
6
Analysis of Algorithms

In which our heroes stay beyond the reach of danger, by calculating precise
bounds on how quickly they must move to stay safe.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

602 CHAPTER 6. ANALYSIS OF ALGORITHMS

6.1 Why You Might Care
There is nothing so useless as doing efficiently that
which should not be done at all.

Peter Drucker (1909–2005)

Computer scientists are speed demons. When we are confronted by a computa-
tional problem that we need to solve, we want to solve that problem as quickly as
possible. That “need for speed” has driven much of the advancement in computation
over the last fifty years. We discover faster ways of solving important problems: de-
veloping data structures that support apparently instantaneous search of billions of
web pages or hundreds of millions of users on a social networking site; or discovering
new, faster algorithms that solve practical problems—such as finding shorter routes
for delivery drivers or encrypting packets to be sent over the Internet. (Of course, the
advances over the last fifty years have also been driven by improvements in computer
hardware that ensure that everything we do computationally is faster!)

This chapter will introduce asymptotic analysis, the most common way in which
computer scientists compare the speed of two possible solutions to the same problem.
The basic idea is to think about the rate of growth of the running time of an algorithm—
how much slower does the algorithm get if we double the size of the input?—in doing
this analysis. We will think about “big” inputs to analyze the relative performance
of the two algorithms, focusing on the long-run behavior instead of any small-input-
size special cases for which one algorithm happens to perform exceptionally well. For
the CS speed demon, asymptotic analysis is the speedometer. (Sometimes, instead of
time, we measure the amount of space/memory or power/energy that an algorithm
consumes.)

To take one example of why this kind of analysis of running time matters, consider
sorting an n-element array A. One approach is to use brute force: try all n! different
permutations of A, and select the one permutation whose elements are in ascending
order. Sorting algorithms like Selection Sort, Insertion Sort, or Bubble Sort require
≈ c · n2 operations, for some constant c, to sort A. You may also have seen Merge Sort,
which requires ≈ c · n log n operations. (We’ll review these sorting algorithms in Sec-
tion 6.3.) Figure 6.1 shows the number of operations required by these algorithms (n!,
n2, and n log n). Given that some estimates say that the Earth will be swallowed by
the sun in merely a few billion years,1 there is plenty of reason to care about the dif-

1 David Appell. The
sun will eventually
engulf Earth—
maybe. Scientific
American, Septem-
ber 2008.

ferences in these running times. Asymptotic analysis is the first-cut approximation to
making sure that our algorithms are fast enough—and that they will finish running
while we’re still around to view the output.

n = 10 n = 100 n = 1000 n = 10,000

maximum n solvable
in one minute on a ma-
chine that completes
1,000,000,000 operations
per second

n log n 33 664 9966 132,877 1.94× 109
n2 100 10,000 1,000,000 100,000,000 244,949
n! 3,628,800 9.333× 10157 4.029× 102567 2.846× 1035,659 13

Figure 6.1: The
number of opera-
tions required for
several algorithms
with different
running times, on
several input sizes.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 603

6.2 Asymptotics
I ain’t sayin’ you treated me unkind
You could have done better but I don’t mind
You just kinda wasted my precious time
But don’t think twice, it’s all right

Bob Dylan (b. 1941)
“Don’t Think Twice, It’s All Right” (1963)

Generally speaking, we will be interested in the behavior of algorithms ignoring
constant factors. There are two different senses in which we ignore constants. First, we
will ignore constant multiplicative factors; for our purposes, the function f (n) and the
function g(n) = 2 · f (n) “grow at the same rate.” (Exercises 6.1–6.4 discuss why we
might evaluate efficiency of algorithms in this way.) Second, we will be interested in
the long-run behavior of our algorithms, so we won’t be concerned by any small input
values for which the algorithm performs particularly quickly or slowly.

Example 6.1 (All of these things are quite the same)
The following functions all grow at the same rate:

f (n) = 3 · n2

g(n) = 0.01 · n2

h(n) =





202 if 0 < n < 100
n7 if 100 ≤ n < 1000
1776 · n2 otherwise.

The functions f and g differ by a multiplicative factor. For n ≥ 1000, the function h
also differs by a constant multiplier from f and g; therefore for large enough n it too
grows at the same rate as f and g.

This type of analysis is called asymptotic analysis. asymptotic (Greek):
a “without” +
symptotos “falling
together.”

Taking it further: In mathematics, the asymptote of a function f (n) is a line that f (n) approaches as n gets
very large. (Formally, this value is limn→∞ f (n).) For example, the function f (x) = 1

x has an asymptote at
0: as x gets larger and larger, f (x) gets closer and closer to 0. (Mathematicians also consider asymptotes
where a function approaches, but does not reach, some particular value as the input approaches some
point; for example, tan(θ) has an asymptote of ∞ as θ → π/2 and f (x) = −x/(x− 2) has an asymptote of
−∞ as x → 2 from below.) The asymptotic behavior of a function is similarly motivated: we’re thinking
about the growth rate of the function as n gets very large.

Consider two functions f : R≥0 → R≥0 and g : R≥0 → R≥0. (We will be interested
in functions whose domain and range are both nonnegative because we’re primarily
thinking about functions that describe the number of steps of a particular algorithm on
an input of a particular size, and neither input size nor number of computational steps
executed can be negative.) The key concept of asymptotic analysis will be a definition
of the growth rates of the functions f and g, and how those growth rates compare: that
is, what it means to say that f grows faster (or, really, no slower) than g; or that f grows
at the same rate as g; or that f grows slower (or no faster) than g.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

604 CHAPTER 6. ANALYSIS OF ALGORITHMS

6.2.1 Big O
Consider two functions f and g. To reiterate, our goal is to compare the rates at which
these functions grow. We’ll start by defining what it means for the function f (n) to
grow no faster than g(n), written f (n) = O(g(n)). The “=” in

“f (n) = O(g(n))”
is odd notation,
but it’s also very
standard. This
expression means
f (n) has the property
of being O(g(n)) and
not f (n) is identical to
O(g(n)).

Taking it further: Philosophers sometimes distinguish between the “is” of identity and the “is” of pred-
ication. In a sentence like Barbara Liskov is the 2008 Turing Award winner, we are asserting that Barbara
Liskov and the 2008 Turing Award Winner actually refer to the same thing—that is, they are identical. In a
sentence like Barbara Liskov is tall, we are asserting that Barbara Liskov (the entity to which Barbara Liskov
refers) has the property of being tall—that is, the predicate x is tall is true of Barbara Liskov. One should
interpret the “=” in f (n) = O(g(n)) as an “is of predication.”

One reasonably accurate way to distinguish these two uses of is is by considering what happens
if you reverse the order of the sentence: The 2008 Turing Award Winner is Barbara Liskov is still a (true)
well-formed sentence, but Tall is Barbara Liskov sounds very strange. Similarly, for an “is of identity” in
a mathematical context, we can say either x2 − 1 = (x + 1)(x − 1) or (x + 1)(x − 1) = x2 − 1. But, while
“f (n) = O(g(n))” is a well-formed statement, it is nonsensical to say “O(g(n)) = f (n).”

Here is the formal definition:

Definition 6.1 (“Big O”)
Consider two functions f : R≥0 → R≥0 and g : R≥0 → R≥0. We say that f grows no
faster than g if there exist constants c > 0 and n0 ≥ 0 such that

∀n ≥ n0 : f (n) ≤ c · g(n).

In this case, we write “f (n) is O(g(n))” or “f (n) = O(g(n)).”

O is pronounced
“big oh.”

f (x) = x f (x) = 2x f (x) = x + 8 f (x) = 10 f (x) =
{
25− x2 if x < 3.5
0.5x + 11 if x ≥ 3.5

Figure 6.2: Five
functions that
are all O(n). For
any x beyond the
gray box, we have
f (x) ≤ 3x.

The intuition of the defini-
tion is that f (n) = O(g(n)) if,
for large enough n, we have
f (n) ≤ constant · g(n). Fig-
ure 6.2 shows five different
functions f : R≥0 → R≥0

that all satisfy f (n) = O(n).
(In the figure, the value of
x is “large enough” once x is outside of the gray box, and the multiplicative constant is
equal to 3 in each subplot. For a function like f (x) = 4x, we’d show that f (n) = O(n) by
choosing some c ≥ 4 as the multiplicative constant.)

More quantitatively, here are two simple examples of functions that are O(n2):

Example 6.2 (A square function)
Problem: Prove that the function f (n) = 3n2 + 2 is O(n2).

Solution: To prove that f (n) = 3n2 + 2 satisfies f (n) = O(n2), we must identify constants
c > 0 and n0 ≥ 0 such that ∀n ≥ n0 : 3n2 + 2 ≤ c · n2. Let’s select c = 5 and n0 = 1.
For all n ≥ 1, observe that 2n2 ≥ 2. Therefore, for all n ≥ 1, we have

f (n) = 3n2 + 2 ≤ 3n2 + 2n2 = 5n2 = c · n2.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 605

Example 6.3 (Another square function)
Problem: Prove that the function g(n) = 4n is also O(n2).

Solution: We wish to show that 4n ≤ c · n2 for all n ≥ n0, for constants c > 0 and
n0 ≥ 0 that we get to choose. The two functions g(n) and q(n) := n2 are shown in
Figure 6.3. Because the functions cross (with no constant multiplier), we can pick
c = 1. Observe that 4n ≤ n2 if and only if n2 − 4n = n(n− 4) ≥ 0—that is, for n ≤ 0
or n ≥ 4. Thus c = 1 and n0 = 4 suffice.

Note that, when f (n) = O(g(n)), there aremany choices of c and n0 that satisfy the
n = 4

g(n) = 4n

q(n) = n2

Figure 6.3: A plot
of g(n) = 4n and
q(n) = n2.

definition. For example, we could have chosen c = 4 and n0 = 1 in Example 6.3. (See
Exercise 6.15.)

Example 6.4 (One nonsquare)
Problem: Prove that the function h(n) = n3 is not O(n2).

Solution: To show that h(n) = n3 is not O(n2), we need to argue that, for all constants
n0 and c, there exists an n ≥ n0 such that h(n) > c · n2—that is, that n3 > c · n2.

Fix a purported n0 and c. Let n := max(n0, c + 1). Then n > c by our definition of
n, so, by multiplying both sides of n > c by the nonnegative quantity n2, we have
n3 = n · n2 > c · n2. But we also have that n ≥ n0 by our definition of n, and thus we
have identified an n ≥ n0 such that n3 > c · n2.

Because n0 and c were generic, we have shown that no such constants can exist,
and therefore that h(n) = n3 is not O(n2).

Some properties of O(·)
Now that we’ve seen a few specific examples, let’s turn to some more general re-

sults. There are many useful properties of O(·) that will come in handy later; we’ll start
here with a few of these properties, together with a proof of one. (The other proofs are
left to you in Exercises 6.18–6.20.)

Lemma 6.1 (Asymptotic equivalence of max and sum)
We have f (n) = O(g(n) + h(n)) if and only if f (n) = O(max(g(n), h(n))).

Proof. We proceed by mutual implication. For the forward direction, suppose f (n) =
O(g(n) + h(n)). Then by definition there exist constants c > 0 and n0 ≥ 0 such that

for all n ≥ n0 f (n) ≤ c · [g(n) + h(n)]. (1)

For any a, b ∈ R, we know that a ≤ max(a, b) and b ≤ max(a, b), so (1) implies

for all n ≥ n0 f (n) ≤ c · [max(g(n), h(n)) +max(g(n), h(n))]
= 2cmax(g(n), h(n)). (2)

But (2) is the definition of f (n) = O(max(g(n), h(n))), using constants n′0 = n0 and c′ = 2c.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

606 CHAPTER 6. ANALYSIS OF ALGORITHMS

Conversely, suppose f (n) = O(max(g(n), h(n))). Then there exist constants c > 0 and
n0 ≥ 0 such that

for all n ≥ n0 f (n) ≤ c ·max(g(n), h(n)). (3)

For any a, b ∈ R≥0 we know max(a, b) ≤ max(a, b) +min(a, b) = a + b; thus (3) implies

for all n ≥ n0 f (n) ≤ c · [g(n) + h(n)]. (4)

Thus (4) implies that f (n) = O(g(n) + h(n)), using the same constants, n′0 = n0 and
c′ = c.

Problem-solving
tip: Don’t force
yourself to prove
more than you have
to! For example,
when proving
that an asymptotic
relationship like
f (n) = O(g(n)) holds,
all we need to do
is identify some
pair of constants
c, n0 that satisfy
Definition 6.1.
Don’t work too
hard! Choose
whatever c or n0
makes your life
easiest, even if
they’re much bigger
than necessary.
For asymptotic
purposes, we care
that the constants c
and n0 exist, but we
don’t care how big
they are.

Lemma 6.2 (Transitivity of O(·))
If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

Lemma 6.3 (Addition and multiplication preserve O(·)-ness)
If f (n) = O(h1(n)) and g(n) = O(h2(n)), then:

• f (n) + g(n) = O(h1(n) + h2(n)).
• f (n) · g(n) = O(h1(n) · h2(n)).

Asymptotics of polynomials
So far, we’ve discussed properties of O(·) that are general with respect to the form

of the functions in question. But because we’re typically concerned with O(·) in the
context of the running time of algorithms—and we are generally interested in algo-
rithms that are efficient—we’ll be particularly interested in the asymptotics of poly-
nomials. The most salient point about the growth of a polynomial p(n) is that p(n)’s
asymptotic behavior is determined by the degree of p(n)—that is, the polynomial
p(n) = a0 + a1n + a2n2 + · · · + aknk behaves like nk, asymptotically:

Lemma 6.4 (Asymptotics of polynomials)
Let p(n) = ∑k

i=0 aini be a polynomial. Then p(n) = O(nk).

(If ak > 0, then indeed p(n) = O(nk), and it is not possible to improve this bound—that
is, in the notation of Section 6.2.2, we have that p(n) = Θ(nk).)

The proof of Lemma 6.4 is deferred to Exercise 6.21, but we have already seen the
intuition in previous examples: every term aini satisfies aini ≤ |ai| · nk, for any n ≥ 1.

Asymptotics of logarithms and exponentials
We will also often encounter logarithms and exponential functions, so it’s worth

identifying a few of their asymptotic properties. Again, we’ll prove one of these prop-
erties as an example, and leave proofs of many of the remaining properties to the
exercises. The first pair of properties is that logarithmic functions grow more slowly
than polynomials, which grow more slowly than exponential functions:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 607

Lemma 6.5 (log n grows slower than n0.0000001)
Let ε > 0 be an arbitrary constant, and let f (n) = log n. Then f (n) = O(nε).

Lemma 6.6 (n1000000 grows slower than 1.0000001n)
Let b > 1 and k ≥ 0 be arbitrary constants, and let p(n) = ∑k

i=0 aini be any polynomial. Then
p(n) = O(bn).

The second pair of properties is that two logarithmic functions loga n and logb n grow
at the same rate (for any bases a > 1 and b > 1) but that two exponential functions an
and bn do not (for any bases a and b 6= a):

Lemma 6.7 (The base of a logarithm doesn’t matter, asymptotically)
Let b > 1 and k > 0 be arbitrary constants. Then f (n) = logb(nk) is O(log n).

Proof of Lemma 6.7. Using standard facts about logarithms, we have that

logb(nk) = k · logb(n) (2.2.5): logb xy = y logb x

= k · log n
log b . change of base formula (2.2.6): logb x = logc x

logc b

Thus, for any n ≥ 1, we have that f (n) = k
log b · log n. Thus f (n) = O(log n) using the

constants n0 = 1 and c = k
log b .

Lemma 6.8 (The base of an exponential doesmatter, asymptotically)
Let b ≥ 1 and c ≥ 1 be arbitrary constants. Then f (n) = bn is O(cn) if and only if b ≤ c.

Lemma 6.7 is the reason that, for example, binary search’s running time is described
as O(log n) rather than as O(log2 n), without any concern for writing the “2”: the base
of the logarithm is inconsequential asymptotically, so O(log√2 n) and O(log2 n) and
O(ln n) all mean exactly the same thing. In contrast, for exponential functions, the
base of the exponent does affect the asymptotic behavior: Lemma 6.8 says that, for
example, the functions f (n) = 2n and g(n) = (

√
2)n do not grow at the same rate. (See

Exercises 6.25–6.28.)

Taking it further: Generally, exponential growth is a problem for computer scientists. Many compu-
tational problems that are important and useful to solve seem to require searching a very large space
of possible answers: for example, testing the satisfiability of an n-variable logical proposition seems to
require looking at about 2n different truth assignments, and factoring an n-digit number seems to require
looking at about 10n different candidate divisors. The fact that exponential functions grow so quickly
is exactly why we do not have algorithms that are practical for even moderately large instances of these
problems.

But one of the most famous exponentially growing functions actually helps us to solve problems:
the amount of computational power available to a “standard” user of a computer has been growing
exponentially for decades: about every 18 months, the processing power of a standard computer has
roughly doubled. This trend—dubbedMoore’s Law, after Gordon Moore, the co-founder of Intel—is
discussed on p. 613.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

608 CHAPTER 6. ANALYSIS OF ALGORITHMS

6.2.2 Other Asymptotic Relationships: Ω, Θ, ω, and o

g(n)

Ω(g(n))

O(g(n))

Figure 6.4: A
function g(n), a
function that’s Ω(g)
(grows no slower
than g), and a
function that’s O(g)
(grows no faster
than g).

There are several basic asymptotic notions (with accompanying notation), based
around two core ideas (see Figure 6.4):

f (n) grows no faster than g(n): In other words, ignoring small inputs, for all nwe have
that f (n) ≤ constant · g(n). This relationship is expressed by the O(·) notation:
f (n) = O(g(n)). We can also say that g is an asymptotic upper bound for f : if we plot n
against f (n) and g(n), then g(n) will be “above” f (n) for large inputs.

f (n) grows no slower than g(n): The opposite relationship, in which g is an asymp-
totic lower bound on f , is expressed by Ω(·) notation. Again, ignoring small inputs,

Ω is the Greek letter
Omega written in
upper case; ω is the
same Greek letter
written in lower
case.

f (n) = Ω(g(n)) if for all n we have that f (n) ≥ constant · g(n). (Notice that the inequal-
ity swapped directions from the definition of O(·).)

Formal definitions
Here are the formal definitions of four other relationships based on these notions:

Definition 6.2 (“Big Omega”)
A function f grows no slower than g, written f (n) = Ω(g(n)), if there exist constants d > 0
and n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≥ d · g(n).

The two fundamental asymptotic relationships, O(·) and Ω(·), are dual notions; they
are related by the property that f (n) = O(g(n)) if and only if g(n) = Ω(f (n)). (The proof
is left as Exercise 6.30.)

There are three other pieces of asymptotic notation, corresponding to the situations
in which f (n) is both O(g) and Ω(g), or O(g) but not Ω(g), or Ω(g) but not O(g):

Definition 6.3 (“Big Theta”)
A function f grows at the same rate as g, written f (n) = Θ(g(n)), if f (n) = O(g(n)) and
f (n) = Ω(g(n)).

Definition 6.4 (“Little o”)
A function f grows (strictly) slower than g, written f (n) = o(g(n)), if f (n) = O(g(n)) but
f (n) 6= Ω(g(n)).

Definition 6.5 (“Little omega”)
A function f grows (strictly) faster than g, written f (n) = ω(g(n)), if f (n) = Ω(g(n)) but
f (n) 6= O(g(n)).

This notation is summarized, in two different ways, in Figure 6.5.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 609

if f (n) = O(g(n)) . . . if f (n) 6= O(g(n)) . . .
. . . and f (n) = Ω(g(n)) then f (n) = Θ(g(n)) . . . then f (n) = ω(g(n))
. . . and f (n) 6= Ω(g(n)) then f (n) = o(g(n)) —

∃c > 0, n0 ≥ 0 such that
∀n ≥ n0 : f (n) ≤ c · g(n)

∃d > 0, n0 ≥ 0 such that
∀n ≥ n0 : f (n) ≥ d · g(n)

f (n) = O(g(n)) yes don’t care f grows no faster than g
f (n) = Ω(g(n)) don’t care yes f grows no slower than g
f (n) = Θ(g(n)) yes yes f grows at the same rate as g
f (n) = o(g(n)) yes no f grows strictly slower than g
f (n) = ω(g(n)) no yes f grows strictly faster than g

Figure 6.5: Sum-
mary of notation
for asymptotic
notation, in two
different ways.

Example 6.5 (f = (n))
Problem: Let f (n) = 3n2 + 1. Is f (n) = O(n)? Ω(n)? Θ(n)? o(n)? ω(n)? Prove your

answers.

Solution: Once we determine whether f (n) = O(n) and whether f (n) = Ω(n), we can
answer all parts of the question using Figure 6.5(a).
• f (n) = Ω(n). For n ≥ 1, we have n ≤ n2 ≤ 3n2 + 1 = f (n). Thus selecting d = 1 and

n0 = 1 satisfies Definition 6.2.
• f (n) 6= O(n). Let c > 0 be arbitrary. For any n ≥ c

3 , we have 3n2 + 1 > 3n2 ≥ c · n.
Therefore, for any n0 > 0, there exists an n ≥ n0 such that f (n) > c · n. (Namely,
for n = max(n0, c/3), we have n ≥ n0 and f (n) > c · n.)
Thus, every constant c > 0 fails to satisfy the requirements of Definition 6.1, and
therefore f (n) 6= O(n).

Assembling f (n) = Ω(n) and f (n) 6= O(n) with Figure 6.5(a), we can also conclude
that f (n) = ω(n), f (n) 6= Θ(n), and f (n) 6= o(n).

Taking it further: We’ve given definitions of O(·), Ω(·), Θ(·), o(·), and ω(·) that are based on nested
quantifiers: there exists a multiplicative constant such that, for all sufficiently large n, For those with
a more calculus-based mindset, we could also give an equivalent definition in terms of limits:
• f (n) = O(g(n)) if limn→∞ f (n)/g(n) is finite;
• f (n) = Ω(g(n)) if limn→∞ f (n)/g(n) is nonzero;
• f (n) = Θ(g(n)) if limn→∞ f (n)/g(n) is finite and nonzero;
• f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0; and
• f (n) = ω(g(n)) if limn→∞ f (n)/g(n) = ∞.
For the function f (n) = 3n2 + 1 in Example 6.5, for example, observe that limn→∞

f (n)
n = ∞. Thus

f (n) = Ω(n) and f (n) = ω(n), but none of the other asymptotic relationships holds.

A (possibly counterintuitive) example
Intuitively, the asymptotic symbols O, Ω, Θ, o, and ω correspond to the numerical

comparison symbols ≤, ≥, =, <, and >—but the correspondence isn’t perfect, as we’ll
see in this example:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

610 CHAPTER 6. ANALYSIS OF ALGORITHMS

Example 6.6 (Finding functions, to spec)
Problem: Fill in each blank in the following table with an example of a function f that

satisfies the stated conditions.
f (n) = O(n2) . . . f (n) 6= O(n2) . . .

. . . and f (n) = Ω(n2)

. . . and f (n) 6= Ω(n2)

Solution: Three of these cells are easy to complete:
• f (n) = n2 is Θ(n2)—that is, it satisfies both O(n2) and Ω(n2);
• f (n) = n is o(n2)—that is, it satisfies O(n2) but not Ω(n2); and
• f (n) = n3 is ω(n2)—that is, it satisfies Ω(n2) but not O(n2).
The lower-right cell—a function f (n) that is neither O(n2) nor Ω(n2)—appears more
challenging. For f (n) 6= O(g(n)), we need a function f such that, for any con-
stants c > 0 and n0 ≥ 0, there exists n ≥ n0 such that f (n) > cn2. Similarly, for
f (n) 6= Ω(n2), we need, for any constants d > 0 and n0 ≥ 0, there to exist n ≥ n0
such that f (n) < dn2. How can we simultaneously achieve these conditions? Here’s
one way: we’ll define the function f in a piecewise manner, so that for, say, even
values of n the function grows faster than n2, and for odd values it grows slower:

f (n) =




n3 if n is even
n if n is odd

= n2+(−1)n .

(See Figure 6.6 for a plot of this function.)
Let’s argue formally that f (n) 6= O(n2). Let c > 0 and n0 ≥ 0 be arbitrary. Let

n be the smallest even number strictly greater than max(c, n0). Then f (n) = n3 and
n3 > c · n2 because we chose n > c. But we just argued that, for arbitrary c > 0 and
n0 ≥ 0, it is not the case that ∀n ≥ n0 : f (n) ≤ cn2. Thus f (n) 6= O(n2).

Together with the proof that f (n) 6= Ω(n2), which is left to you as Exercise 6.44,
the above arguments allow us to fill in the required table:

f (n) = O(n2) f (n) 6= O(n2)
f (n) = Ω(n2) f (n) = n2 f (n) = n3

f (n) 6= Ω(n2) f (n) = n f (n) =




n3 if n is even
n if n is odd.

b b b b

b

b

b

b

b

b

n3

n

f (n)

Figure 6.6: A
plot of f (n) from
Example 6.6, where
f (n) = n when n is
even, and f (n) = n3
when n is odd. This
function is neither
O(n2) nor Ω(n2).

Problem-solving
tip: When you’re
confronted with a
problem with seem-
ingly contradictory
constraints, as in
the bottom-right
cell of the table in
Example 6.6, very
carefully write
down what the
constraints require.
This process can
help you see why
the constraints
aren’t actually
contradictory.

Some properties of Ω, Θ, o, and ω

Many of the properties of O(·) also hold for the other four asymptotic notions; for
example, all five of O(·), Ω(·), Θ(·), o(·), and ω(·) obey transitivity, and several obey
reflexivity. See Exercises 6.45–6.53.

One of the subtlest aspects of asymptotic notation is the fact that two functions can
be incomparable with respect to their rates of growth: we can identify two functions f
and g such that none of the asymptotic relationships holds. (That is, f 6= O(g), f 6= Ω(g),

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 611

f 6= Θ(g), f 6= o(g), and f 6= ω(g).)
Let a and b be real numbers. The two inequalities a ≤ b and b ≤ a can be true and

false in different combinations:
• When a ≤ b and b ≤ a, then a = b.
• When a ≤ b and b 6≤ a, then a < b.
• When a 6≤ b and b ≤ a, then a > b.
• (It is not possible to have both a 6≤ b and b 6≤ a.)
Intuitively, the relationship f (n) = O(g(n)) means (approximately!) that

“the growth rate of f ≤ the growth rate of g.′′ (A)

And, again, intuitively, f (n) = Ω(g(n)) means (approximately)

“the growth rate of f ≥ the growth rate of g.′′ (B)

So Definitions 6.3, 6.4, and 6.5 correspond to these three combinations: (A) and (B) is
Θ; (A) but not (B) is o; and (B) but not (A) is ω. But be careful! For a, b ∈ R, it’s true
that either a ≤ b or a ≥ bmust be true. But it’s possible for both of the inequalities (A)
and (B) to be false! The functions g(n) = n2 and the function f (n) from Example 6.6 that
equals either n3 or n depending on the parity of n are an example of a pair of functions
for which neither (A) nor (B) is satisfied.

Taking it further: The real numbers satisfy the mathematical property of trichotomy (Greek: “di-
vision into three parts”): for a, b ∈ R, exactly one of {a < b, a = b, a > b} holds. Functions com-
pared asymptotically do not obey trichotomy: for two functions f and g, it’s possible for none of
{f = o(g), f = Θ(g), f = ω(g)} to hold.

Before we begin to apply asymptotic notation to the analysis of algorithms, we’ll
close this section with a few notes about the use (and abuse) of asymptotic notation.

Using asymptotics in arithmetic expressions
It is often convenient to use asymptotic notation in arithmetic expressions. We per-

mit ourselves to write something like O(n log n) + O(n3) = O(n3), which intuitively
means that, given functions that grow no faster than n log n and n3, their sum grows
no faster than n3 too. When asymptotic notation like O(n2) appears on the left-hand
side of an equality, we interpret it to mean an arbitrary unnamed function that grows
no faster than n2. For example, making log n calls to an algorithm whose running time
is O(n) requires log n ·O(n) = O(n log n) time.

Using asymptotics with multiple variables
It will also occasionally turn out to be convenient to be able to write asymptotic

expressions that depend on more than one variable. Giving a precise technical def-
inition of multivariate asymptotic notation is a bit subtle, but the intuition precisely
matches the univariate definitions we’ve already given. We’ll use the notation g(n,m) =
O(f (n,m)) to mean “for all sufficiently large n and m, there exists a constant c such
that g(n,m) ≤ c · f (n,m).” For example, the function f (n,m) = n2 + 3m− 5 satisfies
f (n,m) = O(n2 +m).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

612 CHAPTER 6. ANALYSIS OF ALGORITHMS

A common mistake and some meaningless language
There is a widespread—and incorrect—sloppy use of asymptotic notation: it is un-

fortunately common for people to use O(·) when they mean Θ(·). You will sometimes
encounter claims like:

“I prefer f to g, because f (n) = O(n2) and g(n) = O(n3).” (1)

But this statement doesn’t make sense: O(·) defines only an upper bound, so either of f
or g might grow more slowly than the other! Saying (1) is like saying

“Alice is richer than Bob,
because Alice has at most $1,000,000,000 and Bob has at most $1,000,000.” (2)

(Alice might be richer than Bob, but perhaps they both have twenty bucks each, or
perhaps Bob has $1,000,000 and Alice has nothing.) Use O(·) when you mean O(·), and
to use Θ(·) when you mean Θ(·)—and be aware that others may use O(·) improperly.
(And, gently, correct them if they’re doing so.)

There’s a related imprecise use of asymptotics that leads to statements that don’t
mean anything. For example, consider statements like “f (n) is at least O(n3)” or “f (n) is
at most Ω(n2).” These sentences have no meaning: they say “f (n) grows at least as fast
as at most as fast as n3” and “f (n) grows at most as fast as at least as fast as n2.” (?!?) Be
careful: use upper bounds as upper bounds, and use lower bounds as lower bounds!
Again, by analogy, consider the sentences Thanks to Tom

Wexler for suggest-
ing (5).“My weight is more than ≤ 100 kilograms” (3)

or “I am shorter than some person who is taller than 4 feet tall.” (4)
or “You could save up to 50% or more!” (5)

None of these sentences says anything!

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 613

Computer Science Connections

Moore’s Law
In 1965, Gordon Moore, one of the co-founders of Intel, published an arti-

cle making a basic prediction—and it’s been reinterpreted many times—that
processing power would double roughly once every 18–24 months.2 (It’s 2 Gordon E. Moore. Cramming more

components onto integrated circuits.
Electronics, 38(8), April 1965.

been debated and revised over time, by, for example, interpreting “processing
power” as the number of transistors—the most basic element of a processor,
out of which logic gates like AND, OR, and NOT are built—rather than what
we can actually compute.) This prediction later came to be known asMoore’s
Law—it’s not a real “law” like Ohm’s Law or the Law of Large Numbers, of
course, but rather simply a prediction. That said, it’s proven to be a remark-
ably robust prediction: for something like 40 to 50 years, it has proven to be
a consistent guide to the massive increase in processing power for a typical
computer user over the last decades. (See Figure 6.7.)

1970 1975 1980 1985 1990 1995 2000 2005 2010
102

103

104

105

106

107

108

109

Intel 4004

Intel 386

Intel Pentium

Intel Pentium 4

Dashed line =
doubling every 24 months

Year of introduction

Nu
m
be

ro
ft
ra
ns

ist
or
s

Figure 6.7: A plot of the number of
transistors per processor, for about 15
Intel brand processors introduced over
the last 50 years. (Data are from an
Intel press release celebrating the 40th
anniversary of the original publication
of Moore’s Law.) The dashed line
indicates the rate of growth we’d see if
the number of transistors per processor
doubled every two years (starting with
the Intel 4004 in 1971).

Claims that “Moore’s Law is just about to end!” have been made for many
decades—we’re beginning to run up against physical limits in the size of
transistors!—and yet Moore’s Law has still proven to be remarkably accurate
over time. Its imminent demise is still predicted today, and yet it’s still a pretty
good model of computing power.3 One probable reason that Moore’s Law has 3 Gordon E. Moore. No exponential is

forever: but “forever” can be delayed!
In International Solid-State Circuits
Conference, 2003.

held for as long as it has is a little bizarre: the repeated publicity surround-
ing Moore’s Law! Because chip manufacturing companies “know” that the
public generally expects processors to have twice as many transistors in two
years, these companies may actually be setting research-and-development tar-
gets based on meeting Moore’s Law. (Just as in a physical system, we cannot
observe a phenomenon without changing it!)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

614 CHAPTER 6. ANALYSIS OF ALGORITHMS

6.2.3 Exercises

Part of the motivation for asymptotic analysis was that algorithms are typically analyzed ignoring constant factors.
Ignoring constant factors in analyzing an algorithm may seem strange: if algorithm A runs twice as fast as B, then A
is way faster! But the reason we care more about asymptotic running time is that even an improvement by a factor of 2
is quickly swamped by an asymptotic improvement for even slightly larger inputs. Here are a few examples:
6.1 Suppose that linear search can find an element in a sorted list of n elements in n steps on a par-
ticular machine. Binary search (perhaps not implemented especially efficiently) requires 100 log n steps. For
what values of n ≥ 2 is linear search faster?
Alice implements Merge Sort so, on a particular machine, it requires exactly ⌈8n log n⌉ steps to sort n elements. Bob
implements Heap Sort so it requires exactly ⌈5n log n⌉ steps to sort n elements. Charlie implements Selection Sort so it
requires exactly 2n2 steps to sort n elements. Suppose that Alice can sort 1000 elements in 1 minute.
6.2 How many elements can Bob sort in a minute? How many can Charlie sort in a minute?
6.3 What is the largest value of n that Charlie can sort faster than Alice?
6.4 Charlie, devastated by the news from the last exercise, buys a computer that’s twice the speed of
Alice’s. What is the largest value of n that Charlie can sort faster than Alice now?

0
5
10
15
20
25
30
35
40
45
50

0 1 2 3 4 5

f (n) = 9n + 3

g(n) = 3n3 − n2

0
25
50
75
100
125
150
175
200
225
250

0 2 4 6 8 10

f (n)

g(n)

h(n)

Figure 6.8: Two sets
of functions, for
Exercises 6.5–6.11
and 6.12–6.14.

Let f (n) = 9n + 3 and let g(n) = 3n3 − n2. (See the first plot in
Figure 6.8.)
6.5 Prove that f (n) = O(n).
6.6 Prove that f (n) = O(n2).
6.7 Prove that f (n) = O(g(n)).
6.8 Prove that g(n) = O(n3).
6.9 Prove that g(n) = O(n4).
6.10 Prove that g(n) is not O(n2).
6.11 Prove that g(n) is not O(n3−ε), for any ε > 0.

Prove that the following functions are all O(n2). (See the
second plot in Figure 6.8.)
6.12 f (n) = 7n
6.13 g(n) = 3n2 + sin n
6.14 h(n) = 202

The next few exercises ask you to explore the definition of O(·) in a little more detail.
6.15 Suppose f (n) = O(g(n)). Explain why there are infinitely many choices of c and infinitely many
choices of n0 that satisfy the definition of O(·).

Consider two functions f , g : Z≥0 → Z≥0. We defined O(·) notation as follows:
• f (n) = O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≤ c · g(n).
It turns out that both c and n0 are necessary to the definition. Define the following two pieces of alternative asymptotic
notation, leaving out c (using c = 1) and n0 (using n0 = 1) from the definition:
• f (n) = P(g(n)) if there exists a constant n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≤ g(n).
• f (n) = Q(g(n)) if there exists a constant c > 0 such that ∀n ≥ 1 : f (n) ≤ c · g(n).
Prove that P(·) and Q(·) are both different from O(·)—that is, we can’t just use either of the new definitions without
changing what we meant. Specifically, prove that there exist functions f and g such that . . .
6.16 . . . either (i) f = O(g) but f 6= P(g), or (ii) f 6= O(g) but f = P(g).
6.17 . . . either (i) f = O(g) but f 6= Q(g), or (ii) f 6= O(g) but f = Q(g).

The next several exercises ask you to prove some of properties of O(·) that we stated without proof earlier in the section.
(For a model of a proof of this type of property, see Lemma 6.1 and its proof in this section.)
6.18 Prove Lemma 6.2, the transitivity of O(·): if f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

Prove Lemma 6.3: if f (n) = O(h1(n)) and g(n) = O(h2(n)), then . . .
6.19 . . . prove that f (n) + g(n) = O(h1(n) + h2(n)).
6.20 . . . prove that f (n) · g(n) = O(h1(n) · h2(n)).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.2. ASYMPTOTICS 615

6.21 Prove Lemma 6.4: if p(n) = ∑k
i=0 aini is a polynomial, then p(n) = O(nk).

6.22 Prove that the bound from the previous exercise cannot be improved. That is, prove that for
p(n) = ∑k

i=0 aini with ak > 0, then p(n) is not O(nk−ε) for any ε < k.

Lemmas 6.5 and 6.6 state that all logarithmic functions grow slower than all polynomial functions, which grow slower
than all exponential functions. (For example, log n = O(n0.000001) and n1000000 = O(1.000001n).) While fully general
proofs are more calculus-intensive than we want to be in this book, here are a few simple results to prove:
6.23 Prove that Lemma 6.5 implies that any polylogarithmic function f (n) = logk(n) satisfies f (n) = O(nε)
for any ε > 0 and any integer k ≥ 0. (A polylogarithmic function is one that’s a polynomial where the terms
are powers of log n instead of powers of n—hence a poly(nomial of the)log function.)
6.24 Prove the special case of Lemma 6.5 for ε = 1: that is, prove that log n = O(n). Specifically, do so by
proving that log n ≤ n for all integers n ≥ 1, using strong induction.

The next three exercises explore whether the asymptotic properties of two functions f and g “transfer over” to the
functions log f and log g. Specifically, consider two functions f : Z≥0 → Z≥1 and g : Z≥0 → Z≥1. (Note: the
outputs of f and g are always positive, so that log(f (n)) and log(g(n)) are well defined.)
6.25 Assume that, for all n, we have f (n) ≥ n and g(n) ≥ n. Furthermore assume that f (n) = O(g(n)).
Prove that the function ℓ(n) := log(f (n)) satisfies ℓ(n) = O(log(g(n))).
6.26 Prove that the converse of Exercise 6.25 is not true: identify functions f (n) and g(n) where f (n) ≥ n
and g(n) ≥ n such that log(f (n)) = O(log(g(n))) but f (n) 6= O(g(n)). (Hint: what’s log n2?)
6.27 Prove that the assumption that f (n) ≥ n and g(n) ≥ n from Exercise 6.25 was necessary: identify
functions f : Z≥0 → Z≥1 and g : Z≥0 → Z≥1 where f (n) = O(g(n)) but ℓ(n) 6= O(log(g(n))) for the function
ℓ(n) := log(f (n)).

6.28 For a real number b ≥ 1, define the function f (n) := bn. Prove Lemma 6.8: we have that
f (n) = O(cn) if and only if b ≤ c.

6.29 Something “going viral” online—a video, a joke, a hashtag, an app—can be reasonably modeled
as a form of exponential growth: if each person who “adopts” the entity on a particular day causes two
others to adopt that entity the next day, then 1 adopter on day #0 means 2 new ones on day #1 (for a total
of 3), and 4 new ones on day #2 (for a total of 7), etc. Here we might call 2 the spreading rate, the number of
people “infected” by each new adopter.

Let b ∈ Z≥1 be a spreading rate. Define f (n) := ∑n
i=1 bi to be the number of people who have adopted by

day #n. Is f (n) = O(bn)? Prove your answer.

6.30 Prove that f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

0

2

4

6

0 2 4 6

b
b

b

b

b

b

b

b

b

b

b

b

b

Figure 6.9: The
function f (n) =
n + 1

n .

Consider the function f (n) := n + 1
n . (See Figure 6.9.) Because f (0) is undefined and the

output f (n) is not an integer for any integer n ≥ 2, treat f as a function from Z≥1 to R.
Prove all of your answers to the following questions:
6.31 Is f (n) = O(1)? Ω(1)? Θ(1)? o(1)? ω(1)?
6.32 Is f (n) = O(n)? Ω(n)? Θ(n)? o(n)? ω(n)?
6.33 Is f (n) = O(n2)? Ω(n2)? Θ(n2)? o(n2)? ω(n2)?

For an integer n ≥ 0, let k(n) denote the nonnegative integer such that 2k(n) ≤ n < 2k(n)+1.
That is, 2k(n) takes n and “rounds down” to a power of two: for example, 2k(4) = 22 = 4 and
2k(5) = 22 = 4 and 2k(202) = 27 = 128 and 2k(55,057) = 215 = 32,768.
6.34 Prove that 2k(n) and 2k(n)+1 are both Θ(n).
6.35 Prove that k(n) = Θ(log n).
6.36 Let b ≥ 1 be an arbitrary constant. Let kb(n) denote the nonnegative
integer such that bkb(n) ≤ n < bkb(n)+1. Prove that kb(n) = Θ(log n) for any constant
value b > 1.

6.37 In Chapter 11, we’ll talk about graphs and the “density” of graphs. If f (n) denotes the number
of edges in an n-node graph (we’ll define those terms later!), then a graph is called sparse if f (n) = O(n)
and a graph is called dense if f (n) = Θ(n2). Prove that there exists a function f : Z≥0 → Z≥0 satisfying
0 ≤ f (n) ≤ n2 such that neither f (n) = Θ(n2) nor f (n) = O(n).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

616 CHAPTER 6. ANALYSIS OF ALGORITHMS

6.38 Prove or disprove: the all-zero function f (n) = 0 is the only function that is Θ(0).
6.39 Give an example of a function f (n) such that f (n) = Θ(f (n)2).

6.40 Let k ∈ Z≥0 be any constant. Prove that nk = o(n!).
6.41 Let f : Z≥0 → Z≥0 be an arbitrary function. Define the function g(n) = f (n) + 1. Prove that
g(n) = O(f (n)) if and only if f (n) = Ω(1).
6.42 Fill in each blank in the following table with an example of a function f that satisfies the stated
conditions, or argue that it’s impossible to satisfy both conditions:

f (n) is . . . o(n2) 6= o(n2)
. . . and ω(n2)
. . . and 6= ω(n2)

6.43 Let f and g be arbitrary functions. Prove that at most one of the three properties f (n) = o(g(n)) and
f (n) = Θ(g(n)) and f (n) = ω(g(n)) can hold.

6.44 Complete the proof in Example 6.6: prove that f (n) 6= Ω(n2), where f (n) is the function

f (n) =
{
n3 if n is even
n if n is odd.

Many of the properties of O(·) also hold for the other four asymptotic notions. Prove the following transitivity proper-
ties for arbitrary functions f , g, and h:
6.45 If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).
6.46 If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).
6.47 If f (n) = o(g(n)) and g(n) = o(h(n)), then f (n) = o(h(n)).

For each of the following purported properties related to symmetry, decide whether you think the statement is true or
false, and—in either case—prove your answer.
6.48 Prove or disprove: if f (n) = Ω(g(n)), then g(n) = Ω(f (n)).
6.49 Prove or disprove: if f (n) = Θ(g(n)), then g(n) = Θ(f (n)).
6.50 Prove or disprove: if f (n) = ω(g(n)), then g(n) = ω(f (n)).
Do the same for the following purported properties related to reflexivity:
6.51 Prove or disprove: f (n) = O(f (n)).
6.52 Prove or disprove: f (n) = Ω(f (n)).
6.53 Prove or disprove: f (n) = ω(f (n)).

6.54 Consider the false claim (FC-6.1) below, and the bogus proof that follows. Where, precisely, does
the proof of (FC-6.1) go wrong?
False Claim: The function f (n) = n2 satisfies f (n) = O(n). (FC-6.1)
Bogus proof of (FC-6.1). We proceed by induction on n:
base case (n = 1): Then n2 = 1. Thus f (1) = O(n) because 1 ≤ n for all n ≥ 1. (Choose c = 1 and n0 = 1.)
inductive case (n ≥ 2): Assume the inductive hypothesis—namely, assume that (n− 1)2 = O(n). We must

show that n2 = O(n). Here is the proof:
n2 = (n− 1)2 + 2n− 1 by factoring

= O(n) + 2n− 1 by the inductive hypothesis
= O(n) +O(n) by definition of O(·) and Lemma 6.3
= O(n).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 617

6.3 Asymptotic Analysis of Algorithms
If everything seems under control, you’re just not
going fast enough.

Mario Andretti (b. 1940)

The main reason that computer scientists are interested in asymptotic analysis is for
its application to the analysis of algorithms. When, for example, we compare different
algorithms that solve the same problem—say, Merge Sort, Selection Sort, and Insertion
Sort—we want to be able to give a meaningful answer to the question which algorithm is
the fastest? (And different inputs may trigger different behaviors in the algorithms un-
der consideration: when the input array is sorted, for example, Insertion Sort is faster
than Merge Sort and Selection Sort; when the input is very far from sorted, Merge Sort
is fastest. But typically we still would like to identify a single answer to the question of
which algorithm is the fastest.)

When evaluating the running time of an algorithm, we generally follow asymptotic
principles. Specifically, we will generally ignore constants in the same two ways that
O(·) and its asymptotic siblings do:

isPrime-tunedForDoubleDigits(n):
1: if n ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} then
2: return True
3: else if n ≤ 100 then
4: return False
5: else
6: return isPrime(n), from Figure 4.28.

Figure 6.10: A
trivially faster
algorithm for
testing primality.

• First, we don’t care much about what happens for
small inputs: there might be small special-case inputs for
which an algorithm is particularly fast, but this fast per-
formance on a few special inputs doesn’t mean that the
algorithm is fast in general. For example, consider the al-
gorithm for primality testing in Figure 6.10. Despite its speed
on a few special cases (n < 100), we wouldn’t consider
isPrime-tunedForDoubleDigits a faster algorithm for primality testing in general than
isPrime. We seek general answers to the question which algorithm is faster?, which leads
us to pay little heed to special cases.

• Second, we typically evaluate the running time of an algorithm not by measuring
elapsed time on the “wall clock,” but rather by counting the number of steps that the
algorithm takes to complete. (How long a program takes on your laptop, in terms of
the wall clock, is affected by all sorts of things unrelated to the algorithm, like whether
your virus checker is running while the algorithm executes.) We will generally ignore
multiplicative constants in counting the number of steps consumed by an algorithm.
One reason is so that we can give a machine-independent answer to the which algorithm
is faster? question; how much is accomplished by one instruction on an Intel processor
may be different from one instruction on an AMD processor, and ignoring constants
allows us to compare algorithms in a way that doesn’t depend on grungy details about
the particular machine.

Definition 6.6 (Running time of an algorithm on a particular input)
Consider an algorithmA and an input x. The running time of algorithm A on input x is
the number of primitive steps thatA takes when it’s run on input x.

For example, we can consider the running time of the algorithm binarySearch on the

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

618 CHAPTER 6. ANALYSIS OF ALGORITHMS

input x = 〈[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31], 4〉. The precise number of primitive steps in
this execution depends on the particular machine on which the algorithm is being run,
but it involves successively comparing 4 to 13, then 5, then 2, and finally 3.

Taking it further: Definition 6.6 is intentionally vague about what a “primitive step” is, but it’s probably
easiest to think of a single machine instruction as a primitive step. That single machine instruction might
add or compare two numbers, increment a counter, return a value, etc. Different hardware systems
might have different granularity in their “primitive steps”—perhaps a Mac desktop can “do more”
in one machine instruction than an iPhone can do—but, as we just indicated, we’ll look to analyze
algorithms independently of this detail.

We typically evaluate an algorithm’s efficiency by counting asymptotically of the number of primitive
steps used by an algorithm’s execution, rather than by using a stopwatch to measure how long the
algorithm actually takes to run on a particular input on a particular machine. One reason is that it’s very
difficult to properly measure this type of performance; see p. 627 for some discussion about why.

In certain applications, particularly those in scientific computing (the subfield of CS devoted to pro-
cessing and analyzing real-valued data, where we have to be concerned with issues like accumulated
rounding errors in long calculations), it is typical to use a variation on asymptotic analysis. Calcu-
lations on integers are substantially cheaper than those involving floating point values; thus in this
field one typically doesn’t bother counting integer operations, and instead we only track floating point
operations, or flops. Because flops are substantially more expensive, often we’ll keep track of the constant
on the leading (highest-degree) term—for example, an algorithm might require 3

2n2 +O(n log n) flops or
2n2 +O(n) flops. (We’d choose the former.)

6.3.1 Worst-Case Analysis
We will generally evaluate the efficiency of an algorithm A by thinking about its per-
formance as the input gets large: what happens to the number of steps consumed by A
as a function of the input size n? Furthermore, we generally assume the worst: when
we ask about the running time of an algorithm A on an input of size n, we are inter-
ested in the running time of A on the input of size n for which A is the slowest.

Definition 6.7 (Worst-case running time of an algorithm)
The worst-case running time of an algorithm A is

TA(n) = max
x:|x|=n

[the number of primitive steps used by A on input x].

We will be interested in the asymptotic behavior of the function TA(n).

When we perform worst-case analysis of an algorithm—analyzing the asymptotic behav-
ior of the function TA(n)—we seek to understand the rate at which the running time of
the algorithm increases as the input size increases. Because a primary goal of algorith-
mic analysis is to provide a guarantee on the running time of an algorithm, we will be
pessimistic, and think about how quickly A performs on the input of size n that’s the
worst for algorithm A.

Taking it further: Occasionally we will perform average-case analysis instead of worst-case analysis: we
will compute the expected (average) performance of algorithm A for inputs drawn from an appropriate
distribution. It can be difficult to decide on an appropriate distribution, but sometimes this approach
makes more sense than being purely pessimistic. See Section 6.3.2.

It’s also worth noting that using asymptotic, worst-case analysis can sometimes be misleading. There
are occasions in which an algorithm’s performance in practice is very poor despite a “good” asymptotic
running time—for example, because the multiplicative constant suppressed by the O(·) is massive. (And

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 619

conversely: sometimes an algorithm that’s asymptotically slow in the worst case might perform very well
on problem instances that actually show up in real applications.) Asymptotics capture the high-level
performance of an algorithm, but constants matter too!

worst-case
running time

sample algorithm(s)

Θ(1) push/pop in a stack
Θ(log n) binary search
Θ(√n) isPrimeBetter (p. 454)
Θ(n) linear search, isPrime
Θ(n log n) merge sort
Θ(n2) selection sort, insertion sort, bubble sort
Θ(n3) naïve matrix multiplication
Θ(2n) brute-force satisfiability algorithm

Figure 6.11: The
running time
of some sample
algorithms.

Figure 6.11 shows a sampling of worst-case run-
ning times for a number of the algorithms you may
have encountered earlier in this book or in previous
CS classes. In the rest of this section, we’ll prove
some of these results as examples.

Some examples: sorting algorithms
We’ll now turn to a few examples of worst-case

analysis of several different sorting and searching
algorithms. We’ll start with three sorting algorithms, illustrated in Figure 6.13:

• Selection Sort: repeatedly find the minimum element in the unsorted portion of A;
then swap that minimum element into the first slot of the unsorted segment of A.

• Insertion Sort: maintain a sorted prefix of A (initially consisting only of the first
element); repeatedly expand the sorted prefix by one element, by continuing to swap
the first unsorted element backward in the array until it’s in place.

selectionSort(A[1 . . .n]):
1: for i := 1 to n:
2: minIndex := i
3: for j := i + 1 to n:
4: if A[j] < A[minIndex] then
5: minIndex := j
6: swap A[i] and A[minIndex]

Figure 6.12: Selec-
tion Sort.

• Bubble Sort: make n left-to-right passes through A; in
each pass, swap each pair of adjacent elements that are out of
order.

We’ll start our analysis with Selection Sort, whose pseu-
docode is shown in Figure 6.12. (The pseudocode for the
other algorithms will accompany their analysis.)

Example 6.7 (Selection Sort)
Problem: What is the worst-case running time of Selection Sort?

Solution: The outer for loop’s body (lines 2–6) is executed n times, once each for
i = 1 . . .n. We complete the body of the inner for loop (lines 4–5) a total of n− i
times in iteration i. Thus the total number of times that we execute lines 4–5 is

n
∑
i=1

n− i = n2 −
n
∑
i=1

i = n2 − n(n + 1)
2 = n2 − n

2 ,

where ∑n
i=1 i = n(n+1)

2 by Lemma 5.4.
Notice that the only variation in the running time of Selection Sort based on

the particular input array A[1 . . .n] is in line 5; the number of times that minIndex
is reassigned can vary from as low as 0 to as high as n− i. The remainder of the
algorithm behaves precisely identically regardless of the input array values.

Thus, for some constants c1 > 0 and c2 > 0 the total number of primitive steps
used by the algorithm is c1n + c2n2 (for lines 1, 2, 3, 4, and 6), plus some number
x of executions of line 5, where 0 ≤ x ≤ ∑n

i=1 n − i ≤ n2, each of which takes
a constant c3 number of steps. Thus the total running time is between c1n + c2n2
and c1n + (c2 + c3)n2. The asymptotic worst-case running time of Selection Sort is
therefore Θ(n2).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

620 CHAPTER 6. ANALYSIS OF ALGORITHMS

3 5 2 1 4

1 5 2 3 4

1 2 5 3 4

1 2 3 5 4

1 2 3 4 5

(a) Selection Sort

3 5 2 1 4

3 5 2 1 4

2 3 5 1 4

1 2 3 5 4

1 2 3 4 5

(b) Insertion Sort

3 5 2 1 4
3 5 2 1 4
3 2 5 1 4
3 2 1 5 4
3 2 1 4 5
2 3 1 4 5
2 1 3 4 5
2 1 3 4 5
2 1 3 4 5
1 2 3 4 5

...
1 2 3 4 5

(c) Bubble Sort

Figure 6.13: Three
sorting algorithms
applied to the list
3, 5, 2, 1, 4. Selection
Sort repeatedly
finds the minimum
element in the
unsorted segment
and swaps it into
place. Insertion
Sort repeatedly
extends a sorted
prefix by swapping
the next element
backward into
position. Bubble
Sort repeatedly
compares adjacent
elements and swaps
them if they’re out
of order.

We are generally interested in the asymptotic performance of algorithms, so the
particular values of the constants c1, c2, and c3 from Example 6.7, which reflect the
number of primitive steps corresponding to each line of the pseudocode in Figure 6.12,
are irrelevant to our final answer. (One exception is that we may sometimes try to
count exactly the number of comparisons between elements of A, or swaps of elements
of A; see Exercises 6.55–6.63.)

insertionSort(A[1 . . . n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j− 1]:
4: swap A[j] and A[j− 1]
5: j := j− 1

Figure 6.14: Inser-
tion Sort.

We’ll now turn to our second sorting algorithm, Insertion
Sort (Figure 6.14). Insertion Sort proceeds by maintaining
a sorted prefix of the given array (initially the sorted prefix
consists only of the first element); it then repeatedly expands
the sorted prefix one element at a time, by continuing to
swap the first unsorted element backward.

Example 6.8 (Insertion Sort)
Insertion Sort is more sensitive to the structure of its input than Selection Sort: if A
is in sorted order, then the while loop in lines 3–5 terminates immediately (because
the test A[j] > A[j− 1] fails); whereas if the input array is in reverse sorted order, then
the while loop in lines 3–5 completes i− 1 iterations. In fact, the reverse-sorted array
is the worst-case input for Insertion Sort: there can be as many as i − 1 iterations of
the while loop, and there cannot be more than i− 1 iterations. If the while loop goes
through i− 1 iterations, then the total amount of work done is

n
∑
i=1

c + (i− 1)d = (c− d)n +
n
∑
i=1

id

= (c− d)n + d · n(n+1)
2

= (c− d
2)n + d

2n2,

where c and d are constants corresponding to the work of lines 1–2 and 3–5, respec-
tively. This function is Θ(n2), so Insertion Sort’s worst-case running time is Θ(n2).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 621

bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: for j := 1 to n− i:
3: if A[j] > A[j + 1] then
4: swap A[j] and A[j + 1]

Figure 6.15: Bubble
Sort.

Finally, we will analyze a third sorting algorithm: Bubble
Sort (Figure 6.15), which makes n left-to-right passes through
the array; in each pass, adjacent elements that are out of
order are swapped. Bubble Sort is a very simple sorting algo-
rithm to analyze. (But, in practice, it is also a comparatively
slow sorting algorithm to run!)

Example 6.9 (Bubble Sort)
Bubble Sort simply repeatedly compares A[j] and A[j +1] (swapping the two elements
if necessary) for many different values of j. Every time the body of the inner loop,
Lines 3–4, is executed, the algorithm does a constant amount of work: exactly one
comparison and either zero or one swaps. Thus there are two constants c > 0 and
d > 0 such that any particular execution of Lines 3–4 takes an amount of time t
satisfying c ≤ t ≤ d. Therefore the total running time of Bubble Sort is somewhere
between ∑n

i=1 ∑n−i
j=1 c and ∑n

i=1 ∑n−i
j=1 d. The summation ∑n

i=1 n− i is Θ(n2), precisely as
we analyzed in Example 6.7, and thus Bubble Sort’s running time is Ω(cn2) = Ω(n2)
and O(dn2) = O(n2). Therefore Bubble Sort is Θ(n2).

Problem-solving tip:
Precisely speak-
ing, the number
of primitive steps
required to execute,
for example, Lines
3–4 of Bubble Sort
varies based on
whether a swap
has to occur. In
Example 6.9, we
carried through the
analysis considering
two different con-
stants representing
this difference.
But, more sim-
ply, we could say
that Lines 3–4 of
Bubble Sort take
Θ(1) time, without
caring about the
particular constants.
You can use this
simpler approach
to streamline argu-
ments like the one
in Example 6.9.

Before we close, we’ll mention one more sorting algorithm, Merge Sort, which pro-
ceeds recursively by splitting the input array in half, recursively sorting each half, and
then “merging” the sorted subarrays into a single sorted array. But we will defer the
analysis of Merge Sort to Section 6.4: to analyze recursive algorithms like Merge Sort,
we will use recurrence relationswhich represent the algorithm’s running time itself as a
recursive function.

Some more examples: search algorithms
We will now turn to some examples of search algorithms, which determine whether

a particular value x appears in an array A. We’ll start with Linear Search (see Figure
6.16), which simply walks through the (possibly unsorted) array A and successively
compares each element to the sought value x.

linearSearch(A[1 . . . n], x):
Input: an array A[1 . . . n] and an element x
Output: is x in the (possibly unsorted) array A?
1: for i := 1 to n:
2: if A[i] = x then
3: return True
4: return False

Figure 6.16: Linear
Search.

Unless otherwise specified (and we will rarely specify
otherwise), we are interested in the worst-case behavior of
algorithms. This concern with worst-case behavior includes lower
bounds! Here’s an example of the analysis of an algorithm
that suffers from this confusion:

Example 6.10 (Linear Search, unsatisfactorily analyzed)
Problem: What is incomplete or incorrect in the following analysis of the worst-case

running time of Linear Search?
The running time of Linear Search is obviously O(n): we at most iterate over every
element of the array, performing a constant number of operations per element. And
it’s obviously Ω(1): no matter what the inputs A and x are, the algorithm certainly
at least does one operation (setting i := 1 in line 1), even if it immediately returns
because A[1] = x.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

622 CHAPTER 6. ANALYSIS OF ALGORITHMS

Solution: The analysis is correct, but it gives a looser lower bound than can be shown:
specifically, the running time of Linear-Search is Ω(n), and not just Ω(1). If we call
linearSearch(A, 42) for an array A[1 . . .n] that does not contain the number 42,
then the total number of steps required by the algorithm will be at least n, because
every element of A is compared to 42. Performing n comparisons takes Ω(n) time.

Taking it further: When we’re analyzing an algorithm A’s running time, we can generally prove several
different lower and upper bounds for A. For example, we might be able to prove that the running time
is Ω(1), Ω(log n), Ω(n), O(n2), and O(n3). The bound Ω(1) is a loose bound, because it is superseded by the
bound Ω(log n). (That is, if f (n) = Ω(log n) then f (n) = Ω(1).) Similarly, O(n3) is a loose bound, because it
is implied by O(n2).

We seek asymptotic bounds that are as tight as possible—so we always want to prove f (n) = Ω(g(n))
and f (n) = O(h(n)) for the fastest-growing function g and slowest-growing function h that we can. If
g = h, then we have proven a tight bound, or, equivalently, that f (n) = Θ(g(n)). Sometimes there are
algorithms for which we don’t know a tight bound; we can prove Ω(n) and O(n2), but the algorithm
might be Θ(n) or Θ(n2) or Θ(n log n log log log n) or whatever. In general, we want to give upper and
lower bounds that are as close together as possible.

Here is a terser writeup of the analysis of Linear Search:

Example 6.11 (Linear Search)
The worst case for Linear Search is an array A[1 . . .n] that doesn’t contain the element
x. In this case, the algorithm compares x to all n elements of A, taking Θ(n) time.

binarySearch(A[1 . . . n], x):
Input: a sorted array A[1 . . .n]; an element x
Output: is x in the (sorted) array A?
1: lo := 1
2: hi := n
3: while lo ≤ hi:
4: middle := ⌊ lo+hi

2 ⌋
5: if A[middle] = x then
6: return True
7: else if A[middle] > x then
8: hi := middle − 1
9: else
10: lo := middle + 1
11: return False

(a) The code.

1
⌊
n+1
2
⌋

n

⌈n/2⌉ − 1 ⌊n/2⌋

When lo = 1 and hi = n, then
middle = ⌊(n + 1)/2⌋. Because
⌊(n + 1)/2⌋ = ⌈n/2⌉, there are
⌈n/2⌉ − 1 elements before middle and
⌊n/2⌋ elements after middle.

(b) An illustration of the split.

Figure 6.17: Binary
Search.

Binary Search (see Fig-
ure 6.17(a)) is another
search algorithm for locat-
ing a value x in an array
A[1 . . .n], if the array is
sorted. It proceeds by
defining a range of the
array in which x would be
found if it is present, and
then repeatedly halving
the size of that range by
comparing x to the middle
entry in that range. Let’s
analyze the running time of Binary Search.

Example 6.12 (Binary Search)
The intuition is fairly straightforward. In every iteration of the while loop in lines
3–10, we halve the range of elements under consideration—that is, | {i : lo ≤ i ≤ hi} |.
We can halve a set of size n only log2 n times before there’s only one element left,
and therefore we have at most 1 + log2 n iterations of the while loop. Each of those
iterations takes a constant amount of time, and therefore the total running time is
O(log n).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 623

To translate this intuition into a more formal proof, suppose that the range of
elements under consideration at the beginning of an iteration of the while loop is
A[lo, . . . , hi], which contains k = hi− lo + 1 elements. There are ⌈k/2⌉ − 1 elements in
A[lo, . . . ,middle− 1] and ⌊k/2⌋ elements in A[middle+ 1, . . . , hi]. Then, after comparing
x to A[middle], one of three things happens:

• we find that x = A[middle], and the algorithm terminates.

• we find that x < A[middle], and we continue on a range of the array that contains
⌈k/2⌉ − 1 ≤ k/2 elements.

• we find that x > A[middle], and we continue on a range of the array that contains
⌊k/2⌋ ≤ k/2 elements.

In any of the three cases, we have at most k/2 elements under consideration in the
next iteration of the loop. (See Figure 6.17(b).)

Initially, the number of elements under consideration has size n. Therefore after
i iterations, there are at most n/2i elements left under consideration. (This claim
can be proven by induction.) Therefore, after at most log2 n iterations, there is only
one element left under consideration. Once the range contains only one element,
we complete at most one more iteration of the while loop. Thus the total number of
iterations is at most 1 + log2 n. Each iteration takes a constant number of steps, and
thus the total running time is O(log n).

Notice that analyzing the running time of any single iteration of the while loop in
the algorithm was easy; the challenge in determining the running time of binarySearch
lies in figuring out how many iterations occur.

Here we have only shown an upper bound on the running time of Binary Search;
in Example 6.26, we’ll prove that, in fact, Binary Search takes Θ(log n) time. (Just as
for Linear Search, the worst-case input for Binary Search is an n-element array that
does not contain the sought value x; in this case, we complete all logarithmically many
iterations of the loops, and the running time is therefore Ω(log n) too.)

6.3.2 Some Other Types of Analysis

So far we have focused on asymptotically analyzing the worst-case running time of
algorithms. While this type of analysis is the one most commonly used in the analy-
sis of algorithms, there are other interesting types of questions that we can ask about
algorithms. We’ll sketch two of them in this section: instead of being completely pes-
simistic about the particular input that we get, we might instead consider either the
best possible case or the “average” case.

Best-case analysis of running time
Best-case running time simply replaces the “max” from Definition 6.7 with a “min”:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

624 CHAPTER 6. ANALYSIS OF ALGORITHMS

Definition 6.8 (Best-case running time of an algorithm)
The best-case running time of an algorithm A on an input of size n is

Tbest
A (n) = min

x:|x|=n

[
the number of primitive steps used by A on input x

]
.

Best-case analysis is rarely used; knowing that an algorithm might be fast (on inputs

“Optimism, n. The
doctrine or belief
that everything is
beautiful, including
what is ugly.”
— Ambrose Bierce
(1842–≈1913), The
Devil’s Dictionary
(1911)

for which it is particularly well tuned) doesn’t help much in drawing generalizable
conclusions about its performance (on the input that it’s actually called on).

Average-case analysis of running time
The “average” running time of an algorithm A is subtler to state formally, because

“average” means that we have to have a notion of which values are more or less likely
to be chosen as inputs. (For example, consider sorting. In many settings, an already-
sorted array is the most common input type to the sorting algorithm; the programmer
just wanted to “make sure” that the input was sorted, even though he might have been
pretty confident that it already was.) The simplest way to do average-case analysis is
to consider inputs that are chosen uniformly at random from the space of all possible
inputs. For example, for sorting algorithms, we would consider each of the n! different
orderings of {1, 2, . . . , n} to be equally likely inputs of size n.

Definition 6.9 (Average-case running time of an algorithm)
Let X denote the set of all possible inputs to an algorithmA. The average-case running
time of an algorithm A for a uniformly chosen input of size n is

Tavg
A (n) = 1

| {y ∈ X : |y| = n} | · ∑
x∈X:|x|=n

[number of primitive steps used by A on x].

Taking it further: Let ρn be a probability distribution over {x ∈ X : |x| = n}—that is, let ρn be a function
such that ρn(x) denotes the fraction of the time that a size-n input to A is x. Definition 6.9 considers the
uniform distribution, where ρn(x) = 1/| {x ∈ X : |x| = n} |.

The average-case running time of A on inputs of size n is the expected running time of A for an input x
of size n chosen according to the probability distribution ρn. We will explore both probability distribu-
tions and expectation in detail in Chapter 10, which is devoted to probability. (If someone refers to the
average case of an algorithm without specifying the probability distribution ρ, then they probably mean
that ρ is the uniform distribution, as in Definition 6.9.)

We will still consider the asymptotic behavior of the best-case and average-case
running times, for the same reasons that we are generally interested in the asymptotic
behavior in the worst case.

Best- and average-case analysis of sorting algorithms
We’ll close this section with the best- and average-case analyses of our three sorting

algorithms. (See Figure 6.18 for a reminder of the algorithms.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 625

insertionSort(A[1 . . .n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j− 1]:
4: swap A[j] and A[j− 1]
5: j := j− 1

selectionSort(A[1 . . . n]):
1: for i := 1 to n:
2: minIndex := i
3: for j := i + 1 to n:
4: if A[j] < A[minIndex] then
5: minIndex := j
6: swap A[i] and A[minIndex]

bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: for j := 1 to n− i:
3: if A[j] > A[j + 1] then
4: swap A[j] and A[j + 1]

Figure 6.18: A
reminder of the
sorting algorithms.

Example 6.13 (Insertion Sort, best- and average-case)
In Example 6.8, we showed that the worst-case running time of Insertion Sort is
Θ(n2). Let’s analyze the best- and average-case running times of Insertion Sort.

The best-case running time for Insertion Sort is much faster: if the input array is
already in sorted order, the while loop that swaps each A[i] into place (lines 3–5)
terminates immediately without doing any swaps, because A[i] > A[i − 1]. Each
iteration of the for loop therefore takes Θ(1) time, so the total running time is Θ(n).

We will defer a fully formal analysis of the average-case running time of Insertion
Sort to Chapter 10 (see Example 10.45), but here is an informal analysis. Consider
iteration #i of the for loop of Insertion Sort. When that iteration starts, the first i− 1
elements of A—that is, A[1, . . . , i− 1]—are in sorted order. The next element A[i] has
an equal chance of falling into any one of the i “slots” in the sorted A[1, . . . , i − 1]:
before A[1], between A[1] and A[2], . . ., between A[i − 2] and A[i − 1], and after
A[i− 1]. On average, then, we complete i/2 swaps in the ith iteration of the for loop.
Thus the total average running time will be ∑n−1

i=1 i/2 = n(n− 1)/4, which is Θ(n2).

Insertion Sort

input size

ela
ps

ed
tim

e(
se
co
nd

s) • reversed
• random
• sorted

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 512 1024 1536 2048
b bb b b b b b b b b b

b b b b
b b b b

b b b
b b b
b b
b b
b b b
b

b b
b b b b

b b
b b
b
b

b

b
b b b

b

b b
b
b
b

b b

b b
b b

b

b b

b b b b b b b b b b b b b b
b b b b b b

b b b b b
b b b b

b b b b
b b b
b

b b b b b b
b b b
b b b b

b b b b
b b
b
b b b
b b b
b

Selection Sort

input size

• reversed
• random
• sorted

0 512 1024 1536 2048
b b b b b b b b b b b b b b b b b

b b b b b b b b
b b b b b b b b

b b b b b b
b b b b b

b b b b
b b b b

b b b
b b b b

b b b
b b

b b b b b b b b b b b b b b b b b
b b b b b b b b

b b b b b b
b b b b b b

b b b b b
b b b
b b b b

b b b b b
b b b
b b
b b b b

b

b b b b b b b b b b
b b b b b b b b b b b b b b b

b b b b b b b b
b b b b b b

b b b b b
b b b b

b b b b
b b b b

b b b b
b b b b

b b b b b b b b b b b b b b b
b b b b b

b b b b b
b b b b b b

b b b b
b b b b b

b b b b
b b b

b b b
b b
b b
b b b

b b
b b b

b b

Bubble Sort

input size

• reversed
• random
• sorted

0 512 1024 1536 2048
b b b b b b b b b b b b b

b b b b b b
b b b b

b b b b
b b b
b b b
b b b b

b b
b b
b b b
b b
b b b
b b b
b b
b b
b b
b b
b b
b
b

b b b b b b b b b
b b b b

b b b
b b b
b b b
b b b
b b
b b
b b
b b
b b
b b
b
b b b
b b
b
b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b b b b b b b b
b b b b b b

b b b b
b b b
b b b
b b b
b b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b
b b
b b
b b
b
b
b
b b
b b

Figure 6.19: The
elapsed-time
running time for
Insertion, Selection,
and Bubble Sorts.

While we will
typically use formal
mathematical anal-
ysis to address the
best- and average-
case performance
of algorithms (as
in Example 6.13),
sometimes the kind
of empirical analysis
discussed above—
where we measure
an algorithm’s per-
formance by running
it on an actual computer on an actual input and measuring how much time elapses
before the algorithm terminates—can also be useful. Figure 6.19 shows the elapsed
time on an aging laptop during executions of Insertion, Selection, and Bubble Sorts on
sorted arrays, reverse-sorted arrays, and a randomly shuffled array.

Figure 6.19(a) confirms the formal analysis from Example 6.13: Insertion Sort’s
worst case is about twice as slow as its average case, and both are Θ(n2); the best

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

626 CHAPTER 6. ANALYSIS OF ALGORITHMS

case of Insertion Sort is virtually invisible along the x-axis. On the other hand, Fig-
ure 6.19(b) suggests that Selection Sort’s performance does not seem to depend very
much on the structure of its input. Let’s analyze this algorithm formally:

Example 6.14 (Selection Sort, best- and average-case)
In Selection Sort (see Figure 6.18), the only effect of the input array’s structure is the
number of times that line 5 is executed. (That’s why the reverse-sorted input tends
to perform ever-so-slightly worse in Figure 6.19(b).) Thus the best- and average-
case running time of Selection Sort is Θ(n2), just like the worst-case running time
established in Example 6.7.

Figure 6.19(c) suggests that Bubble Sort’s performance varies only by a constant factor;
indeed, the worst-, average-, and best-case running times are all Θ(n2):

Example 6.15 (Bubble Sort, best- and average-case)
Again, the only difference in running time based on the structure of the input array is
in how many times line 4 is executed—that is, how many swaps occur. (The number
of swaps ranges between 0 for a sorted array and n(n − 1)/2 for a reverse-sorted
array.) But line 3 is executed Θ(n2) times in any case, and Θ(n2) + 0 and Θ(n2) + n2 are
both Θ(n2).

More careful examination of Bubble Sort shows that we can improve the algorithm’s
best-case performance without affecting the worst- and average-case performance
asymptotically; see Exercise 6.65. 4

For some of the
research from
an architecture
perspective on
power-aware
computing, see
4 Stefanos Kaxi-
ras and Margaret
Martonosi. Com-
puter Architecture
Techniques for Power-
Efficiency. Morgan
Claypool, 2008.

Taking it further: The tools from this chapter can be used to analyze the consumption of any resource
by an algorithm. So far, the only resource that we have considered is time: how many primitive steps are
used by the algorithm on an particular input? The other resource whose consumption is most commonly
analyzed is the space used by the algorithm—that is, the amount of memory used by the algorithm.
As with time, we almost always consider the worst-case space use of the algorithm. See the discussion
on p. 628 for more on the subfield of CS called computational complexity, which seeks to understand the
resources required to solve any particular problem.

While time and space are the resources most frequently analyzed by complexity theorists, there are
other resources that are interesting to track, too. For example, randomized algorithms “flip coins” as they
run—that is, they make decisions about how to continue based on a randomly generated bit. Generating
a truly random bit is expensive, and so we can view randomness itself as a resource, and try to mini-
mize the number of random bits used. And, particularly in mobile processors, power consumption—and
therefore the amount of battery life consumed, and the amount of heat generated—may be a more lim-
iting resource than time or space. Thus energy can also be viewed as a resource that an algorithm might
consume.4

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 627

Computer Science Connections

Multitasking, Garbage Collection, and Wall Clocks
One reason that we typically measure the running time of algorithms by

Sorted Input

u Bubble Sort
l Insertion Sort
b Selection Sort
r Merge Sort
c · n2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 512 1024 1536 2048
r rl lu u u u u u u u u u u u u

u u u u u u
u u u u

u u u u
u u u

u u u
u u u u

u u
u u
u u u

u u
u u u

u u u
u u
u u
u u
u u
u u
u
u

b b b b b b b b b b b b b b b b b
b b b b b b b b

b b b b b b b b
b b b b b b

b b b b b
b b b b

b b b b
b b b

b b b b
b b b

b b

Reversed Input

u Bubble Sort
l Insertion Sort
b Selection Sort
r Merge Sort
c · n2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 512 1024 1536 2048
r rl l l l l l l l l l

l l l l
l l l l

l l l
l l l

l l
l l
l l l

l

l l
l l l l

l l
l l
l
l

l

l
l l l

l

l l
l
l
l

l l

l l
l l

l

l l

u u u u u u u u u
u u u u

u u u
u u u

u u u
u u u

u u
u u
u u
u u
u u
u u
u
u u u

u u
u
u
u u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

b b b b b b b b b b b b b b b b b
b b b b b b b b

b b b b b b
b b b b b b

b b b b b
b b b

b b b b
b b b b b

b b b
b b
b b b b

b

Random Input

u Bubble Sort
l Insertion Sort
b Selection Sort
r Merge Sort
c · n2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 512 1024 1536 2048
r rl l l l l l l l l l l l l l

l l l l l l
l l l l l

l l l l
l l l l

l l l
l

l l l l l l
l l l

l l l l
l l l l

l l
l
l l l

l l l
l

u u u u u u u u
u u u u u u

u u u u
u u u

u u u
u u u

u u u
u u
u u
u u
u u
u u
u u
u u
u u
u u
u u
u
u u
u u
u u
u
u
u
u u
u u

b b b b b b b b b b
b b b b b b b b b b b b b b b

b b b b b b b b
b b b b b b

b b b b b
b b b b

b b b b
b b b b

b b b b
b b b b

Figure 6.20: The wall-clock running
time of four sorting algorithms on three
different types of input. For n-element
inputs of each type, the plot shows
the number of seconds elapsed for the
given sorting algorithms. The function
f (n) = 0.00000006 · n2 is shown in each
panel for comparison.

counting (asymptotically) the number of primitive operations consumed by
the algorithm on (worst-case) inputs is that measuring running time by so-
called wall-clock time can be difficult to interpret—and potentially misleading.

All modern operating systems (everything that’s been widely deployed for
several decades: Windows, MacOS, Linux, iOS, Android, . . .) are multitasking
operating systems. That is, the user is typically running many applications
simultaneously—perhaps an application to play music, a web browser, a pro-
gramming environment, a word processor, a virus checker, and that sorting
program that you wrote for your CS class. While it appears to the user that
these applications are all running simultaneously, the operating system is
actually pulling off a trick. There’s typically only one processor (or maybe two
or four, in increasingly used multicore machines), and the operating system
uses time-sharing to allow each running application to have a “turn” using the
processor. (When it’s the next application’s turn, the operating system swaps
out one application, and swaps in the next one that gets a slice of time on the
processor.) If there were more processes running when you ran Merge Sort
than when you ran Bubble Sort, then the elapsed time for Merge Sort could
look worse than it should.

Many operating systems can report the total amount of processor time that
a particular process consumed, so we can avoid the multitasking concern—
but even within a single process, total processor time consumed can be mis-
leading. While a program in Python or Java, for example, is running, peri-
odically the garbage collector runs to reclaim “garbage” memory (previously
allocated memory that won’t be used again) for future use. When the garbage
collector runs, the code that you were executing stops running.

Figure 6.20 shows the elapsed time while running four sorting algorithms,
written in Python, executed on sorted inputs [1, 2, . . . ,n], reverse sorted inputs
[n,n− 1, . . . , 1], and a randomly permuted n-element array. The “spikiness” of
the elapsed times within the second panel may be because I launched a large
presentation-editing application while the Insertion Sort test was running on
inputs in descending sorted order, or because the garbage collector happened
to start running during those trials.

Even putting aside the difficulty of measuring running times accurately,
there’s another fundamental issue that we must address: we have to decide
on what inputs to run the algorithms. The three panels of Figure 6.20 show
why this choice can be significant. When the input is in sorted order, Insertion
Sort is the best algorithm (in fact, it’s barely visually distinguishable from the
x-axis!). When the input is in reverse sorted order, Insertion Sort is terrible,
and Merge Sort is the fastest. When the input is randomized, Insertion Sort is
somewhere in the middle, and Merge Sort is again the fastest. Selection Sort is
essentially unaffected by which type of input we consider.

The fact that we get such different pictures from the three different input
types says that we have to decide which input to consider. (Typically we
choose the worst-case input for the particular algorithm, as we’ve discussed.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

628 CHAPTER 6. ANALYSIS OF ALGORITHMS

Computer Science Connections

Time, Space, and Complexity
Computational complexity is the subfield of computer science devoted to the

study of the resources required to solve computational problems. Computa-
tional complexity is the domain of the most important open question in all
of computer science, the P-versus-NP problem. That problem is described
elsewhere in this book (see p. 326), but here we’ll describe some of the basic
entities that are studied by complexity theorists.

A complexity class is a set of problems that can be solved using a given
constraint on resources consumed. Those resources are most typically the
time or space used by an algorithm that solves the problem. For example, the
complexity class EXPTIME includes precisely those problems solvable in
exponential time—that is,O(2nk) time for some constant integer k.

One of the most important complexity classes is P, which denotes the set of
all problems Π for which there is a polynomial-time algorithm A that solves
Π. In other words,

Π ∈ P ⇔ there exists an algorithm A and an integer k ∈ Z≥0 such that
A solves Π and the worst-case running time of A on an input of size n is O(nk).

Although the practical efficiency of an algorithm that runs in time Θ(n1000) is
highly suspect, it has turned out that essentially any (non-contrived) problem
that has been shown to be in P has actually also had a reasonably efficient
algorithm—almost always O(n5) or better. As a result, one might think of
the entire subfield of CS devoted to algorithms as really being devoted to
understanding what problems can be solved in polynomial time. (Of course,
improving the exponent of the polynomial is always a goal!)

Other commonly studied complexity classes are defined in terms of the

EXPSPACE

EXPTIME

PSPACE

P

L

Figure 6.21: A few complexity classes,
and their relationships.

space (memory) that they use:
• PSPACE: problems solvable using a polynomial amount of space;
• L: problems solvable using O(log n) space (beyond the input itself); and
• EXPSPACE: problems solvable in exponential space.

While a great deal of effort has been devoted to complexity theory over the
last half century, surprisingly little is known about how much time or space
is actually required to solve problems—including some very important prob-
lems! It is reasonably easy to prove the relationships among the complexity
classes shown in Figure 6.21, namely

L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.

Although the proofs are trickier, it has also been known since the 1960s that
P 6= EXPTIME (using the “time hierarchy theorem”), and that both L 6=
PSPACE and PSPACE 6= EXPSPACE (using the “space hierarchy theorem”).
But that’s just about all that we know about the relationship among these
complexity classes! For example, for all we know L = P or P = PSPACE—
but not both, because we do know that L 6= PSPACE. These foundational
complexity-theoretic questions remain open—awaiting the insights of a new
generation of computer scientists!5

For more, see any good textbook on
computational complexity (also known
as complexity theory). For example,
5 Michael Sipser. Introduction to the The-
ory of Computation. Course Technology,
3rd edition, 2012; and Christos H. Pa-
padimitriou. Computational Complexity.
Addison Wesley, 1994.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 629

6.3.3 Exercises

selectionSort(A[1 . . .n]):
1: for i := 1 to n:
2: minIndex := i
3: for j := i + 1 to n:
4: if A[j] < A[minIndex] then
5: minIndex := j
6: swap A[i] and A[minIndex]
insertionSort(A[1 . . . n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j− 1]:
4: swap A[j] and A[j− 1]
5: j := j− 1
bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: for j := 1 to n− i:
3: if A[j] > A[j + 1] then
4: swap A[j] and A[j + 1]

Figure 6.22: An-
other reminder of
the sorting algo-
rithms.

A comparison-based sorting algorithm reorders its input array A[1 . . . n] with two
fundamental operations:
• the comparison of a pair of elements (to determine which one is bigger); and
• the swap of a pair of elements (to exchange their positions in the array).
See Figure 6.22 for another reminder of three comparison-based sorting algorithms:
Selection, Insertion, and Bubble Sorts. For each of the following problems, give an
exact answer (not an asymptotic one), and prove your answer. For the worst-case
input array of size n, how many comparisons are done by these algorithms?
6.55 selectionSort
6.56 insertionSort
6.57 bubbleSort
We’ll now turn to counting swaps. In these exercises, you should count as a “swap”
the exchange of an element A[i] with itself. (So if i = minIndex in Line 6 of
selectionSort, Line 6 still counts as performing as swap.) For the worst-case input
array of size n, how many swaps are done by these algorithms?
6.58 selectionSort
6.59 insertionSort
6.60 bubbleSort

Repeat the previous exercises for the best-case input: that is, for the input array
A[1 . . .n] on which the given algorithm performs the best, how many compar-
isons/swaps does the algorithm do? (If the best-case array for swaps is different from
the best-case array for comparisons, say so and explain why, and analyze the number of comparisons/swaps in the two
different “best” arrays.) In the best case, how many comparisons and how many swaps are done by these algorithms?
6.61 selectionSort
6.62 insertionSort
6.63 bubbleSort

early-stopping-bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: swapped := False
3: for j := 1 to n− i:
4: if A[j] > A[j + 1] then
5: swap A[j] and A[j + 1]
6: swapped := True
7: if swapped = False then
8: return A
forward-backward-bubbleSort(A[1 . . . n]):
1: Construct R[1 . . .n], the reverse of A, where

R[i] := A[n− i + 1] for each i.
2: for i := 1 to n:
3: Run one iteration of lines 2–8 of

early-stopping-bubbleSort on A.
4: Run one iteration of lines 2–8 of

early-stopping-bubbleSort on R.
5: if either A or R is now sorted then
6: return whichever is sorted

Figure 6.23: Bubble
Sort, improved.

Two variations of the basic bubbleSort algorithm are shown in Figure 6.23. In the
next few exercises, you’ll explore whether they’re asymptotic improvements.
6.64 What’s the worst-case running time of
early-stopping-bubbleSort?
6.65 Show that the best-case running time of
early-stopping-bubbleSort is asymptotically better than the best-case
running time of bubbleSort.

6.66 Show that the running time of forward-backward-bubbleSort
on a reverse-sorted array A[1 . . .n] is Θ(n). (The reverse-sorted input is the
worst case for both bubbleSort and early-stopping-bubbleSort.)
Prove that the worst-case running time of forward-backward-bubbleSort is . . .
6.67 . . . O(n2).
6.68 . . . Ω(n2) (despite the apparent improvement!). To
prove this claim, explicitly describe an array A[1 . . .n] for which
early-stopping-bubbleSort performs poorly—that is, in Ω(n2) time—on
both A and the reverse of A.
6.69 (programming required) Implement the three versions of Bubble
Sort (including the two in Figure 6.23) in a programming language of your
choice.
6.70 (programming required) Modify your implementations from Ex-
ercise 6.69 to count the number of swaps and comparisons each algorithm
performs. Then run all three algorithms on each of the 8! = 40,320 different orderings of the elements
{1, 2, . . . , 8}. How do the algorithms’ performances compare, on average?

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

630 CHAPTER 6. ANALYSIS OF ALGORITHMS

countingSort(A[1 . . . n]):
// assume each A[i] ∈ {1, 2, . . . , k}

1: for v := 1 to k:
2: count[v] := 0
3: for i := 1 to n:
4: count[A[i]] := count[A[i]] + 1
5: i := 1
6: for v := 1 to k:
7: for t := 1 to count[v]:
8: A[i] := v
9: i := i + 1

Figure 6.24: Count-
ing Sort.

In Chapter 9, we will meet a sorting algorithm called Counting Sort that
sorts an array A[1 . . . n] where each A[i] ∈ {1, 2, . . . , k} as follows:
for each possible value x ∈ {1, 2, . . . , k}, we walk through A to compute
cx := | {i : A[i] = x} |. (We can compute all k values of c1, . . . , ck in a single
pass through A.) The output array consists of c1 copies of 1, followed by
c2 copies of 2, and so forth, ending with ck copies of k. (See Figure 6.24.)
Counting sort is particularly good when k is small.
6.71 In terms of n, what is the worst-case running time of
countingSort on an input array of n letters from the alphabet (so
k = 26, and n is arbitrary)?
6.72 (programming required) Implement Counting Sort and one
of the Θ(n2)-time sorting algorithms from this section. Collect some
data to determine, on a particular computer, for what values of k you’d generally prefer Counting Sort over
the Θ(n2)-time algorithm when n = 4096 = 212 elements are each chosen uniformly at random from the set
{1, 2, . . . , k}.
6.73 Radix Sort is a sorting algorithm based on Counting Sort that proceeds by repeatedly applying
Counting Sort to the ith-most significant bit in the input integers, for increasing i. Do some online research
to learn more about Radix Sort, then write pseudocode for Radix Sort and compare its running time (in
terms of n and k) to Counting Sort.

quickSort(A[1 . . . n]):
1: if n ≤ 1 then
2: return A
3: else
4: Choose pivotIndex ∈ {1, . . . , n}, somehow.
5: Let less (those elements smaller than A[pivotIndex]),

same and greater be empty arrays.
6: for i := 1 to n:
7: compare A[i] to A[pivotIndex], and append A[i] to

the appropriate array less, same, or greater.
8: return quickSort(less) + same + quickSort(greater).

Figure 6.25: A high-
level reminder of
Quick Sort.

In Example 5.14, we proved the correctness of Quick Sort, a recursive
sorting algorithm (see Figure 6.25 for a reminder, or Figure 5.20(a) for more
detail). The basic idea is to choose a pivot element of the input array A, then
partition A into those elements smaller than the pivot and those elements
larger than the pivot. We can then recursively sort the two “halves” and
paste them together, around the pivot, to produce a sorted version of A. The
algorithm performs very well if the two “halves” are genuinely about half the
size of A; it performs very poorly if one “half” contains almost all the elements
of A. The running time of the algorithm therefore hinges on how we select the
pivot, in Line 4. (A very good choice of pivot is actually a random element of
A, but here we’ll think only about deterministic rules for choosing a pivot.)
6.74 Suppose that we always choose pivotIndex := 1. (That is, the
first element of the array is the pivot value.) Describe (for an arbitrary
n) an input array A[1 . . . n] that causes quickSort under this pivot rule to make either less or greater empty.
6.75 Argue that, for the array you found in Exercise 6.74, the running time of Quick Sort is Θ(n2).
6.76 Suppose that we always choose pivotIndex := ⌊n/2⌋. (That is, the middle element of the array is
the pivot value.) What input array A[1 . . . n] causes worst-case performance (that is, one of the two sides of
the partition—less or greater—is empty) for this pivot rule?
6.77 A fairly commonly used pivot rule is called theMedian of Three rule: we choose pivotIndex ∈
{1, ⌊n/2⌋ , n} so that A[pivotIndex] is the median of the three values A[1], A[⌊n/2⌋], and A[n]. Argue that
there is still an input array of size n that results in Ω(n2) running time for Quick Sort.

early-stopping-linearSearch(A[1 . . . n], x):
1: for i := 1 to n:
2: if A[i] = x then
3: return True
4: else if A[i] < x then
5: return False
6: return False
countZ(s):
1: z := 0
2: while there exists i such that si = Z:
3: z := z + 1
4: remove si from s

(that is, set s := s1 . . . si−1si+1 . . . sn)
5: return z

Figure 6.26: Lin-
ear Search and
counting ZZZs.

6.78 Earlier we described a linear-search algorithm that looks
for an element x in an array A[1 . . . n] by comparing x to A[i] for each
i = 1, 2, . . . n. (See Figure 6.16.) But if A is sorted, we can determine
that x is not in A earlier, as shown in Figure 6.26: once we’ve passed
where x “should” be, we know that it’s not in A. (Our original version
omitted lines 4–5.) What is the worst-case running time of the early-
stopping version of linear search?

6.79 Consider the algorithm in Figure 6.26 for counting the
number of times the letter Z appears in a given string s. What is the
worst-case running time of this algorithm on an input string of length
n? Assume that testing whether Z is in s (line 2) and removing a letter
from s (line 4) both take c · |s| time, for some constant c.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 631

6.4 Recurrence Relations: Analyzing Recursive Algorithms
Democracy is the recurrent suspicion that more than
half of the people are right more than half the time.

E. B. White (1899–1985)

The nonrecursive algorithms in Section 6.3 could be analyzed by simple counting
and manipulation of summations. First we figured out the number of iterations of
each loop, and then figured out how long each iteration takes. By summing this work
over the iterations and simplifying the summation, we were able to compute the run-
ning time of the algorithm. Determining the running time of a recursive algorithm is
harder. Instead of merely containing loops that can be analyzed as above, the algo-
rithm’s running time on an input of size n depends on the same algorithm’s running
time for inputs of size smaller than n.

mergeSort(A[1 . . . n]):
1: if n = 1 then
2: return A
3: else
4: L := mergeSort(A[1 . . . ⌊ n2

⌋])
5: R := mergeSort(A[⌊ n2

⌋ + 1 . . . n])
6: return merge(L,R)

Figure 6.27: Merge
Sort. Themerge
function takes
two sorted arrays
and combines
them into a single
sorted array. (See
Exercise 5.72 or
6.100.)

We’ll use the classical recursive sorting algorithm Merge
Sort (Figure 6.27) as an example. Merge Sort sorts an array
by recursively sorting the first half, recursively sorting the
second half, and finally “merging” the resulting sorted lists.
(On an input array of size 1, Merge Sort just returns the array
as is.) You’ll argue in Exercise 6.100 that merging two n

2 -
element arrays takes Θ(n) time, but what does that mean for the overall running time
of Merge Sort? We can think about Merge Sort’s running time by drawing a picture of
all of the work that is done in its execution, in the form of a recursion tree:

Definition 6.10 (Recursion tree)
The recursion tree for a recursive algorithmA is a tree that shows all of the recursive calls
spawned by a call to A on an input of size n. Each node in the tree is annotated with the
amount of work, aside from any recursive calls, done by that call.

Figure 6.28 shows the recursion tree for Merge Sort. For ease, we will assume that
n is an exact power of 2. We denote by c · n the amount of time needed to process an
n-element array aside from the recursive calls—that is, the time to split and merge.

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2

· · · · · ·

.

1 1

cn

c · n
2 c · n

2

c · n
4 c · n

4 c · n
4 c · n

4

c · 2 c · 2

c · 1 c · 1 c · 1 c · 1

1+
lo
g 2

nl
ev
els

Figure 6.28: The
recursion tree for
Merge Sort. The
size of the input
itself is shown
in the shaded
square node; the
Θ(n) amount of
time required
for splitting and
merging an n-
element input is
shown in the oval
adjacent to that
node, as c · n.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

632 CHAPTER 6. ANALYSIS OF ALGORITHMS

There are many different ways to analyze the total amount of work done by Merge
Sort on an n-element input array, but one of the easiest is to use the recursion tree:

Example 6.16 (AnalyzingMerge Sort via recursion tree)
Problem: How quickly does Merge Sort run on an n-element input array? (Assume

that n is a power of two.)

Solution: The total amount of work done by Merge Sort is precisely the sum of the
circled values contained in the tree. (At the root, by definition the total work aside
from the recursive calls is c · n; inductively, the work done in the recursive calls is
the sum of the circled values in the left and right subtrees.)

The easiest way to sum up the work in the tree is to sum “row-wise.” (See Fig-
ure 6.29.) The first “row” of the tree (one call on an input of size n) generates cn
work. The second row (two calls on inputs of size n/2) generates 2 · (cn/2) = cn
work. The third row (four calls on inputs of size n/4) generates 4 · (cn/4) = cn
work. In general, row #k of the tree contains 2k−1 calls on inputs of size n/2k−1,
and generates 2k−1 · c · n/2k−1 = cnwork—that is, the work at the kth level of the
tree is cn, independent of the value of k.

There are 1 + log2 n rows in the tree, and so the total work in this tree is

1+log2 n
∑
k=1

2k−1 · c · n
2k−1 =

1+log2 n
∑
k=1

cn

= cn(1 + log2 n)

and thus is Θ(n log n) in total.

Taking it further: Here’s a different argument as to why Merge Sort requires Θ(n log n) time: every
element of the input array is merged once in an array of size 1, once in an array of size 2, once in an array
of size 4, once in an array of size 8, etc. So each element is merged log2 n times, so thus the total work is
Θ(n · log2 n).

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2

· · · · · ·

.

1 1

cn

c · n
2 c · n

2

c · n
4 c · n

4 c · n
4 c · n

4

c · 2 c · 2

c · 1 c · 1 c · 1 c · 1

1+
lo
g 2

nl
ev
els

1 · cn = cn.

2 · (cn/2) = cn.

4 · (cn/4) = cn.

n · (c) = cn.

Figure 6.29: The
row-wise sum
of the tree in
Figure 6.28.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 633

6.4.1 Recurrence Relations

Recursion trees are an excellent way to gain intuition about the running time of a
recursive algorithm, and to analyze it. We now turn to another way of thinking about
recursion trees, which suggests a rigorous (and in many ways easier to use) approach
to analyzing recursive algorithms: the recurrence relation. Because at least one of the
steps in a recursive algorithm A is to call A on a smaller input, the running time of A
on an input of size n depends on A’s running time for inputs of size smaller than n.
We will therefore express A’s running time recursively, too:

A recurrence re-
lation is called a
recurrence relation
because T recurs
(“occurs again”)
on the right-hand
side of the equation.
That’s the same rea-
son that recursion is
called recursion.

Definition 6.11 (Recurrence relation)
A recurrence relation (sometimes simply called a recurrence) is a function T(n) that is
defined (for some n) in terms of the values of T(k) for input values k < n.

Here’s a first example, about compounding interest in a bank account:

Example 6.17 (Compound interest)
Suppose that, in year #0, Alice puts $1000 in a bank account that pays 2% annual
compound interest. Writing A(n) to denote the balance of Alice’s account in year #n,
we have

A(0) = 1000 A(n) = 1.02 ·A(n− 1).
If Bob opens a bank account with the same interest rate, and deposits $10 into the
account each year (starting in year #0), then Bob’s balance is given by the recurrence

B(0) = 10 B(n) = 1.02 · B(n− 1) + 10.

fact(n):
1: if n = 1 then
2: return 1
3: else
4: return n · fact(n− 1)

Figure 6.30: A
recursive algorithm
for factorial.

In computer science, the most common type of recurrence
relation that we’ll encounter is one where T(n) denotes the
worst-case number of steps taken by a particular recursive
algorithm on an input of size n. Here are a few examples:

Example 6.18 (Factorial)
Let T(n) denote the worst-case running time of fact (Figure 6.30). Then:

T(1) = d
T(n) = T(n− 1) + c

where c is a constant denoting the work of the comparison–conditional–
multiplication–return, and d is a constant denoting the work of the comparison–
conditional–return.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

634 CHAPTER 6. ANALYSIS OF ALGORITHMS

Example 6.19 (Merge Sort)
Let T(n) denote the worst-case running time of Merge Sort (Figure 6.27) on an input
array containing n elements. Then, for a constant c, we have:

T(1) = c
T(n) = T(⌊ n2 ⌋) + T(⌈ n2 ⌉) + cn.

Just as for nonrecursive algorithms, we will generally be interested in the asymptotic
running times of these recursive algorithms, so we will usually not fret about the par-
ticular values of the constants in recurrences. We will often abuse notation and use a
single constant to represent different Θ(1)-time operations, for example.

binarySearch(A[1 . . . n], x):
1: if n ≤ 0 then
2: return False
3: middle := ⌊ 1+n

2 ⌋
4: if A[middle] = x then
5: return True
6: else if A[middle] > x then
7: return binarySearch(A[1 . . .middle− 1], x)
8: else
9: return binarySearch(A[middle + 1 . . . n], x)

Figure 6.31: Binary
Search, recursively.

In Example 6.19, for instance, we are being sloppy in our
recurrence, using a single variable c to represent two dif-
ferent values. The use of one constant to have two different
meanings (plus the ‘=’ sign) is an abuse of notation, but
when we care about asymptotic values, this abuse doesn’t
matter. We will even sometimes write 1 to stand for this
constant. (See Exercise 6.126.)

Here’s another recurrence relation, for the recursive
version of Binary Search:

Example 6.20 (Binary Search)
Let T(n) denote the worst-case running time of the recursive binarySearch (Fig-
ure 6.31) on an n-element array. Then:

T(0) = c

T(n) =
{

T(n2) + c if n is even
T(n−1

2) + c if n is odd.

Although our interest in recurrence relations will be almost exclusively about the
running times of recursive algorithms, there are other interesting recurrence relations,
too. The most famous of these is the recurrence for the Fibonacci numbers (which will
turn out to have some interesting CS applications, too):

Example 6.21 (Fibonacci numbers)
The Fibonacci numbers are defined by

f1 = 1
f2 = 1
fn = fn−1 + fn−2 for n ≥ 3

The first several Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 635

6.4.2 Solving Recurrences: Induction
When we solve a recurrence relation, we find a closed-form (that is, nonrecursive)
equivalent expression. Because recurrence relations are recursively defined quantities,
induction is the easiest way to prove that a conjectured solution is correct. (The hard
part is figuring out what solution to conjecture, as we’ll see.)

In the remainder of this section, we will solve all of the recurrences from Sec-
tion 6.4.1—starting with Alice and Bob and their bank accounts:

Example 6.22 (Compound interest)
Recall the recurrences from Example 6.17:

A(0) = 1000 A(n) = 1.02 · A(n− 1) (Alice)

B(0) = 10 B(n) = 1.02 · B(n− 1) + 10. (Bob)

The recurrence for Alice is the easier of the two to solve: we can prove relatively
straightforwardly by induction that A(n) = 1000 · 1.02n for any n ≥ 1.

For Bob, the analysis is a little trickier. Here’s some intuition: at time n, Bob has
had $10 sitting in his account since year #0 (earning interest for n years); $10 in his
account since year #1 (earning interest for n − 1 years); etc. A $10 deposit that has
accumulated interest for i years has, as with Alice, grown to 10 · 1.02i. Thus the total
amount of money in Bob’s account in year #nwill be

n
∑
i=0

[
10 · 1.02i

]
= 10 ·

[
n
∑
i=0

1.02i
]
= 10 · 1.02

n+1 − 1
1.02− 1 = 510 · 1.02n − 500

where the second equality follows from Theorem 5.2 (the analysis of a geometric
series). Let’s prove the property that B(n) = 510 · 1.02n − 500, by induction on n:

base case (n = 0): Then B(0) = 10, and indeed 510 · 1.020 − 500 = 510− 500 = 10.
inductive case (n ≥ 1): We assume the inductive hypothesis B(n − 1) =

510 · 1.02n−1 − 500; we must show that B(n) = 510 · 1.02n − 500. Then:

B(n) = 1.02 · B(n− 1) + 10 definition of B(n)

= 1.02 ·
[
510 · 1.02n−1 − 500

]
+ 10 inductive hypothesis

= 1.02 · 510 · 1.02n−1 − 1.02 · 500 + 10 multiplying through

= 510 · 1.02n − 510 + 10 simplifying

= 510 · 1.02n − 500,

precisely as desired.

Taking it further: As Example 6.22 suggests, some familiar kinds of summations like arithmetic and
geometric series can be expressed using recurrence relations. Other familiar summations can also
be expressed using recurrence relations; for example, the sum of the first n integers is given by the
recurrence T(1) = 1 and T(n) = T(n− 1) + n. (See Section 5.2 for some closed-form solutions.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

636 CHAPTER 6. ANALYSIS OF ALGORITHMS

Factorial n

n− 1

n− 2

...

2

1

c

c

c

c

d

nl
ev
els

Figure 6.32: The
(agonizingly
simple) recursion
tree for fact.

One good way to generate a conjecture that we then prove correct by induction is
by “iterating” the recurrence: expand out a few layers of the recursion to see what the
values of T(n) are for a few small values of n. We’ll illustrate this technique with the
simplest recurrence from the last section, for the recursive factorial function.

Problem-solving
tip: Try iterating
a recurrence to
generate its first
few values. Once
we have a few
values, we can often
conjecture a general
solution (which we
then prove correct
via induction).

Example 6.23 (Factorial)
Problem: Recall the recurrence from Example 6.18:

T(1) = d T(n) = T(n− 1) + c.

Give an exact closed-form (nonrecursive) solution for T(n).

Solution: See Figure 6.32 for the recursion tree, which may help give some intuition.
Let’s iterate the recurrence a few times:
• T(1) = d
• T(2) = c + T(1) = c + d
• T(3) = c + T(2) = 2c + d
• T(4) = c + T(3) = 3c + d.
From these small values, we conjecture that T(n) = (n− 1)c + d.

Let’s prove this conjecture correct by induction. For the base case (n = 1), we
have T(1) = d by definition of the recurrence, which is 0 · c + d, as desired. For the
inductive case, assume the inductive hypothesis T(n− 1) = (n− 2)c + d. We want to
show that T(n) = (n− 1)c + d. Here’s the proof:

T(n) = T(n− 1) + c by definition of the recurrence

= (n− 2)c + d + c by the inductive hypothesis

= (n− 1)c + d. by algebraic manipulation

Thus T(n) = (n− 1)c + d.

Merge Sort
Recall the Merge Sort recurrence, where T(n) = T(⌈ n2 ⌉) + T(⌊ n2 ⌋) + cn and T(1) = c.

It will be easier to address the case in which n is an exact power of 2 first (so that the
floors and ceilings don’t complicate the picture), so we’ll start with that case first, and
generalize later:

Example 6.24 (Merge Sort, for powers of 2)
Problem: Recall the Merge Sort recurrence from Example 6.19:

T(1) = c T(n) = T(⌈ n2 ⌉) + T(⌊ n2 ⌋) + cn.

For convenience, assume that n is an exact power of two. Give an exact closed-
form (nonrecursive) solution for T(n).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 637

Solution: Because n is an exact power of two, we can write n = 2k for some k ∈ Z≥0.
(Note that for n = 2k we have ⌈ n2 ⌉ = ⌊ n2 ⌋ = n

2 = 2k−1.) Define R(k) = T(2k); then
R(0) = T(1) = c and R(k) = T(2k) = 2 · T(2k−1) + c · 2k = 2 · R(k− 1) + c · 2k, so we can
instead solve the recurrence

R(0) = c R(k) = 2 · R(k− 1) + c · 2k.

Iterating R a few times, we see
• R(0) = c
• R(1) = c · 21 + 2 · R(0) = 4c
• R(2) = c · 22 + 2 · R(1) = 12c
• R(3) = c · 23 + 2 · R(2) = 32c
We conjecture

R(k) = (1 + k)2k · c (∗)

(How might we get to this conjecture? The pattern from iterating Rmatches
it. Alternatively, looking at the recursion tree might help: there are k + 1 levels of
the tree, and there are 2k−i copies of 2i · c work in the ith row of the tree—so that’s
(k + 1)2k−i2ic = (k + 1)2kc. Or, we’d expect a solution that’s the product of ≈ k and
≈ 2k so that we get T(n) ≈ n log n. And if we check the k = 0 case—R(0) = 1—it
looks like we’d better multiply by k + 1 rather than k.)

Let’s prove (∗), by induction on k. In the base case, R(0) = c and indeed we have
that (1 + 0)20 · c = 1 · 1 · c. In the inductive case, we have

R(k) = 2R(k− 1) + c · 2k by definition of the recurrence

= 2(1 + k− 1)2k−1 · c + c · 2k by the inductive hypothesis

= 2k · 2k−1 · c + 2k · c
= (k + 1)2k · c.

Thus R(k) = (k + 1)2k · c, completing the inductive case—and the proof of (∗).
Because we defined R(k) = T(2k), we can conclude that T(n) = R(log2 n), by

substituting. Thus T(n) = (1 + log2 n) · 2log2 n · c = n(1 + log2 n) · c.

Problem-solving tip:
A useful technique
for solving recur-
rences is to do a
variable substitution.
If you can express
the recurrence in
terms of a different
variable and solve
the new recurrence
easily, you can then
substitute back
into the original
recurrence to solve
it. Transforming an
unfamiliar recur-
rence into a familiar
one will make life
easy!

Thinking only about powers of two in Example 6.24 made our life simpler, but it
leaves a hole in the analysis: what is the running time of Merge Sort when the input
array’s length is not precisely a power of two? The more general analysis is actually
simple, given the result we just derived:

Example 6.25 (Merge Sort, for general n)
Problem: Solve the Merge Sort recurrence (asymptotically), for any integer n ≥ 1:

T(1) = c T(n) = T(⌈ n2 ⌉) + T(⌊ n2 ⌋) + cn.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

638 CHAPTER 6. ANALYSIS OF ALGORITHMS

Solution: We’ll use the fact that T(n) ≥ T(n′) if n ≥ n′—that is, T is monotonic. (See
Exercise 6.101.) So let k be the nonnegative integer such that 2k ≤ n < 2k+1. Then

T(n) ≥ T(2k) monotonicity

= ((log2 2k) + 1)2k · c Example 6.24

> (log2 n
2 + 1) · n

2 · c. definition of k: we have n
2 < 2k

Thus we know T(n) = Ω(n log n). Similarly,

T(n) < T(2k+1) monotonicity

= ((log2 2k+1) + 1)2k+1 · c Example 6.24

≤ (log2 2n + 1) · 2n · c. definition of k: we have 2n ≥ 2k+1

Thus T(n) = O(n log n). Combining these facts yields that T(n) = Θ(n log n).

Binary Search
There is a very simple intuitive argument for why Binary Search takes logarithmic

time, which we used in Example 6.12:
In the worst case, when the sought item x isn’t in the array, we repeatedly compare x to
the middle of the valid range of the array, and halve the size of that valid range. We can
halve an n-element range exactly log2 n times, and thus the running time of Binary Search
is logarithmic.

While this intuitive argument is plausible, there’s a subtle but nontrivial issue: the so-
called “halving” in this description isn’t actually exactly halving. If there are n elements
in the valid range, then after comparing x to the middle element of the range, we will
end up with a valid range of size either n

2 or n−1
2 , depending on the parity of n—not

exactly n
2 . (We have already shown that Binary Search’s worst-case running time is

O(log n), in Example 6.12, because if there are n elements in the valid range, then after
so-called halving we end up with a valid range of size at most n

2 . The issue here is
that we have not ruled out the possibility that the running time might be faster than
Θ(log n), because we’ve “better-than-halved” at every stage.)

We can resolve this issue by rigorously analyzing the correct recurrence relation—
and we can prove that the running time is in fact Θ(log n).

Example 6.26 (Binary Search)
Problem: Solve the Binary Search recurrence:

T(0) = 1 T(n) =
{

T(n2) + 1 if n is even
T(n−1

2) + 1 if n is odd.

(Note that we’ve changed the additive constants to 1 instead of c; changing it back
to c would only have the effect of multiplying the entire solution by c.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 639

Solution: We conjecture that T(n) = ⌊log2 n⌋ + 2 for all n ≥ 1. We’ll prove the conjec-
ture correct by strong induction on n.

For the base case (n = 1), we have T(1) = T(0) + 1 = 1 + 1 = 2 by definition of the
recurrence, and indeed 2 = ⌊0⌋ + 2 = ⌊log2 1⌋ + 2.

For the inductive case (n ≥ 2), assume the inductive hypothesis, that T(k) =
⌊log2 k⌋ + 2 for any k < n. We’ll proceed in two cases:
• If n is even:

T(n) = T(n2) + 1 by definition of the recurrence

= ⌊log2(n2)⌋ + 2 + 1 by the inductive hypothesis

= ⌊(log2 n)− 1⌋ + 3 because log(ab) = log a− log b, and log2 2 = 1

= ⌊log2 n⌋ + 2. because ⌊x + 1⌋ = ⌊x⌋ + 1

• If n is odd:

T(n) = T(n−1
2) + 1 by definition of the recurrence

= ⌊log2(n−1
2)⌋ + 2 + 1 by the inductive hypothesis

= ⌊log2(n− 1)⌋ + 2 by the same manipulations as in the even case

= ⌊log2 n⌋ + 2. because ⌊log2(n− 1)⌋ = ⌊log2 n⌋ for any odd integer n > 1

Because we’ve shown that T(n) = ⌊log2 n⌋ + 2 in either case, we’ve proven the
claim. Therefore T(n) = Θ(log n).

Problem-solving tip:
When solving a
new recurrence,
we can try to gen-
erate conjectures
(to prove correct
via induction) by
iterating the recur-
rence, drawing out
the recursion tree,
or by straight-up
guessing a solution
(or recognizing a
similar pattern to
previously seen
recurrences). To
generate my con-
jecture for Exam-
ple 6.26, I actually
wrote a program
that implemented
the recurrence. I
ran the program for
n ∈ {1, 2, . . . , 1000}
and printed out the
smallest integer n
for which T(n) = 1,
then the smallest for
which T(n) = 2, etc.
(See Figure 6.33.)
The conjecture
followed from the
observation that the
breakpoints all hap-
pened at n = 2k − 1
for an integer k.

As a general matter, the appearance of floors and ceilings inside a recurrence won’t
matter to the asymptotic running time, nor will small additive adjustments inside
the recursive term. For example, T(n) = T(⌈ n2 ⌉) + 1 and T(n) = T(⌊ n2 ⌋ − 2) + 1 both
have T(n) = Θ(log n) solutions. Intuitively, floors and ceilings don’t change this type
of recurrence because they don’t affect the total depth of the recursion tree by more
than a Θ(1) number of calls, and a Θ(1) difference in depth is asymptotically irrelevant.
Typically, understanding the running time for the “pure” version of the recurrence will

64 128 256 512 1024
2

4

6

8

10

12

14

T(512 . . . 1023) = 11

T(256 . . . 511) = 10

T(128 . . . 255) = 9

n

T(
n)

Figure 6.33: A plot
of n versus T(n) for
the binary search
recurrence.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

640 CHAPTER 6. ANALYSIS OF ALGORITHMS

give a correct understanding of the more complicated version. As such, we’ll often
be sloppy in our notation, and write T(n) = T(n2) + 1 when we really mean T(⌊ n2 ⌋) or
T(⌈ n2 ⌉). (This abuse of notation is fairly common.)

Taking it further: There’s a general theorem called the “sloppiness” theorem, which states conditions
under which it is safe to ignore floors and ceilings in recurrence relations. (As long as we actually prove
inductively that our conjectured solution to a recurrence relation is correct, it’s always fine in generating
conjectures.) As a rough guideline, as long as T(n) is monotonic (n ≤ n′ ⇒ T(n) ≤ T(n′)) and doesn’t
grow too quickly (T(n) is O(nk) for some constant k), then this “sloppiness” is fine. The details of the
theorem, and its precise assumptions, are presented in many algorithms textbooks.

6.4.3 The Fibonacci Numbers
We’ll close with another example of a recurrence relation—the Fibonacci recurrence—
that we will analyze using induction. But this time we will solve the recurrence exactly
(that is, nonasymptotically):

Example 6.27 (The Fibonacci Numbers)
Problem: Recall the Fibonacci numbers, defined by the recurrence

f1 = 1 f2 = 2 fn = fn−1 + fn−2.

Prove that fn grows exponentially: that is, prove that there exist a ∈ R>0 and
r ∈ R>1 such that fn ≥ arn.

Brainstorming: Let’s start in the middle: suppose that we’ve somehow magically
figured out values of a and r to make the base cases (n ∈ {1, 2}) work, and we’re in the
middle of an inductive proof. (There are two base cases because f2 6= f1 + f0 ; f0 isn’t even
defined!) We’d be able to prove this:

fn = fn−1 + fn−2 ≥ arn−1 + arn−2 = arn−2(r + 1). inductive hypothesis/algebra

But what we want to prove is fn ≥ arn. So we’d be done if only r + 1 = r2—that is, if
r2 − r− 1 = 0. But we get to pick the value of r (!). Using the quadratic formula, we
find that there are two solutions to this equation, which we’ll name φ and φ̂:

φ = 1 +
√
5

2 φ̂ = 1−
√
5

2 .

Let’s use r = φ. To get the base cases to work, we would need to have f1 = 1 ≥ aφ and
f2 = 1 ≥ aφ2 = a(1 + φ). Because 1 + φ > φ, the latter is the harder one to achieve. To
ensure that a(1 + φ) ≤ 1, we must have

a ≤ 1
1 + φ = 1

1 + 1+
√
5

2
= 2

3 +
√
5
.

Figure 6.34: Some
brainstorming for
Example 6.27.

Problem-solving tip:
Sometimes starting
in the middle of a
proof helps! You
still need to go back
and connect the
dots, but imagining
that you’ve gotten
somewhere may
help you figure out
how to get there.

Example 6.27 (The Fibonacci Numbers, continued)
Solution: Based on the brainstorming in Figure 6.34 (which identifies a value φ such

that φ + 1 = φ2 and a corresponding value for a), we’ll prove the following claim:
Claim: fn ≥ 2

3+
√
5 · φ

n, where φ = 1+
√
5

2 .
Proof (by strong induction on n). There are two base cases:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 641

• For n = 1, we have 2
3+

√
5 · φ

1 = 2
3+

√
5 ·

1+
√
5

2 = 1+
√
5

3+
√
5 < 1 = f1.

• For n = 2: we have
2

3+
√
5 · φ

2 = 2
3+

√
5 · (1 + φ) we chose φ so that φ + 1 = φ2

= 2
3+

√
5 ·

3+
√
5

2 = 1 = f2.

For the inductive case (n ≥ 3), we assume the inductive hypothesis, namely that
fk ≥ 2

3+
√
5 · φ

k for 1 ≤ k ≤ n− 1. Then:

fn = fn−1 + fn−2 definition of the Fibonaccis

≥ 2
3+

√
5 · φ

n−1 + 2
3+

√
5 · φ

n−2 inductive hypothesis, twice

= 2
3+

√
5 · φ

n−2 · (φ + 1) factoring

= 2
3+

√
5 · φ

n−2 · φ2 we chose φ so that φ + 1 = φ2

= 2
3+

√
5 · φ

n.

Therefore the claim follows by induction.

Taking it further: The value φ = 1+
√
5

2 ≈ 1.61803 · · · is called the golden ratio. It has a number of inter-
esting characteristics, including both remarkable mathematical and aesthetic properties. For example, a
rectangle whose side lengths are in the ratio φ-to-1 can be divided into a square and a rectangle whose
side lengths are in the ratio 1-to-φ. That’s because, for these rectangles to have the same ratios, we need
φ
1 = 1

φ−1—that is, we need φ(φ− 1) = 1, which means φ2 − φ = 1. (See Figure 6.35.) The golden ratio, it
has been argued, describes proportions in famous works of art ranging from the Acropolis to Leonardo
da Vinci’s drawings.

φ

1

1 φ− 1
(a) A rectangle with sides in
ratio φ-to-1, with a 1-by-1
square inscribed.

(b) Repeatedly inscribing a
square in the “leftover”
rectangle.

(c) The same rectangles,
rotated and shifted to share
a lower-left corner.

Figure 6.35: Some
golden rectangles.

A closed-form formula for the Fibonaccis
While Example 6.27 establishes a lower bound on the Fibonacci numbers—in

asymptotic notation, it proves that fn = Ω(φn)—we have not yet established a closed-
form solution for the nth Fibonacci number. Here’s a solution that does so, based on
the following ideas. The trick will be to make use of φ̂. The inductive case would go
through perfectly, just as in Example 6.27, if we tried to prove fn = aφn + bφ̂n, for con-
stants a and b. But what about the base cases? For f1, we would need 1 = aφ + bφ̂; for f2,

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

642 CHAPTER 6. ANALYSIS OF ALGORITHMS

we would need 1 = aφ2 + b(φ̂2) = a(1 +φ) + b(1 + φ̂). That’s two linear equations with two
unknowns, and some algebra will reveal that a = 1√

5 and b = −1√
5 solves these equations.

Let’s use these ideas to give a closed-form solution for the Fibonaccis, and a proof:

Example 6.28 (A closed-form solution for the Fibonaccis)
Problem: Prove the following claim:

Claim: fn = φn−φ̂n√
5 , where φ = 1+

√
5

2 and φ̂ = 1−
√
5

2 .
Solution: Proof (by strong induction on n). For the base cases (n = 1 and n = 2):

• For n = 1, we have

φ1−φ̂1√
5 =

1+
√
5

2 − 1−
√
5

2√
5 definition of φ and φ̂

=
2
√
5

2√
5 algebra

= 1
= f1.

• For n = 2, we have that
φ2−φ̂2√

5 = 1+φ−(1+φ̂)√
5 φ2 = 1 +φ and φ̂2 = 1 + φ̂

= 1 by the previous case

= f2.

For the inductive case (n ≥ 3), we assume the inductive hypothesis: for any
k < n, we have fk = φk−φ̂k√

5 . Then:

fn = fn−1 + fn−2 definition of the Fibonaccis

= φn−1−φ̂n−1
√
5 + φn−2−φ̂n−2

√
5 inductive hypothesis

= φn−2(φ+1)−φ̂n−2(φ̂+1)√
5 factoring

= φn−2φ2−φ̂n−2φ̂2√
5 φ + 1 = φ2 and φ̂ + 1 = φ̂2

= φn−φ̂n√
5 .

Taking it further: The Fibonacci numbers show up all over the place in nature—and in computation.
One computational application in which they’re relevant is in the design and analysis of a data structure
called an AVL tree, a form of binary search tree that guarantees that the tree supports all its operations
efficiently. See the discussion on p. 643.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 643

Computer Science Connections

AVL Trees
A binary search tree is a data structure that allows us to store a dynamic set

of elements, supporting Insert, Delete, and Find operations. (We’ll discuss
binary search trees themselves in Chapter 11.) A binary search tree consists of
a root node at the top; each node u can have zero, one, or two children directly
attached beneath u. (A node with no children is called a leaf.)

The height of a node in a tree is the number of levels of nodes beneath it.
(Again, see Chapter 11 for more.) A single node has height 1; a node with one
or two children that are leaves has height 2; etc. (We think of a nonexistent
tree has having height 0.)

An AVL tree is a special type of binary search tree that ensures that the
tree is “balanced” and therefore supports its operations very efficiently.6 The AVL trees were developed by two

Russian computer scientists in 1962:
6 A. Adelson-Velskii and E. M. Landis.
An algorithm for the organization of
information. Proceedings of the USSR
Academy of Sciences, 146:263–266, 1962.
Since then, a number of other schemes
for maintaining balanced binary search
trees have been developed, most promi-
nently red–black trees.

whole point of a balanced binary search tree is that the height of the tree is
supposed to be “small,” because the cost of almost every operation on binary
search trees is proportional to the height of the tree. (The height of the tree is
the height of the root.)

An AVL tree is a binary search tree in which, for any node u, the height of
u’s left child and the height of u’s right child can only differ by one. Alterna-
tively, we can define AVL trees recursively:

Definition 6.12 (AVL trees)
Any empty tree (consisting of zero nodes) is an AVL tree of height 0.
A tree of height h ≥ 1 is an AVL tree if
(i) the subtrees rooted at the two children of the root are both AVL trees; and
(ii) the heights of the root’s children are either both h− 1, or one is h− 1 and the

other is h− 2.

In other words, for any node u in an AVL tree, the height hℓ of u’s left subtree
and the height hr of u’s right subtree must satisfy |hℓ − hr | ≤ 1.

A few examples of AVL trees are shown in Figure 6.36. If you studied AVL

Figure 6.36: Three AVL trees. Take any
node u in any of the three trees; one can
verify that the number of layers beneath
u’s left child and u’s right child differ by
at most one.

trees before, you were probably told “AVL trees have logarithmic height.”
Here, we’ll prove it.

An upper bound
Consider an AVL tree T of height h. After a little contemplation, it should

be clear that T will contain the maximum possible number of nodes (out of all
AVL trees of height h) when both of the children of T’s root node have height
h− 1, and furthermore that both subtrees of the root have as many nodes as
an AVL tree of height h− 1 can have.

LetM(h) denote the maximum number of nodes that can appear in an AVL
tree of height h. There can be only one node in a height 1 tree, soM(1) = 1. For
h ≥ 2, the discussion in the previous paragraph shows that

M(h) = M(h− 1)︸ ︷︷ ︸
the left subtree

+ M(h− 1)︸ ︷︷ ︸
the right subtree

+ 1︸︷︷︸
the root node

. (∗)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

644 CHAPTER 6. ANALYSIS OF ALGORITHMS

Computer Science Connections

AVL Trees, continued
Claim: M(h) = 2h − 1.
Proof. The proof is straightforward by induction. For the base case (h = 1), we
have M(h) = 1 by definition, and 21 − 1 = 2− 1 = 1. For the inductive case, we
have M(h) = 2M(h) + 1 = 2 · 2(2h−1 − 1) + 1 by (∗) and the inductive hypothesis.
Simplifying yieldsM(h) = 2h − 2 + 1 = 2h − 1.

A lower bound
Let’s now analyze the other direction: what is the fewest nodes that can

Figure 6.37: The fullest-possible AVL
trees of height h ∈ {1, 2, 3, 4}, respec-
tively containing 1 = 21 − 1, 3 = 22 − 1,
7 = 23 − 1, and 15 = 24 − 1 nodes.

appear in an AVL of height h? (We can transform this analysis into one that
finds the largest possible height of an AVL tree with n nodes.)

Define N(h) as the minimum number of nodes in an AVL tree of height h.

Figure 6.38: The emptiest-possible AVL
trees of height h ∈ {1, 2, 3, 4, 5}, which
contain 1, 2, 4, 7, and 12 nodes.

As before, any height 1 tree has one node, so N(1) = 1. It’s also immediate
that N(2) = 2. It’s easy to see that the minimum number of nodes in an AVL
tree is achieved when the root has one child of height h− 1 and one child of
height h− 2—and furthermore when the root’s subtrees contain as few nodes
as legally possible. That is,

N(h) = N(h− 1)︸ ︷︷ ︸
the left subtree

+ N(h− 2)︸ ︷︷ ︸
the right subtree

+ 1︸︷︷︸
the root node

. (†)

Observe that N(h) = 1 + N(h − 1) + N(h − 2) ≥ 1 + 2 · N(h − 2) because
N(h− 1) ≥ N(h− 2). ThereforeN(h) ≥ 2h/2 − 1.

We can do better, though, with a bit more work. Define P(h) = 1 +N(h).
Adding one to both sides of (†), in this new notation, we have that P(h) =
P(h− 1) + P(h− 2). (This recurrence should look familiar: it’s the same recur-
rence as for the Fibonacci numbers!) Because P(1) = 1 +N(1) = 2 = f3 and
P(2) = 1 +N(2) = 3 = f4, we can prove inductively that P(h) = fh+2.

Claim: N(h) ≥ φh − 1.
Proof. Using the definition of P, the proof in Example 6.27, and the fact that
1
φ2 = 2

3+
√
5 , we have

N(h) = P(h)− 1 = fh+2 − 1 ≥ 2
3+

√
5 · φ

h+2 − 1 = φh − 1.

Putting it all together
The analysis above will let us prove the following theorem:

Theorem 6.9
The height h of any n-node AVL tree satisfies logφ(n+ 1) ≥ h ≥ log2(n + 1).

Proof. By the first claim above, we have 2h − 1 = M(h) ≥ n. Thus 2h ≥ n + 1,
and—taking logs of both sides—we have h ≥ log2(n + 1).

By the second claim above, we have φh − 1 = N(h) ≤ n. Thus φh ≤ n + 1,
and—taking logφ of both sides—we have h ≤ logφ(n + 1).

By changing log bases, we have
logφ(x) = log2(x)/ log2(φ)

≈ log2(x)/0.69424 · · ·
≈ 1.4404 · log2(x)

Thus this theorem says that an n-node
AVL tree has height between log2(n + 1)
and 1.44 log2(n + 1). In fact, there are
AVL trees whose height is as large as
1.44 log2(n + 1), so this analysis is tight.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.4. RECURRENCE RELATIONS: ANALYZING RECURSIVE ALGORITHMS 645

6.4.4 Exercises
b

b b

b b b b

b b b b

b b

b b b b

Figure 6.39: The
decomposition of
the plane to build a
quadtree.

A quadtree is a data structure typically used to store a collection of n points in R2. The basic
idea is to start with a bounding box that includes all n points, and then subdivide, into four
equal-sized subregions, any region that contains more than a designated number k of points.
(For simplicity, we will subdivide any region with more than k = 1 point.) The height of a
quadtree is the number of levels of the deepest subdivision of the tree. Figure 6.39 shows an
example of the regions and the corresponding tree. (Figure 6.39’s quadtree contains 17 regions,
and its height is 4. A region’s children are its subregions, clockwise from the upper left.)
6.80 Let R(h) denote the largest number of regions that a quadtree of height h can contain. Write a recur-
rence relation for R(h).
6.81 Let S(h) denote the smallest number of regions that a quadtree of height h can contain. Write a
recurrence relation for S(h).
6.82 It turns out that most efficient division of n points in a quadtree occurs when each subregion
contains precisely n/4 points. Let T(n) denote the smallest number of regions that a quadtree with n points can
contain. Using the above assertion without proof, write a recurrence relation for T(n).

foo(A[1 . . .n]):
1: if n = 0 then
2: return 0
3: else if A[1] < 0 then
4: return 1 + foo(A[2 . . . n])
5: else
6: return foo(A[2 . . .n])
bar(A[1 . . . n]):
1: if n = 0 or (n = 1 and A[1] ≥ 0) then
2: return 0
3: else if n = 1 and A[1] < 0 then
4: return 1
5: else
6: count := 0
7: count := count + bar(A[1 . . . ⌊ n2

⌋])
8: count := count + bar(A[⌊ n2

⌋ + 1 . . . n])
9: return count
baz(A[1 . . .n]):
1: if n = 0 or (n = 1 and A[1] ≥ 0) then
2: return 0
3: else if n = 1 and A[1] < 0 then
4: return 1
5: else
6: count := 0
7: count := count + baz(A[1 . . . ⌊ n4

⌋])
8: count := count + baz(A[⌊ n4

⌋ + 1 . . .
⌊
3n
4
⌋
])

9: count := count + baz(A[
⌊
3n
4
⌋
+ 1 . . . n])

10: return count
Figure 6.40: Three
recursive algo-
rithms.

For the recursive algorithms shown in Figure 6.40, write down a recurrence relation
expressing their running time. (Assume that selecting a subarray takes Θ(1) time.)
6.83 foo
6.84 bar
6.85 baz
Using your recurrences, prove by induction that each algorithm requires O(n) time:
6.86 foo
6.87 bar (for ease, you may assume n is a power of 2)
6.88 baz
Still considering the recursive algorithms shown in Figure 6.40:
6.89 What problem do the algorithms foo, bar, and baz solve?

Consider the following ternary search algorithm, a variation on binary search.
Suppose you have a sorted array A[1 . . . n] and you’re searching for a particular
value x in it. If n ≤ 2, just check whether x is one of the one or two entries in A.
Otherwise, compare x to A[n/3] and A[2n/3], and do the following:
• if x = A[⌊ n3

⌋] or x = A[
⌊
2n
3
⌋
], return true.

• if x < A[⌊ n3
⌋], recursively search A[1 . . . ⌊ n3

⌋− 1].
• if A[⌊ n3

⌋] < x < A[
⌊
2n
3
⌋
], recursively search A[⌊ n3

⌋ + 1 . . .
⌊
2n
3
⌋
− 1].

• if x > A[
⌊
2n
3
⌋
], recursively search A[

⌊
2n
3
⌋
+ 1 . . . n].

6.90 Analyze the asymptotic worst-case running time of ternary
search. Prove your answer correct using induction. For convenience, you
may assume that n is a power of three.
6.91 Does ternary search perform better or worse than binary search?
Here you should count the exact number of comparisons that each algorithm
performs—don’t give an asymptotic answer.

6.92 Consider a simplified (and thus slightly erroneous) version of the
recurrence for Binary Search: T(n) = T(n/2) + c and T(1) = c. (This recurrence
ignores the off-by-one complications.) Prove that T(n) = c(1 + log n) when n is a power of two by induction.

The next two exercises ask you to analyze quickSort, discussed in Example 5.14 and Exercises 6.74–6.77.
6.93 Consider the recurrence relation from Exercise 6.77, based on the “Median of Three” pivoting rule
for quickSort, namely T(1) = T(2) = 1 and T(n) = T(n− 2) + cn. Prove that T(n) = Θ(n2).
6.94 Generalize your argument from the previous exercise to show that the recurrence

T(n) =
{
1 if n ≤ k
T(n− k) + n otherwise

has solution T(n) = Θ(n2) for any integer k ≥ 1.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

646 CHAPTER 6. ANALYSIS OF ALGORITHMS

fibNaive(n):
1: if n = 0 or n = 1 then
2: return 1
3: else
4: return fibNaive(n− 1) +

fibNaive(n− 2)
fibMatrix(n):
1: Compute (using repeated

squaring)
[x
y
]
:=
[1 1
1 0

]n
·
[1
1
]
.

2: return x

fibMedium(n):
1: 〈fn, fn−1〉 := helper(n)
2: return fn

helper(n):
1: if n = 0 then
2: return 〈1, undefined〉
3: else if n = 1 then
4: return 〈1, 1〉
5: else
6: 〈fn−1, fn−2〉 := helper(n− 1)
7: return 〈fn−1 + fn−2, fn−1〉

fibClever(n):
1: return exp(φ,n)−exp(φ̂,n)√

5

exp(b, n):
1: if n = 0 then
2: return 1
3: else
4: s := exp(b, ⌊ n2

⌋)
5: if n is odd then
6: return b · s · s
7: else
8: return s · s

Figure 6.41: Four
algorithms for the
Fibonaccis. The
values φ and φ̂
satisfy fn = φn−φ̂n√

5 ;
see Example 6.28.

Recall that the Fibonacci numbers are defined by the recurrence f1 = f2 = 1 and fn = fn−1 + fn−2. The next several
exercises refer to this recurrence and the algorithms for computing the Fibonacci numbers in Figure 6.41.
6.95 First, a warmup unrelated to the algorithms in Figure 6.41: prove by induction that fn ≤ 2n.
6.96 Prove that fibNaive(n− k) appears a total of fk+1 times in the call tree for fibNaive(n).
6.97 Write down and solve a recurrence for the running time of helper (and therefore fibMedium).
6.98 Write down and solve a recurrence for the running time of exp (and therefore fibClever).
6.99 The reference to “repeated squaring” in fibMatrix is precisely the same as the idea of exp. Imple-
ment fibMatrix using this idea in a programming language of your choice. (See Exercise 5.56.)

merge(X[1 . . .n],Y[1 . . .m]):
1: if n = 0 then
2: return Y
3: else if m = 0 then
4: return X
5: else if X[1] < Y[1] then
6: return X[1] followed bymerge(X[2 . . . n],Y)
7: else
8: return Y[1] followed bymerge(X,Y[2 . . .m])

Figure 6.42: The
“merging” of two
sorted arrays.

6.100 Recall from Chapter 5 (or see Figure 6.42) an algorithm that
merges two sorted arrays into a single sorted array. Give a recurrence relation
T(n) describing the running time of merge on two input arrays with a total
of n elements, and prove that T(n) = Θ(n).
6.101 Consider the recurrence for the running time of mergeSort
(again, see Figure 6.42):

T(1) = c and T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + cn.
Prove that T(n) ≤ T(n′) if n ≤ n′—that is, T is monotonic.

6.102 Here is a recurrence relation for the number of comparisons done by mergeSort on an input array
of size n (once again, see Figure 6.42):

C(1) = 0 and C(n) = 2C(n/2) + n− 1.
(For ease, we’ll assume that n is a power of two.) Explain the recurrence relation, and then prove that
C(n) = n log n− n + 1 by induction. f(n):

1: if n ≤ 1 then
2: return n
3: else
4: return f(n− 2)

g(n):
1: if n ≤ 1 then
2: return n
3: else
4: x := 1
5: while n ≥ 2x:
6: x := 2 · x
7: return g(n− x)

Figure 6.43: Two
algorithms.

The next few exercises refer to the algorithms in Figure 6.43, both which solve the
same problem.
6.103 Give and solve (using induction) a recurrence relation for the
running time of f.
6.104 Give a recurrence relation for g, and use it to prove that g(n) runs
in O(log2 n) time.
6.105 Describe the set of input values n that cause the worst-case
behavior for g(n).
6.106 What problem do f and g solve? Prove your answer.

Two copies of an out-of-print book were listed online by Seller A and Seller B. Their prices were over $1,000,000 each—
and the next day, both prices were over $2,000,000, and they kept going up. By watching the prices over several days, it
became clear that the two sellers were using algorithms to set their prices in response to each other.

Exercises 6.107–
6.108 are based
on a story from
Michael Eisen’s
blog post “Ama-
zon’s $23,698,655.93
book about flies.”

Let an and bn be the prices on day n by Seller A and Seller B, respectively. The prices were set by two (badly
conceived) algorithms such that an = α · bn−1 and bn = β · an where α = 0.9983 and β = 1.27059.
6.107 Suppose that b0 = 1. Find the closed form solution for an and bn. Prove your answer.
6.108 State a necessary and sufficient condition on α, β, and b0 such that an = Θ(1) and bn = Θ(1).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.5. RECURRENCE RELATIONS: THE MASTERMETHOD 647

6.5 Recurrence Relations: The Master Method
In order to become the master, the politician poses as
the servant.

Charles de Gaulle (1890–1970)
In the remainder of this section, we’ll turn to a more formulaic method, called the

Master Method, of solving recurrence relations that have a certain form: in analyzing
algorithms, we will frequently encounter recurrences that look like

T(n) = aT (nb
) + c · nk ,

for four constants a ≥ 1, b > 1, c > 0, and k ≥ 0.
Why do these recurrences come up frequently? Consider a recursive algorithm that

has the following structure: if the input is small—say, n = 1—then we compute the
solution directly; otherwise, to solve an instance of size n:
• we make a different recursive calls on inputs of size n

b ; and

• to construct the smaller instances and then to reconstruct the solution to the given
instance from the recursive solutions, we spend Θ(nk) time.

(These algorithms are usually called divide-and-conquer algorithms: they “divide” their
input into a pieces, and then recursively “conquer” those subproblems.) To be precise,
the recurrence often has ceilings and floors as part of its recursive calls, but for now
assume that n is exact power of b, so that the floors and ceilings don’t matter.

Here are a few examples of recursive algorithms with recurrences of this form:

Example 6.29 (Binary Search)
We spend c = Θ(1) time to compare the sought element to the middle of the range; we
then make one recursive call to search for the element in the appropriate half of the
array. If n is an exact power of two, then the recurrence is

T(n) = T(n2) + c.

(So a = 1, b = 2, and k = 0, because c = c · 1 = c · n0.)

Example 6.30 (Merge Sort)
We spend Θ(1) time to divide the array in half. We make two recursive calls on the
left and right subarrays, and then spend Θ(n) time to merge the resulting sorted
subarrays into a single sorted array. If n is an exact power of two, then the recurrence
is

T(n) = 2T(n2) + c · n.
(So a = 2, b = 2, and k = 1.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

648 CHAPTER 6. ANALYSIS OF ALGORITHMS

n

n
b

n
b

n
b

1 2

· · ·
a

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

1 : 1 1 : 2 1 : a a : 1 a : 2 a : a
· · ·

· · · · · · · · · · · · · · · · · ·

b

1 1 · · · 1

b

1 1 · · · 1

· · · b

1 1 · · · 1

.

· · · · · ·

Figure 6.44: The
recursion tree
for a recurrence
relation T(n) =
aT(nb) + c · nk , of the
master method’s
form. Assume that
n is an exact power
of b.

6.5.1 The Master Method: Some Intuition
The Master Method is a technique that allows us to solve any recurrence relation of
the form T(n) = aT(nb) + c · nk very easily. The Master Method is based on examining
the recursion tree for this recurrence (see Figure 6.44), and the Master Theorem (Theo-
rem 6.10) that describes the total amount of work represented by this tree.

Here’s the intuition for the Master Method. Let’s think about the ith level of the
recursion tree (again, see Figure 6.44)—in other words, the work done by the recursive
calls that are i levels beneath the root of the recursion tree. Observe the following:

There are ai different calls at level i. There is 1 = a0 call at the 0th level, then a = a1 calls at
1st level, then a2 calls at the 2nd level, and so forth.

Each of the the calls at the ith level operates on an input of size n
bi . The input size is n

1 = n at
the 0th level, then n

b at the 1st level, then n
b2 at the 2nd, and so forth.

Thus the total amount of work in the ith level of the tree is ai · c · (nbi)k. Or, simplifying, the
total work at this level is cnk · (a

bk)
i.

Thus the total amount of work contained within the entire tree is

∑
i

[
cnk ·

(a
bk
)i]

= cnk ·∑
i

[(a
bk
)i]

. (∗)

(We’ll worry about the bounds on the summation later.)
Note that (∗) expresses the total work in the recursion tree as a geometric sum ∑i ri,

in which the ratio between terms is given by r := a
bk . (See Section 5.2.2.) As with any

geometric sum, the critical question is how the ratio compares to 1: if r < 1, then the
terms of the sum are getting smaller and smaller as i increases; if r > 1, then the terms
of the sum are getting bigger and bigger as i increases. (And if r = 1, then each term is
simply equal to 1.)

The Master Theorem has three cases, each of which corresponds to one of these
three natural cases for the summation in (∗): its terms increase exponentially with i, its

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.5. RECURRENCE RELATIONS: THE MASTERMETHOD 649

terms decrease exponentially with i, or its terms are constantwith respect to i. In these
cases, respectively, almost all of the work is done at the leaves of the tree; almost all of
the work is done at the root of the tree; or the work is spread evenly across the levels
of the tree. (Here “almost all the work” means “a constant fraction of the work,” which
means that the total work in the tree is asymptotically equivalent to the work done
solely at the root or at the leaves.)

A trio of examples
Before we prove the general theorem, we’ll solve a few recurrences that illustrate

the cases of the Master Method, and then we’ll prove the result in general. The three
example recurrences are

T(n) = 2T(n2) + 1
T(n) = 2T(n2) + n

and T(n) = 2T(n2) + n2,

all with T(1) = 1. Figure 6.45 shows the recursion trees for these recurrences.

1 call(s), 1 or n
1 or (n1)2 work each

2 call(s), 1 or n
2 or (n2)2 work each

4 call(s), 1 or n
4 or (n4)2 work each

...

2i call(s), 1 or n
2i or (

n
2i)2 work each

...

n call(s), 1 or 1 or 1 work each

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2
· · · · · ·

.

1 1

Figure 6.45: The
recursion trees
for three different
recurrences: T(n) =
2T(n2) + f (n), for
f (n) ∈ {1,n, n2}.
The annotation in
each row of the
tree shows both
the number of
calls at that level of
the tree, plus the
additional work
done by each call at
that level.

In each of these recurrences, we divide the input by two at every level of the recur-
sion. Thus, the total depth of the recursion tree is log2 n. (Assume n is an exact power
of two.) In the recursion tree for any one of these recurrences, consider the ith level of
the tree beneath the root. (The root of the recursion tree has depth 0.) We have divided
n by 2 a total of i times, and thus the input size at that level is n

2i . Furthermore, there
are 2i different calls at the ith level of the tree.

Solving the three recurrences
To solve each recurrence, we will sum the total amount of work generated at each

level of the tree. The recursion trees for each of these three recurrences are shown in
Figures 6.46, 6.47, and 6.48.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

650 CHAPTER 6. ANALYSIS OF ALGORITHMS

= 1 · 1 = 1

= 2 · 1 = 2

= 4 · 1 = 4

...

= 2i · 1 = 2i

...

= 2log2 n · 1 = n

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2
· · · · · ·

.

1 1

Figure 6.46: The
recursion tree for
T(n) = 2T(n2) + 1,
with the “row-
wise” sums of
work. The work at
each level is twice
the work at the level
above it; thus the
work is increasing
exponentially at
each level of the
tree.

= 1 · n
1 = n

= 2 · n
2 = n

= 4 · n
4 = n

...

= 2i · n
2i = n

...

= 2log2 n · 1 = n

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2
· · · · · ·

.

1 1

Figure 6.47: The
recursion tree for
T(n) = 2T(n2) + n.
The work at each
level is exactly n;
thus the work is
constant across the
levels of the tree.

= 1 · (n1)2 = n2
1

= 2 · (n2)2 = n2
2

= 4 · (n4)2 = n2
4

...

= 2i · (n2i)2 = n2
2i

...

= 2log2 n · 1 = n2
n

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2
· · · · · ·

.

1 1

Figure 6.48: The
recursion tree for
T(n) = 2T(n2) + n2.
The work at each
level is half of the
work at the level
above it; thus the
work is decreasing
exponentially at
each level of the
tree.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.5. RECURRENCE RELATIONS: THE MASTERMETHOD 651

Example 6.31 (Solving T(n) = 2T(n2) + 1)
Figure 6.46 shows the recursion tree for this recurrence. There are 2i different calls
at the ith level, each of which is on an input of size n

2i—and we do 1 unit of work for
each of these 2i calls. Thus the total amount of work at level i is 2i. The total amount
of work in the entire tree is therefore

T(n) =
log2 n
∑
i=0

2i = 21+log2 n − 1
2− 1 = 2 · 2log2 n = 2n

by Theorem 5.2. And, indeed, T(n) = Θ(n).

Example 6.32 (Solving T(n) = 2T(n2) + n)
Figure 6.47 shows the recursion tree. There are 2i calls at the ith level of the recursion
tree, on inputs of size n

2i . We do n
2i units of work at each call, so the total work at the

ith level is 2i · (n2i) = n. Note that the amount of work at level i is independent of the
level i. The total amount of work in the tree is therefore

T(n) =
log2 n
∑
i=0

n
︸︷︷︸

work at level #i

= n ·
log2 n
∑
i=0

1 = n(1 + log2 n) = Θ(n log n).

Example 6.33 (Solving T(n) = 2T(n2) + n2)
Figure 6.48 shows the recursion tree. There are 2i calls at the ith level of the tree, and
we do (n2i)2 work at each call at this level. Thus the work represented by the ith row
of the recursion tree is (n2i)2 · 2i =

n2
2i . The total amount of work in the tree is therefore

T(n) =
log2 n
∑
i=0

(12)in2 = n2 ·
log2 n
∑
i=0

(12)i.

Notice that ∑
log2 n
i=0 (12)i = 1 + 1

2 + 1
4 + · · · + 1

2log2 n , which is certainly at least 1. But, by
the fact that 1 + 1

2 + 1
4 + . . . + 1

2ℓ < 2 (see Theorem 5.2), we also know ∑
log2 n
i=0 (12)i ≤ 2.

Therefore n2 ≤ T(n) ≤ 2n2, which allows us to conclude that T(n) = Θ(n2).

6.5.2 The Master Method: The Formal Statement and a Proof
Examples 6.31, 6.32, and 6.33 were designed to build the necessary intuition about
the three different cases of the master method: work increases exponentially across
levels of the recursion tree; work stays constant across levels; or work decreases expo-
nentially across levels. Precisely the same intuition will yield the proof of the Master
Theorem. Here is the formal statement of the Master Theorem, which generalizes the
idea of these examples to all recurrences of the form T(n) = aT(nb) + cnk:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

652 CHAPTER 6. ANALYSIS OF ALGORITHMS

Theorem 6.10 (Master Theorem)
Consider the recurrence

T(1) = c
T(n) = a · T(n/b) + c · nk

for constants a ≥ 1, b > 1, c > 0, and k ≥ 0. Then:

Case (i), “the leaves dominate”: if bk < a, then T(n) = Θ(nlogb(a)).

Case (ii), “all levels are equal”: if bk = a, then T(n) = Θ(nk · log n).

Case (iii), “the root dominates”: if bk > a, then T(n) = Θ(nk).

(As we discussed previously, we are abusing notation by using c to denote two differ-
ent constants in this theorem statement. Again, as you’ll prove in Exercise 6.126, the
recurrence T(1) = d with a constant d > 0 possibly different than c has precisely the
same asymptotic solution.)

Proving the theorem
While the Master Theorem holds even when the input n is not an exact power of

b—we just have to fix the recurrence by adding floors or ceilings so that it still makes
sense—we will prove the result for exact powers of b only.7 We will show that the total

A full proof of the
Master Theorem,
including for the
case when n is not
an exact power of b,
can be found in
7 Thomas H. Cor-
men, Charles E.
Leisersen, Ronald L.
Rivest, and Clifford
Stein. Introduction
to Algorithms. MIT
Press, 3rd edition,
2009.

amount work contained in the recursion tree is

T(n) = cnk ·
logb n
∑
i=0

(a
bk
)i

. (†)

As before, the formula (†) should make intuitive the fact that a = bk (that is, a
bk = 1) is

the critical value. The value of a
bk corresponds to whether the work at each level of the

tree is increasing (a
bk > 1), steady (a

bk = 1), or decreasing (a
bk < 1). The summation in (†)

is a geometric sum, and as we saw in Chapter 5 geometric sums behave fundamentally
differently based on whether their ratio is less than, equal to, or greater than one.
Proof of Theorem 6.10 (for n an exact power of b). For all three cases, we begin by exam-
ining the recursion tree (Figure 6.44). Summing the total amount of work in the tree
“row-wise,” we see that there are ai nodes at the ith level of the tree (where, again, the
root is at level zero), each of which corresponds to an input of size n/bi and therefore
contributes c · (n/bi)k work to the total. The tree continues until the inputs are of size
1—that is, until n/bi = 1, or when i = logb n. Thus the total amount of work in the tree
is

T(n) =
logb n
∑
i=0

ai · c ·
(n
bi
)k

= cnk
logb n
∑
i=0

(a
bk
)i

.

(See the note at the end of this proof for another justification for this summation, or see
Exercise 6.127.) We’ll examine this summation in each of the three cases, depending on
the value of a

bk—and we’ll handle the cases in order of ease, rather than in numerical
order:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.5. RECURRENCE RELATIONS: THE MASTERMETHOD 653

Case (ii): If a = bk , then (†) says that

T(n) = cnk
logb n
∑
i=0

(a
bk
)i

= cnk
logb n
∑
i=0

1 = cnk(1 + logb n).

Thus the total work is Θ(nk log n).

Case (iii): If a < bk, then (†) is a geometric sum whose ratio is strictly less than 1.
Corollary 5.3 states that any geometric sum whose ratio is strictly between 0 and
1 is Θ(1). (Namely, the summation ∑

logb n
i=0 (a

bk)
i is lower-bounded by 1 and upper-

bounded by 1
1−a/bk , both of which are positive constants when a < bk .) Therefore:

T(n) = cnk
logb n
∑
i=0

(a
bk
)i

= cnk ·Θ(1). by Corollary 5.3

Therefore the total work is Θ(nk).

Case (i): If a > bk , then (†) is a geometric sum whose ratio is strictly larger than one.
But we can make this summation look more like Case (iii), using a little algebraic
manipulation. Notice that, for any α 6= 0, we can rewrite ∑m

i=0 α
i as follows:

m
∑
i=0
αi = αm ·

m
∑
i=0
αi−m = αm ·

m
∑
i=0

(1
α

)m−i
= αm ·

m
∑
j=0

(1
α

)j
(‡)

where the last equality follows by reindexing the summation (so that we set j = m− i).
Applying this manipulation to (†), we have

T(n) = cnk
logb n
∑
i=0

(a
bk
)i

by (†)

= cnk ·
(a
bk
)logb n ·

logb n
∑
j=0

(
bk
a

)j
by (‡)

= nk ·
(a
bk
)logb n ·Θ(1) Corollary 5.3, because bk

a < 1.

= nk · alogb n
(bk)logb n ·Θ(1)

= nk · a
logb n

nk ·Θ(1) (bk)logb n = bk logb n = blogb nk = nk

= alogb n ·Θ(1).

Therefore the total work is Θ(alogb n). And alogb n = nlogb a, which we can verify by log
manipulations:

alogb n = blogb[alogb n] = b[logb n]·[logb a] = b[logb a]·[logb n] = blogb[nlogb a] = nlogb a.

Therefore the total work in this case is Θ(alogb n) = Θ(nlogb a).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

654 CHAPTER 6. ANALYSIS OF ALGORITHMS

Taking it further: Another way to make the formula (†)—which was the entire basis of the Master
Theorem—a little more intuitive is to consider iterating the recurrence a few times:

T(n) = cnk+ a · T(nb) =
0
∑
i=0

cai
(

n
bi
)k

+ aT (nb
)

= cnk+ a
[
c (nb

)k + aT(n
b2)
]

= cnk+ ac (nb
)k + a2T(n

b2) =
1
∑
i=0

cai
(

n
bi
)k

+ a2T
(

n
b2
)

= cnk+ ac (nb
)k + a2

[
c
(

n
b2
)k

+ aT(n
b3)
]

= cnk+ ac (nb
)k + a2c

(
n
b2
)k

+ a3T(n
b3) =

2
∑
i=0

cai
(

n
bi
)k

+ a3T
(

n
b3
)
.

At every iteration, we generate another term of the form cai(n/bi)k . Eventually n/bi will equal 1—
specifically when i = logb n—and the recursion will terminate. By iterating the recurrence logb n times,
we would get to

T(n) =
(logb n)−1

∑
i=0

cai
(n
bi
)k

+ alogb nT
(n
blogb n

)
. (6.10.1)

Because T(n/blogb n) = T(1) = c = 1kc = (n/blogb n)kc, from (6.10.1) we can conclude

T(n) =
(logb n)−1

∑
i=0

cai
(n
bi
)k

+ alogb n(n/blogb n)kc =
logb n
∑
i=0

cai
(n
bi
)k

,

which is precisely the summation (†).

The Master Method: a few examples
We’ll conclude with a few easy examples using the Master Method, reproducing the

recursion-tree analysis of Examples 6.31, 6.32, and 6.33:

Example 6.34 (Solving T(n) = 2T(n/2) + {1, n, n2})
Recall the recurrences

T(n) = 2T(n2) + 1 (1)
T(n) = 2T(n2) + n (2)
T(n) = 2T(n2) + n2, (3)

all with T(1) = 1.
For (1), we have a = 2, b = 2, c = 1, and k = 0; because bk = 20 = 1 < 2 = a, case (i) of

the Master Method says that T(n) = Θ(nlog2 2) = Θ(n).
For (2), we have a = 2, b = 2, c = 1, and k = 1; because bk = 21 = 2 = a, case (ii) of the

Master Method says that T(n) = Θ(n1 log n) = Θ(n log n).
For (3), we have a = 2, b = 2, c = 1, and k = 2; because bk = 22 = 4 > 2 = a, case (iii)

of the Master Method says that T(n) = Θ(n2).

Taking it further: Although we’ve mostly presented “algorithmic design” and “algorithmic analysis” as
two separate phases, in fact there’s interplay between these pieces. See p. 655 for a discussion of a partic-
ular computational problem—matrix multiplication—and algorithms for it, including a straightforward
but slow algorithm and another that (with inspiration from the Master Method) improves upon that
slow algorithm.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.5. RECURRENCE RELATIONS: THE MASTERMETHOD 655

Computer Science Connections

Divide-and-Conquer Algorithms and Matrix Multiplication
Matrix multiplication (see Definition 2.43) is a fundamental operation

with wide-ranging applications throughout CS: in computer graphics, in data
mining, and in social-network analysis, just to name a few. Often the matrices
in question are quite large—perhaps a matrix of hyperlinks among thousands
or millions of web pages, for example. Thus asymptotic improvements to
matrix multiplication algorithms have potential practical importance, too.
For simplicity, we’ll concentrate on multiplying square (n-by-n) matrices. The
obvious algorithm for matrix multiplication simply follows the definition:
separately for each of the n2 entries in the output matrix, perform the Θ(n)
multiplications/additions to compute the entry. (See Figure 6.49.) But, in the
spirit of this section, what might we be able to do with a recursive algorithm?

There is indeed a nice way to think about matrix multiplication recursively.

matmult(M ∈ Rn×n,N ∈ Rn×n):
1: for i = 1, 2, . . . n:
2: for j = 1, 2, . . . , n:
3: Pi,j := 0
4: for k = 1, 2, . . . ,n:
5: Pi,j := Pi,j +Mi,kNk,j
6: return P

Figure 6.49: The naïve algorithm for ma-
trix multiplication for n-by-nmatrices.
For matrices M ∈ Rn×n and N ∈ Rn×n,
the product is a matrix P ∈ Rn×n where
Pi,j := ∑n

k=1 Mi,kNk,j .
To multiply two n-by-nmatricesM and N, divideM and N each into four
quarters, which we can label M11,M12, . . ., as follows:

M =
[
M11 M12

M21 M22

]
, N =

[
N11 N12

N21 N22

]
.

Each of these quartersM11,M12, . . . is an n
2 -by- n2 matrix. It turns out that

MN =
[
(MN)11 (MN)12
(MN)21 (MN)22

]
=
[
M11N11 +M12N21 M11N12 +M12N22

M21N11 +M22N21 M21N12 +M22N22

]
.

This fact suggests a recursive, divide-and-conquer algorithm for multiplying
matrices, with the recurrence T(n) = 8T(n2) + n2. (It takes c · n2 time to combine
the result of the recursive calls.) By the Master Method (a = 8, b = 2, k = 2;
case (i)), we have T(n) = Θ(nlog2(8)) = Θ(n3)—so not an improvement over
Figure 6.49 at all!

But, in a major algorithmic breakthrough, in 1969 Volker Strassen found
a way to use seven recursive calls instead of eight. (See Figure 6.50.) This
change makes the recurrence T(n) = 7T(n2) + n2; now the Master Method
(a = 7, b = 2, k = 2; still case (i)), says that T(n) = Θ(nlog2 7) = Θ(n2.8073···)—a nice
improvement! (For example, 1000log2 7 is only about 25% of 10003 .)

Once the Master Method–style recurrence is in mind, one can investigate

Compute these values recursively:
A := (M11 +M22)(N11 +N22)
B := (M21 +M22)N11

C := M11(N12 −N22)
D := M22(N21 −N11)
E := (M11 +M12)N22

F := (M21 −M11)(N11 +N12)
G := (M12 −M22)(N21 +N22).

Then computeMN as
[A +D− E +G C + E

B +D A− B +C + F
]
.

Figure 6.50: The multiplications for
Strassen’s Algorithm. After we com-
pute A,B, . . . ,G recursively, we then
add/subtract the results as indicated.
(This addition/subtraction takes c · n2
time.)other Strassen-like algorithms (making fewer recursive calls, and combining

them more cleverly). In 1978, Victor Pan gave a further running-time improve-
ment using this style of algorithm—though more complicatedly!—using a
total of 143,640 recursive calls on inputs of size n

70 (!), plus Θ(n2) additional
work. Using the Master Method, that algorithm yields a running time of
Θ(nlog70 143,640) = Θ(n2.7951···). Algorithms continued to improve for several
years, culminating in 1990 with an Θ(n2.3754···)-time algorithm due to Don
Coppersmith and Shmuel Winograd. That algorithm was the best known
for two decades, but in the last few years some new researchers with new
insights have come along, and the exponent is now down to 2.373. For what-
ever it’s worth, many people think that there might be an Θ(n2) algorithm for
multiplying n-by-nmatrices—but no one has found it yet!8

For more about matrix multiplication
and the recent algorithmic improve-
ments, see the following survey paper
by Virginia Vassilevska Williams, one
of the researchers responsible for the
reinvigorated progress in improving this
exponent:
8 Virginia Vassilevska Williams. An
overview of the recent progress on
matrix multiplication. ACM SIGACT
News, 43(4), December 2012.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

656 CHAPTER 6. ANALYSIS OF ALGORITHMS

6.5.3 Exercises

The following recurrence relations follow the form of the Master Method. Solve each.
6.109 T(n) = 4T(n/3) + n2
6.110 T(n) = 3T(n/4) + n2
6.111 T(n) = 2T(n/3) + n4
6.112 T(n) = 3T(n/3) + n
6.113 T(n) = 16T(n/4) + n2
6.114 T(n) = 2T(n/4) + 1
6.115 T(n) = 4T(n/2) + 1
6.116 T(n) = 3T(n/3) + 1

6.117 T(n) = 2T(n/2) + n2
6.118 T(n) = 2T(n/2) + n
6.119 T(n) = 2T(n/4) + n2
6.120 T(n) = 2T(n/4) + n
6.121 T(n) = 4T(n/2) + n2
6.122 T(n) = 4T(n/2) + n
6.123 T(n) = 4T(n/4) + n2
6.124 T(n) = 4T(n/4) + n

6.125 Solve the recurrence T(1) = 1 and T(n) = 1 + 4T(n/4) (see Exercise 6.82, regarding the number of
regions defined by quadtrees), using the Master Method.

6.126 Prove that the recurrences T(n) = aT(nb) + c · nk and T(1) = d and S(n) = aS(nb) + nk and S(1) = 1
have the same asymptotic solution, for any constants a ≥ 1, b > 1, c > 0, d > 0, and k ≥ 0.

6.127 Consider the Master Method recurrence T(n) = aT(nb) + nk and T(1) = 1. Using induction, prove
the summation (†) from the proof of the Master Theorem: prove that

T(n) = nk ·
logb n
∑
i=0

(a
bk
)i

for any n that’s an exact power of b.

6.128 The Master Method does not apply for the recurrence T(n) = 2T(n2) + n log n, but the same
idea—considering the summation of all the work in the recursion tree—will still work. Prove that T(n) =
Θ(n log2 n) by analyzing the summation analogous to (†).

Each of the following problems gives a brief description of an algorithm for an interesting problem in computer science.
(Sometimes the recurrence relation is explicitly written; sometimes it’s up to you to write down the recurrence.) For
each, state the recurrence (if it’s missing) and give a Θ-bound on the running time. If the Master Method applies, you
may use it. If not, give a proof by induction.

6.129 The Towers of Hanoi is a classic puzzle, as follows. There are three posts (the “towers”); post A
starts with n concentric discs stacked from top-to-bottom in order of decreasing radius. We must move all
the discs to post B, never placing a disc of larger radius on top of a disc of smaller radius. The easiest way to
solve this puzzle is with recursion: (i) recursively move the top n− 1 discs from A to C; (ii) move the nth disc
from A to B; and (iii) recursively move the n− 1 discs from C to B. The total number of moves made satisfies
T(n) = 2T(n− 1) + 1 and T(1) = 1. Prove that T(n) = 2n − 1.

6.130 Suppose we are given a sorted array A[1 . . . n], and we wish to determine where in A the element
x belongs—that is, the index i such that A[i − 1] < x ≤ A[i]. (Binary Search solves this problem.) Here’s a
sketch of an algorithm rootSearch to solve this problem:
• if n is small (say, less than 100), find the index by brute force. Otherwise:
• definemileposts := A[√n],A[2√n],A[3√n], . . . ,A[n] to be a list of every (√n)th element of A.
• recursively, find post := rootSearch(mileposts, x).
• return rootSearch(A[(post− 1)√n, . . . , post√n], x).
(Note that rootSearch makes two recursive calls.) Find a recurrence relation for the running time of this
algorithm, and solve it.

6.131 A van Emde Boas tree is a recursive data structure (with somewhat similar inspiration to the
previous exercise) that allows us to insert, delete, and look up keys drawn from a set U = {1, 2, . . . , u} quickly.
(It solves the same problem that binary search trees solve, but our running time will be in terms of the size
of the universe U rather than in terms of the number of keys stored.) A van Emde Boas tree achieves a
running time given by T(n) = T(√n) + 1 and T(1) = 1. Solve this recurrence. (Hint: define R(k) := T(2k). Solving
R(k) is easy!)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.6. CHAPTER AT A GLANCE 657

6.6 Chapter at a Glance

Asymptotics
Asymptotic analysis considers the rate of growth of functions, ignoring multiplicative
constant factors and concentrating on the long-run behavior of the function on large
inputs.

Consider two functions f : R≥0 → R≥0 and g : R≥0 → R≥0. Then f (n) = O(g(n)) (“f
grows no faster than g”) if there exist c > 0 and n0 ≥ 0 such that f (n) ≤ c · g(n) for all
n ≥ n0. Some useful properties of O(·):

• f (n) = O(g(n) + h(n)) if and only if f (n) = O(max(g(n), h(n))).
• if f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).
• if f (n) = O(h1(n)) and g(n) = O(h2(n)), then f (n) + g(n) = O(h1(n) + h2(n)) and

f (n) · g(n) = O(h1(n) · h2(n)).
• a polynomial p(n) = aknk + · · · a1n + a0 satisfies p(n) = O(nk).
• log n = O(nε) for any ε > 0.
• for any base b and exponent k, we have logb(nk) = O(log n).
• for constants b, c ≥ 1, we have bn = O(cn) if and only if b ≤ c.

There are several other forms of asymptotic notation, to capture other relationships
between functions. A function f grows no slower than g, written f (n) = Ω(g(n)), if there
exist constants d > 0 and n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≥ d · g(n). Two functions f and
g satisfy f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

A function f grows at the same rate as g, written f (n) = Θ(g(n)), if f (n) = O(g(n)) and
f (n) = Ω(g(n)); it grows (strictly) slower than g, written f (n) = o(g(n)), if f (n) = O(g(n)) but
f (n) 6= Ω(g(n)); and it grows (strictly) faster than g, written f (n) = ω(g(n)), if f (n) = Ω(g(n))
but f (n) 6= O(g(n)). Many of the properties of O have analogous properties for Ω, Θ, o,
and ω. One possibly surprising point is that there are functions that are incomparable:
there are functions f and g such that neither f (n) = O(g(n)) nor f (n) = Ω(g(n)).

Asymptotic Analysis of Algorithms
Our main interest in asymptotics is in the analysis of algorithms, so that we can make
statements about which of two algorithms that solve the same problem is faster. The
running time of an algorithm is a count of the number of primitive steps that the algo-
rithm takes to complete on a particular input. (Think of one machine instruction as a
primitive step.)

We generally evaluate the efficiency of an algorithm A using worst-case analysis: as
a function of n, how many primitive steps does A take on the input of size n for whichA
is the slowest. (A primary goal of algorithmic analysis is to provide a guarantee on the
running time of an algorithm, so we will be pessimistic.) We can also analyze the space
used by an algorithm, in the same way. Sometimes we will instead consider average-
case running time of an algorithm A, which computes the running time of A, averaged
over all inputs of size n. Almost never will we consider an algorithm’s running time on
the input of size n for which A is the fastest (known as best-case analysis); this type of

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

658 CHAPTER 6. ANALYSIS OF ALGORITHMS

analysis is rarely used.

Recurrence Relations: Analyzing Recursive Algorithms
Typically, for nonrecursive algorithms, we compute the running time by inspecting
the algorithm and writing down a summation corresponding to the operations done
in each iteration of each loop, summed over the iterations, and then simplifying. For
recursive algorithms, we typically record the work using a recurrence relation that ex-
presses the (worst-case) running time on inputs of size n in terms of the (worst-case)
running time on inputs of size less than n. (For small inputs, the running time is a
constant—say, T(1) = c.) For example, ignoring floors and ceilings, T(1) = c and
T(n) = 2T(n2) + cn is the recurrence relation for Merge Sort. (Almost always, we can
safely ignore floors and ceilings.)

A solution to a recurrence relation is a closed-form (nonrecursive) expression for
T(n). Recurrence relations can be solved by conjecturing a solution and proving that
conjecture correct by induction.

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2

· · · · · ·

.

1 1

1+
lo
g 2

nl
ev
els

A recurrence relation can be rep-
resented using a recursion tree, where
each node is annotated with the
work that is performed there, aside
from the recursive calls. Recurrence
relations can also be solved by sum-
ming up all of the work contained
within the recursion tree.

Recurrence Relations: The Master Method
A particularly common type of recurrence relation is one of the form

T(n) = aT(nb) + c · nk,

for constants a ≥ 1, b > 1, c > 0, and k ≥ 0. This type of recurrence arises in divide-
and-conquer algorithms that solve an instance of size n by making a different recursive
calls on inputs of size n

b , and reconstructing the solution to the given instance in Θ(nk)
time. TheMaster Theorem states that the solution to any such recurrence relation is
given by:

1. if bk < a, then T(n) = Θ(nlogb(a)). “The leaves dominate.”
2. if bk = a, then T(n) = Θ(nk · log n). “All levels are equal.”
3. if bk > a, then T(n) = Θ(nk). “The root dominates.”

The proof follows by building the recursion tree, and summing the work at each level
of the tree; the cases correspond to whether the work increases exponentially, de-
creases exponentially, or stays constant across levels of the tree.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

6.6. CHAPTER AT A GLANCE 659

Key Terms and Results

Key Terms
Asymptotics
• asymptotic analysis
• O (big oh)
• Ω (big omega)
• Θ (big theta)
• ω (little omega)
• o (little oh)

Analysis of Algorithms
• running time
• worst-case analysis
• average-case analysis
• best-case analysis

Recurrence Relations
• recurrence relation
• recursion tree
• iterating a recurrence

Master Method
• Master Theorem
• “the leaves dominate”
• “all levels are equal”
• “the root dominates”

Key Results
Asymptotics
1. Some sample useful properties of O(·):

• f (n) = O(g(n) + h(n)) ⇔ f (n) = O(max(g(n), h(n))).
• O(·) is transitive.
• any degree-k polynomial satisfies p(n) = O(nk).
• log n = O(nε) for any ε > 0.
• if f (n) = O(g(n)) then log f (n) = O(log g(n)).
• for any b and k, we have logb(nk) = O(log n).
• for constants b, c ≥ 1, we have bn = O(cn) ⇔ b ≤ c.

2. Two functions f and g satisfy f (n) = O(g(n)) if and only if
g(n) = Ω(f (n)).

3. There are pairs of functions f and g such that neither
f (n) = O(g(n)) nor f (n) = Ω(g(n)).

Analysis of Algorithms
1. We generally evaluate the efficiency of an algorithm A

using worst-case analysis: what happens (asymptotically)
to the number of steps consumed by A as function of the
input size n on the input of size n for which A is the slowest?

2. Typically we can analyze the running time of a
nonrecursive algorithm by simple counting and
manipulation of summations.

Recurrence Relations
1. The running time of a recursive algorithm can be

expressed using a recurrence relation, which can be
solved by figuring out a conjecture of a closed-form
formula for the relation, and then verifying by induction.

Master Method
1. Recurrence relations of the form T(n) = aT(nb) + cnk (and

T(1) = c) can be solved using the Master Method:
Case 1: if bk < a, then T(n) = Θ(nlogb(a)).
Case 2: if bk = a, then T(n) = Θ(nk · log n).
Case 3: if bk > a, then T(n) = Θ(nk).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

