that 2−1 = 5 in Z9 but that 3−1 does not
exist in Z9. It’s worth reflecting a bit on “why” 3−1 failed to exist in Z9. There are a lot

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.4. MULTIPLICATIVE INVERSES 737

of ways to think about it, but here’s one convenient way to describe what went wrong:
any multiple of 3 is (obviously!) divisible by 3, and numbers divisible by 3 are never
one more than multiples of 9. In other words, the only possible values of 3x mod 9 are
{0, 3, 6}—a set that fails to include 1. (Recall from Definition 7.8 that, for 3−1 to exist in
Z9, we’d have to have been able to find an x such that 3x ≡9 1.) Similarly, 6−1 doesn’t
exist in Z9: again, the only possible values of 6x mod 9 are {0, 3, 6}, which once again
does not include 1.

These observations should be reminiscent of the concepts that we discussed in Sec-
tion 7.3: for a number a ∈ Zn, we seem to be unable to find a multiplicative inverse a−1

in Zn whenever a and n share a common divisor d > 1. In other words, when a and n
are not relatively prime, then a−1 fails to exist in Zn. (That’s because any multiple xa of
a will also be divisible by d, and so xa mod n will also be divisible by d, and therefore
xa mod n will not equal 1.) In fact, not being relatively prime to n is the only way to fail
to have a multiplicative inverse in Zn, as we’ll prove. (Note that 0 ∈ Zn is not relatively
prime to n, because gcd(n, 0) 6= 1.)

Theorem 7.20 (Existence of Multiplicative Inverses)
Let n ≥ 2 and a ∈ Zn. Then a−1 exists in Zn if and only if n and a are relatively prime.

Proof. By definition, a multiplicative inverse of a exists in Zn precisely when there
exists an integer x such that ax ≡n 1. (The definition actually requires x ∈ Zn, not just
x ∈ Z, but see Exercise 7.98.) But ax ≡n 1 means that ax is one more than a multiple of
n—that is, there exists some integer y such that ax + yn = 1. In other words,

a−1 exists in Zn if and only if there exist integers x, y such that ax + yn = 1. (∗)

Observe that (∗) echoes the form of Lemma 7.10 (and thus also echoes the output of
the Extended Euclidean algorithm), and we can use this fact to prove the theorem.
We’ll prove the two directions of the implication separately:

If a−1 exists in Zn, then a and n are relatively prime. We’ll prove the contrapositive. Sup-
pose that a and n are not relatively prime—that is, suppose that gcd(a, n) = d for
some d > 1. We will show that a−1 does not exist in Zn. Because d | a and d | n, there
exist integers c and k such that a = cd and n = kd. But then, for any integers x and y,
we have that

ax + yn = cdx + ykd = d(cx + yk)
and thus d | (ax + yn). Thus there are no integers x, y for which ax + yn = 1 and
therefore, by (∗), a−1 does not exist in Zn.

If a and n are relatively prime, then a−1 exists in Zn. Suppose that a and n are relatively
prime. Then gcd(a, n) = 1 by definition. Thus, by the correctness of the Extended
Euclidean algorithm (Theorem 7.11), the output of extended-Euclid(a, n) is 〈x, y, 1〉
for integers x, y such that xa + yn = gcd(a, n) = 1. The fact that extended-Euclid(a, n)
outputs integers x and y such xa + yn = 1 means that such an x and y must exist—
and so, by (∗), a−1 exists in Zn.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

738 CHAPTER 7. NUMBER THEORY

Note that this theorem is consistent with the examples that we saw previously: we
found 1−1 and 2−1 but not 3−1 in Z9 (Examples 7.19 and 7.20; 1 and 2 are relatively
prime to 9, but 3 is not), and we found multiplicative inverses for all nonzero elements
of Z7 (Example 7.21; all of {1, 2, . . . , 6} are relatively prime to 7).

Two implications of Theorem 7.20
There are two useful implications of this result. First, when the modulus is prime,

multiplicative inverses exist for all nonzero elements of Zn, because every nonzero
a ∈ Zn and n are relatively prime for any prime number n.

Corollary 7.21
If p is prime, then every nonzero a ∈ Zp has a multiplicative inverse in Zp.

(We saw an example of this corollary in Example 7.21, where we identified the multi-
plicative inverses of all nonzero elements in Z7.)

inverse(a, n):
Input: a ∈ Zn and n ≥ 2
Output: a−1 in Zn, if it exists
1: x, y, d := extended-Euclid(a, n)
2: if d = 1 then
3: return x mod n // xa + yn = 1, so xa ≡n 1.
4: else
5: return “no inverse for a exists in Zn.”

Figure 7.18: An
algorithm for com-
puting multiplica-
tive inverses using
the Extended Eu-
clidean algorithm.

The second useful implication of Theorem 7.20 is that,
whenever the multiplicative inverse of a exists in Zn, we can
efficiently compute a−1 in Zn using the Extended Euclidean
algorithm—specifically, by running the (simple!) algorithm
in Figure 7.18. (This problem also nicely illustrates a case in
which proving a structural fact vastly improves the efficiency
of a calculation—the algorithm in Figure 7.18 is way faster
than building the entire multiplication table, as we did in Example 7.21.)

Corollary 7.22
For any n ≥ 2 and a ∈ Zn, inverse(a, n) returns the value of a−1 in Zn.

Proof. We just proved that a−1 exists if and only if extended-Euclid(a, n) returns
〈x, y, 1〉. In this case, we have xa + yn = 1 and therefore xa ≡n 1. Defining a−1 :=
x mod n ensures that a · (x mod n) ≡n 1, as required. (Again, see Exercise 7.98.)

Here’s an example, replicating the calculation of 5−1 in Z7 from Example 7.21:

Example 7.22 (5−1 in Z7 , again)
To compute 5−1, we run the Extended Euclidean algorithm on 5 and 7:

extended-Euclid(5, 7)
extended-Euclid(

=2︷ ︸︸ ︷
7 mod 5, 5)

extended-Euclid(5 mod 2︸ ︷︷ ︸
=1

, 2)
= 1, 0, 1

= −2, 1, 1
= 3,−2, 1.

The Extended Euclidean algorithm returns 〈3,−2, 1〉, implying that 3 · 5 +−2 · 7 = 1 =
gcd(5, 7). Therefore inverse(5, 7) returns 3 mod 7 = 3. And, indeed, 3 · 5 ≡7 1.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.4. MULTIPLICATIVE INVERSES 739

Example 7.23 (7−1 in Z9)
In Example 7.16, we saw that extended-Euclid(7, 9) = 〈4,−3, 1〉. Thus 7 and 9 are
relatively prime, and 7−1 in Z9 is 4 mod 9 = 4. And indeed 7 · 4 = 28 ≡9 1.

7.4.3 Fermat’s Little Theorem

We’ll now make use of the results that we’ve developed so far—specifically Corol-
lary 7.21—to prove a surprising and very useful theorem, called Fermat’s Little Theorem,
which states that ap−1 is equivalent to 1 mod p, for any prime number p and any a 6= 0.
(And we’ll see why this result is useful for cryptography in Section 7.5.) 4 Fermat’s Little

Theorem is named
after Pierre de
Fermat, a 17th-
century French
mathematician.

4 Simon Singh. Fer-
mat’s Last Theorem:
The Story of a Riddle
That Confounded
the World’s Greatest
Minds for 358 Years.
Fourth Estate Ltd.,
2002.

Taking it further: Fermat’s Little Theorem is the second-most famous theorem named after Pierre de
Fermat. His more famous theorem is called Fermat’s Last Theorem,which states the following:

For any integer k ≥ 3, there are no positive integers x, y, z satisfying xk + yk = zk .
There are integer solutions to the equation xk + yk = zk when k = 2—the so-called Pythagorean triples, like
〈3, 4, 5〉 (where 32 + 42 = 9 + 16 = 25 = 52) and 〈7, 24, 25〉 (where 72 + 242 = 49 + 576 = 625 = 252). But
Fermat’s Last Theorem states that there are no integer solutions when the exponent is larger than 2.

The history of Fermat’s Last Theorem is convoluted and about as fascinating as the history of any
mathematical statement can be. In the 17th century, Fermat conjectured his theorem, and scrawled—in
the margin of one of his books on mathematics—the words “I have discovered a truly marvelous proof,
which this margin is too narrow to contain” The conjecture, and Fermat’s assertion, were found
after Fermat’s death—but the proof that Fermat claimed to have discovered was never found. And it
seems almost certain that he did not have a correct proof of this claim. Some 350 years later, in 1995,
the mathematician AndrewWiles published a proof of Fermat’s Last Theorem, building on work by a
number of other 20th-century mathematicians.

The history of the Fermat’s Last Theorem—including the history of Fermat’s conjecture and the
centuries-long quest for a proof—has been the subject of a number of books written for a nonspecialist
audience; see, for example, the book by Simon Singh.4

Before we can prove Fermat’s Little Theorem itself, we’ll need a preliminary result.
We will show that, for any prime p and any nonzero a ∈ Zp, the first p − 1 nonzero
multiples of a—that is, {a, 2a, 3a, . . . , (p− 1)a}—are precisely the p − 1 nonzero ele-
ments of Zp. Or, to state this claim in a slightly different way, we will prove that the
function f : Zp → Zp defined by f (k) = ak mod p is both one-to-one and onto (and also
satisfies f (0) = 0). Here is a formal statement of the result:

Lemma 7.23 ({1, 2, . . .p− 1} and {1a, 2a, . . . (p− 1)a} are equivalent mod p)
For prime p and any a ∈ Zp where a 6= 0, we have

{1 · a mod p, 2 · a mod p, . . . , (p− 1) · a mod p} = {1, 2, . . . , p− 1} .

Before we dive into a proof, let’s check an example:

Example 7.24 ({ai mod 11} vs. {i mod 11})
Consider the prime p = 11 and two values of a, namely a = 2 and a = 5. Then, taking

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

740 CHAPTER 7. NUMBER THEORY

all results modulo 11, we have

i 1 2 3 4 5 6 7 8 9 10
2i 2 4 6 8 10 12 14 16 18 20

2i mod 11 2 4 6 8 10 1 3 5 7 9
5i 5 10 15 20 25 30 35 40 45 50

5i mod 11 5 10 4 9 3 8 2 7 1 6 .

Note that every number from {1, 2, . . . , p} appears (once and only once) in the
{2i mod 11} and {5i mod 11} rows of this table—exactly as desired. That is,

{1, 2, 3, . . . , 10} ≡11 {2, 4, 6, . . . , 20} ≡11 {5, 10, 15, . . . , 50} .

We can also observe examples of this result in the multiplication table for Z7. (See
Figure 7.19 for a reminder.) We can see that every (nonzero) row {a, 2a, 3a, 4a, 5a, 6a}
contains all six numbers {1, 2, 3, 4, 5, 6}, in some order, in the six nonzero columns.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Figure 7.19: The
multiplication table
for Z7 : a reminder.

Proof of Lemma 7.23. Consider any prime p, and any nonzero a ∈ Zp. We must prove
that {a, 2a, . . . , (p− 1)a} ≡p {1, 2, . . . , p− 1}.

We will first argue that the set {1 · a mod p, 2 · a mod p, . . . , (p− 1) · a mod p}
contains no duplicates—that is, the value of i · a mod p is different for every i. Let
i, j ∈ {1, 2, . . . , p− 1} be arbitrary. We will show that ia ≡p ja implies that i = j,
which establishes this first claim. Suppose that ia ≡p ja. Then, multiplying both
sides by a−1, we have that iaa−1 ≡p jaa−1, which immediately yields i ≡p j because
a · a−1 ≡p 1. (Note that, because p is prime, by Corollary 7.21, we know that a−1 exists
in Zp.) Therefore, for any i, j ∈ {1, 2, . . . , 1− p}, if i 6= j then ai 6≡p aj.

We now need only show that ia mod p 6= 0 for any i > 0. But that fact is straightfor-
ward to see: ia mod p = 0 if and only if p | ia, but p is prime and i < p and a < p, so p
cannot divide ia. (See Exercise 7.49.)

With this preliminary result in hand, we turn to Fermat’s Little Theorem itself:

Theorem 7.24 (Fermat’s Little Theorem)
Let p be prime, and let a ∈ Zp where a 6= 0. Then ap−1 ≡p 1.

As with the previous lemma, we’ll start with a few examples of this claim, and then
give a proof of the general result. (While this property admittedly might seem a bit
mysterious, it turns out to follow fairly closely from Lemma 7.23, as we’ll see.)

Example 7.25 (Some examples of Fermat’s Little Theorem)
Here are a few examples, for the prime numbers 7 and 19:

26 mod 7 = 64 mod 7 = (7 · 9 + 1) mod 7 = 1
36 mod 7 = 729 mod 7 = (104 · 7 + 1) mod 7 = 1
418 mod 19 = 68719476736 mod 19 = (3616814565 · 19 + 1) mod 19 = 1.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.4. MULTIPLICATIVE INVERSES 741

The proof of Fermat’s Little Theorem
We’ll now turn to a proof of the theorem: for any prime p and any nonzero a ∈ Zp,

we have that ap−1 ≡p 1:
Proof of Fermat’s Little Theorem (Theorem 7.24). Note that, because p is prime, by Corol-
lary 7.21, the multiplicative inverses 1−1, 2−1, . . . , (p− 1)−1 all exist in Zp.

By Lemma 7.23, we know that {1 · a mod p, 2 · a mod p, . . . , (p− 1) · a mod p} and
{1, 2, . . . , p} are the same set, and thus have the same product:

1 · 2 · 3 · · · (p− 1)
≡p (1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a). (1)

Multiplying both sides of (1) by the product of all p − 1 multiplicative inverses of
{1, . . . , p− 1}—that is, multiplying by 1−1 · 2−1 · · · · · (p− 1)−1—we have

1 · 2 · 3 · · · (p− 1) · 1−1 · 2−1 · · · (p− 1)−1

≡p (1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a) · 1−1 · 2−1 · · · (p− 1)−1. (2)

Rearranging the left-hand side of (2) and replacing b · b−1 by 1 for each b ∈ {1, . . . , p− 1},
we simply get 1:

1 ≡p (1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a) · 1−1 · 2−1 · · · (p− 1)−1. (3)

Rearranging the right-hand side of (3) and again replacing each b · b−1 by 1, we are left
only with p− 1 copies of a:

1 ≡p ap−1.

Note that Fermat’s Little Theorem is an implication, not an equivalence. It states
that if p is prime, then for every a ∈ {1, . . . , p− 1}—that is, for every p relatively prime
to n—we have ap−1 ≡p 1. The converse does not always hold: if an−1 ≡n 1 for every
a ∈ Zn that’s relatively prime to n, we cannot conclude that n is prime. For example, Carmichael num-

bers are named
after Robert
Carmichael, an
American mathe-
matician who first
discovered these
numbers, in the
early 20th century.

a560 ≡561 1 for every a ∈ {1, 2, . . . , 560}with gcd(a, 561) = 1—but 561 is not prime! (See
Exercise 7.110.) A number like 561, which passes the test in Fermat’s Little Theorem
but is not prime, is called a Fermat pseudoprime or a Carmichael number.

Taking it further: Let n ≥ 2 be an integer, and suppose that we need to determine whether n is prime.
There’s a test for primality that’s implicitly suggested by Fermat’s Little Theorem—for “many” different
values of a ∈ Zn, test to make sure that an−1 mod n = 1—but this test sometimes incorrectly identifies
composite numbers as prime, because of the Carmichael numbers. (For speed, we generally test a few
randomly chosen values of a ∈ Zp instead of trying many of them—but of course testing fewer values of
a certainly can’t prevent us from incorrectly identifying Carmichael numbers as prime.) However, there
are some tests for primality that have a similar spirit but that aren’t fooled by certain inputs in this way.
See the discussion on p. 742 for a description of a randomized algorithm called theMiller–Rabin test that
checks primality using this approach.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

742 CHAPTER 7. NUMBER THEORY

Computer Science Connections

Miller–Rabin Primality Test

bogus-isPrime?(n, k):
Input: n is a candidate prime number; k is a

“certainty parameter” telling us how many
tests to perform before giving up and reporting
n as prime.

1: repeat
2: choose a ∈ {1, 2, . . . , n− 1} randomly
3: until an−1 6≡n 1 or we’ve tried k times
4: return “prime” if every an−1 ≡n 1; else return

“composite”

Figure 7.20: A bogus primality tester
based on Fermat’s Little Theorem.

Fermat’s Little Theorem says that an−1 ≡n 1 for any prime n
and any nonzero a ∈ Zn, which makes the randomized algorithm
in Figure 7.20 tempting as a way to test for primality. It’s clear that
bogus-isPrime?(p) returns “prime” for any prime p—by Fermat’s
Little Theorem—but what’s not clear is the false negative probability.
Unfortunately, the probability can be terrible for particular values
of n: for example, n = 118,901,521 is not prime, but the only a for which
an−1 6≡n 1 are multiples of 271, 541, or 811—less than 0.7% of {1, 2, . . . ,n− 1}.
(See the discussion of Carmichael numbers, and Exercise 7.110. And Carmichael
numbers whose prime factors are all > 271 give even worse performance.)

We can, however, give a randomized primality test using modular arith-
metic that doesn’t get fooled for any particular input integer. The Miller–Rabin
primality test5 is based on the following fact (see Exercise 7.51):

The original version of this test, due to
Miller, is a nonrandom version of this
algorithm that relies on a (still!) un-
proven assumption in mathematics; it
was subsequently modified by Rabin to
remove the assumption (but at the cost
of making it random instead). See
5 Gary L. Miller. Riemann’s hypothesis
and tests for primality. Journal of Com-
puter and System Sciences, 13(3):300–317,
1976; and Michael O. Rabin. Proba-
bilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128–138,
1980.

if p is prime, then x2 ≡p 1 if and only if x ∈ {1, p− 1}. (1)

Or, taking the contrapositive,

if a2 ≡n 1 for a /∈ {1,n− 1}, then n is not prime. (2)

The basic idea of Miller–Rabin is to look for an a ∈ Zn with this property. (See
Figure 7.21.) Consider a candidate prime number n ≥ 3. Thus n is odd, so
n− 1 is even, and we can write n− 1 = 2rd, where d is an odd number and
r ≥ 1. (For n = 561, for example, we can write n− 1 = 560 = 24 · 35—so r = 4
and d = 35.) Let a ∈ Zn with a 6= 0. Define the sequence

ad, (ad)2 = a2d, (a2d)2 = a4d, . . . , (a2r−1d)2 = a2rd = an−1, (3)

miller-rabin-isPrime?(n, k):
Input: n is a candidate prime number; k is a

“certainty parameter”
1: write n− 1 as 2rd for an odd number d
2: while we’ve done fewer than k tests:
3: choose a random a ∈ {1, . . . , n− 1}
4: σ := 〈ad , a2d , a4d , a8d , . . . , a2rd〉 mod n.
5: if σ 6= 〈. . . , 1〉 or if σ = 〈. . . , x, 1, . . .〉 for some

x /∈ {1, n− 1} then
6: return “composite”
7: return “prime”

Figure 7.21: Miller–Rabin primality test.

with each entry taken modulo n. For example, for n = 561 (so r = 4
and d = 35) and a = 4, this sequence (modulo n) would be

〈 166︸︷︷︸
ad≡n435≡n166

, 67︸︷︷︸
a2d≡n1662≡n67

, 1︸︷︷︸
a4d≡n672≡n1

, 1︸︷︷︸
a8d≡n12≡n1

, 1︸︷︷︸
a16d≡n12≡n1

〉.

By Fermat’s Little Theorem, we know n is not prime if an−1 6≡n 1.
Thus if (3) ends with something 6≡n 1, we know that n is not prime.
And if there’s a 1 that appears immediately after an entry x where
x mod n /∈ {1,n− 1} in (3), then we also know that n is not prime:
x2 ≡n 1 but x mod n /∈ {1,n− 1}, so by (2) we know that n is not
prime. The key fact, which we won’t prove here, is that many different
values of a ∈ Zn result in one of these two violations:6

For a proof of this fact, see
6 Thomas H. Cormen, Charles E. Leis-
ersen, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009.

Fact: If n is not prime, then for at least n−1
2 different nonzero values of

a ∈ Zn, the sequence (3) contains a 1 following an entry x /∈ {1, n− 1}
or the sequence (3) doesn’t end with 1.

This fact then allows us to test for n’s primality by trying k different randomly
chosen values of a; the probability that every one of these tests fails when n is
not prime is at most 1/2k .

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.4. MULTIPLICATIVE INVERSES 743

7.4.4 Exercises

7.80 Following Example 7.18, identify the numbers that are half of every element in Z9. (That is, for
each a ∈ Z9, find b ∈ Z9 such that 2b = a.)

We talked extensively in this section about multiplicative inverses, but there can be inverses for other operations, too.
The next few exercises explore the additive inverse in Zn. Notice that the additive identity in Zn is 0: for any a ∈ Zn,
we have a + 0 ≡n 0 + a ≡n a. The additive inverse of a ∈ Zn is typically denoted −a.
7.81 Give an algorithm to find the additive inverse of any a ∈ Zn. (Be careful: the additive inverse of a
has to be a value from Zn, so you can’t just say that 3’s additive inverse is negative 3!)
Given your solution to the previous exercise, prove the following properties:
7.82 For any a ∈ Zn, we have −(−a) ≡n a.
7.83 For any a, b ∈ Zn, we have a · (−b) ≡n (−a) · b.
7.84 For any a, b ∈ Zn, we have a · b ≡n (−a) · (−b).

In regular arithmetic, for a number x ∈ R, a square root of x is a number y such that y2 = x. If x = 0, there’s only one
such y, namely y = 0. If x < 0, there’s no such y. If x > 0, there are two such values y (one positive and one negative).
Consider the following claim, and prove or disprove it.
7.85 Let n ≥ 2 be arbitrary. Then (i) there exists one and only one b ∈ Zn such that b2 ≡n 0; and (ii) for
any a ∈ Zn with a 6= 0, there is not exactly one b ∈ Zn such that b2 ≡n a. (Hint: think about Exercise 7.81.)

Using paper and pencil (and brute-force calculation), compute the following multiplicative inverses (or state that the
inverse doesn’t exist):

7.86 4−1 in Z11
7.87 7−1 in Z11
7.88 0−1 in Z11

7.89 5−1 in Z15
7.90 7−1 in Z15
7.91 9−1 in Z15

7.92 Prove that the multiplicative inverse is unique: that is, for arbitrary n ≥ 2 and a ∈ Zn, suppose
that ax ≡n 1 and ay ≡n 1. Prove that x ≡n y.

Write down the full multiplication table (as in Figure 7.17) for the following:

7.93 Z5 7.94 Z6 7.95 Z8

For arbitrary n ≥ 2 and a ∈ Zn:

extended-Euclid(n,m):
Input: positive integers n and m ≥ n.
Output: x, y, r ∈ Z where gcd(n,m) = r = xn + ym
1: if m mod n = 0 then
2: return 1, 0, n // 1 · n + 0 ·m = n = gcd(n,m)
3: else
4: x, y, r := extended-Euclid(m mod n,n)
5: return y− ⌊mn

⌋
· x, x, r

inverse(a, n):
Input: a ∈ Zn and n ≥ 2
Output: a−1 in Zn, if it exists
1: x, y, d := extended-Euclid(a, n)
2: if d = 1 then
3: return x mod n // xa + yn = 1, so xa ≡n 1.
4: else
5: return “no inverse for a exists in Zn.”

Figure 7.22: A
reminder of two
algorithms.

7.96 Prove or disprove the following: (n− 1)−1 = n− 1 in Zn.
7.97 Prove that (a−1)−1 = a: that is, a is the multiplicative inverse of the
multiplicative inverse of a.
7.98 Prove that there exists x ∈ Z with ax ≡n 1 if and only if there
exists y ∈ Zn with ay ≡n 1.
7.99 Suppose that the multiplicative inverse a−1 exists in Zn. Let
k ∈ Zn be any exponent. Prove that ak has a multiplicative inverse in Zn,
and, in particular, prove that the multiplicative inverse of ak is the kth power
of the multiplicative inverse of a. (That is, prove that (ak)−1 ≡n (a−1)k .)

Using paper and pencil and the algorithm based on the Extended Euclidean
algorithm, compute the following multiplicative inverses (or explain why they don’t
exist). See Figure 7.22 for a reminder.
7.100 17−1 in Z23
7.101 7−1 in Z25
7.102 9−1 in Z33

7.103 (programming required) Implement inverse(a, n) from Figure 7.18 in
a language of your choice.

7.104 Prove or disprove the converse of Corollary 7.21: if n is composite, then there exists a ∈ Zn (with
a 6= 0) that does not have a multiplicative inverse in Zn.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

744 CHAPTER 7. NUMBER THEORY

7.105 Let p be an arbitrary prime number. What value does the quantity 2p+1 mod p have? Be as specific
as you can. Explain.
7.106 It turns out that 247248 mod 249 = 4. From this, you can conclude at least one of following: 247 is
not prime; 247 is prime; 249 is not prime; or 249 is prime. Which one(s)? Explain.

7.107 Reprove the general version of the Chinese Remainder Theorem with single constructive argu-
ment, as in the 2-congruence case, instead of using induction. Namely, assume n1, n2, . . . , nk are pairwise
relatively prime, and let ai ∈ Zni . Let N := ∏k

i=1 ni . LetNi := N/ni (more precisely, let Ni be the product of
all njs except ni) and let di be the multiplicative inverse of Ni in Zni . Prove that x := ∑k

i=1 aiNidi satisfies the
congruence x mod ni = ai for all 1 ≤ i ≤ k.

The totient function ϕ : Z≥1 → Z≥0, sometimes called Euler’s totient function after the 18th-century Swiss
mathematician Leonhard Euler, is defined as

ϕ(n) := the number of k such that 1 ≤ k ≤ n such that k and n have no common divisors.
For example, ϕ(6) = 2 because 1 and 5 have no common divisors with 6 (but all of {2, 3, 4, 6} do share a common
divisor with 6). There’s a generalization of Fermat’s Little Theorem, sometimes called the Fermat–Euler Theorem or
Euler’s Theorem, that states the following: if a and n are relatively prime, then aϕ(n) ≡n 1.

7.108 Using the Fermat–Euler theorem, argue that
(i) Fermat’s Little Theorem holds.
(ii) a−1 in Zn is aϕ(n)−1 mod n, for any a ∈ Zn that is relatively prime to n.
Verify the latter claim for the multiplicative inverses of a ∈ {7, 17, 31} in Z60.

7.109 (programming required) Implicitly, the Fermat–Euler theorem gives a different way to compute the
multiplicative inverse of a in Zn:
1. compute ϕ(n) [say by brute force, though there are somewhat faster ways—see Exercises 9.34–9.36]; and
2. compute aϕ(n)−1 mod n [perhaps using repeated squaring; see Figure 7.7].
Implement this algorithm to compute a−1 in Zn in a programming language of your choice.

Recall that a Carmichael number is a composite number that passes the (bogus) primality test suggested by Fermat’s
Little Theorem. In other words, a Carmichael number n is an integer that is composite but such that, for any a ∈ Zn
that’s relatively prime to n, we have an−1 mod n = 1.
7.110 (programming required) Write a program to verify that 561 is (a) not prime, but (b) satisfies
a560 mod 561 = 1 for every a ∈ {1, . . . , 560} that’s relatively prime to 561. (That is, verify that 561 is a
Carmichael number.)
7.111 Suppose n is a composite integer. Argue that there exists at least one integer a ∈ {1, 2, . . . ,n− 1}
such that an−1 6≡n 1. (In other words, there’s always at least one nonzero a ∈ Zn with an−1 6≡n 1 when n
is composite. Thus, although the probability of error in bogus-isPrime? from p. 742 may be very high for
particular composite integers n, the probability of success is nonzero, at least!)

The following theorem is due to Alwin Korselt, from 1899: an integer n is a Carmichael number if and only if n is
composite, squarefree, and for all prime numbers p that divide n, we have that p− 1 |n− 1. (An integer n is squarefree
if there is no integer d ≥ 2 such that d2 | n.)
7.112 (programming required) Use Korselt’s theorem (and a program) to find all Carmichael numbers less
than 10,000.
7.113 Use Korselt’s theorem to prove that all Carmichael numbers are odd.

7.114 (programming required) Implement the Miller–Rabin primality test (see p. 742) in a language of
your choice.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.5. CRYPTOGRAPHY 745

7.5 Cryptography
Three may keep a secret, if two of them are dead.

Benjamin Franklin (1706–1790)

In the rest of this chapter, we will make use of the number-theoretic machinery that
we’ve now developed to explore cryptography. Imagine that a sender, named Alice, is Traditionally, cryp-

tographic systems
are described using
an imagined crew
of people whose
names start with
consecutive letters
of the alphabet.
We’ll stick with
these traditional
names: Alice, Bob,
Charlie, etc.

trying to send a secret message to a receiver, named Bob. The goal of cryptography
is to ensure that the message itself is kept secret even if an eavesdropper—named
Eve—overhears the transmission to Bob. To achieve this goal, Alice does not directly
transmit the message m that she wishes to send to Bob; instead, she encrypts m in some
way. The resulting encrypted message c is what’s transmitted to Bob. (The original
message m is called plaintext; the encrypted message c that’s sent to Bob is called the
ciphertext.) Bob then decrypts c to recover the original message m. A diagram of the
basic structure of a cryptographic system is shown in Figure 7.23.

plaintext m encrypt
(using
information
about Bob)

ciphertext c decrypt
(using Bob’s
private
information)

plaintext m

Alice Bob

Eve (trying to decrypt without Bob’s
private information)

Figure 7.23: The
outline of a cryp-
tographic system.The two obvious crucial properties of a cryptographic system are that (i) Bob can

compute m from c, and (ii) Eve cannot compute m from c. (Of course, to make (i) and
(ii) true simultaneously, it will have to be the case that Bob has some information that
Eve doesn’t have—otherwise the task would be impossible!)

One-time pads
The simplest idea for a cryptographic system is for Alice and Bob to agree on a

shared secret key that they will use as the basis for their communication. The easiest
implementation of this idea is what’s called a one-time pad,which works as follows.

The pad in the
name comes from
spycraft—spies
might carry phys-
ical pads of paper,
where each sheet
has a fresh secret
key written on it.
The one-time in the
name derives from
the fact that this
system is secure
only if the same key
is never reused, as
we’ll discuss.

Alice and Bob agree in advance on an integer n, denoting the length of the message
that they would like to communicate. They also agree in advance on a secret bitstring
k ∈ {0, 1}n, where each bit ki ∈ {0, 1} is chosen independently and uniformly—so
that every one of the 2n different n-bit strings has a 1

2n chance of being chosen as k. To
encrypt a plaintext message m ∈ {0, 1}n, Alice computes the bitwise exclusive or of m
and k—in other words, the ith bit of the ciphertext is mi ⊕ ki. To decrypt the ciphertext
c ∈ {0, 1}n, Bob computes the bitwise XOR of c and k.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

746 CHAPTER 7. NUMBER THEORY

Example 7.26 (A One-Time Pad)
• Alice and Bob agree (in advance) on the secret key k = 10111000.
• To transmit the message m = 01101110, Alice finds the bitwise XOR of m and k:

m 0 1 1 0 1 1 1 0
k 1 0 1 1 1 0 0 0
c = m⊕ k 1 1 0 1 0 1 1 0

.

• To decrypt the ciphertext c = 11010110, Bob finds the bitwise XOR of c and k:

c 1 1 0 1 0 1 1 0
k 1 0 1 1 1 0 0 0
c⊕ k 0 1 1 0 1 1 1 0

.

Observe that c⊕ k = 01101110 is indeed precisely m = 01101110, as desired.

The reason that Bob can decrypt the ciphertext to recover the original message m is
a b a⊕

b

(a
⊕

b)
⊕

b

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Figure 7.24: The
truth table for
(a⊕ b)⊕ b = a.

simple: for any bits a and b, it’s the case that (a⊕ b)⊕ b = a. (See Figure 7.24.) The fact
that Eve cannot recover m from c relies on the fact that, for any message m and every
ciphertext c, there is precisely one secret key k such that m⊕ k = c. (So Eve is just as
likely to see a particular ciphertext regardless of what the message is, and therefore she
gains no information about m by seeing c. See Exercise 7.116.) Thus the one-time pad
is perfectly secure as a cryptographic system—if Alice and Bob only use it once! If
Alice and Bob reuse the same key to exchange many different messages, then Eve can
use frequency analysis to get a handle on the key, and therefore can begin to decode
the allegedly secret messages. (See Exercises 10.72–10.76 or Exercise 7.117.)

Taking it further: One of the earliest encryption schemes is now known as a Caesar Cipher, after Julius
Caesar, who used it in his correspondence. It can be understood as a cryptographic system that uses a
one-time pad more than once. The Caesar cipher works as follows. The sender and receiver agree on a
shift x, an integer, as their secret key. The ith letter in the alphabet (from A = 0 through Z = 25) will be
shifted forward by x positions in the alphabet. The shift “wraps around,” so that we encode letter i as
letter (i + x) mod 26. For example, if x = 3 then A→D, L→O, Y→B, etc. To send a text message m consisting
of multiple letters from the alphabet, the same shift is applied to each letter. (For convenience, we’ll leave
nonalphabetic characters unchanged.) For example, the ciphertext XF BSF EJTDPWFSFE; GMFF BU PODF!

was generated with the shift x = 1 from the message WE ARE DISCOVERED; FLEE AT ONCE!. Because
we’ve reused the same shift x for each letter of the message, the Caesar Cipher is susceptible to being
broken based on frequency analysis. (In the XF BSF EJTDPWFSFE; GMFF BU PODF! example, F is by far
the most common letter in the ciphertext—and E is by far the most common letter in English text. From
these two facts, you might infer that x = 1 is the most probable secret key. See Exercise 7.117.)

Millennia later, the Enigma machines, the encryption system used by the Germans during World War
II, was—as with Caesar—a substitution cipher, but one where the shift changed with each letter. (But not
in completely unpredictable ways, as in a one-time pad!) See p. 960 for more.

Public-key cryptography
In addition to being single-use-only, there’s another strange thing about the one-

time pad: if Alice and Bob are somehow able to communicate an n-bit string securely—
as they must to share the secret key k—it doesn’t seem particularly impressive that
they can then communicate the n-bit string m securely.

Public-key cryptography is an idea to get around this oddity. Here is the idea, in a
nutshell. Every participant will have a public key and a private (or secret) key, which

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.5. CRYPTOGRAPHY 747

will somehow be related to the public key. A user’s public key is completely public—
for example, posted on the web. If Alice wishes to send a message m to Bob, then
Alice will (somehow!) encrypt her message to Bob using Bob’s public key, producing
ciphertext c. Bob, who of course knows Bob’s secret key, can decrypt c to reconstruct m;
Eve, not knowing Bob’s secret key, cannot decrypt c.

This idea sounds a little crazy, but we will be able to make it work. Or, at least, we
will make it work on the assumption that Eve has only limited computational power—and
on the assumption that certain computational problems, like factoring large numbers,
require a lot of computational power to solve. (For example, Bob’s secret key cannot be
easily computable from Bob’s public key—otherwise Eve could easily figure out Bob’s
secret key and then run whatever decryption algorithm Bob uses!)

7.5.1 The RSA Cryptosystem
The basic idea of public-key cryptography was discussed in abstract terms in the
1970s—especially by Whitfield Diffie, Martin Hellman, and Ralph Merkle—and, after
some significant contributions by a number of researchers, a cryptosystem successfully
implementing public-key cryptography was discovered by Ron Rivest, Adi Shamir,
and Leonard Adleman.7 The RSA cryptosystem, named after the first initials of their 7 R. L. Rivest,

A. Shamir, and
L. Adleman. A
method for ob-
taining digital
signatures and
public-key cryp-
tosystems. Com-
munications of the
ACM, 21:120–126,
February 1978.

three last names, is one of the most famous, and widely used, cryptographic protocols
today. The previous sections of this chapter will serve as the building blocks for the
RSA system, which we’ll explore in the rest of this section.8

8 Simon Singh. The
Code Book: The Secret
History of Codes
and Code-breaking.
Fourth Estate Ltd.,
1999.

Taking it further: The RSA cryptosystem is named after its three 1978 discoverers, and the Turing
Award—the highest honor in computer science, roughly equivalent to the Nobel Prize of computer
science—was conferred on Rivest, Shamir, and Adleman in 2002 for this discovery. But there is also a
“shadow history” of the advances in cryptography made in the second half of the 20th century.

The British government’s signal intelligence agency, called Government Communications Headquar-
ters (GCHQ), had been working to solve precisely the same set of research questions about cryptography
as academic researchers like R., S., and A. (GCHQ was perhaps best known for its success in World
War II, in breaking the Enigma Code of the German military; see p. 960 for more discussion.) And it
turned out that several British cryptographers at GCHQ—Clifford Cocks, James Ellis, and Malcolm
Williamson—had discovered the RSA protocol several years before 1978. But their discovery was classi-
fied by the British government, and thus we call this protocol “RSA” instead of “CEW.”

See the excellent book by Simon Singh for more on the history of cryptography, including both the
published and classified advances in cryptographic systems.8Also see the discussion on p. 753 of the
Diffie–Hellman key exchange protocol, one of the first (published) modern breakthroughs in cryptogra-
phy, which allows Alice and Bob to solve another apparently impossible problem: exchanging secret
information while communicating only over an insecure channel.

In RSA, as for any public-key cryptosystem, we must define three algorithmic com-
ponents. (These three algorithms for the RSA cryptosystem are shown in Figure 7.25;
an overview of the system is shown in Figure 7.26.) They are:

• key generation: how do Alice and Bob construct their public/private keypairs?
• encryption: when Alice wishes to send a message to Bob, how does she encode it?
• decryption: when Bob receives ciphertext from Alice, how does he decode it?

The very basic idea of RSA is the following. (The details of the protocols are in Fig-
ure 7.25.) To encrypt a numerical message m for Bob, Alice will compute c := me mod n,
where Bob’s public key is 〈e, n〉. To decrypt the ciphertext c that he receives, Bob will

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

748 CHAPTER 7. NUMBER THEORY

Key Generation:

1. Bob chooses two large primes, p and q, and defines n := pq.
2. Bob chooses e 6= 1 such that e and (p− 1)(q− 1) are relatively prime.
3. Bob computes d := e−1 modulo (p− 1)(q− 1).
4. Bob publishes 〈e, n〉 as his public key; Bob’s secret key is 〈d, n〉.

Encryption: If Alice wants to send message m to Bob,

1. Alice finds Bob’s public key, say 〈eBob, nBob〉, as he published it.
2. To send message m ∈ {0, . . . , nBob − 1}, Alice computes c := meBob mod nBob.
3. Alice transmits c to Bob.

Decryption: When Bob receives ciphertext c,

1. Bob computes m := cdBob mod nBob, where 〈dBob, nBob〉 is Bob’s secret key.
Figure 7.25: The
RSA cryptosystem.

compute cd mod n, where Bob’s private key is 〈d, n〉. (Of course, there’s an important
relationship among the quantities e, d, and n!)

An example of RSA key generation, encryption, and decryption
Later we will prove that the message that Bob decrypts is always the same as the

message that Alice originally sent. But we’ll start with an example. First, Bob generates
a public and private key, using the protocol in Figure 7.25. (All three phases can be im-
plemented efficiently, using techniques from this chapter; see Exercises 7.129–7.132.)

It may seem strange
that n is part of both
Bob’s secret key
and Bob’s public
key—it’s usually
done this way for
symmetry, but also
to support digital
signatures. When
Alice sends Bob a
message, she can
encrypt it using her
own secret key; Bob
can then decrypt
the message using
Alice’s public key to
verify that Alice
was indeed the
person who sent the
message.

Example 7.27 (Generating an RSA keypair for Bob)
For good security properties, we’d want to pick seriously large prime numbers p and
q, but to make the computation easier to see we’ll choose very small primes.
1. Suppose we choose the “large” primes p = 13 and q = 17. Then n := 13 · 17 = 221.

2. We now must choose a value of e 6= 1 that is relatively prime to (p− 1)(q− 1) =
12 · 16 = 192. Note that gcd(2, 192) = 2 6= 1, so e = 2 fails. Similarly gcd(3, 192) = 3
and gcd(4, 192) = 4. But gcd(5, 192) = 1. We pick e := 5.

3. We now compute d := inverse(e, (p− 1)(q− 1))—that is, d := e−1 in Z(p−1)(q−1):

extended-Euclid(5, 192)
extended-Euclid(192 mod 5 = 2, 5)
= −2, 1, 1 exactly as in Example 7.22

= y− ⌊mn ⌋ · x, x, r where x = −2, y = 1, r = 1 and m = 192, n = 5.
= 77,−2, 1.
Thus inverse(5, 192) returns 77 mod 192 = 77.

(Indeed, 5 · 77 = 385 = 192 · 2 + 1, so 5 · 77 ≡192 1.) Thus we set d := 77.
Thus Bob’s public key is 〈e, n〉 = 〈5, 221〉, and Bob’s secret key is 〈d, n〉 = 〈77, 221〉.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.5. CRYPTOGRAPHY 749

Bob now publishes his public key somewhere, keeping his secret key to himself. If
Alice now wishes to send a message to Bob, she uses his public key, as follows:

Example 7.28 (Encrypting a message with RSA)
To send message m = 202 to Bob, whose public key is 〈e, n〉 = 〈5, 221〉, Alice computes

me mod n = 2025 mod 221 = 336,323,216,032 mod 221 = 206.

Thus she sends Bob the ciphertext c := 206.

When Bob receives an encrypted message, he uses his secret key to decrypt it:

Example 7.29 (Decrypting a message with RSA)
When Bob, whose secret key is 〈d, n〉 = 〈77, 221〉, receives the ciphertext c = 206 from
Alice, he decrypts it as

cd mod n = 20677 mod 221.
Computing 20677 mod 221 by hand is a bit tedious, but we can calculate it with
“repeated squaring” (using the fact that b2k mod n = (b2 mod n)k mod n and
b2k+1 mod n = b · (b2k mod n) mod n; see Exercises 7.23–7.25):

20677 mod 221 = 206 · (2062 mod 221︸ ︷︷ ︸
=4

)38 mod 221

= 206 · (42 mod 221︸ ︷︷ ︸
=16

)19 mod 221

= 206 · 16 · (162 mod 221︸ ︷︷ ︸
=35

)9 mod 221

= 206 · 16 · 35 · (352 mod 221︸ ︷︷ ︸
=120

)4 mod 221

= 206 · 16 · 35 · (1202 mod 221︸ ︷︷ ︸
=35

)2 mod 221

= 206 · 16 · 35 · (352 mod 221︸ ︷︷ ︸
=120

) mod 221

= 206 · 16 · 35 · 120︸ ︷︷ ︸
=13,843,200

mod221

= 202.

Thus Bob decrypts the ciphertext 206 as 202 = 20677 mod 221. Indeed, then, the
message that Bob receives is precisely 202—the same message that Alice sent!

We’ve now illustrated the full RSA protocol: generating a key, and encrypting and
decrypting a message. Here’s one more chance to work through the full pipeline:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

750 CHAPTER 7. NUMBER THEORY

plaintext m
encrypt

ciphertext c := me mod n
decrypt

cd mod n

Alice Bob public key = 〈e, n〉
Bob private key = 〈d,n〉

Eve

Figure 7.26: A
schematic of the
RSA cryptosystem,
where n = pq and
de ≡(p−1)(q−1) 1, for
two prime numbers
p and q.

Example 7.30 (RSA, again, from end to end)
Problem: Bob generates a public/private keypair using the primes p = 11 and q = 13,

choosing the smallest valid value of e. You encrypt the message 95 to send to Bob
(using his generated public key). What ciphertext do you send to Bob?

Solution: For 〈p, q〉 = 〈11, 13〉, we have pq = 143 and (p− 1)(q− 1) = 120. Because
120 is divisible by 2, 3, 4, 5, and 6 but gcd(120, 7) = 1, we choose e := 7. We find
d := inverse(7, 120) = 103. Then Bob’s public key is 〈e, n〉 = 〈7, 143〉 and Bob’s
private key is 〈d, n〉 = 〈103, 143〉.

To send Bob the message m = 95, we compute me mod n = 957 mod 143,
which is 17. Thus the ciphertext is c := 17. (Bob would decrypt this ciphertext as
cd mod n = 17103 mod 143—which indeed is 95.)

7.5.2 The Correctness of RSA
Examples 7.27–7.29 gave one instance of the RSA cryptosystem working properly, in
the sense that decrypt(encrypt(m)) turned out to be the original message m itself—but,
of course, we want this property to be true in general. Let’s prove that it is. Before we
give the full statement of correctness, we’ll prove an intermediate lemma:

Lemma 7.25 (Correctness of RSA: decrypting the ciphertext, modulo p or q)
Suppose e, d, p, q, n are all as specified in the RSA key generation protocol—that is, n = pq for
primes p and q, and ed ≡(p−1)(q−1) 1. Let m ∈ Zn be any message. Then

m′ := [(me mod n)d mod n] (the decryption of the encryption of m)

satisfies both m′ ≡p m and m′ ≡q m.

Proof. We’ll prove m′ ≡p m; because p and q are symmetric in the definition, m′ ≡q m
follows immediately. Recall that we chose d so that ed ≡(p−1)(q−1) 1, and thus we have

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.5. CRYPTOGRAPHY 751

ed = k(p− 1)(q− 1) + 1 for some integer k. Hence

[(me mod n)d mod n] mod p
= (med mod n) mod p by (7.3.4)

= (mk(p−1)(q−1)+1 mod pq) mod p by definition of e, d, n, and k

= mk(p−1)(q−1)+1 mod p by Exercise 7.18

= [m ·mk(p−1)(q−1)] mod p ak+1 = a · ak

= [(m mod p) · (mk(p−1)(q−1) mod p)] mod p by (7.3.3)

= [(m mod p) · ((mk(q−1) mod p)p−1 mod p)] mod p. by (7.3.4)

Although it’s not completely obvious, we’re actually almost done: we’ve now shown
[
(me mod n)d mod n

]
mod p

=
[
(m mod p) · ((mk(q−1) mod p)p−1 mod p)

]
mod p. (∗)

If only the highlighted portion of the right-hand side of (∗) were equal to 1, we’d
have shown exactly the desired result, because the right-hand side would then equal
[(m mod p) · 1] mod p = m mod p mod p = m mod p—exactly what we had to prove!
And the good news is that the highlighted portion of (∗) matches the form of Fermat’s
Little Theorem: the highlighted expression is ap−1 mod p, where a := mk(q−1) mod p,
and Fermat’s Little Theorem tells us ap−1 mod p = 1 as long as a 6≡p 0—that is, as long
as p 6 | a. (We’ll also have to handle the case when a is divisible by p, but we’ll be able to
do that separately.) Here are the two cases: Problem-solving tip:

If there’s a proof
outline that will
establish a desired
claim except in one
or two special cases,
then try to “break
off” those special
cases and handle
them separately.
Here we handled
the “normal” case
a 6≡p 0 using
Fermat’s Little
Theorem, and
broke off the
special a ≡p 0
case and handled it
separately.

• If a ≡p 0, then notice that mk(q−1) mod p = 0 and thus that p |mk(q−1). Therefore:

[(me mod n)d mod n] mod p = [(m mod p) · ap−1 mod p] mod p by (∗)

= [(m mod p) · 0] mod p by the assumption that a ≡p 0

= 0
= m mod p,

where the last equality follows because p is prime and p |mk(q−1); thus Exercise 7.48
tells us that p |m as well.

• If a 6≡p 0, then we can use Fermat’s Little Theorem:

[(me mod n)d mod n] mod p = [(m mod p) · ap−1 mod p] mod p by (∗)

= [(m mod p) · 1] mod p by Fermat’s Little Theorem

= m mod p.

We’ve now established that [(me mod n)d mod n] mod p = m mod p in both cases, and
thus the lemma follows.

Using Lemma 7.25 to do most of the work, we can now prove the main theorem:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

752 CHAPTER 7. NUMBER THEORY

Theorem 7.26 (Correctness of RSA)
Suppose that Bob’s RSA public key is 〈e, n〉 and his corresponding private key is 〈d, n〉. Let
m ∈ Zn be any message. Then decryptBob(encryptBob(m)) = m.

Proof. Note that decryptBob(encryptBob(m)) = (me mod n)d mod n. By Lemma 7.25,

(me mod n)d mod n ≡p m and (me mod n)d mod n ≡q m.

By Exercise 7.50, together these facts imply that (me mod n)d mod n ≡pq m as well.
Because n = pq and m < n, therefore (me mod n)d mod n = m mod n = m.

What about Eve?
When Alice encrypts a message m for Bob and transmits the corresponding RSA-

encrypted ciphertext, we’ve now shown in Theorem 7.26 that Bob is able to decrypt
to recover the original message m. What’s left to establish is that Eve cannot recover m
from what she knows—namely, from the ciphertext me mod n and from Bob’s public
key 〈e, n〉. (That’s the desired security property of the system!)

Unfortunately, not only are we unable to prove this property, it’s simply not true!
Eve is able to recover m from the me mod n and e and n, as follows: she factors n—that
is, finds the primes p and q such that pq = n—and then computes d precisely as Bob
did when he generated his RSA keys. (And Eve then computes the “secret” message
(me mod n)d mod n precisely as Bob did when he decrypted.)

But the fact that Eve has the information necessary to recover m doesn’t mean that RSA
is doomed: factoring large numbers (particularly those that are the product of two
large primes, perhaps) seems to be a computationally difficult problem. Even if you
know that n = 121,932,625,927,450,033 it will take you quite a while to find p and
q—and the best known algorithms for factoring are not fast enough for Eve. 9

See, for example,
9 Jonathan Katz and
Yehuda Lindell. In-
troduction to Modern
Cryptography. Chap-
man & Hall/CRC
Press, 2007.
Also see this book
for a discussion of
some of the ways
in which “textbook
RSA”—what we’ve
described here!—is
susceptible to all
sorts of attacks.
Industrial-level RSA
implementations
take all sorts of
precautions that we
haven’t even begun
to discuss.

Taking it further: The crucial property that we’re using in RSA is an asymmetry in two “directions” of
a problem. Taking two large prime numbers p and q and computing their product n = pq is easy (that
is, it can be done quickly, in polylogarithmic time). Taking a number n that happens to be the product
of two primes and factoring it into p · q appears to be hard (that is, nobody knows how to do it quickly).
Cryptographic systems have been built on a number of different problems with this kind of asymmetry;
see a good textbook on cryptography for much, much more.9

Notice, though, that Eve could break RSA another way, too: she only needs to find
m, and she knows both the ciphertext c = me mod n and Bob’s public key 〈e, n〉. So
Eve could discover m by computing the “eth root of c”—that is, the number x such
that xe = c. Unfortunately for Eve, the fact that she has to compute the eth root of
me mod n, and not just the eth root of me, is crucial; this problem also seems to be
computationally difficult. (See Exercise 7.139—though there’s some evidence that
choosing a small value of e, like e = 3, might weaken the security of the system.)

Note, though, that we have not proven that Eve is unable to efficiently break RSA
encryption—for all we know, a clever student of computational number theory (you!?)
will discover an efficient algorithm for factoring large numbers or computing eth roots
in Zn. (Or, for all we know, perhaps someone already has!)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.5. CRYPTOGRAPHY 753

Computer Science Connections

Diffie–Hellman Key Exchange
Suppose that Alice and Bob wish to communicate to establish some shared

piece of secret information—perhaps to share a key to use in a one-time pad,
or to use for some other cryptographic protocol. But the only communication
channel available to Alice and Bob is insecure; Eve can listen to all of their
communication. This problem is called the key exchange problem: two parties
seek to establish a shared secret while they communicate only over an insecure chan-
nel. Like public-key cryptography (as in RSA), this task seems completely
impossible—and, also like public-key cryptography, despite its apparent
impossibility, this problem was solved in the 1970s. The solution that we’ll
describe here is called the Diffie–Hellman key exchange protocol.10

10 Whitfield Diffie and Martin Hellman.
New directions in cryptography. IEEE
Transactions on Information Theory, pages
644–654, November 1976.

Let p be prime. The key number-theoretic definition for Diffie–Hellman 21 22 23 24 25 26 27 28 29 210
= 2 4 8 16 32 64 . . .
≡11 2 4 8 5 10 9 7 3 6 1

51 52 53 54 55 56 57 58 59 510
≡11 5 3 4 9 1 5 3 4 9 1

71 72 73 74 75 76 77 78 79 710
≡11 7 5 2 3 10 4 6 9 8 1

Figure 7.27: Primitive roots of Z11. This
set has four different primitive roots
{2, 6, 7, 8}, two of which are shown here:
the first 10 powers of 2 and 7 (but not 5)
in Z11 produce all 10 nonzero elements
of Z11.

is what’s called a primitive root mod p,which is an element g ∈ Zp such that
every nonzero element of Zp is equivalent to a power of g. (In other words,{
g1, g2, . . . , gp−1} ≡p {1, 2, . . . , p− 1}.) See Figure 7.27 for some examples.

It’s a theorem of number theory that every Zp for prime p has at least one
primitive root. Here, then, is the protocol for Diffie–Hellman key exchange:
1. Alice and Bob agree on a prime p and a number g that’s a primitive root

mod p. They communicate p and g over the insecure channel.
2. Alice chooses a secret value a ∈ Zp randomly, computes A := ga mod p,

and sends A to Bob. Bob chooses a secret value b ∈ Zp randomly, computes
B := gb mod p, and sends B to Alice. (Note that A and B are sent over the
channel, but the values of a and b are never transmitted.)

3. Alice, who knows a (she picked it) and B = gb mod p (Bob sent it to her),
computes Ba mod p. Bob, who knows b (he picked it) and A = ga mod p
(Alice sent it to him), computes Ab mod p.

Note that Ab ≡p (ga)b = gab and Ba ≡p (gb)a = gab—so Alice and Bob now have
a shared piece of information, namely gab mod p. (And they can complete
their computations efficiently, as in RSA; see Exercise 7.132.)

But why is this shared piece of information a secret? Let’s look at the
protocol from Eve’s perspective: she observes the values of p, g, ga mod p, and
gb mod p. But it is generally believed that the problem of computing a from
the values of p, g, and ga mod p cannot be solved efficiently. (This problem is
called the discrete logarithm problem: it’s the modular analogy of computing y
from the values of x and xy—that is, computing logx(xy).) Most researchers
believe that the discrete log problem is difficult (as long as the prime p is
of appreciable size), and thus that Eve cannot feasibly figure out the value
gab mod p, shared by Alice and Bob.

It’s worth pointing out that, as we’ve stated the protocol, Diffie–Hellman is
susceptible to a so-calledman-in-the-middle attack: a malicious party (tradition-
ally calledMallory) who has control over the channel can impersonate Bob to
Alice, and impersonate Alice to Bob. (There are improvements to the protocol
that address this issue.) Doing so allows Mallory to intercept, decrypt, and
then reencrypt subsequent communications that Alice and Bob thought were
secure—and they’d never know that Mallory was involved.11

See any good book on cryptography,
such as the following, for much more on
this protocol (and the susceptibilities of
Diffie–Hellman and other protocols to
attacks like the man in the middle):
11 Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography.
Chapman & Hall/CRC Press, 2007.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

754 CHAPTER 7. NUMBER THEORY

7.5.3 Exercises

7.115 In our encryption/decryption scheme for one-time pads, we used exclusive or: plaintext mwas
encrypted as m⊕ k, and ciphertext c was decrypted as c⊕ k. Because (m⊕ k)⊕ k is logically equivalent to
m, Bob always recovers the original plaintext. But there are actually three other Boolean operators that we
could have used instead of ⊕—that is, there are three other connectives ◦ such that (m ◦ k) ◦ k ≡ m. (See
Figure 4.31.) Identify those three other connectives. Why are these three connectives either uninteresting or
actively bad choices as alternatives to ⊕?

7.116 (Requires knowledge of probability; see Chapter 10.) For a one-time pad with an n-bit key, we have

Pr
[ciphertext = c] = ∑

m

[
Pr
[ciphertext = c|plaintext = m] · Pr [plaintext = m]

]
.

Prove that the probability that the ciphertext is a particular c ∈ {0, 1}n is precisely 1/2n for any distribution
over plaintext messages.

7.117 (programming required) As we suggested, one-time pads are secure if they’re used only once, but
using the same key more than once compromises security. I took a (famous) document written in English,
and encoded it as follows: I converted each character to an ASCII value (in binary, 00000000 to 11111111),
and separated this bitstring into 40-bit chunks. (Each chunk contains 5 characters, with 8 bits each.) I gen-
erated a 40-bit key, and encoded each chunk using that key. (That is: I used a one-time pad more than one
time!) The encoded document starts like this:

1110111111011100100010011010000110111101
1110100011010101111110111010011110100001
1111010110111110100010011010100010000111

You can find the full encoding at http://cs.carleton.edu/faculty/dln/one-time-pad.txt. Figure out (a)
what 40-bit key I used, and (b) what the encoded document is.

7.118 (programming required) Implement one-time pads in a programming language of your choice.

7.119 Using the “large” primes p = 19 and q = 23, compute the RSA public and private keys. You may
have multiple valid choices for e—if so, choose the smallest e that you can.
7.120 Repeat for p = 31 and q = 37.
7.121 Repeat for p = 41 and q = 43.

Suppose that Bob’s public key is n = 221 and e = 5. (And so Bob’s private key is n = 221 and d = 77.)
7.122 Compute the RSA encryption to send Bob the message m = 42.
7.123 Repeat for the message m = 99.
7.124 If Bob receives the ciphertext c = 99, what message was sent to Bob?
7.125 Repeat for the ciphertext c = 17.

7.126 (programming required) Suppose that Charlie’s public key is 〈e = 3, n = 1,331,191〉, and the
ciphertext c = 441,626. Figure out the message that was sent to Charlie by factoring n.
7.127 Repeat for the public key 〈e = 11, n = 12,187,823〉, and the ciphertext c = 7,303,892.
7.128 Repeat for the public key 〈e = 5, n = 662,983,829〉, and the ciphertext c = 43,574,279.

In both key generation and encryption/decryption, the RSA cryptosystem completes a number of steps that require some
nonobvious ideas to make them efficient. Luckily, we’ve covered those ideas at various times in previous parts of the
chapter. For each of the following, explain how to compute the desired quantity efficiently (that is, with a number of
primitive arithmetic operations that’s O(logk n) for the value of n in the RSA protocol, for some constant k).

(For some of these problems, you’ll simply be able to cite a previously developed algorithm in a few words; in others,
you’ll need to combine more than one algorithm or use an algorithm in a nontrivial way.)
7.129 Find a large prime number: say, find the smallest prime number greater than a given number x.
7.130 Given primes p and q, find a number e 6= 1 such that e and (p− 1)(q− 1) are relatively prime.
7.131 Given primes p, q and e relatively prime to (p− 1)(q− 1), compute e−1 modulo (p− 1)(q− 1).
7.132 Given n, e, and m ∈ Zn, compute me mod n. (Similarly, given n, d, and c, compute cd mod n.)

7.133 Prove that, in the RSA key-generation protocol, the number e that we choose is always odd.
7.134 Prove that, in the RSA key-generation protocol, the number d that we choose is also always odd.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.5. CRYPTOGRAPHY 755

Imagine the following modifications to the RSA key generation protocol. What goes wrong if we use change the algo-
rithm as described? Be precise. Is there a step of the protocol that can no longer be executed? Does Bob no longer have
the information necessary to decrypt the ciphertext? Does Eve now have the power to decrypt the ciphertext?
7.135 The protocol tells us to choose two large primes p, q. But, instead, we choose one prime p, and set
q := p.
7.136 The protocol tells us to choose two large primes p and q. But, instead, we choose two large num-
bers p and q that aren’t actually prime.
7.137 The protocol tells us to choose e 6= 1 that’s relatively prime to (p− 1)(q − 1). But, instead, we
choose e = 1.
7.138 The protocol tells us to choose e 6= 1 that’s relatively prime to (p− 1)(q − 1). But, instead, we
choose an e that is not relatively prime to (p− 1)(q− 1).

7.139 Explain precisely how to use binary search to find the eth root of me efficiently. Then explain
precisely why this binary-search approach doesn’t work to find the eth root of me mod n in general.

Implement the RSA cryptosystem in a programming language of your choice. Use the results from Exercises 7.129–
7.132 to make your solutions efficient. Your code should implement the following components:
7.140 (programming required) Key generation. Given two prime numbers p and q as input, produce a
public and private RSA keypair 〈e,n〉 and 〈d,n〉. (Hint: Exercises 7.31 and 7.103 will be helpful. To pick e, you
may wish to simply try all odd numbers and use Exercise 7.31—you could make this step faster, but generally speaking
this slightly slower approach will still be fast enough.)
7.141 (programming required) Encryption and decryption. For encryption, given a public key 〈e,n〉 and
a message m ∈ Zn, compute the corresponding ciphertext c := me mod n. Similarly, for decryption: given a
private key 〈d,n〉 and a ciphertext c ∈ Zn, compute m := cd mod n. (Hint: Exercise 7.25 will be helpful.)

Generally, a user of a cryptographic system will want to send text rather than a number, so you’ll need to add a
capacity for converting text into an integer. And RSA will only support encrypting elements of Zn, not Z, so you’ll
actually need to convert the text into a sequence of elements of Zn.
7.142 (programming required) Write a pair of functions string->intlist(s, n) and intlist->string(L, n)
that convert between strings of characters and a list of elements from Zn. You may do this conversion in
many ways, but it must be the case that these operations are inverses of each other: if string->intlist(s∗ ,n) =
L∗, then intlist->string(L∗, n) = s∗. (Hint: the easiest way to do this conversion is to view text encoded as a se-
quence of ASCII symbols, each of which is an element of {0, 1, . . . , 255}. Thus you can view your input text as a
number written in base 256. Your output is a number written in base n. Use baseConvert from p. 714.)

7.143 (programming required) Demonstrate that your implementations from Exercises 7.140, 7.141,
and 7.142 are working properly by generating keys, encrypting, and decrypting using the primes p =
5,277,019,477,592,911 and q = 7,502,904,222,052,693, and the message "THE SECRET OF BEING BORING IS

TO SAY EVERYTHING." (Voltaire (1694–1778)).

Complete the last missing piece of your RSA implementation:
7.144 (programming required) Prime generation. The key generation implementation from Exercise 7.140
relies on being given two prime numbers. Write a function that, given a (sufficiently large) range of possible
numbers between nmin and nmax, repeatedly does the following: choose a random integer between nmin and
nmax, and test whether it’s prime using the Miller–Rabin test (see Exercise 7.114).

The Chinese Remainder Theorem tells us that m ∈ Zpq is uniquely described by its value modulo p and q—that is,
m mod p and m mod q fully describe m. Here’s one way to improve the efficiency of RSA using this observation:
instead of computing m := cd mod pq directly, instead compute a := cd mod p and b := cd mod q. Then use the
algorithm implicit in Theorem 7.14 to compute the value m with m mod p = a and m mod q = b.
7.145 (programming required) Modify your implementation of RSA to use the above idea.
7.146 Actually, instead of computing a := cd mod p and b := cd mod q, we could have computed
a := cd mod p−1 mod p and b := cd mod q−1 mod q. Explain why this modification is valid. (This change can
improve the efficiency of RSA, because now both the base and the exponent may be substantially smaller
than they were in the regular RSA implementation.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

756 CHAPTER 7. NUMBER THEORY

7.6 Chapter at a Glance

Modular Arithmetic

Given integers k ≥ 1 and n, there exist unique integers d and r such that 0 ≤ r < k and
kd + r = n. The value of d is ⌊ nk

⌋, the (whole) number of times k goes into n; the value of
r is n mod k, the remainder when we divide n by k.

Two integers a and b are equivalent or congruent mod n,written a ≡n b, if a and b
have the same remainder when divided by n—that is, when a mod n = b mod n. For
expressions taken mod n, we can always freely “reduce” mod n (subtracting multiples
of n) before performing addition or multiplication. (See Theorem 7.3.)

Euclid(n,m):
Input: positive integers n and m ≥ n
Output: gcd(n,m)
1: if m mod n = 0 then
2: return n
3: else
4: return Euclid(m mod n, n)

Figure 7.28: The Eu-
clidean algorithm
for GCDs.

We write k | n to denote the proposition that n mod k = 0.
If k | n, we say that k (evenly) divides n, that k is a factor of
n, and that n is a multiple of k. See Theorem 7.4 for some
useful properties of divisibility: for example, if a | b then, for
any integer c, it’s also the case that a divides bc as well. The
greatest common divisor gcd(n,m) of two positive integers n
and m is the largest d that evenly divides both n and m; the
least common multiple is the smallest d ∈ Z≥1 that n and m both evenly divide. GCDs
can be computed efficiently using the Euclidean algorithm. (See Figure 7.28.)

Primality and Relative Primality

An integer p ≥ 2 is prime if the only positive integers that evenly divide it are 1 and p
itself; an integer n ≥ 2 that is not prime is called composite. (Note that 1 is neither prime
nor composite.) Let primes(n) denote the number of prime numbers less or equal than
n. The Prime Number Theorem states that, as n gets large, the ratio between primes(n)
and n

log n converges (slowly!) to 1. Every positive integer can be factored into a product
of zero or more prime numbers, and that factorization is unique up to the ordering of
the factors.

extended-Euclid(n,m):
Input: positive integers n and m ≥ n.
Output: x, y, r ∈ Z where gcd(n,m) = r = xn + ym
1: if m mod n = 0 then
2: return 1, 0, n // 1 · n + 0 ·m = n = gcd(n,m)
3: else
4: x, y, r := extended-Euclid(m mod n, n)
5: return y− ⌊mn

⌋
· x, x, r

Figure 7.29: The
Extended Euclidean
algorithm.

Two positive integers n and m are called relatively prime
if they have no common factors aside from 1—that is, if
gcd(n,m) = 1. A tweak to the Euclidean algorithm, called the
Extended Euclidean algorithm, takes arbitrary positive integers
n and m as input, and (efficiently) computes three integers
x, y, r such that r = gcd(n,m) = xn + ym. (See Figure 7.29.) We
can determine whether n and m are relatively prime using
the (Extended) Euclidean algorithm.

Let n1, n2, . . . , nk be a collection of integers, any pair of which is relatively prime. Let
N := ∏k

i=1 ni. Writing Zm := {0, 1, . . . ,m− 1}, the Chinese Remainder Theorem states that,
for any sequence of values 〈a1, . . . , ak〉 with each ai ∈ Zni , there exists one and only one
integer x ∈ ZN such that x mod ni = ai for all 1 ≤ i ≤ k.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

7.6. CHAPTER AT A GLANCE 757

Multiplicative Inverses
For any integer n ≥ 2, let Zn denote the set {0, 1, . . . , n− 1}. Let a ∈ Zn be arbitrary.
The multiplicative inverse of a in Zn is the number a−1 ∈ Zn such that a · a−1 ≡n 1 if any
such number exists. (If no such number exists, then a−1 is undefined.) For example,
the multiplicative inverse of 2 in Z9 is 2−1 = 5 because 2 · 5 = 10 ≡9 1; the multiplica-
tive inverse of 1 in Z9 is 1−1 = 1 because 1 · 1 ≡9 1; and the multiplicative inverse of 3
in Z9 is undefined (because 3a 6≡9 1 for any a ∈ Z9).

Let n ≥ 2 and a ∈ Zn. The multiplicative inverse a−1 exists in Zn if and only if n and
a are relatively prime. Furthermore, when a−1 exists, we can find it using the Extended
Euclidean algorithm. We compute 〈x, y, r〉 := extended-Euclid(a, n); when gcd(a, n) = 1
(as it is when a and n are relatively prime), the returned values satisfy xa + yn = 1, and
thus a−1 := x mod n is the multiplicative inverse of a in Zn. For a prime number p,
every nonzero a ∈ Zp has a multiplicative inverse in Zp.

Fermat’s Little Theorem states that, for any prime p and any integer a with p 6 | a, the
(p− 1)st power of a must equal 1 modulo p. (That is: for prime p and nonzero a ∈ Zp,
we have ap−1 ≡p 1. For example, because 17 is prime, Fermat’s Little Theorem—or
arithmetic!—tells us that 516 mod 17 = 1.)

Cryptography
A sender (“Alice”) wants to send a private message to a receiver (“Bob”), but they
can only communicate using a channel that can be overheard by an eavesdropper
(“Eve”). In cryptography,Alice encrypts the message m (the “plaintext”) and transmits
the encrypted version c (the “ciphertext”); Bob then decrypts it to recover the original
message m. The simplest way to achieve this goal is with a one-time pad: Alice and Bob
agree on a shared secret bitstring k; the ciphertext is the bitwise XOR of m and k, and
Bob decrypts by computing the bitwise XOR of c and k.

A more useful infrastructure is public-key cryptography, in which Alice and Bob do
not have to communicate a secret in advance. Every user has a public key and a (math-
ematically related) private key; to communicate with Bob, Alice uses Bob’s public key
for encryption (and Bob uses his private key for decryption). The RSA cryptosystem is a
widely used protocol for public-key cryptography; it works as follows:

• Key generation: Bob finds large primes p and q; he chooses an e 6= 1 that’s relatively
prime to (p− 1)(q− 1); and he computes d := e−1 modulo (p− 1)(q− 1). Bob’s public
key is 〈e, n〉 and his private key is 〈d, n〉, where n := pq.

• Encryption: When Alice wants to send m to Bob, she encrypts m as c := me mod n.
• Decryption: Bob decrypts c as cd mod n.

By our choices of n, p, q, d, and e, Fermat’s Little Theorem allows us to prove that Bob’s
decryption of the encryption of message m is always the original message m itself.
And, under commonly held beliefs about the difficulty of factoring large numbers (and
computing “eth roots mod n”), Eve cannot compute mwithout spending an implausi-
bly large amount of computation time.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

758 CHAPTER 7. NUMBER THEORY

Key Terms and Results

Key Terms
Modular Arithmetic
• modulus; n mod k and ⌊ nk

⌋

• congruence/equivalence (≡n)
• (evenly) divides, factor, multiple
• greatest common divisor
• least common multiple
• Euclidean algorithm

Primality and Relative Primality
• prime vs. composite numbers
• Prime Number Theorem
• prime factorization
• relative primality
• Extended Euclidean algorithm
• Chinese Remainder Theorem

Multiplicative Inverses
• Zn
• multiplicative inverse (a−1 in Zn)
• Fermat’s Little Theorem
• Carmichael number

Cryptography
• Alice, Bob, Eve
• plaintext, ciphertext
• one-time pad
• public-key cryptography
• public key; private key
• key generation; encryption/decryption
• RSA

Key Results
Modular Arithmetic
1. For any integers k ≥ 1 and n, there exist unique integers d

and r such that 0 ≤ r < k and kd + r = n. (And r = n mod k
and d = ⌊ nk

⌋.)
2. For arbitrary positive integers n and m ≥ n, the Euclidean

algorithm efficiently computes gcd(n,m).

Primality and Relative Primality
1. The Prime Number Theorem: as n gets large, the ratio

between n
log n and the number of primes less than or equal

to n approaches 1.
2. Every positive integer has a prime factorization (which is

unique up to reordering).
3. Given positive integers n and m, the Extended Euclidean

algorithm efficiently computes three integers x, y, r such
that r = gcd(n,m) = xn + ym.

4. The Chinese Remainder Theorem: Suppose n1, n2, . . . , nk are
all relatively prime, and let N := ∏k

i=1 ni. Then, for any
〈a1, . . . , ak〉 with each ai ∈ Zni , there exists a unique
x ∈ ZN such that x mod ni = ai for all 1 ≤ i ≤ k.

Multiplicative Inverses
1. In Zn, the multiplicative inverse a−1 of a exists if and only

if n and a are relatively prime. When it does exist, we can
find a−1 using the Extended Euclidean algorithm.

2. Fermat’s Little Theorem: for any prime number p and any
nonzero a ∈ Zp, we have ap−1 ≡p 1.

Cryptography
1. In the RSA cryptosystem, Alice can use Bob’s public key

to encrypt a message m so that Bob can decrypt it
efficiently. (And, under reasonable assumptions about
certain numerical problems’ hardness, Eve can’t recover m
without an exorbitant amount of computation.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

