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5-2 Mathematical Induction

In which our heroes wistfully dream about having dreams about

dreaming about a very simple and pleasant world in which no one

sleeps at all.

5.1 Why You Might Care

Chaque vérité que je trouvais étant une règle qui me servait après à en trouver d’autres.

Each truth discovered was a rule available in the discovery of subsequent ones.

René Descartes (1596–1650)
Le Discours de la méthode [Discourse on the Method] (1637)

Recursion is a powerful technique in computer science. If we can express a solution to problemX in terms

of solutions to smaller instances of the same problem X—and we can solve X directly for the “smallest”

inputs—then we can solve X for all inputs. There are many examples. We can sort an array A by sorting

the left half of A and the right half of A and merging the results together; 1-element arrays are by definition

already sorted. (That’s merge sort.) We can search for an element x in a sorted list A by comparing x to

the middle element of A and, if they don’t match, searching for x in the appropriate half of A, left or right;

an empty list A by definition does not contain x. (That’s binary search.) We can build an efficient data

structure for storing and searching a set of keys by selecting one of those keys k, and building two such

data structures for keys < k and for keys > k; to search for a key x, we compare x to k and search for x in

the appropriate substructure. And an empty data structure can store an empty set of keys. (That’s a binary

search tree.) And many other things are best understood recursively, too: factorials, the Fibonacci numbers,

fractals (see Figure 5.1), and finding the median element of an unsorted array, for example.

Mathematical induction is a technique for proofs that is directly analogous to recursion: to prove that

a property P(n) holds for all nonnegative integers n, we prove that P(0) is true, and we prove that for an

arbitrary n ≥ 1, if P(n − 1) is true, then P(n) is true too. The proof of P(0) is called the base case, and

the proof that P(n− 1)⇒ P(n) is called the inductive case. In the same way that a recursive solution to a

level 0 level 1 level 2 level 3 level 4 level 5

Figure 5.1 The Von Koch Snowflake fractal, shown at several different levels. A level-ℓ snowflake consists of three
level-ℓ lines. A level-0 line is ; a level-ℓ line consists of four level-(ℓ− 1) lines arranged in the shape .
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problem relies on solutions to a smaller instance of the same problem, an inductive proof of a claim relies

on proofs of a smaller instance of the same claim.

A full understanding of recursion depends on a thorough understanding of mathematical induction. And

many other applications of mathematical induction will arise throughout the book: analyzing the running

time of algorithms, counting the number of bitstrings that have a particular form, and many others.

In this chapter, we will introduce mathematical induction, including a few variations and extensions of

this proof technique. We will start with the “vanilla” form of proofs by mathematical induction (Section

5.2). We will then introduce strong induction (Section 5.3), a form of proof by induction in which the

proof of P(n) in the inductive case may rely on the truth of all of P(0), P(1), …, and P(n − 1) instead of

just on P(n− 1). Finally, we will turn to structural induction (Section 5.4), a form of inductive proof that

operates directly on recursively defined structures like linked lists, binary trees, or well-formed formulas

of propositional logic.
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5.2 Proofs by Mathematical Induction

So if you find nothing in the corridors open the doors, if you find nothing behind these
doors there are more floors, and if you find nothing up there, don’t worry, just leap up
another flight of stairs. As long as you don’t stop climbing, the stairs won’t end, under
your climbing feet they will go on growing upwards.

Franz Kafka (1883–1924)
Fürsprecher [Advocates] (c. 1922)

The principle of mathematical induction says the following: to prove that a statement P(n) is true for

all nonnegative integers n, we can prove that P “starts being true” (the base case) and that P “never stops

being true” (the inductive case). We’ll start with the formal definition of a proof based on this principle,

and then consider a wide variety of examples.

5.2.1 An Overview of Proofs by Mathematical Induction

Formally, a proof by mathematical induction proceeds as follows:

Definition 5.1: Proof by mathematical induction.

Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by mathematical induction

of ∀n ∈ Z≥0 : P(n), we prove two things:

1 the base case: prove P(0).

2 the inductive case: for every n ≥ 1, prove P(n− 1)⇒ P(n).

When we’ve proven both the base case and the inductive case as in Definition 5.1, we have established that

P(n) holds for all n ∈ Z≥0. Here’s an example to illustrate how the base case and inductive case combine

to establish this fact:

Example 5.1: Proving P(4) from a base case and inductive case.

Suppose we’ve proven both the base case (P(0)) and the inductive case (P(n−1)⇒ P(n), for any n ≥ 1)

as in Definition 5.1. Why do these two facts establish that P(n) holds for all n ∈ Z≥0? For example, why

do they establish P(4)?

Solution. Here is a proof of P(4), using the base case once and the inductive case four times. (At each

stage we use Modus Ponens—which, as a reminder, states that from p⇒ q and p, we can conclude q.)

We know P(0) base case (5.1)

and we know P(0)⇒ P(1) inductive case, with n = 1 (5.2)

and thus we can conclude P(1). (5.1), (5.2), and Modus Ponens (5.3)

We know P(1)⇒ P(2) inductive case, with n = 2 (5.4)
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and thus we can conclude P(2). (5.3), (5.4), and Modus Ponens (5.5)

We know P(2)⇒ P(3) inductive case, with n = 3 (5.6)

and thus we can conclude P(3). (5.5), (5.6), and Modus Ponens (5.7)

We know P(3)⇒ P(4) inductive case, with n = 4 (5.8)

and thus we can conclude P(4). (5.7), (5.8), and Modus Ponens (5.9)

This sequence of inferences established that P(4) is true. We can use the same technique to prove that

P(n) holds for an arbitrary integer n ≥ 0, using the base case once and the inductive case n times.

The principle of mathematical induction is as simple as in Example 5.1—we apply the base case to get

started, and then repeatedly apply the inductive case to conclude P(n) for any larger n—but there are

several analogies that can help to make proofs by mathematical induction more intuitive; see Figure 5.2.

Taking it further: “Mathematical induction” is somewhat unfortunately named because its name collides with a distinction

made by philosophers between two types of reasoning. Deductive reasoning is the use of logic (particularly rules of inference) to

reach conclusions—what computer scientists would call a proof. A proof by mathematical induction is an example of deductive

reasoning. For a philosopher, though, inductive reasoning is the type of reasoning that draws conclusions from empirical obser-

vations. If you’ve seen a few hundred ravens in your life, and every one that you’ve seen is black, then you might conclude All

ravens are black. Of course, it might turn out that your conclusion is false, because you haven’t happened upon any of the albino

ravens that exist in the world; what philosophers call inductive reasoning leads to conclusions that may turn out to be false.

A first example: summing powers of two

Let’s use mathematical induction to prove an arithmetic property:

Theorem 5.2: A formula for the sum of powers of two.

For any nonnegative integer n, we have that
n∑

i=0
2i = 2n+1 − 1.

As a plausibility check, let’s test the given formula for some small values of n:

n = 1 : 20 + 21 = 1+ 2 = 3 22 − 1 = 3

n = 2 : 20 + 21 + 22 = 1+ 2+ 4 = 7 23 − 1 = 7

n = 3 : 20 + 21 + 22 + 23 = 1+ 2+ 4+ 8 = 15 24 − 1 = 15

These small examples all check out, so it’s reasonable to try to prove the claim. Let’s do it, with our first

example of a proof by induction:

Problem-solving tip: A plausibility check (testing out a claim for small values of n) can be very helpful before attempting a

proof. Often small examples can either reveal a misunderstanding of the claim or help you see why the claim is true in general.
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Dominoes falling: We have an infinitely long line of dominoes, numbered 0, 1, 2, . . . , n, . . .. To convince
someone that the nth domino falls over, you can convince them that

• the 0th domino falls over, and
• whenever one domino falls over, the next domino falls over too.

(One domino falls, and they keep on falling. Thus, for any n ≥ 0, the nth domino falls.)

Climbing a ladder: We have a ladder with rungs numbered 0, 1, 2, . . . , n, . . .. To convince someone that a
climber climbing the ladder reaches the nth rung, you can convince them that

• the climber steps onto rung #0.
• if the climber steps onto one rung, then she also steps onto the next rung.

(The climber starts to climb, and the climber never stops climbing. Thus, for any n ≥ 0, the climber reaches
the nth rung.)

...

Whispering down the alley: We have an infinitely long line of people, with the people numbered
0, 1, 2, . . . , n, . . .. To argue that everyone in the line learns a secret, we can argue that

• person #0 learns the secret.
• if person #n learns the secret, then she tells person #(n+ 1) the secret.

(The person at the front of the line learns the secret, and everyone who learns it tells the secret to the next
person in line. Thus, for any n ≥ 0, the nth person learns the secret.)

Falling into the depths of despair: Consider the Pit of Infinite Despair, which is filled with nothing but despair
and goes infinitely far down beneath the surface of the earth. (The Pit does not respect physics.) Suppose that:

• the Evil Villain is pushed into the pit (that is, She is in the Pit zero meters below the surface).
• if someone is in the Pit at a depth of n meters beneath the surface, then She falls to depth n+ 1 meters

beneath the surface.

(The Villain starts to fall, and if the Villain has fallen to a certain depth then She falls another meter further.
Thus, for any n ≥ 0, the Evil Villain eventually reaches depth n in the Pit.)

Figure 5.2 Some analogies to make mathematical induction more intuitive.

1 A clear statement of the claim to be proven—that is, a clear definition of the property P(n) that will be proven true for all
n ≥ 0—and a statement that the proof is by induction, including specifically identifying the variable n upon which induction
is being performed. (Some claims involve multiple variables, and it can be confusing if you aren’t clear about which is the
variable upon which you are performing induction.)

2 A statement and proof of the base case—that is, a proof of P(0).

3 A statement and proof of the inductive case—that is, a proof of P(n− 1) ⇒ P(n), for a generic value of n ≥ 1. The proof of the
inductive case should include all of the following:

a a statement of the inductive hypothesis P(n− 1).
b a statement of the claim P(n) that needs to be proven.
c a proof of P(n), which at some point makes use of the assumed inductive hypothesis.

Figure 5.3 A checklist of the steps required for a proof by mathematical induction.
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Example 5.2: A proof of Theorem 5.2.

Let P(n) denote the property

n∑
i=0

2i = 2n+1 − 1.

We’ll prove that ∀n ∈ Z≥0 : P(n) by induction on n.

Base case (n = 0).Wemust prove P(0). That is, we must prove
∑0

i=0 2
i = 20+1−1. But this fact is easy

to prove, because both sides are equal to 1:
∑0

i=0 2
i = 20 = 1, and 20+1 − 1 = 2− 1 = 1.

Inductive case (n ≥ 1).Wemust prove that P(n−1)⇒ P(n), for an arbitrary integer n ≥ 1.We prove this

implication by assuming the antecedent—namely, we assume P(n− 1) and prove P(n). The assumption

P(n− 1) is

n−1∑
i=0

2i = 2(n−1)+1 − 1. (∗)

We can now prove P(n)—under the assumption (∗)—by showing that the left-hand and right-hand sides

of P(n) are equal:

n∑

i=0

2i =

[
n−1∑

i=0

2i
]
+ 2n by the definition of summations

=
[
2(n−1)+1 − 1

]
+ 2n by (∗), a.k.a. by the assumption that P(n− 1)

= 2n − 1+ 2n by algebraic manipulation

= 2 · 2n − 1

= 2n+1 − 1.

We’ve thus shown that
∑n

i=0 2
i = 2n+1 − 1—in other words, we’ve proven P(n).

We’ve proven the base case P(0) and the inductive case P(n − 1) ⇒ P(n), so by the principle of

mathematical induction we have shown that P(n) holds for all n ∈ Z≥0.

Taking it further: In case the inductive proof doesn’t feel 100% natural, here’s another way to make the result from Example 5.2

intuitive: think about binary representations of numbers. Written in binary, the number
∑n

i=0 2
i will look like 11 · · · 111, with

n+1 ones. What happens when we add 1 to, say, 11111111 (= 255)? It’s a colossal sequence of carrying (as 1+1 = 0, carrying

the 1 to the next place), resulting in 100000000 (= 256). In other words, 2n+1 − 1 is written in binary as a sequence of n + 1

ones—that is, 2n+1 − 1 =
∑n

i=0 2
i.

Example 5.2 follows the standard outline of a proof by mathematical induction. We will always prove the

inductive case P(n − 1) ⇒ P(n) by assuming the antecedent P(n − 1) and proving P(n). The assumed

antecedent P(n − 1) in the inductive case of the proof is called the inductive hypothesis. (You may see

“inductive hypothesis” abbreviated as IH.)
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Warning! P(n) denotes a proposition—that is, P(n) is either true or false. (We’re proving that, in fact, it’s true for every n.)

Despite its apparent temptation to people new to inductive proofs, it is nonsensical to treat P(n) as a number.

A second example, and a template for proofs by induction

Here’s another proof by induction, with the parts of the proof carefully labeled:

Example 5.3: Summing powers of −1.

Claim. For any integer n ≥ 0, we have that
n∑

i=0

(−1)i =





1 if n is even

0 if n is odd.

Proof. Clearly state the claim to be proven. Clearly state that the proof will be by induction, and

clearly state the variable upon which induction will be performed.

1

Let P(n) denote the property

n∑

i=0

(−1)i =





1 if n is even

0 if n is odd.

We’ll prove that ∀n ∈ Z≥0 : P(n) by induction on n.

State and prove the base case.2

Base case (n = 0). We must prove P(0). But
∑0

i=0(−1)i = (−1)0 = 1, and 0 is even.

State and prove the inductive case. Within the statement and proof of the inductive case . . .3

. . . state the inductive hypothesis.a

Inductive case (n ≥ 1). We assume the inductive hypothesis P(n− 1), namely

n−1∑

i=0

(−1)i =





1 if n− 1 is even

0 if n− 1 is odd.

. . . state what we need to prove.b

We must prove P(n).

. . . prove it, making use of the inductive hypothesis and stating where it was used.c

n∑

i=0

(−1)i =
[
n−1∑

i=0

(−1)i
]
+ (−1)n definition of summations

=





1+ (−1)n if n− 1 is even

0+ (−1)n if n− 1 is odd.
inductive hypothesis

=





1+ (−1)n if n is odd

0+ (−1)n if n is even.
n is odd⇔ n− 1 is even
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=





1+−1 if n is odd

0+ 1 if n is even.
(−1)n = ±1, depending on whether n is even; see Exercise 5.3.

=





0 if n is odd

1 if n is even.

Thus we have proven P(n), and the theorem follows.

Writing tip: In the inductive case of a proof of an equality—like Example 5.3—start from the left-hand side of the equality and

manipulate it until you derive the right-hand side of the equality exactly. If you work from both sides simultaneously, you’re at

risk of the fallacy of proving true—or at least the appearance of that fallacy!

We can treat the labeled pieces of Example 5.3 as a checklist for writing proofs by induction. (See

Figure 5.3.) You should ensure that when you write an inductive proof, you include each of these steps.

The sum of the first n integers

We’ll do another example of an inductive proof of an arithmetic property:

Theorem 5.3: Sum of the first n nonnegative integers.

For any integer n ≥ 0, we have that
n∑

i=0
i = 0+ 1+ · · ·+ n is equal to n(n+1)

2 .

(For example, for n = 4 we have 0+ 1+ 2+ 3+ 4 = 10 = 4(4+1)
2 .)

Example 5.4: Sum of the first n integers: proving Theorem 5.3.

First, we must phrase this problem in terms of a property P(n) that we’ll prove true for every n ≥ 0. For

a particular integer n, let P(n) denote the claim that

n∑
i=0

i = n(n+1)
2 .

We will prove that P(n) holds for all integers n ≥ 0 by induction on n.

Base case (n = 0). Note that
∑0

i=1 i = 0 and 0(0+1)
2 = 0 too. Thus P(0) follows.

Inductive case (n ≥ 1). Assume the inductive hypothesis P(n− 1), namely

n−1∑
i=0

i = (n−1)((n−1)+1)
2 .

We must prove P(n)—that is, we must prove
n∑

i=0
i = n(n+1)

2 . Here is the proof:

n∑
i=0

i =

[
n−1∑
i=0

i

]
+ n definition of summations

=
(n− 1)((n− 1) + 1)

2
+ n inductive hypothesis
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=
(n− 1)n+ 2n

2
putting terms over common denominator

=
n(n− 1+ 2)

2
factoring

=
n(n+ 1)

2
.

Thus we’ve shown P(n) assuming P(n− 1), which completes the proof.

Taking it further: While the summation that we analyzed in Theorem 5.3 may seem like a purely arithmetic example, it also

has direct applications in CS—particularly in the analysis of algorithms. Chapter 6 is devoted to this topic, and there’s much

more there, but here’s a brief preview. A basic step in analyzing an algorithm is counting how many steps that algorithm takes,

for an input of arbitrary size. One particular example is Insertion Sort, which sorts an n-element array by repeatedly ensuring

that the first k elements of the array are in sorted order (by swapping the kth element backward until it’s in position). The total

number of swaps that are done in the kth iteration can be as high as k − 1—so the total number of swaps can be as high as
∑n

k=1 k− 1 =
∑n−1

i=0 i. Thus Theorem 5.3 tells us that Insertion Sort can require as many as n(n− 1)/2 swaps.

Generating a conjecture: segments in a fractal

In the inductive proofs that we’ve seen thus far, we were given a problem statement that described exactly

what property we needed to prove. Solving these problems “just” requires proving the base case and the

inductive case—which may or may not be easy, but at least we know what we’re trying to prove! In other

problems, though, you may also have to first figure out what you’re going to prove, and then prove it.

Obviously this task is generally harder. Here’s one example of such a proof, about the Von Koch snowflake

fractal from Figure 5.1:

Problem-solving tip: Your first task in giving a proof by induction is to identify the property P(n) that you’ll prove true for every

integer n ≥ 0. Sometimes the property is given to you more or less directly and sometimes you’ll have to formulate it yourself,

but in any case you need to identify the precise property you’re going to prove before you can prove it!

Example 5.5: Vertices in a Von Koch Line.

A Von Koch line of level 0 is a straight line segment; a Von Koch line of level ℓ ≥ 1 consists of four Von

Koch lines of level (ℓ − 1) in the shape . (See Figure 5.4.) Conjecture a formula for the number

of vertices (that is, the number of segment endpoints) in a Von Koch line of level ℓ. Prove the correctness

of your formula by induction.

Solution. Our first task is to formulate a conjecture for the number of vertices in a Von Koch line of

level ℓ. Let’s start with a few small examples, and some tedious counting in the pictures in Figure 5.4:

level 0: 2 endpoints (and 1 segment) level 1: 5 endpoints (and 4 segments) level 2: 17 endpoints (and 16 segments)

There are a few ways to think about this pattern. Here’s one that turns out to be helpful: a level-ℓ line

contains 4 lines of level (ℓ−1), so it contains 16 lines of level (ℓ−2). And thus, expanding it all the way

out, the level-ℓ line contains 4ℓ lines of level 0. The number of endpoints that we observe is 2 = 40 + 1,
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level 0 level 1 level 2 level 3 level 4 level 5 level 6

Figure 5.4 Von Koch lines of several levels. (A Von Koch snowflake consists of three Von Koch lines, all of the same
level, arranged in a triangle; see Figure 5.1.)

then 5 = 41 + 1, then 17 = 42 + 1. (Why the “+1?” Each segment starts where the previous segment

ended—so there is one more endpoint than segment, because of the last segment’s second endpoint.)

So it looks like there are 4ℓ+1 endpoints in a Von Koch line of level ℓ. Let’s turn this observation into

a formal claim, with an inductive proof:

Claim: For any ℓ ≥ 0, a Von Koch line of level ℓ has 4ℓ + 1 endpoints.

Proof. Let P(ℓ) denote the claim that a Von Koch line of level ℓ has 4ℓ + 1 endpoints. We’ll prove that

P(ℓ) holds for all integers ℓ ≥ 0 by induction on ℓ.

Base case (ℓ = 0).Wemust prove P(0). By definition, a Von Koch line of level 0 is a single line segment,

which has 2 endpoints. Indeed, 40 + 1 = 1+ 1 = 2.

Inductive case (ℓ ≥ 1). We assume the inductive hypothesis, namely P(ℓ− 1), and we must prove P(ℓ).

The key observation is that a Von Koch line of level ℓ consists of four Von Koch lines of level (ℓ−1)—and

the last endpoint of line #1 is identical to the first endpoint of line #2; the last endpoint of #2 is the first

of #3, and the last endpoint of #3 is the first of #4. Therefore there are three endpoints that are shared

among the four lines of level (ℓ− 1). Thus:

the number of endpoints in a Von Koch line of level ℓ

= 4 ·
[
the number of endpoints in a Von Koch line of level (ℓ− 1)

]
− 3 by the above discussion

= 4 ·
[
4ℓ−1 + 1

]
− 3 by the inductive hypothesis

= 4ℓ + 4− 3 multiplying through

= 4ℓ + 1. algebra

Thus P(ℓ) follows, completing the proof.

A note and two variations on the inductive template

The basic idea of induction is not too hard: the reason that P(n) holds is that P(n− 1) held, and the reason

that P(n− 1) held is that P(n− 2) held—and so forth, until eventually the proof finally rests on P(0), the

base case. A proof by induction can sometimes look superficially like it’s circular reasoning—that we’re

assuming precisely the thing that we’re trying to prove. But it’s not! In the inductive case, we’re assuming

P(n− 1) and proving P(n)—we are not assuming P(n) and proving P(n).
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Warning! If you do not use the inductive hypothesis P(n− 1) in the proof of P(n), then something is wrong—or, at least, your

proof is not actually a proof by induction!

Taking it further: The superficial appearance of circularity in a proof by induction is equivalent to the superficial appearance

that a recursive function in a program will run forever. (A recursive function f will run forever if calling f on n results in f calling

itself on n again! That’s the same circularity that would happen if we assumed P(n) and proved P(n).) The correspondence

between these aspects of induction and recursion should be no surprise; induction and recursion are essentially the same thing.

In fact, it’s not too hard to write a recursive function that “implements” an inductive proof by outputting a step-by-step argument

establishing P(n) for an arbitrary n, as in Example 5.1.

Our proofs so far have shown ∀n ∈ Z≥0 : P(n) by proving P(0) as a base case. If we instead want to

prove ∀n ∈ Z≥k : P(n) for some integer k, we can prove P(k) as the base case, and then prove the inductive

case P(n− 1)⇒ P(n) for all n ≥ k+ 1.

Another variation in writing inductive proofs relates to the statement of the inductive case. We’ve proven

P(0) and P(n − 1) ⇒ P(n) for arbitrary n ≥ 1. Some writers prefer to prove P(0) and P(n) ⇒ P(n + 1)

for arbitrary n ≥ 0. The difference is merely a reindexing, not a substantive difference: it’s just a matter of

whether one thinks of induction as “the nth domino falls because the (n − 1)st domino fell into it” or as

“the nth domino falls and therefore knocks over the (n+ 1)st domino.”

5.2.2 Some Numerical Examples: Geometric, Arithmetic, and Harmonic Series

In the remainder of this section, we’ll give some more examples of proofs by mathematical induction,

following the examples so far, and checklist of Figure 5.3. We’ll start here with some more summation-

based proofs. (The statements we’ll prove in this section are intended to serve both as useful facts to know

about particular numerical sequences and as good practice with induction.) We’ll move on to inductive

proofs of some other types of statements—inductive proofs are ubiquitous throughout computer science,

not just in analyzing summations—in Section 5.2.3.

Geometric series

A geometric sequence of numbers is one in the ratio between consecutive numbers is always the same: for

example, each pair of consecutive numbers in the sequence 1, 2, 4, 8, 16, . . . differs by a factor of two.

Definition 5.4: Geometric sequences and series.

A geometric sequence is a sequence of numbers where each entry is generated bymultiplying the previous

entry by a fixed ratio r ∈ R, starting from an initial value a. (Thus the sequence is ⟨a, ar, ar2, ar3, . . .⟩.)
A geometric series or geometric sum is

∑n
i=0 ar

i.

Examples of geometric sequences include ⟨2, 4, 8, 16, 32, . . .⟩; or ⟨1, 1
3 ,

1
9 ,

1
27 , . . .⟩; or ⟨1, 1, 1, 1, 1, . . .⟩.

There turns out to be a relatively simple formula for the sum of the first n terms of a geometric sequence:
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Theorem 5.5: Analysis of geometric series.

Let r ∈ R where r ̸= 1, and let n ∈ Z≥0. Then
n∑

i=0
ri = rn+1−1

r−1 . (If r = 1, then
n∑

i=0
ri = n+ 1.)

(For simplicity, we stated Theorem 5.5 without reference to the initial value a. Because we can pull a

constant multiplicative factor out of a summation, the theorem allows us to conclude that
∑n

i=0 ar
i =

a ·∑n
i=0 r

i = a · rn+1−1
r−1 .) We will be able to prove Theorem 5.5 using a proof by mathematical induction:

Example 5.6: Geometric series.

Proof of Theorem 5.5. Consider a fixed real number r with r ̸= 1, and let P(n) denote the property that

n∑
i=0

ri = rn+1−1
r−1 .

We’ll prove that P(n) holds for all integers n ≥ 0 by induction on n.

Base case (n = 0). Note that
∑0

i=0 r
i = r0 and r0+1−1

r−1 both equal 1. Thus P(0) holds.

Inductive case (n ≥ 1).We assume the inductive hypothesis P(n−1), which tells us that
∑n−1

i=0 ri = rn−1
r−1 .

We must prove P(n). Here is a proof:

n∑
i=0

ri = rn +
n−1∑
i=0

ri definition of summation

= rn + rn−1
r−1 inductive hypothesis

= rn(r−1)+rn−1
r−1 putting the fractions over a common denominator

= rn+1−rn+rn−1
r−1 multiplying out

= rn+1−1
r−1 . simplifying

Thus P(n) holds, and the theorem follows.

Problem-solving tip: The inductive cases of many inductive proofs follow the same pattern: first, we use some kind of structural

definition to “pull apart” the statement about n into something kind of statement about n− 1 (plus some “leftover” other stuff),

then apply the inductive hypothesis to simplify the n − 1 part. We then manipulate the result of using the inductive hypothesis

plus the leftovers to get the desired equation.

Notice that Examples 5.2 and 5.3 were both special cases of Theorem 5.5. For the former, Theorem 5.5

tells us that
∑n

i=0 2
i = 2n+1−1

2−1 = 2n+1 − 1; for the latter, this theorem tells us that

n∑

i=0

(−1)i = (−1)n+1 − 1
−1− 1

=
1− (−1)n+1

2
=





1−(−1)
2 = 1 if n is even

1−1
2 = 0 if n is odd.

A corollary of Theorem 5.5 addressing infinite geometric sums will turn out to be useful later:
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Corollary 5.6. Let r ∈ R where 0 ≤ r < 1, and define f(n) =
∑n

i=0 r
i. Then:

1
∑∞

i=0 r
i = 1

1−r , and

2 For all n ≥ 0, we have 1 ≤ f(n) ≤ 1
1−r .

Taking it further: The proof of Corollary 5.6 relies on calculus, so we won’t dwell on it here. But, if you’re interested, here’s the

idea. We’ll start with the proof of (1), which is the part that requires calculus. Theorem 5.5 says that f(n) = rn+1−1
r−1 , and we take

the limit as n → ∞. Because r < 1, we have that limn→∞ rn+1 = 0. Thus as n → ∞ the numerator rn+1 − 1 tends to −1, and

the entire ratio tends to 1/(1− r). To prove (2), observe that
∑n

i=0 r
i is definitely greater than or equal to

∑0
i=0 r

i (because r ≥ 0

and so the latter results by eliminating n nonnegative terms from the former). Similarly,
∑n

i=0 r
i is definitely less than or equal

to
∑∞

i=0 r
i. Thus we have f(n) =

∑n
i=0 r

i ≥
∑0

i=0 r
i = r0 = 1 and, similarly, we have f(n) =

∑n
i=0 r

i ≤
∑∞

i=0 r
i = 1

1−r .

Arithmetic series

An arithmetic sequence of numbers in which the difference between consecutive numbers is always the

same: for example, consecutive numbers in the sequence 2, 4, 6, 8, 10, . . .) always differ by two. (The

definition for a geometric sequence was about ratios instead of differences.)

Definition 5.7: Arithmetic sequences and series.

An arithmetic sequence is a sequence of numbers where each number is generated by adding a fixed step-

size r ∈ R to the previous number in the sequence. The first entry in the sequence is some initial value

a ∈ R. (Thus the sequence is ⟨a, a+d, a+2d, a+3d, . . .⟩.) An arithmetic series or sum is
∑n

i=0(a+ id).

Examples include ⟨2, 4, 6, 8, 10, . . .⟩; or ⟨1, 1
3 ,− 1

3 ,−1,− 5
3 , . . .⟩; or ⟨1, 1, 1, 1, 1, . . .⟩. You’ll prove a

general formula for an arithmetic sum in the exercises.

Harmonic series

The harmonic sequence is defined in terms of the reciprocals of the positive integers (1, 1
2 ,

1
3 ,

1
4 ,

1
5 , . . .):

Definition 5.8: Harmonic series.
A harmonic series is the sum of a sequence of numbers whose kth number is 1

k . The nth harmonic number

is defined by Hn =
∑n

k=1
1
k .

Thus H1 = 1 and H2 = 1+ 1
2 = 1.5 and H3 = 1+ 1

2 +
1
3 ≈ 1.8333 and H4 = 1+ 1

2 +
1
3 +

1
4 ≈ 2.0833.

The name “harmonic” comes from music: when a note at frequency f is played, overtones of that note—other high-intensity

frequencies—can be heard at frequencies 2f, 3f, 4f, . . .. The wavelengths of the corresponding sound waves are 1
f ,

1
2f ,

1
3f ,

1
4f , . . ..

(If you’ve had calculus: you can approximate the value of Hn using an integral, writing Hn =
∑n

x=1
1
x ≈

∫ n
x=1

1
x dx = ln n. But

we’ll do a calculus-free analysis here.)

Giving a precise equation for the value of Hn requires more work than for geometric or arithmetic series,

but we can prove upper and lower bounds on Hn by induction a bit more easily. We will be able to show

the following, which captures the value of Hn to within a factor of 2:
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Theorem 5.9: Bounds on the (2k)th harmonic number.

For any integer k ≥ 0, we have k+ 1 ≥ H2k ≥ k
2 + 1.

(See Figure 5.5.) We’ll prove half of Theorem 5.9 (namely k + 1 ≥ H2k) by induction in Example 5.7,

leaving the other half to the exercises. (Theorem 5.9 only talks about the case in which n is a power of 2;

we’ll also leave to the exercises upper and lower bounds for Hn when n is not an exact power of 2.)

Example 5.7: Inductive proof that k+ 1 ≥ H2k .

Proof. Let P(k) denote the property that k+ 1 ≥ H2k . We’ll use induction on k to prove that P(k) holds

for all integers k ≥ 0.

Base case (k = 0). We have that H2k = H20 = H1 = 1, and k + 1 = 0 + 1 = 1 as well. Therefore

H2k = 1 = k+ 1—that is, P(0) holds.

Inductive case (k ≥ 1). Let k ≥ 1 be an integer. We must prove P(k)—that is, we must prove k+1 ≥ H2k .

To do so, we assume the inductive hypothesis P(k− 1), namely that k ≥ H2k−1 . Consider H2k :

H2k =
∑2k

i=1
1
i definition of the harmonic numbers

=
[∑2k−1

i=1
1
i

]
+
[∑2k

i=2k−1+1
1
i

]
splitting the summation into two parts: i ≤ 2k−1 and i > 2k−1

= H2k−1 +
[∑2k

i=2k−1+1
1
i

]
definition of the harmonic numbers, again

≤ H2k−1 +
[∑2k

i=2k−1+1
1

2k−1

]
every term in the summation

∑2k

i=2k−1+1
1
i is smaller than

1
2k−1

≤ H2k−1 + 2k−1 · 1
2k−1 there are 2k−1 terms in the summation

= H2k−1 + 1 1
x · x = 1 for any x ̸= 0

≤ k+ 1. inductive hypothesis

Thus we’ve proven that H2k ≤ k+ 1—that is, we’ve proven P(k). The theorem follows.

The proof in Example 5.7 is perhaps the first time in which we needed some serious insight and creativity

to establish the inductive case. (I don’t think that the “split the summation” step was in any way an obvious

thing to do, nor was the step of bounding 1
i ≤ 1

2k−1 for the second-half summation.) The structure of a proof

100 200 300 400 500 600

5

10 upper bound: H2k ≤ k+ 1

Hn = 1+ 1
2 + 1

3 + · · ·+ 1
n

lower bound: H2k ≥ k
2 + 1

Figure 5.5 A visualization of Theorem 5.9, showing that k+ 1 ≥ H(2k) ≥ k
2 + 1.
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by induction is rigid—wemust prove a base case P(0); wemust prove an inductive case P(n−1)⇒ P(n)—

but that doesn’t make the entire proof totally formulaic. (The proof of the inductive case must use the

inductive hypothesis at some point, so its statement gives you a little guidance for the kinds ofmanipulations

to try.) Just as with all the other proof techniques that we explored in Chapter 4, a proof by induction can

require you to think—and all of strategies that we discussed in Chapter 4 may be helpful to deploy.

Taking it further: Induction as a proof technique is the analogue to recursion as a programming technique, in the sense that

both of them “call” themselves on smaller inputs. But they are also related in the sense that we just discussed, regarding the proof

in Example 5.7: there can be some surprising, creative ways of using both to solve seemingly difficult problems. Here’s another

example: when you want to communicate with someone secretly, the computationally inspired thing to do is to use cryptography

to encrypt your messages before you send them. (Perhaps you’d use RSA; see Section 7.5.) But if you want to keep secret not

just the contents of your messages, but also the very fact that you’re communicating with the other person, then there is a clever

recursive use of encryption that can be deployed. See p. 5-22 for a summary of onion routing (and the Tor system), along with a

brief discussion of steganography, which has a related motivation.

5.2.3 Some More Examples

We’ll close this section with a few more examples of proofs by mathematical induction, but we’ll focus on

things other than analyzing summations. Some of these examples are still about arithmetic properties, but

they should at least hint at the breadth of possible statements that we might be able to prove by induction.

Comparing algorithms: which is faster?

Suppose that we have two different candidate algorithms that solve a problem related to a set S with n

elements—a brute-force algorithm that tries all 2n possible subsets of S, and a second algorithm that com-

putes the solution by looking at only n2 subsets of S. Which would be faster to use? The latter algorithm is

(massively!) faster, and we can prove that it’s faster (with a small caveat for small n) by induction:

n 2n n2

0 1 0
1 2 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36
7 128 49

1 2 3 4 5 6 7 8

20

40

60
2n

n2

2n = n2 = 4
for n = 2

2n = n2 = 16
for n = 4

Figure 5.6 Small values of 2n and n2, and a plot of the functions.
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Example 5.8: 2n vs. n2.

We’d like to prove that 2n ≥ n2 for all integers n ≥ 0—but it turns out not to be true! (See Figure 5.6.)

Indeed, 23 < 32. But the relationship appears to hold starting at n = 4. Let’s prove it, by induction:

Claim: For all integers n ≥ 4, we have 2n ≥ n2.

Proof. Let P(n) denote the property 2n ≥ n2. We’ll use induction on n to prove that P(n) holds for all

n ≥ 4. (Thus our base case will be for n = 4, and our inductive case for n ≥ 5.)

Base case (n = 4). For n = 4, we have 2n = 16 = n2, so the inequality P(4) holds.

Inductive case (n ≥ 5). Assume the inductive hypothesis P(n− 1)—that is, assume 2n−1 ≥ (n− 1)2. We

must prove P(n). For n ≥ 4, note that n2 ≥ 4n (by multiplying both sides of the inequality n ≥ 4 by n).

Thus n2 − 4n ≥ 0, and so

2n = 2 · (2n−1) definition of exponentiation

≥ 2 · (n− 1)2 inductive hypothesis

= 2n2 − 4n+ 2 multiplying out

= n2 + (n2 − 4n) + 2 rearranging

≥ n2 + 0+ 2 by the above discussion, we have n2 − 4n ≥ 0

> n2.

Thus we have shown 2n > n2, which completes the proof of the inductive case. The claim follows.

Taking it further: In analyzing the efficiency of algorithms, wewill frequently have to do the type of comparison in Example 5.8,

to compare the amount of time consumed by one algorithm versus another. Chapter 6 discusses this type of comparison in much

greater detail, but here’s one example of this sort. Let X be a sequence. A subsequence of X results from selecting some of the

entries in X—for example, TURING is a subsequence of OUTSOURCING. For two sequences X and Y, a common subsequence is a

subsequence of both X and Y. The longest common subsequence of X and Y is, naturally, the common subsequence of X and Y

that’s longest. (For example, TURING is the longest common subsequence of DISTURBINGLY and OUTSOURCING.)

Given two sequences X and Y of length n, we can find the longest common subsequence fairly easily by testing every possible

subsequence of X to see whether it’s also a subsequence of Y. This brute-force solution tests 2n subsequences of X. But there’s a

cleverer approach to solving this problem using an algorithmic design technique called dynamic programming (see p. 9-73 or a

textbook on algorithms) that avoids redoing the same computation—here, testing the same sequence of letters to see if it appears

in Y—more than once. The dynamic programming algorithm for longest common subsequence requires only about n2 steps.

Proving algorithms correct: factorial

We just gave an example of using a proof by induction to analyze the efficiency of an algorithm, but we

can also use mathematical induction to prove the correctness of a recursive algorithm. (That is, we’d like
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to show that a recursive algorithm always returns the desired output.) Here’s an example, for the natural

recursive algorithm to compute factorials (see Figure 5.7):

Taking it further: While induction is much more closely related to recursive algorithms than nonrecursive algorithms, we can

also prove the correctness of an iterative algorithm using induction. The basic idea is to consider a statement, called a loop

invariant, about the correct behavior of a loop; we can prove inductively that a loop invariant starts out true and stays true

throughout the execution of the algorithm. See p. 5-20.

Example 5.9: Factorial.

Consider the recursive algorithm fact in Figure 5.7. For a positive integer n, let P(n) denote the property

that fact(n) = n!. We’ll prove by induction on n that, indeed, P(n) holds for all integers n ≥ 1.

Base case (n = 1). P(1) is true because fact(1) returns 1 immediately, and 1! = 1 by definition.

Inductive case (n ≥ 2). We assume the inductive hypothesis P(n − 1), namely that fact(n − 1) returns

(n− 1)!. We want to prove that fact(n) returns n!. But this claim follows directly:

fact(n) = n · fact(n− 1) by inspection of the algorithm

= n · (n− 1)! by the inductive hypothesis

= n! by definition of !

and therefore the claim holds by induction.

In fact, induction and recursion are basically the same thing: recursion “works” by leveraging a solution

to a smaller instance of a problem to solve a larger instance of the same problem; a proof by induction

“works” by leveraging a proof of a smaller instance of a claim to prove a larger instance of the same claim.

(Actually, one common use of induction is to analyze the efficiency of a recursive algorithm. We’ll discuss

this type of analysis in great depth in Section 6.4.)

Divisibility

We’ll close this section with one more numerical example, about divisibility:

Writing tip: Example 5.10 illustrates why it is crucial to state clearly the variable upon which induction is being performed. This

statement involves two variables, k and n, but we’re performing induction on only one of them!

fact(n):

1 if n = 1 then
2 return 1
3 else
4 return n · fact(n− 1)

Figure 5.7 Pseudocode for factorial: given n ∈ Z≥1, we wish to compute the value of n!.
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Example 5.10: kn − 1 is evenly divisible by k− 1.

Claim: For any n ≥ 0 and k ≥ 2, we have that kn − 1 is evenly divisible by k− 1.

(For example, 7n − 1 is always divisible by 6, as in 7 − 1, 49 − 1, and 343 − 1. And k2 − 1 is always

divisible by k− 1; in fact, factoring k2 − 1 yields k2 − 1 = (k− 1)(k+ 1).)

Proof. We’ll proceed by induction on n. That is, let P(n) denote the claim

For all integers k ≥ 2, we have that kn − 1 is evenly divisible by k− 1.

We will prove that P(n) holds for all integers n ≥ 0 by induction on n.

Base case (n = 0). For any k, we have kn − 1 = k0 − 1 = 1 − 1 = 0. And 0 is evenly divisible by any

positive integer, including k− 1. Thus P(0) holds.

Inductive case (n ≥ 1). We assume the inductive hypothesis P(n − 1), and we need to prove P(n). Let

k ≥ 2 be an arbitrary integer. Then:

kn − 1 = kn − k+ k− 1 antisimplification: x = x+ k− k.

= k · (kn−1 − 1) + k− 1 factoring

By the inductive hypothesis, kn−1 − 1 is evenly divisible by k − 1. In other words, by the definition of

divisibility, there exists a nonnegative integer a such that a · (k− 1) = kn−1 − 1. Therefore

kn − 1 = k · a · (k− 1) + k− 1

= (k− 1) · (k · a+ 1).

Because k · a+ 1 is a nonnegative integer, (k− 1) · (k · a+ 1) is by definition evenly divisible by k− 1.

Thus kn − 1 = (k− 1) · (k · a+ 1) is evenly divisible by k− 1. Our k was arbitrary, so P(n) follows.

Problem-solving tip: In inductive proofs, try to massage the expression in question into something—anything!—that matches

the form of the inductive hypothesis. Here, the “antisimplification” step is obviously true but seems completely bizarre. Why did

we do it? Our only hope in the inductive case is to somehow make use of the inductive hypothesis. Here, the inductive hypothesis

tells us something about kn−1 − 1—so a good strategy is to transform kn − 1 into an expression involving kn−1 − 1, plus some

leftover stuff.
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Computer Science Connections

Loop Invariants

In Example 5.9, we saw how to use a proof by induction to establish that a recursive algorithm correctly solves a

particular problem. But proving the correctness of iterative algorithms seems different. An approach—pioneered in

the 1960s by Robert Floyd and C. A. R. Hoare [48, 55]—is based on loop invariants, and can be used to analyze

nonrecursive algorithms. A loop invariant for a loop L is logical property P such that (i) P is true before L is first

executed; and (ii) if P is true at the beginning of an iteration of L, then P is true after that iteration of L. The parallels

to induction are pretty direct; property (i) is the base case, and property (ii) is the inductive case. Together, they ensure

that P is always true, and in particular P is true when the loop terminates.

insertionSort(A[1 . . . n]):

1 i := 2

2 while i ≤ n:

3 j := i

4 while j > 1 and A[j] > A[j−1]:

5 swap A[j] and A[j− 1]

6 j := j− 1

7 i := i+ 1

4 5 7 10 11 14 8 15 1 9

1 2 · · · k + 1 · · · n

Property P(k):

A[1 . . . k+ 1] is sorted.
(No restrictions on

A[k + 2 . . . n])

Figure 5.8 Insertion Sort, and the loop invariant (if we’ve completed k
iterations of the outer loop, then P(k) holds—here illustrated for k = 5).

Let’s look at Insertion Sort as

an example of using loop invari-

ants. (See Figure 5.8.) The basic

idea will be to define a property that

describes the partial (and growing)

state of correctness of the algorithm

as it executes. Specifically, let’s

define P(k) to denote the condition

that the subarray A[1 . . . k+ 1] is

sorted after completing k iterations

of the outer while loop. We claim

that P(k) is true for all k ≥ 0—in

other words, that P is a loop invariant for the outer while loop. Let’s prove it:

Proof (sketch). For the base case (k = 0), we’ve completed zero iterations—that is, we have only executed Line 1.

But A[1 . . . k+ 1] is then vacuously sorted, because it contains only the lone element A[1].

For the inductive case (k ≥ 1), assume the inductive hypothesis P(k− 1)—that is, that A[1 . . . k]was sorted before

the kth iteration. The kth iteration of the loop executed Lines 2–7, so we must persuade ourselves that the execution

of these lines extends the sorted segment A[1 . . . k] to A[1 . . . k+1]. And it does! (A formal proof of this claim would

use another loop invariant to describe the behavior of the inner loop—for example, letting Q(j) denote the property

both A[1 . . . j−1] and A[j . . . i] are sorted, and A[j−1] < A[j+1]. But we’ll leave out those details in this sketch.)

Because the above argument establishes that P(n− 1) is true, we know that A[1 . . . (n− 1) + 1] (in other words, all

of A) is sorted after n− 1 iterations of the loop, exactly as desired.

binarySearch(A[1 . . . n], x):

Output: Is x in the sorted array A?

1 lo := 1

2 hi := n

3 while lo ≤ hi:

4 middle := ⌊ lo+hi
2 ⌋

5 if A[middle] = x then

6 return True

7 else if A[middle] > x then

8 hi := middle− 1

9 else

10 lo := middle+ 1

11 return False

lo hi

After zero iterations of the while loop:

If 12 is in the array A, then 12 is contained

in the range A[lo, . . . , hi].

1 4 5 7 8 9 10 11 14 15

1 2 · · · n

lo hi

After one iteration of the while loop:

If 12 is in the array A, then 12 is contained

in the range A[lo, . . . , hi].

1 4 5 7 8 9 10 11 14 15

1 2 · · · n

Figure 5.9 Binary Search, and a useful loop invariant (“if x is in A, then x is one
of A[lo, . . . , hi]”) illustrated during the first two iterations of its execution.

Loop invariants are valuable as

part of the development of pro-

grams, too. For example, many

people end up struggling to cor-

rectly write binary search (it’s all

too easy to have an infinite loop

or an early-stopping bug)—but by

writing down a loop invariant and

thinking about it as we write the
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code, it becomes a lot easier to

get right. (See Figure 5.9.) Many

programming languages allow pro-

grammers to use assertions to state

logical conditions that they believe

to always be true at a particu-

lar point in the code. A simple

assert(P) statement can help a

programmer identify bugs earlier in the development process and avoid a great deal of debugging trauma later.

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.



preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-5-22

5-22 Mathematical Induction

Computer Science Connections

Onion Routing, Steganography, and Conversations whose Very Existence is Sensitive

The typical story introducing cryptography goes like this: two people (Alice and Bob) want to communicate securely,

but the only channel over which they are able to share information is insecure; an eavesdropper (Eve) can listen to

everything that they say. Some remarkable cryptographic protocols (like RSA; see Section 7.5 for much, much more)

have been developed in this context: Bob can publicly post some information about how to communicate with him,

and Alice can use that public information to encrypt a message to Bob so that he can easily decode it, but Eve can’t.

Cryptographic systems like RSA aim for confidentiality of communication: Eve remains fully ignorant of the

contents of whatever message Alice sent to Bob. But what is not secret is the fact that Alice sent a secret message to

Bob. That can be a problem: if you work at the Kremlin, the very fact that you just sent a message to Ottawa may be

damning, regardless of contents.

Dear Bob, Hi there! --Alice.
The contents of this box are en cryptedwithakeysharedbyAlice/Bo

b

The contents of this box are encry pted
wit hakeysharedbyAliceandTorNode

C.

The contents of this box are encrypted
with

akeysharedbyAliceandTor

No
de

B.

The contents of this box are encrypted
with

akeysharedbyAliceandTor
No

de
A.

Figure 5.10 A message for Bob, in Tor.

If you’re willing to reveal that you’re communicat-

ing (but you want to keep secret with whom you are

communicating) there’s a relevant—andwidely used—

tool called Tor (“the onion router”). Tor is a commu-

nication system that combines cryptographic protocols

in a recursive way: the basic idea of onion routing is

to add multiple “layers” of encryption to a message,

which is transmitted across multiple hops—and a layer

of encryption is peeled away by each subsequent recip-

ient, like the layers of an onion. (And so an argument

for the correctness of this system relies on induction.)

If Alice wants to send a message m to Bob, she first identifies a sequence of waypoints—say, Tor nodes A, B, and

C—and agrees on a encryption key with each of these intermediaries (using the Diffie–Hellman protocol; see p. 7-

67). She computes a quadruply encrypted message eA(eB(eC(eBob(m)))), where the subscript indicates with whom

she shares that particular encryption key, and routes it to Bob via A to B to C. See Figure 5.10. (Alice tags each layer

of the encryption with routing information: A knows that B is the next recipient [but A doesn’t know who C or Bob

are], and so forth) The point of these intermediate layers is that no participant knows the identity of both Alice and

Bob, and therefore, unless many nodes in the system are operated by the same malicious entity, the identity of a Tor

user’s communication partner is not revealed. (As long as A, B, and C are simultaneously serving as intermediaries

for many different Alices and Bobs, it’s not tractable to “connect the dots.”)
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(This image

is adjusted

five times

more

prominently

than

necessary, to

make the

message,

perhaps, just

barely

visible in a

few places.)

Figure 5.11 An image with a hidden message in the
least-significant bits of the pixel values.

Another option: a system for steganography (Greek:

stego hidden/covered + graphywriting), which seeks to

conceal that communication is happening at all, rather

than concealing the recipient or the contents. (Natu-

rally, these ideas can be combined: you could encrypt

a message which you then steganographically trans-

mit.) One possibility is to embed a hidden message

by altering the least-significant bit of each pixel in an

image—rounding each pixel value to an odd or even
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value, as in (190) vs. (191), to convey a 0 or a 1—

in a way that’s all but undetectable visually. (You could

even post your photograph publicly, with the idea that

only the intended recipient would know to look for a

embedded message.) See Figure 5.11.

(You can learn more about Tor in the original paper

describing it [39]—including about ways to mitigate risks of malicious Tor nodes, and traffic analysis [an adver-

sary might observe the rate at which particular individuals send and receive data, to try to match up who’s talking

with whom]. And, while there are plenty of good reasons for wanting a system that, like Tor, allows individuals to

communicate in an essentially untraceable way, there are some serious legal and ethical questions, too: truly private

communication leads to the possibility of using the system for illegal, unethical, and other awful purposes.)
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EXERCISES

Prove that the following claims hold for all integers n ≥ 0, by induction on n:

5.1
n∑

i=0

i2 =
n(n+1)(2n+1)

6

5.2
n∑

i=0

i3 = n4+2n3+n2

4

5.3 (−1)n =





1 if n is even

−1 if n is odd

5.4
n∑

i=1

1
i(i+1) = n

n+1

5.5
n∑

i=1

2
i(i+2) = 3

2 − 1
n+1 − 1

n+2

5.6
n∑

i=1

i · (i!) = (n+ 1)!− 1

In an optical camera, light enters the lens through the opening called the aperture. The aperture is controlled by a collection

of movable blades, which can be adjusted inward to narrow the area through which light can pass. Although some lenses allow

continuous adjustment to their openings, many have a sequence of so-called stops: discrete steps by which the aperture narrows,

called f-stops (the “f” is short for “focal”). (See Figure 5.12.)

The names of f-stops are a little strange, and you’ll unwind them here. The “fastest” f-stop for a lens measures the ratio of two

numbers: the focal length of the lens divided by the diameter of the aperture of the lens. (For example, a lens that’s 50mm long

and has a 25mm diameter yields an f-stop of 50mm
25mm = 2.) You can also “stop down” a lens from this fastest setting by adjusting the

blades to shrink the aperture, as shown in Figure 5.12. (For example, for the 50mm-long lens with a 25mm diameter, you might

reduce the diameter to 12.5mm, which yields an f-stop of 50mm
12.5mm = 4.)

5.7 Consider a camera lens with a 50mm focal length, and let d0 = 50mm denote the diameter of the lens’s aperture diameter. “Stopping

down” the lens by one step causes the lens’s aperture diameter to shrink by a factor of 1√
2
—that is, the next-smaller aperture

diameter for a diameter di is defined as di+1 = di√
2
for any i ≥ 0. Give a closed-form expression for dn—that is, a nonrecursive

numerical expression whose value is equal to dn. (Your expression can involve real numbers and the variable n.) Prove your answer

correct by induction.

5.8 Using your solution to Exercise 5.7, give a closed-form expression for two further quantities:

• the “light-gathering” area (that is, the area of the aperture) of the lens when its diameter is set to dn.

• the f-stop fn of the lens when its diameter is set to dn.

Using your formula for fn, can you explain the f-stop names from Figure 5.12?

5.9 What is the sum of the first n odd positive integers? Formulate a conjecture by trying a few examples (for example, what are 1+ 3

and 1+ 3+ 5 and 1+ 3+ 5+ 7, for n = 2, n = 3, and n = 4?). Then prove your answer by induction.

5.10 What is the sum of the first n even positive integers? Prove your answer by induction.

f/1 f/1.4 f/2 f/2.8

a blade (note: blade shape is a little different in real lenses)

aperture

Narrowing the aperture has two effects:
(1) it reduces the amount of light entering the lens, which

darkens the resulting image, and
(2) it increases the depth of field (the range of distances from

the lens at which objects are in focus in the image).

Figure 5.12 A particular lens of a camera, at several different f-stops. (Not pictured: f/4, f/5.6, f/8, f/11, ….)
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5.11 Formulate and prove correct by induction an expression for the sum of the first n negative powers of two—that is, 1
2 +

1
4 + · · ·+ 1

2n .

(If you write this number in binary, it looks like 0.1111111, with a total of n ones.)

5.12 Consider an arithmetic sequence ⟨x, x+ r, x+ 2r, . . .⟩, with x ∈ R as the first entry and r ∈ R as the amount by which each entry

increases over the previous one. (See Definition 5.7. For example, ⟨1, 3, 5, . . .⟩ has x = 1 and r = 2; ⟨25, 20, 15, . . .⟩ has x = 25

and r = −5; and ⟨5, 5, 5, . . .⟩ has x = 5 and r = 0.) An arithmetic sum or arithmetic series is the sum of an arithmetic sequence.

For the arithmetic sequence ⟨x, x+ r, x+ 2r, . . .⟩, formulate and prove correct by induction a formula expressing the sum of the

first n+ 1 terms: that is, for the arithmetic series
∑n

i=0(x+ ir). (Hint: note that
∑n

i=0 ir = r
∑n

i=0 i =
rn(n+1)

2 , by Theorem 5.3.)

In chess, a walk for a particular piece is a sequence of legal moves for that piece, starting from a square of your choice, that visits

every square of the board. A tour is a walk that visits every square only once. (See Figure 5.13.)

5.13 Prove by induction that there exists a knight’s walk of an n-by-n chessboard for any n ≥ 4. (It turns out that knight’s tours exist for

all even n ≥ 6, but you don’t need to prove this fact.)

5.14 (programming required.) In a programming language of your choice, implement your proof from Exercise 5.13 as a recursive

algorithm that computes a knight’s walk in an n-by-n chessboard.

5.15 Prove by induction that there exists a rook’s tour for any n-by-n chessboard for any n ≥ 1.

Figure 5.14 shows three different fractals. Recall that the perimeter of a shape is the total length of all boundaries separating regions

inside the figure from regions outside. (For example, the perimeter includes boundary of the “hole” in the Sierpiński carpet. In fact,

for the Sierpiński fractals as drawn here, the perimeter is precisely the length of lines separating colored-in from uncolored-in

regions and the enclosed area is precisely the area of the colored-in regions.) Suppose that we draw each of these fractals at level

ℓ and with size 1. For each of the following, conjecture a formula and prove your answer correct by induction.

5.16 perimeter of the Von Koch snowflake

5.17 perimeter of the Sierpiński triangle

5.18 perimeter of the Sierpiński carpet

5.19 enclosed area of the Von Koch snowflake

5.20 enclosed area of the Sierpiński triangle

5.21 enclosed area of the Sierpiński carpet

In the last few exercises, you computed the fractals’ perimeter and area at level ℓ. But what if we continued the fractal-expansion

process forever? What are the area and perimeter of an infinite-level fractal? (Hint: use Corollary 5.6.)

5.22 perimeter of the infinite Von Koch snowflake

5.23 perimeter of the infinite Sierpiński triangle

5.24 perimeter of the infinite Sierpiński carpet

5.25 enclosed area of the infinite Von Koch snowflake

5.26 enclosed area of the infinite Sierpiński triangle

5.27 enclosed area of the infinite Sierpiński carpet

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0M0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

A knight at position ⟨r, c⟩ can move in an L-shaped pattern to any of eight
positions: moving over one row and up/down two columns to positions
⟨r ± 1, c ± 2⟩, or moving two rows over and one column up/down to
positions ⟨r ± 2, c ± 1⟩.

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0S0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

A rook at position ⟨r, c⟩ can move in a straight line either horizontally or
vertically, moving any integral number x of squares. The rook ends up in

positions ⟨r ± x, c⟩ for a vertical move, or ⟨r, c ± x⟩ for a horizontal move.

Figure 5.13 A chess board, and the legal moves for a knight (left) or rook (right).
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A Von Koch line of size s and level 0 is just a straight
line segment; a Von Koch line of size s and level ℓ
consists of four Von Koch lines of size s

3 and level
ℓ − 1 arranged in the shape ; a Von Koch
snowflake of size s and level ℓ consists of a triangle of
three Von Koch lines of size s and level ℓ.

A Sierpiński triangle of level 0 and size s is an
equilateral triangle of side length s; a Sierpiński
triangle of level ℓ + 1 is three Sierpiński triangles of
level ℓ and size s

2 arranged in a triangle.

A Sierpiński carpet of level ℓ and size s is formed from
8 Sierpiński carpets of level ℓ − 1 and size s

3 (arranged
in a 3-by-3 grid with a hole in the middle); a Sierpiński
carpet of level 0 and side length s is a filled s-by-s
square.

Figure 5.14 Three fractals—named after the Swedish mathematician Helge von Koch (1870–1924) and the Polish
mathematician Wacław Sierpiński (1882–1969)—drawn at levels 0, 1, . . . , 4.

5.28 (programming required.) Write a recursive function sierpinski_triangle(level, length, x, y) in a language of your

choice to draw a Sierpiński triangle with the given side length and level with bottom-left coordinate ⟨x, y⟩. (You’ll need to use

some kind of graphics package with line-drawing capability.) Write your function so that—in addition to drawing the fractal—it

also returns both the total length and total area of the triangles that it draws. Use your function to verify some small cases of

Exercises 5.17 and 5.20.

5.29 (programming required.)Write a recursive function sierpinski_carpet(level, length, x, y) to draw a Sierpiński carpet.

(See Exercise 5.28.) Extend your function to also return the area of the boxes that it encloses, and use it to verify some small cases

of your answer to Exercise 5.21.

5.30 An n-by-n magic square is an n-by-n grid into which the numbers 1, 2, . . . , n2 are placed, once each. The “magic” is that each row,

column, and diagonalmust be filled with numbers that have the same sum. For example, you can build a 3-by-3 magic square with

the top row [4, 9, 2], middle row [3, 5, 7], and bottom row [8, 1, 6]. (Check!) Conjecture and prove a formula for what

the sum of each row/column/diagonal must be in an n-by-n magic square.

Recall from Section 5.2.2 the harmonic numbers, where Hn =
∑n

i=1
1
i is the sum of the reciprocals of the first n positive integers.

Further recall Theorem 5.9, which states that k+ 1 ≥ H2k ≥ k
2 + 1 for any integer k ≥ 0.

5.31 In Example 5.7, we proved that k+ 1 ≥ H2k . Using the same type of reasoning as in the example, complete the proof of

Theorem 5.9: show by induction that H2k ≥ k
2 + 1 for any integer k ≥ 0.

5.32 Generalize Theorem 5.9 to numbers that aren’t necessarily exact powers of 2. Specifically, prove that

log n+ 2 ≥ Hn ≥ log n−1
2 + 1

for any real number n ≥ 1. (Hint: use Theorem 5.9.)

5.33 Prove Bernoulli’s inequality: let x ≥ −1 be an arbitrary real number. Prove by induction on n that

(1+ x)n ≥ 1+ nx

for any positive integer n.

Prove that the following inequalities hold “for sufficiently large n.” That is, identify an integer k and then prove (by induction on

n) that the stated relationship holds for all integers n ≥ k.
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5.34 2n ≤ n!

5.35 bn ≤ n!, for an arbitrary integer b ≥ 1

5.36 3n ≤ n2

5.37 n3 ≤ 2n

5.38 Prove that, for any nonnegative integer n, the algorithm odd?(n) returns True if and only if n is odd. (See Figure 5.15.)

5.39 For the algorithm sum in Figure 5.15 (the non-alternative version), prove that sum(n,m) returns
∑m

i=n i for any m ≥ n. (Hint:

perform induction on the value of m− n.)

5.40 Modify your proof from Exercise 5.39 for the alternative version of sum in Figure 5.15 (which differs only in Line 4).

5.41 Prove by induction on n that 8n − 3n is divisible by 5 for any nonnegative integer n.

5.42 Conjecture a formula for the value of 9n mod 10, and prove it correct by induction on n. (Hint: try computing 9n mod 10 for a few

small values of n to generate your conjecture.)

5.43 As in the previous exercise, conjecture a formula for the value of 2n mod 7, and prove it correct.

5.44 Suppose that we count, in binary, using an n-bit counter that goes from 0 to 2n − 1. There are 2n different steps along the way: the

initial step of 00 · · · 0, and then 2n − 1 increment steps, each of which causes at least one bit to be flipped. What is the average

number of bit flips that occur per step? (Count the first step as changing all n bits.) For example,

000 → 001 → 010 → 011 → 100 → 101 → 110 → 111

for n = 3, which has a total of 3+ 1+ 2+ 1+ 3+ 1+ 2+ 1 = 14 bit flips. Prove your answer.

5.45 To protect my backyard from my neighbor, a biology professor who is sometimes a little overfriendly, I have acquired a large army

of vicious robotic dogs. Unfortunately the robotic dogs in this batch are very jealous, and they must be separated by fences—in

fact, they can’t even face each other directly through a fence. So I have built a collection of n fences to separate my backyard

into polygonal regions, where each fence completely crosses my yard (that is, it goes from property line to property line, possibly

crossing other fences). I wish to deploy my robotic dogs to satisfy the following property:

For any two polygonal regions that share a boundary (that is, are separated by a fence segment), one of the two regions has

exactly one robotic dog and the other region has zero robotic dogs.

(See Figure 5.16.) Prove by induction on n that this condition is satisfiable for any collection of n fences.

odd?(n):

1 if n = 0 then
2 return False
3 else
4 return not odd?(n− 1)

sum(n,m):

1 if n = m then
2 return m

3 else
4 return n+ sum(n+ 1,m)

sum(n,m): // ALTERNATIVE

1 if n = m then
2 return m

3 else
4 return m+ sum(n,m− 1)

Figure 5.15 Two algorithms (and one variation).

Figure 5.16 A configuration of fences, and a valid way to deploy my dogs (the dots in the shaded regions).
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5.3 Strong Induction

Step by step, little by little, bit by bit—that is the way to wealth, that is the way to
wisdom, that is the way to glory. Pounds are the sons, not of pounds, but of pence.

Charles Buxton (1823–1871)
Notes of Thought (1873)

In the proofs by induction in Section 5.2, we established the claim ∀n ∈ Z≥0 : P(n) by proving P(0)

[the base case] and proving that P(n − 1) ⇒ P(n) [the inductive case]. But let’s think again about what

happens in an inductive proof, as we build up facts about P(n) for ever-increasing values of n. (Glance at

Example 5.1 again.)

1. We prove P(0).

2. We prove P(0)⇒ P(1), so we conclude P(1), using Fact #1.

Now we wish to prove P(2). In a proof by induction like those from Section 5.2, we’d proceed as follows:

3. We prove P(1)⇒ P(2), so we conclude P(2), using Fact #2.

In a proof by strong induction, we allow ourselves to make use of more assumptions: namely, we know that

P(1) and P(0) when we’re trying to prove P(2). (By way of contrast, we’ll refer to proofs like those from

Section 5.2 as using weak induction.) In a proof by strong induction, we proceed as follows instead:

3′. We prove P(0) ∧ P(1)⇒ P(2), so we conclude P(2), using Fact #1 and Fact #2.

In a proof by strong induction, in the inductive case we prove P(n) by assuming n different inductive

hypotheses: P(0), P(1), P(2), …, and P(n− 1). Or, less formally: in the inductive case of a proof by weak

induction, we show that if P “was true last time” then it’s still true this time; in the inductive case of a

proof by strong induction, we show that if P “has been true up until now” then it’s still true this time.

5.3.1 A Definition and a First Example

Here is the formal definition of a proof by strong induction:

Definition 5.10: Proof by strong induction.

Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by strong induction of

∀n ∈ Z≥0 : P(n), we prove the following:

1 the base case: prove P(0).

2 the inductive case: for every n ≥ 1, prove [P(0) ∧ P(1) ∧ · · · ∧ P(n− 1)]⇒ P(n).
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Generally speaking, using strong induction makes sense when the “reason for” P(n) is that P(k) is true for

more than one index k ≤ n − 1, or that P(k) is true for some index k ≤ n − 2. (For weak induction, the

“reason for” P(n) is that P(n− 1) is true.)

Strong induction makes the inductive case easier to prove than weak induction, because the claim that

we need to show—that is, P(n)—is the same, but we get to use more assumptions in strong induction: in

strong induction, we’ve assumed all of P(0) ∧ P(1) ∧ . . . ∧ P(n − 1); in weak induction, we’ve assumed

only P(n− 1). We can always ignore those extra assumptions, so it’s never harder to prove something by

strong induction than with weak induction.

Writing tip: While anything that can be proven using weak induction can also be proven using strong induction, you should still

use the tool that’s best suited to the job—generally, the one that makes the argument easiest to understand.

(Strong induction is actually equivalent to weak induction in its power; anything that can be proven with

one can also be proven with the other. See Exercises 5.81–5.82.)

A first example: a simple algorithm for parity

In the rest of this section, we’ll give several examples of proofs by strong induction. We’ll start here with a

proof of correctness for a blazingly simple algorithm that computes the parity of a positive integer. (Recall

that the parity of n is the “evenness” or “oddness” of n.) See Figure 5.17 for the parity algorithm.

We’ve already used (weak) induction to prove the correctness of recursive algorithms that, given an input

of size n, call themselves on an input of size n− 1. (That’s how we proved the correctness of the factorial

algorithm fact from Example 5.9.) But for recursive algorithms that call themselves on smaller inputs but

not necessarily of size n− 1, like parity, we can use strong induction to prove their correctness.

Example 5.11: The correctness of parity.

Claim: For any nonnegative integer n ≥ 0, we have that parity(n) = n mod 2.

Proof. Write P(n) to denote the property that parity(n) = n mod 2. We proceed by strong induction

on n to show that P(n) holds for all n ≥ 0:

Base cases (n = 0 and n = 1). By inspection of the algorithm, parity(0) returns 0 in Line 2, and, indeed,

0 mod 2 = 0. Similarly, we have parity(1) = 1, and 1 mod 2 = 1 too. Thus P(0) and P(1) hold.

Inductive case (n ≥ 2). Assume the inductive hypothesis P(0) ∧ P(1) ∧ · · · ∧ P(n− 1)—that is, assume

for any integer 0 ≤ k < n, we have parity(k) = k mod 2.

We must prove P(n)—that is, we must prove parity(n) = n mod 2:

parity(n) = parity(n− 2) by inspection (specifically because n ≥ 2 and by Line 4)

= (n− 2) mod 2 by the inductive hypothesis P(n− 2)
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parity(n): // assume that n ≥ 0 is an integer

1 if n ≤ 1 then
2 return n

3 else
4 return parity(n− 2)

Figure 5.17 An algorithm that computes whether n is odd or even.

= n mod 2,

where (n − 2) mod 2 = n mod 2 by Definition 2.11. (Note that the inductive hypothesis applies for

k = n− 2 because n ≥ 2 and therefore 0 ≤ n− 2 < n.)

There are two things to note about the proof in Example 5.11. First, using strong induction instead of

weak induction made sense because the inductive case relied on P(n− 2) to prove P(n); we did not show

P(n − 1) ⇒ P(n). Second, we needed two base cases: the “reason” that P(1) holds is not that P(−1)
was true. (In fact, P(−1) is false—parity(−1) isn’t equal to 1! Think about why.) The inductive case of

the proof in Example 5.11 does not correctly apply for n = 1, and therefore we had to handle that case

separately, as a second base case.

5.3.2 Some Further Examples of Strong Induction

We’ll continue this section with several more examples of proofs by strong induction. We’ll first turn to a

proof about prime factorization of integers, and then look at one geometric and one algorithmic claim.

Prime factorization

Recall that an integer n ≥ 2 is prime if the only positive integers that evenly divide it are 1 and n itself. It’s

a basic fact about numbers that any positive integer can be uniquely expressed as the product of primes:

Theorem 5.11: Prime Factorization Theorem.

Let n ∈ Z≥1 be any positive integer. Then there exist k ≥ 0 prime numbers p1, p2, . . . , pk such that

n =
∏k

i=1 pi. Furthermore, up to reordering, the primes p1, p2, . . . , pk are unique.

(The prime factorization theorem is also sometimes called the Fundamental Theorem of Arithmetic.) While

proving the uniqueness requires a bit more work (we’ll prove it in Section 7.3.3), we can give a proof using

strong induction to show that a prime factorization exists.

Example 5.12: A prime factorization exists.

Let P(n) denote the first part of Theorem 5.11, namely the claim

there exist k ≥ 0 prime numbers p1, p2, . . . , pk such that n =
k∏

i=1
pi.
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We will prove that P(n) holds for any integer n ≥ 1, by strong induction on n.

Base case (n = 1). Recall that the product of zero multiplicands is 1. (See Section 2.2.7 for a reminder

of the definition.) Thus we can write n as the product of zero prime numbers. Thus P(1) holds.

Inductive case (n ≥ 2). We assume the inductive hypothesis—namely, we assume that P(n′) holds for

any positive integer n′ where 1 ≤ n′ ≤ n− 1. We must prove P(n). There are two cases:

Case I: n is prime. If n is prime, then there’s nothing to do: we can write n as the product of one prime

number, namely n itself. Formally, let k = 1 and p1 = n, and we’re done immediately.

Case II: n is not prime. If n is not prime, then by definition n can be written as the product n = a · b, for
positive integers a and b satisfying 2 ≤ a ≤ n−1 and 2 ≤ b ≤ n−1. (The definition of (non)primality

says that n = a · b for a /∈ {1, n}; you should be able to convince yourself that neither a nor b can be

smaller than 2 or larger than n− 1.) By the inductive hypotheses P(a) and P(b), we have

a = q1 · q2 · · · · · qℓ and b = r1 · r2 · · · · · rm (∗)

for prime numbers q1, . . . , qℓ and r1, . . . , rm. By (∗) and the fact that n = a · b,

n = q1 · q2 · · · · · qℓ · r1 · r2 · · · · · rm.

Because each qi and ri is prime, we have now written n as the product of ℓ + m prime numbers, and

P(n) holds. The theorem follows.

Taking it further: As with any inductive proof, it may be useful to view the proof from Example 5.12 as a recursive algorithm.

Here’s a sketch of the algorithm primeFactor(n) implicitly defined by this proof:

• if n = 1, then return ⟨⟩. (The base case: P(1) is true.)

• if n > 1 and n is prime, then return ⟨n⟩. (The inductive case, part I: if n ≥ 2 is prime, then P(n) is true.)

• otherwise n > 1 and n is not prime. In this case: (The inductive case, part II: if n ≥ 2 is not prime, then P(n) is true.)

– Find factors a and b where 2 ≤ a ≤ n− 1 and 2 ≤ b ≤ n− 1 such that n = a · b. (∗)
– Recursively compute ⟨q1, ..., qk⟩ := primeFactor(a).

– Recursively compute ⟨r1, ..., rm⟩ := primeFactor(b).

– Return ⟨q1, ..., qk, r1, ..., rm⟩.

(Notice that there’s some magic in the “algorithm,” in the sense that Line (∗) doesn’t tell us how to find the values of a and

b—but we do know that such values exist, by definition.) We can think of the inductive case of an inductive proof as “making a

recursive call” to a proof for a smaller input. For example, primeFactor(2) returns ⟨2⟩ and primeFactor(5) returns ⟨5⟩, because
both 2 and 5 are prime. For another example, the result of primeFactor(10) is ⟨2, 5⟩, because 10 is not prime, but we can write

10 = 2 · 5 and primeFactor(2) returns ⟨2⟩ and primeFactor(5) returns ⟨5⟩. The result of primeFactor(70) could be ⟨7, 2, 5⟩,
because 70 is not prime, but we can write 70 = 7 · 10 and primeFactor(7) returns ⟨7⟩ and primeFactor(10) returns ⟨2, 5⟩.
Or primeFactor(70) could be ⟨7, 5, 2⟩ because 70 = 35 · 2, and primeFactor(35) returns ⟨7, 5⟩ and primeFactor(2) returns

⟨2⟩. (Which ordering of the values is the output depends on the magic of Line (∗). The second part of Theorem 5.11, about the
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uniqueness of the prime factorization, says that it is only the ordering of these numbers that depends on the magic; the numbers

themselves must be the same.)

Triangulating a polygon

We’ll now turn to a proof by strong induction about a geometric question, instead of a numerical one. A

convex polygon is, informally, the points “inside” a set of n vertices: imagine stretching a giant rubber band

around n points in the plane; the polygon is defined as the set of all points contained inside the rubber band.

See Figure 5.18a for an example. Here we will show that an arbitrary convex polygon can be decomposed

into a collection of nonoverlapping triangles.

Example 5.13: Decomposing a polygon into triangles.

Prove the following claim. (For an example, and an outline of a possible proof, see Figure 5.18.)

Claim: Any convex polygon Pwith k ≥ 3 vertices can be decomposed into a set of k−2 triangles whose

interiors do not overlap.

Solution. Let Q(k) denote the claim that any k-vertex polygon can be decomposed into a set of k − 2

interior-disjoint triangles. We’ll give a proof by strong induction on k that Q(k) holds for all k ≥ 3. (Note

that strong induction isn’t strictly necessary to prove this claim; we could give an alternative proof using

weak induction.)

Base case (k = 3). There’s nothing to do: any 3-vertex polygon P is itself a triangle, so the collection

{P} is a set of k− 2 = 1 triangles whose interiors do not intersect (vacuously, because there is only one

triangle). Thus Q(3) holds.

Inductive case (k ≥ 4). We assume the inductive hypothesis, which states: any convex polygon with

3 ≤ ℓ < k vertices can be decomposed into a set of ℓ− 2 interior-disjoint triangles. (That is, we assume

Q(3),Q(4), . . . ,Q(k− 1).) We must prove Q(k).

Let P be an arbitrary k-vertex polygon. Let u and v be any two nonadjacent vertices of P. (Because

k ≥ 4, such a pair exists.) Define A as the “above the ⟨u, v⟩ line” piece of P and B as the “below the ⟨u, v⟩
line” piece of P. Notice that P = A∪B, both A and B are convex, and the interiors of A and B are disjoint.

Let ℓ be the number of vertices in A. Observe that ℓ ≥ 3 and ℓ < k because u and v are nonadjacent.

Also observe that B contains precisely k− ℓ+ 2 vertices. (The “+ 2” is because vertices u and v appear

in both A and B.) Note that both 3 ≤ ℓ ≤ k− 1 and 3 ≤ k− ℓ+ 2 ≤ k− 1, so we can apply the inductive

hypothesis to both ℓ and k− ℓ+ 2.

Therefore, by the inductive hypothesisQ(ℓ), the polygonA is decomposable into a set S of ℓ−2 interior-

disjoint triangles. Again by the inductive hypothesis Q(k − ℓ + 2), the polygon B is decomposable into

a set T of k − ℓ + 2 − 2 = k − ℓ interior-disjoint triangles. Furthermore because A and B are interior
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a side

the interior
(excluding the
boundary)

a vertex

(a) A polygon P.

u

v

A

B

(b) Two vertices u and v of P, and P
divided into A and B (above and
below the u-to-v line).

(c) The subpolygons A and B divided
into triangles, using the inductive
hypothesis.

Figure 5.18 An example of the recursive decomposition of a polygon into interior-disjoint triangles.

disjoint, the triangles of S ∪ T all have disjoint interiors. Thus P itself can be decomposed into the union

of these two sets of triangles, yielding a total of ℓ− 2+ k− ℓ = k− 2 interior-disjoint triangles.

We’ve shown both Q(3) and Q(3) ∧ · · · ∧ Q(k − 1) ⇒ Q(k) for any k ≥ 4, which completes the proof

by strong induction.

Taking it further: The style of triangulation from Example 5.13 has important implications in computer graphics, in which

we seek to render representations of complicated real-world scenes using computational techniques. In many computer graphics

applications, complex surfaces are decomposed into small triangular regions, which are then rendered individually. See p. 5-36.

Proving algorithms correct: Quick Sort

We’ve now seen a proof of correctness by strong induction for a small (4-line) recursive algorithm (for

parity), and proofs of somewhat more complicated non-algorithmic properties. Here we’ll prove the

correctness of a somewhat more complicated algorithm—the recursive sorting algorithm called Quick

Sort—again using strong induction.

quickSort(A[1 . . . n]):

1 if n ≤ 1 then
2 return A

3 else
4 choose pivot ∈ {1, . . . , n}, somehow.
5 L := ⟨⟩
6 R := ⟨⟩
7 for i ∈ {1, . . . , n} with i ̸= pivot:
8 if A[i] < A[pivot] then
9 append A[i] to L

10 else
11 append A[i] to R
12 L := quickSort(L)
13 R := quickSort(R)
14 return L + ⟨A[pivot]⟩ + R

(a) The pseudocode.

7 2 4 3 1 6 5 8 9

2 1 7 4 6 5 8 93

1 2 4 5 6 7 8 93

1

2

3

choose a pivot:
we chose 3 as the pivot value
(by some algorithm or
another).

partition the elements into L,
all elements < 3, and R, all
elements > 3.

recursively sort L and R.

(b) An example of quick sort.

Figure 5.19 Quick Sort: pseudocode, and an example.
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The idea of the Quick Sort algorithm is to select a pivot value x from an input array A; we then partition

the elements of A into those less than x (which we then sort recursively), then x itself, and finally the

elements of A greater than x (which we again sort recursively). We also need a base case: an input array

with fewer than 2 elements is already sorted. (See Figure 5.19a for the algorithm.)

For example, suppose we wish to sort by birthday the 53 winners of the Nobel Prize for Literature from

the second half of the 20th century. Toni Morrison’s birthday is February 18th. If we choose her as the

pivot, then Quick Sort would first divide all 52 other winners into two lists, of those with pre–February

18th birthdays and those with post–February 18th birthdays,

before[1 . . . 4] := ⟨Boris Pasternak (1958) [February 10th], . . . , Gao Xingjian (2000) [January 4th]⟩

after[1 . . . 48] := ⟨Bertrand Russell (1950) [May 18th], . . . , Günter Grass (1999) [October 16th]⟩,

and then recursively sort before and after. Then the final sorted list will be

before in sorted order Toni Morrison after in sorted order

winner[1], . . . ,winner[4], winner[5], winner[6], . . . ,winner[53]

While the efficiency of Quick Sort depends crucially on how we choose the pivot value (see Chapter 6),

the correctness of the algorithm holds regardless of that choice. For simplicity, we will prove that Quick

Sort correctly sorts its input under the assumption that all the elements of the input array A are distinct.

(The more general case, in which there may be duplicate elements, is conceptually no harder, but is a bit

more tedious.) It is easy to see by inspection of the algorithm that quickSort(A) returns a reordering of the

input array A—that is, Quick Sort neither deletes or inserts elements. Thus the real work is to prove that

Quick Sort returns a sorted array.

Taking it further: There were 53 winners between 1950—the year in which Bertrand Russell, of Russell’s Paradox fame

(see p. 2-31), won the award for his writings on philosophy—and 2000, when Gao Xingjian won the prize. As it happens, the

simplifying assumption that we’re making about distinct elements doesn’t apply for this set of Nobelists: Samuel Beckett (1969)

and Seamus Heaney (1995) share a birthday, as do Naguib Mahfouz (1988) and Aleksandr Solzhenitsyn (1970). Thank about

how you would modify the proof in Example 5.14 to handle duplicates.

Example 5.14: Correctness of Quick Sort.

Claim: For any array A with distinct elements, quickSort(A) returns a sorted array.

Proof. Let P(n) denote the claim that quickSort(A[1 . . . n]) returns a sorted array for any n-element

array A with distinct elements. We’ll prove P(n) for every n ≥ 0, by strong induction on n.

Base cases (n = 0 and n = 1). Both P(0) and P(1) are trivial: any array of length 0 or 1 is sorted.

Inductive case (n ≥ 2). We assume the inductive hypothesis P(0), . . . ,P(n− 1): for any array B[1 . . . k]

with distinct elements and length k < n, quickSort(B) returns a sorted array. We must prove P(n).

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.



preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-5-35

5.3 Strong Induction 5-35

Let A[1 . . . n] be an arbitrary array with distinct elements. Let pivot ∈ {1, . . . , n} be arbitrary. We must

prove that x appears before y in quickSort(A) if and only if x < y. We proceed by cases, based on the

relationship between x, y, and A[pivot].

L pivot R

Case 1 x : x = A[pivot].

The elements appearing after x in quickSort(A) are precisely the elements of R. And R is exactly the

set of elements greater than x. Thus x appears before y if and only if y appears in R, which occurs if

and only if x < y.

Case 2 y : y = A[pivot].

Analogously to Case 1, x appears before y if and only if x appears in L, which occurs if and only if

x < y.

Case 3 x, y : x < A[pivot] and y < A[pivot].

Then both x and y appear in L. Because A[pivot] does not appear in L, we know that L contains at most

n − 1 elements, all of which are distinct because they’re a subset of the distinct elements of A. Thus

the inductive hypothesis P(|L|) says that x appears before y in quickSort(L) if and only if x < y. And

x appears before y in quickSort(A) if and only if x appears before y in quickSort(L).

Case 4 x, y : x > A[pivot] and y > A[pivot].

Then both x and y appear in R. An analogous argument to Case 3 shows that x appears before y if and

only if x < y.

Case 5 x y : x < A[pivot] and y > A[pivot].

It is immediate both that x appears before y (because x is in L and y is in R) and that x < y.

Case 6 y x : x > A[pivot] and y < A[pivot].

It is immediately apparent that x does not appear before y and that x ̸< y.

In all six cases, we have established that x < y if and only if x appears before y in the output array;

furthermore, the cases are exhaustive. The claim follows.

Taking it further: In addition to proofs of correctness for algorithms, like the one for quickSort that we just gave, strong induc-

tion is crucial in analyzing the efficiency of recursive algorithms; we’ll see many examples in Section 6.4. And strong induction

can also be fruitfully applied to understanding (and designing!) data structures—for example, see p. 5-38 for a discussion of

maximum heaps.
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Computer Science Connections

Triangulation, Computer Graphics, and 3D Surfaces

Here is a typical problem in computer graphics: we are given a three-dimensional scene consisting of a collection

of objects of various shapes and sizes, and we must render a two-dimensional image that is a visual display of the

scene. (Computer graphics uses a lot of matrix computation to facilitate the projection of a 3-dimensional shape onto

a 2-dimensional surface.)
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Figure 5.20 A 3D model of an 1844 telegraph key (made by Alfred
Vail based on a design by Samuel Morse), and a close-up of the screws
in the bottom-right corner. The full model contains 150,000 triangles.

A typical approach—to simplify and

speed the relevant algorithms—approximates

the three-dimensional shapes of the objects

in the scene using triangles instead of arbi-

trary shapes. (See Figure 5.20.) Triangles are

the easiest shape to process computation-

ally: the “real” triangle in the scene can be

specified completely by three 3-dimensional

points corresponding to the vertices; and the

rendered shape in the image is still a tri-

angle specified completely by 2-dimensional

points corresponding to the vertices’ projec-

tions onto the image. Specialized hardware

called a graphics processing unit (GPU) makes these computations extremely fast on many modern computers.

We can approximate any three-dimensional shape arbitrarily well using a collection of triangles, and we can refine

a triangulation by dividing splitting one triangle into two pieces, and then properly rendering each constituent triangle:

for example, we can take the triangle , and split it into four subtriangles by placing new vertices at the midpoint

of each edge; we can then connect up the resulting 6 points (3 original + 3 new) to produce . When rendering

a scene, we might compute a single color c that best represents the color of a given triangle in the real scene, and

then display a solid c-colored (projected) triangle in the image; thus our refined triangulation can have more color

variation than the single triangle, as in . Note that there are many different ways to subdivide a given

triangle into separate triangles. Which subdivision we pick might depend on the geometry of the scene; for example,

we might try to make the subtriangles roughly similar in size, or maximally different in color.

The larger the number of triangles we use, the better the match between the real 3-dimensional shape and the

triangulated approximation. But, of course, the more triangles we use, the more computation must be done (and the

slower the rendering will be). By identifying particularly important triangles—for example, those whose colors vary

particularly widely, or those at a particularly steep angle to their neighbors, or those whose angles to the viewer are

particularly extreme—we can selectively refine “the most important parts” of the triangulation to produce higher

quality images. (See Figure 5.21.)

This material will be published by Cambridge University Press as Connecting Discrete Mathematics and Computer Science by
David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as Discrete Mathematics for
Computer Science. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale,
or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on September 8, 2021.



preprint_chapters CUP/HE2-design September 8, 2021 7:47 Page-5-37

5.3 Strong Induction 5-37

Im
ag

es
by

To
bi
as

Is
en

be
rg
;
pr
in
te
d
w
it
h
pe

rm
is
si
on

un
de

r
C
C

B
Y
-S

A
4.
0
ht

tp
s:

//
cr

ea
ti

ve
co

mm
on

s.
or

g/
li

ce
ns

es
/b

y-
sa

/4
.0
/.

Figure 5.21 Two strategies for refining a triangulation of a rabbit: one based on dividing each triangle four smaller
ones, and one that chooses which triangles to refine based on local geometric properties. (The adaptive strategy on the
far right produces a smaller image file, but one that is more accurate in the most interesting parts of the image.) See [62].
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Computer Science Connections

Max Heaps

When we design data structures to support particular operations, it is often the case that we wish to maintain some

properties in the way that the data are stored. Here’s one example, for an implementation of priority queues, that

we’ll establish using a proof by mathematical induction. A priority queue is a data structure that stores a set of jobs,

each of which has a priority; we wish to be able to insert new jobs (with specified priorities) and identify/extract the

existing job with the highest priority.

x

zy

y ≤ x z ≤ x

(a) 8

7

36

5

14

2

(b)

Figure 5.22 Maximum heaps: (a) the heap property, which says that,
for any node with value x, the children of that node must have values
≤ x; and (b) an example.

A maximum heap is one way of imple-

menting priority queues. A maximum heap

is a binary tree—see Section 5.4 or Chap-

ter 11—in which every node stores a job with

an associated priority. Every node in the tree

satisfies the (maximum) heap property (see

Figure 5.22a): the priority of node u must

be greater than or equal to the priorities of

each of u’s children. (A heapmust also satisfy

another property, being “nearly complete”—

intuitively, a heap has no “missing nodes”

except in the bottommost layer; this “nearly complete” property is what guarantees that heaps implement prior-

ity queues very efficiently.) An example of a heap is shown in Figure 5.22b. It’s easy to check that the topmost node

(the root) of the maximum heap in Figure 5.22b has the highest priority. Heaps are designed so that the root of the

tree contains the node with the highest priority—that’s a property that ensures that particular operations related to

priority queues can be carried out very quickly using heaps. Let’s prove this fact by induction:

Claim: In any binary tree in which every node satisfies the maximum heap property, the node with the highest priority

is the root of the tree.

Proof. We’ll proceed by strong induction on the number of layers of nodes in the tree. (This proof is an example of

a situation in which it’s not immediately clear upon what quantity to perform induction, but once we’ve chosen the

quantity well, the proof itself is fairly easy.) Let P(ℓ) denote the claim In any tree containing ℓ layers of nodes, in

which every node satisfies the maximum heap property, the node with the highest priority is the root of the tree. We

will prove that P(ℓ) holds for all ℓ ≥ 1 by strong induction on ℓ.

Base case (ℓ = 1). The tree has only one level—that is, the root is the only node in the tree. Thus, vacuously, the root

has the highest priority, because there are no other nodes.

x

a

x

a b

Figure 5.23 The two possibilities for the inductive case of the proof:
either x has one child (here, a) or x has two children (here, a and b).
(Because the tree has ℓ ≥ 2 levels, the root x has at least one child.)

Inductive case (ℓ ≥ 2).We assume the induc-

tive hypothesis P(1), . . . ,P(ℓ− 1). Let x be

the priority of the root of the tree. (See Fig-

ure 5.23 for the cases.) If the root has only

one child, say with priority a, then by the

inductive hypothesis every element y beneath

a satisfies y ≤ a. (There are at most ℓ − 1
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layers in the tree beneath a, so the inductive

hypothesis applies.) By the heap property, we

know a ≤ x, and thus every element y satisfies y ≤ x. If the root has a second child, say with priority b, then by the

inductive hypothesis every element z beneath b satisfies z ≤ b. (There are at most ℓ− 1 layers in the tree beneath b,

so the inductive hypothesis applies again.) Again, by the heap property, we have b ≤ x, so every element z satisfies

z ≤ x.
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EXERCISES

5.46 In Example 5.11, we showed the correctness of the parity function (see Figure 5.24)—that is, for any n ≥ 0, we have that

parity(n) = n mod 2. Prove by strong induction on n that the depth of the recursion (that is, the total number of calls to parity

made) is 1+
⌊ n
2

⌋
.

5.47 Consider the toBinary algorithm in Figure 5.25, which finds the binary representation of a given integer n ≥ 0. For example,

toBinary(13) returns ⟨1, 1, 0, 1⟩ (and 13 = 8+ 4+ 0+ 1 is written as 1101 in binary). Prove the correctness of toBinary by

strong induction: prove that for any n ≥ 0, we have
∑k

i=0 bi2
i = n, where toBinary(n) = ⟨bk, . . . , b0⟩.

5.48 Exercise 5.47 establishes that any nonnegative integer can be represented in binary. Now, let’s show that this binary representation

is unique—or, at least, unique if we ignore the presence or absence of leading zeros. (For example, we can represent 7 in binary

as 111 or 0111 or 00111.) To do so, prove that every nonnegative integer n that can be represented as a k-bit string is uniquely

represented as a k-bit bitstring. In other words, prove the following claim, for any integer k ≥ 1:

Let a = ⟨ak, ak−1, . . . , a0⟩ and b = ⟨bk, bk−1, . . . , b0⟩ be two k-bit sequences.

If
∑k

i=0 ai2
i =

∑k
i=0 bi2

i, then for all i ∈ {k, k− 1, . . . , 0} we have ai = bi.

Your proof should be by (weak) induction on k.

In Chapter 7, we’ll talk in detail about modular arithmetic, including a more general algorithm for converting from one base to

another (p. 7-16). There, we’ll do most of the computation iteratively; here you’ll fill in a few pieces recursively.

5.49 Generalize the parity(n) algorithm to remainder(n, k) to recursively compute the number r ∈ {0, 1, . . . , k− 1} such that

remainder(n, k) = n mod k. Assume that k ≥ 1 and n ≥ 0 are both integers, and follow the same algorithmic outline as in

Figure 5.24. Prove your algorithm correct using strong induction on n.

5.50 Generalize the toBinary(n) algorithm to baseConvert(n, k) to recursively convert the integer n to base k. Assume that k ≥ 2

and n ≥ 0 are both integers, and follow the same algorithmic outline as in Figure 5.25. Prove using strong induction on n that if

baseConvert(n, k) = ⟨bℓ, bℓ−1, . . . , b0⟩ with each bi ∈ {0, 1, . . . , k− 1}, then n =
∑ℓ

i=0 k
ibi.

5.51 (programming required.) Implement your remainder and baseConvert algorithms, in a language of your choice.

You are sitting around the table with a crony you’re in cahoots with. You and the crony decide to play the following silly game. (The

two of you run a store that sells nothing but vicious robotic dogs. The loser of the game has to clean up the yard where the dogs

roam—not a pleasant chore—so the stakes are high.) We start with n ∈ Z≥1 stolen credit cards on a table. The two players take

turns removing cards from the table. In a single turn, a player chooses to remove either one or two cards. A player wins by taking

the last card. For example:

all gone; you win!
your turn

take two

crony’s turn

take one

your turn

take two

5.52 Prove (by strong induction on n) that if n is divisible by three, then the second player to move can guarantee a win, and if n is not

divisible by three, then the first player to move can guarantee a win.

parity(n): // assume that n ≥ 0 is an integer
1 if n ≤ 1 then
2 return n

3 else
4 return parity(n− 2)

Figure 5.24 A reminder of parity (from Figure 5.17).

toBinary(n): // assume that n ≥ 0 is an integer

1 if n ≤ 1 then
2 return ⟨n⟩
3 else
4 ⟨bk, . . . , b0⟩ := toBinary(

⌊ n
2

⌋
)

5 x := parity(n)
6 return ⟨bk, . . . , b0, x⟩

Figure 5.25 An algorithm to convert an integer to binary.
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5.53 Determine who wins the “Take k” modification of the game from Exercise 5.52: conjecture a condition on n that describes precisely

when the first player can guarantee a win under the stated modification, and prove your answer. Here’s the variant of the game: Let

k ≥ 1 be any integer. As in the original game, the player who takes the last card wins—but each player is now allowed to take any

number of cards between 1 and k in any single move. (The original game was Take-2.) Your answer can depend both on k and the

starting number n of cards.

5.54 Repeat for the “Don’t Go Last” variant: As in the original game, players can take only 1 or 2 cards per turn—but the player who

takes the last card loses (instead of winning by managing to take the last card).

5.55 Prove by strong induction on n that, for every integer n ≥ 4, it is possible to make n dollars using only two- and five-dollar bills.

(That is, prove that any integer n ≥ 4 can be written as n = 2a+ 5b for some integer a ≥ 0 and some integer b ≥ 0.)

5.56 Consider a sport in which teams can score two types of goals, worth either 3 points or 7 points. For example, Team Vikings might

(theoretically speaking) score 32 points by accumulating, in succession, 3, 7, 3, 7, 3, 3, 3, and 3 points. Find the smallest possible

n0 such that, for any n ≥ n0, a team can score exactly n points in a game. Prove your answer correct by strong induction.

Define the Fibonacci numbers by the sequence f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. Thus the first several Fibonacci

numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . . (The Fibonacci numbers are named after Leonardo of Pisa, also sometimes known

as Leonardo Bonacci or just as Fibonacci, a 13th-century Italian mathematician. We’ll see a lot more about the Fibonacci numbers

in Section 6.4.) Prove each of the following statements by induction—weak or strong, as appropriate—on n:

5.57 fn mod 2 = 0 if and only if n mod 3 = 0. (That is, every third Fibonacci number is even.)

5.58 fn mod 3 = 0 if and only if n mod 4 = 0.

5.59
n∑

i=1

fi = fn+2 − 1

5.60
n∑

i=1

(fi)
2 = fn · fn+1

5.61 Prove Cassini’s identity: fn−1 · fn+1 − (fn)2 = (−1)n for any n ≥ 2.

5.62 For a k-by-kmatrixM, the matrixMn is also k-by-k, and its value is the result of multiplyingM by itself n times:MM · · ·M. We can

define matrix exponentiation recursively:M0 = I (the k-by-k identity matrix), andMn+1 = M ·Mn. Using this recursive definition,

prove the following identity concerning the Fibonacci numbers:


1 1

1 0



n−1

·


1

0


 =


 fn

fn−1


 for any n ≥ 2.

You may use the associativity of matrix multiplication in your answer: for any matrices A, B, and C of the appropriate dimensions,

we have A(BC) = (AB)C.

Define the Lucas numbers as L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3. (The Lucas numbers are a less famous cousin of

the Fibonacci numbers; they follow the same recursive definition as the Fibonaccis, but starting from a different pair of base cases.

They’re named after Édouard Lucas, a 19th-century French mathematician.) Prove the following facts about the Lucas numbers,

by induction (weak or strong, as appropriate) on n:

5.63 Ln = fn + 2fn−1

5.64 fn =
Ln−1+Ln+1

5

5.65 (Ln)2 = 5(fn)2+4(−1)n (Hint: youmay need to conjecture a second property relating Lucas and Fibonacci numbers to complete the

proof of the given property P(n)—specifically, try to formulate a property Q(n) relating LnLn−1 and fnfn−1, and prove P(n) ∧ Q(n)

with a single proof by strong induction.)

Define the Jacobsthal numbers as J1 = 1, J2 = 1, and Jn = Jn−1 + 2Jn−2 for n ≥ 3. (Thus the Jacobsthal numbers are a more

distant relative of the Fibonacci numbers: they have the same base case, but a different recursive definition. They’re named after
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Ernst Jacobsthal, a 20th-century German mathematician.) Prove the following facts about the Jacobsthal numbers by induction

(weak or strong, as appropriate) on n:

5.66 Jn = 2Jn−1 + (−1)n−1, for all n ≥ 2.

5.67 Jn =
2n−(−1)n

3

5.68 Jn = 2n−1 − Jn−1, for all n ≥ 2.

The next two problems are previews of Chapter 9, where we’ll talk about how to count the size of sets (often, sets that are described

in somewhat complicated ways). You should be able to attack these problems without the detailed results from Chapter 9, but feel

free to glance ahead to Section 9.2 if you’d like.

5.69 You are given a 2-by-n grid that you must tile, using either 1-by-2 dominoes or 2-by-2 squares. The dominoes can be arranged

either vertically or horizontally. (See Figure 5.26.) Prove by strong induction on n that the number of different ways of tiling the

2-by-n grid is precisely Jn+1. (Be careful: it’s easy to accidentally count some configurations twice—for example, make sure that

you count only once the tiling of a 2-by-3 grid that uses three horizontal dominoes.)

5.70 Suppose that you run out of squares, so you can now only use dominoes for tiling. (See Figure 5.26a.) How does your answer to

the previous exercise change? How many different tilings of a 2-by-n grid are there now? Prove your answer.

The Fibonacci word fractal defines a sequence of bitstrings using a similar recursive description to the Fibonacci numbers. See

Figure 5.27 for the definition and a few examples. It turns out that if we delete the last two bits from sn, the resulting string is a

palindrome (reading the same back-to-front and front-to-back).

5.71 Prove by strong induction that the number of bits in sn is precisely fn (the nth Fibonacci number).

5.72 Prove by strong induction that the string sn does not contain two consecutive 1s or three consecutive 0s.

5.73 Let #0(x) and #1(x) denote the number of 0s and 1s in a bitstring x, respectively. Show that, for all n ≥ 3, the amount by which

the number of zeroes exceeds the number of ones—that is, the quantity #0(sn)−#1(sn)—is a Fibonacci number.

5.74 (programming required.) The reason that sn is called a fractal is that it’s possible to visualize these “words” (strings) as a geometric

fractal by interpreting 0s and 1s as “turn” and “go straight,” respectively. Specifically, here’s the algorithm: start pointing east. For

the ith symbol in sn, for i = 1, 2, . . . , |sn|: if the symbol is 1 then do not turn; if the symbol is a 0 and i is even, turn 90◦ to the

right; and if the symbol is a 0 and i is odd, turn 90◦ to the left. In any case, proceed in your current direction by one unit. (See

Figure 5.27.) Write a program to draw a bitstring using these rules. Then implement the definition of the Fibonacci word fractal

and “draw” the strings s1, s2, . . . , s16. (For efficiency’s sake, you may want to compute sn with a loop instead of recursively; see

Figure 6.33 in Chapter 6 for some ideas.)

5.75 The sum of the interior angles of any triangle is 180◦. Now, using this fact and induction, prove that any polygon with k ≥ 3 vertices

has interior angles that sum to 180k− 360 degrees. (See Figure 5.28.)

5.76 A diagonal of a polygon is a line that connects two non-adjacent vertices. (Again, see Figure 5.28.) How many diagonals are there

in a triangle? A quadrilateral? A pentagon? Formulate a conjecture for the number d(k) of diagonals in a k-gon, and prove your

formula correct by induction. (Hint: consider lopping off a triangle from the polygon.)

5.77 Prove that the recursive binary search algorithm shown in Figure 5.29 is correct. That is, prove the following condition, by strong

induction on n: For any sorted array A[1 . . . n], binarySearch(A, x) returns true if and only if x ∈ A.

5.78 Prove by weak induction on the total length of the inputs (that is, on the quantity n + m) that the merge algorithm in Figure 5.29

satisfies the following property for any n ≥ 0 and m ≥ 0: given any two sorted arrays X[1 . . . n] and Y[1 . . .m] as input, the output

of merge(X,Y) is a sorted array containing all elements of X and all elements of Y.

5.79 Prove by strong induction on n that mergeSort(A[1 . . . n]), shown in Figure 5.29, indeed sorts its input.

5.80 Give a recursive algorithm to compute a list of all permutations of a given set S. (That is, compute a list of all possible orderings of

the elements of S. For example, permutations({1, 2, 3}) should return ⟨1, 2, 3⟩, ⟨1, 3, 2⟩, ⟨2, 1, 3⟩, ⟨2, 3, 1⟩, ⟨3, 1, 2⟩, and ⟨3, 2, 1⟩,
in some order.) Prove your algorithm correct by induction.
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(a) The five ways to tile using dominoes (n = 4). (b) The six additional tilings when we also allow squares.

Figure 5.26 How many ways are there to tile an 2-by-n grid using 1-by-2 dominoes and 2-by-2 squares?

s1 = 1
s2 = 0
sn = sn−1 ◦ sn−2

(a) The definition.

the concatenation of sn−1 and sn−2

s3 = s2 ◦ s1 = 0 1
s4 = s3 ◦ s2 = 01 0
s5 = s4 ◦ s3 = 010 01
s6 = s5 ◦ s4 = 01001 010

(b) Some examples.

the starting
point (first
point drawn)

the ending
point (last
point drawn)

(c) A visualization of s14, as in Exercise 5.74.

Figure 5.27 The Fibonacci word fractal, which defines a sequence of bitstrings using recursion.

(a) A polygon. (b) The interior angles. (c) One of the diagonals.

Figure 5.28 A polygon, its interior angles, and one of its diagonals.

Prove that weak induction, as defined in Section 5.2, and strong induction are equivalent. (Hint: in one of these two exercises, you

will have to use a different predicate than P.)

5.81 Suppose that you’ve written a proof of ∀n ∈ Z≥0 : P(n) by weak induction. I’m in an evil mood, and I declare that you aren’t

allowed to prove anything by weak induction. Explain how to adapt your weak-induction proof to prove ∀n ∈ Z≥0 : P(n) using

strong induction.

5.82 Now suppose that, obeying my new Draconian rules, you have written a proof of ∀n ∈ Z≥0 : P(n) by strong induction. In a doubly

evil mood, I tell you that now you can only use weak induction to prove things. Explain how to adapt your strong-induction proof

to prove ∀n ∈ Z≥0 : P(n) using weak induction.
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binarySearch(A[1 . . . n], x):

1 if n ≤ 0 then
2 return False
3 middle := ⌊ 1+n

2 ⌋
4 if A[middle] = x then
5 return True
6 else if A[middle] > x then
7 return binarySearch(A[1 . . .middle− 1], x)
8 else
9 return binarySearch(A[middle+ 1 . . . n], x)

Note: for the sake of efficiency, it’s important to make sure that
Line 7 and Line 9 do not copy half of the array A. (As written, they
appear to.) Usually, you’d accomplish these steps efficiently by
maintaining one array, and passing indices into that array (rather than
the array itself) as parameters to binarySearch. Writing it out with
the extra parameters makes this algorithm a lot harder to read, so this
pseudocode errs on the side of readability at the cost of leaving out an
important implementation detail.

merge(X[1 . . . n],Y[1 . . .m]):

1 if n = 0 then
2 return Y

3 else if m = 0 then
4 return X

5 else if X[1] < Y[1] then
6 return X[1] followed by merge(X[2 . . . n],Y)
7 else
8 return Y[1] followed by merge(X,Y[2 . . .m])

mergeSort(A[1 . . . n]):

1 if n = 1 then
2 return A

3 else
4 L := mergeSort(A[1 . . .

⌊ n
2

⌋
])

5 R := mergeSort(A[
⌊ n
2

⌋
+ 1 . . . n])

6 return merge(L,R)

Figure 5.29 Binary Search, Merge, and Merge Sort, recursively.
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5.4 Recursively Defined Structures and Structural Induction

The vermin only teaze and pinch
Their foes superior by an inch.
So, naturalists observe, a flea
Has smaller fleas that on him prey;
And these have smaller still to bite ’em,
And so proceed ad infinitum.

Thus every poet, in his kind,
Is bit by him that comes behind.

Jonathan Swift (1667–1745)
“On Poetry: a Rhapsody” (1733)

In the proofs that we have written so far in this chapter, we have performed induction on an integer:

the number that’s the input to an algorithm, the number of vertices of a polygon, the number of elements

in an array. In this section, we will address proofs about recursively defined structures, instead of about

integers, using a version of induction called structural induction that proceeds over the defined structure

itself, rather than just using numbers.

5.4.1 Recursively Defined Structures

A recursively defined structure, just like a recursive algorithm, is a structure defined in terms of one or

more base cases and one or more inductive cases. Any data type that can be understood as either a trivial

instance of the type or as being built up from a smaller instance (or smaller instances) of that type can

be expressed in this way. For example, basic data structures like a linked list and a binary tree can be

defined recursively. So too can well-formed sentences of a formal language—languages like Python, or

propositional logic—among many other examples. In this section, we’ll give recursive definitions for some

of these examples.

Linked lists

A linked list is a commonly used data structure in which we store a sequence of elements (just like the

sequences from Section 2.4). The reasons that linked lists are useful are best left to a data structures course,

but here is a brief synopsis of what a linked list actually is. Each element in the list, called a node, stores a

data value and a “pointer” to the rest of the list. A special value, often called null, represents the empty

list; the last node in the list stores this value as its pointer to represent that there are no further elements in

the list. See Figure 5.30a for an example. Here is a recursive definition of a linked list:
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1 6 1 9

(a)
1

3 2

5 4

8

(b)

Figure 5.30 An example of (a) a linked list and (b) a binary tree. The slashed line represents the null value.

Example 5.15: Linked list.

A linked list is either:

1 ⟨⟩, known as the empty list; or

2 ⟨x, L⟩, where x is an arbitrary element and L is a linked list.

For example, Figure 5.30a shows the linked list that consists of 1 followed by the linked list containing 6,

1, and 9 (which is a linked list consisting of 6 followed by a linked list containing 1 and 9, which is …). In

other words, Figure 5.30a shows the linked list ⟨1, ⟨6, ⟨1, ⟨9, ⟨⟩⟩⟩⟩⟩.

Binary trees

We can also recursively define a binary tree (see Section 11.4.2). We’ll again defer the discussion of why

binary trees are useful, but here is a quick summary of what they are. Like a linked list, a binary tree is

a collection of nodes that store data values and “pointers” to other nodes. Unlike a linked list, a node in

a binary tree stores two pointers to other nodes (or null, representing an empty binary tree). These two

pointers are to the left child and right child of the node. The root node is the one at the very top of the

tree. See Figure 5.30b for an example; the root node of this tree stores the value 1, and has a left child (the

binary tree with root 3) and a right child (the binary tree with root 2). Here is a recursive definition:

Example 5.16: Binary trees.

A binary tree is either:

1 the empty tree, denoted by null; or

2 a root node x, a left subtree Tℓ, and a right subtree Tr, where x is an arbitrary value and Tℓ and Tr are

both binary trees.

Taking it further: In many programming languages, we can explicitly define data types that echo these recursive definitions,

where the base case is a trivial instance of the data structure (often nil or None or null). In C, for example, we can define a

binary tree with integer-valued nodes as:
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1 struct binaryTree {
2 int root;
3 struct binaryTree *leftSubtree;
4 struct binaryTree *rightSubtree;

In C, the symbol * means that we’re storing a
reference, or pointer, to the subtrees, rather than
the subtrees themselves, in the data structure.

5 }

The base case—an empty binary tree—is NULL; the inductive case—a binary tree with a root node—has a value stored as its root,

and then two binary trees (possibly empty) as its left and right subtrees.

Define the leaves of a binary tree T to be those nodes contained in Twhose left subtree and right subtree are

both null. Define the internal nodes of T to be all nodes that are not leaves. In Figure 5.30b, for example,

the leaves are the nodes 5 and 8, and the internal nodes are {1, 2, 3, 4}.

Taking it further: Binary trees with certain additional properties turn out to be very useful ways of organizing data for efficient

access. For example, a binary search tree is a binary tree in which each node stores a “key,” and the tree is organized so that, for

any node u, the key at node u is larger than all the keys in u’s left subtree and smaller than all the keys in u’s right subtree. (For

example, we might store the email address of a student as a key; the tree is then organized alphabetically.) Another special type

of a binary search tree is a heap, in which each node’s key is larger than all the keys in its subtrees. These two data structures are

very useful in making certain common operations very efficient; see p. 5-38 (for heaps) and p. 11-73 (for binary search trees).

Sentences in a language

In addition to data structures, we can also define sentences in a language using a recursive definition—for

example, arithmetic expressions of the type that are understood by a simple calculator; or propositions (as

in Chapter 3’s propositional logic):

Example 5.17: Arithmetic expressions.

An arithmetic expression is any of the following:

1 any integer n;

2 −E, where E is an arithmetic expression; or

3 E+ F, E− F, E · F, or E/F, where E and F are arithmetic expressions.

Example 5.18: Sentences of propositional logic.

A sentence of propositional logic (also known as a well-formed formula, or wff ) over the propositional

variables X is one of the following:

1 x, for some x ∈ X;

2 ¬P, where P is a wff over X; or

3 P ∨ Q, P ∧ Q, or P⇒ Q, where P and Q are wffs over X.

We implicitly used the recursive definition of logical propositions fromExample 5.18 throughout Chapter 3,

but using this recursive definition explicitly allows us to express a number of concepts more concisely. For

example, consider a truth assignment f : X→ {True, False} that assigns True or False to each variable in
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X. Then the truth value of a proposition over X under the truth assignment f can be defined recursively for

each case of the definition: (1) the truth value of x ∈ X under f is f(x); (2) the truth value of ¬P under f is

True if the truth value of P under f is False, and the truth value of ¬P under f is False if the truth value of

P under f is True; and so forth.

Taking it further: Linguists interested in syntax spend a lot of energy constructing recursive definitions (like those in Exam-

ples 5.17 and 5.18) of grammatical sentences of English. But one can also give a recursive definition for non-natural languages:

in fact, another structure that can be defined recursively is the grammar of a programming language itself. As such, this type of

recursive approach to defining (and processing) a grammar plays a key role not just in linguistics but also in computer science.

See the discussion on p. 5-56 for more.

5.4.2 Structural Induction

The recursively defined structures from Section 5.4.1 are particularly amenable to inductive proofs. For

example, recall from Example 5.16 that a binary tree is one of the following: (1) the empty tree, denoted

by null; or (2) a root node x, a left subtree Tℓ, and a right subtree Tr, where Tℓ and Tr are both binary trees.

To prove that some property P is true of all binary trees T, we can use (strong) induction on the number n

of applications of rule #2 from the definition. Here is an example of such a proof:

Example 5.19: Internal nodes vs. leaves in binary trees.

Recall that a leaf in a binary tree is a node whose left and right subtrees are both empty; an internal node

is any non-leaf node. Write leaves(T) and internals(T) to denote the number of leaves and internal nodes

in a binary tree T, respectively.

Claim: In any binary tree T, we have leaves(T) ≤ internals(T) + 1.

Proof. We proceed by strong induction on the number of applications of rule #2 used to generate T.

Specifically, let P(n) denote the property that leaves(T) ≤ internals(T) + 1 holds for any binary tree T

generated by n applications of rule #2; we’ll prove that P(n) holds for all n ≥ 0, which proves the claim.

Base case (n = 0). The only binary tree generated with 0 applications of rule #2 is the empty tree null.

Indeed, leaves(null) = internals(null) = 0, and 0 ≤ 0+ 1.

Definition 5.16, in brief:

Rule #1: null is a binary tree.

Rule #2: if Tℓ and Tr are binary trees,
then ⟨x,Tℓ,Tr⟩ is a binary tree.

(a) What binary trees are.

x

The only binary
tree produced by
one application of
rule #2 has one
node, which is a
leaf.

(b) One application of rule #2.

TrTℓ

x If T was produced by ≥ 2
applications of rule #2, then
at least one of Tℓ and Tr is not
null, and the leaves of T are
precisely the leaves of Tℓ plus
the leaves of Tr.

(c) Two or more applications of rule #2.

Figure 5.31 Illustrations of the inductive case for Example 5.19.
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Inductive case (n ≥ 1). Assume the inductive hypothesis P(0) ∧ P(1) ∧ · · · ∧ P(n− 1): for any binary

tree B generated using k < n applications of rule #2, we have leaves(B) ≤ internals(B) + 1. We must

prove P(n).

We’ll handle the case n = 1 separately. (See Figure 5.31b.) The only way to make a binary tree T

using one application of rule #2 is to use rule #1 for both of T’s subtrees, so Tmust contain only one node

(which is itself a leaf). Then T contains 1 leaf and 0 internal nodes, and indeed 1 ≤ 0+ 1.

Otherwise n ≥ 2. (See Figure 5.31c.) Observe that the tree T must have been generated by (a) gener-

ating a left subtree Tℓ using some number ℓ of applications of rule #2; (b) generating a right subtree Tr

using some number r of applications of rule #2; and then (c) applying rule #2 to a root node x, Tℓ, and Tr

to produce T. Therefore r+ ℓ+ 1 = n, and therefore r < n and ℓ < n. Ergo, we can apply the inductive

hypothesis to both Tℓ and Tr, and thus

leaves(Tℓ) ≤ internals(Tℓ) + 1 (1)

leaves(Tr) ≤ internals(Tr) + 1. (2)

Also observe that, because r+ ℓ+ 1 = n ≥ 2, either Tr ̸= null or Tℓ ̸= null, or both. Thus the leaves

of T are the leaves of Tℓ and Tr, and internal nodes of T are the internal nodes of Tℓ and Tr plus the root

x (which cannot be a leaf because at least one of Tℓ and Tr is not empty). Therefore

leaves(T) = leaves(Tℓ) + leaves(Tr) (3)

internals(T) = internals(Tℓ) + internals(Tr) + 1. (4)

Putting together these facts, we have

leaves(T) = leaves(Tℓ) + leaves(Tr) by (3)

≤ internals(Tℓ) + 1+ internals(Tr) + 1 by (1) and (2)

= internals(T) + 1. by (4)

Thus P(n) holds, which completes the proof.

Structural induction: the idea

The proof in Example 5.19 is perfectly legitimate, but there is another approach that we can use for recur-

sively defined structures, called structural induction. The basic idea is to perform induction on the structure

of an object itself rather than on some integer: instead of a case for n = 0 and a case for n ≥ 1, in a proof

by structural induction our cases correspond directly to the cases of the recursive structural definition.

For structural induction to make sense, we must impose some restrictions on the recursive definition.

Specifically, the set of structures defined must be well ordered,which intuitively ensures that every invoca-

tion of the inductive case of the definition “makes progress” toward the base case(s) of the definition. For
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the type of recursive definitions that we’re considering—where there are base cases in the definition, and

all instances of the structure are produced by a finite sequence of applications of the inductive rules in the

definition—structural induction is a valid technique to prove facts about the recursively defined structure.

Taking it further: A set of objects is called well ordered if there’s a “least” element among any collection of those objects. More

formally, a set S of structures is well ordered if there exists a “smaller than” relationship ≺ between elements of S such that, for

any nonempty T ⊆ S, there exists a minimal element m in T—that is, there exists m ∈ T such that no x ∈ T satisfies x ≺ m.

(There might be more than one least element in T.) For example, the set Z≥0 is well ordered, using the normal ≤ relationship.

However, the set R is not well ordered: for example, the set {x ∈ R : x > 2} has no smallest element using ≤. But the set of

binary trees is well ordered; the relation ≺ is “is a subtree of.” One can prove that a set S is well ordered if and only if a proof

by mathematical induction is valid on a set S (where the base cases are the minimal elements of S, and to prove P(x) we assume

the inductive hypotheses P(y) for any y ≺ x).

Proofs by structural induction

Here is the formal definition of a proof by structural induction:

Definition 5.12: Proof by structural induction.

Suppose that we want to prove that P(x) holds for every x ∈ S, where S is the (well-ordered) set of

structures generated by a recursive definition, and P is some property. To give a proof by structural

induction of ∀x ∈ S : P(x), we prove the following:

1 Base cases: for every x defined by a base case in the definition of S, prove P(x).

2 Inductive cases: for every x defined in terms of y1, y2, . . . , yk ∈ S by an inductive case in the definition

of S, prove that P(y1) ∧ P(y2) ∧ · · · ∧ P(yk)⇒ P(x).

In a proof by structural induction, we can view both base cases and inductive cases in the same light: each

case assumes that the recursively constructed subpieces of a structure x satisfy the stated property, and we

prove that x itself also satisfies the property. For a base case, the point is just that there are no recursively

constructed pieces, so we actually are not making any assumption.

Notice that a proof by structural induction is identical in form to a proof by strong induction on the

number of applications of the inductive-case rules used to generate the object. For example, we can imme-

diately rephrase the proof in Example 5.19 to use structural induction instead. While the structure of the

proof is identical, structural induction can streamline the proof and make it easier to read:

Example 5.20: Internal nodes vs. leaves in binary trees, take II.

Claim: In any binary tree T, we have leaves(T) ≤ internals(T) + 1.

Proof. Let P(T) denote the property that leaves(T) ≤ internals(T) + 1 for a binary tree T. We proceed

by structural induction on the form of T.

Base case (T = null). Then leaves(T) = internals(T) = 0, and indeed 0 ≤ 0+ 1.
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Inductive case (T has root x, left subtree Tℓ, and right subtree Tr). We assume the inductive hypotheses

P(Tℓ) and P(Tr), namely

leaves(Tℓ) ≤ internals(Tℓ) + 1 (1)

leaves(Tr) ≤ internals(Tr) + 1. (2)

• If x is itself a leaf, then Tℓ = Tr = null, and therefore leaves(T) = 1 and internals(T) = 0, and

indeed 1 ≤ 0+ 1.

• Otherwise x is not a leaf, and either Tr ̸= null or Tℓ ̸= null, or both. Thus the leaves of T are the

leaves of Tℓ and Tr, and internal nodes of T are the internal nodes of Tℓ and Tr plus the root x. Therefore

leaves(T) = leaves(Tℓ) + leaves(Tr) (3)

internals(T) = internals(Tℓ) + internals(Tr) + 1. (4)

Putting together these facts, we have

leaves(T) = leaves(Tℓ) + leaves(Tr) by (3)

≤ internals(Tℓ) + 1+ internals(Tr) + 1 by (1) and (2)

= internals(T) + 1. by (4)

Thus P(n) holds, which completes the proof.

5.4.3 Some More Examples of Structural Induction: Propositional Logic

We’ll finish this section with two more proofs by structural induction, about propositional logic—using

Example 5.18’s recursive definition.

Propositional logic using only ¬ and ∧

First, we’ll give a formal proof using structural induction of the claim that any propositional logic statement

can be expressed using ¬ and ∧ as the only logical connectives. (See Exercise 4.68.)

Example 5.21: All of propositional logic using ¬ and ∧.

Claim: For any logical propositionφ using the connectives {¬,∧,∨,⇒}, there exists a proposition using

only {¬,∧} that is logically equivalent to φ.

Proof. For a logical proposition φ, let A(φ) denote the property that there exists a {¬,∧}-only propo-

sition logically equivalent to φ. We’ll prove by structural induction on φ that A(φ) holds for any

well-formed formula φ (see Example 5.18):
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Base case: φ is a variable, say φ = x. The proposition x uses no connectives—and thus is vacuously

{¬,∧}-only—and is obviously logically equivalent to itself. Thus A(x) follows.

Inductive case I:φ is a negation, sayφ = ¬P.We assume the inductive hypothesis A(P). We must prove

A(¬P). By the inductive hypothesis, there is a {¬,∧}-only proposition Q such that Q ≡ P. Consider the

proposition ¬Q. Because Q ≡ P, we have that ¬Q ≡ ¬P, and ¬Q contains only the connectives {¬,∧}.
Thus ¬Q is a {¬,∧}-only proposition logically equivalent to ¬P. Thus A(¬P) follows.

Inductive case II: φ is a conjunction, disjunction, or implication, say φ = P1 ∧ P2, φ = P1 ∨ P2,

or φ = P1 ⇒ P2. We assume the inductive hypotheses A(P1) and A(P2)—that is, we assume there are

{¬,∧}-only propositionsQ1 andQ2 withQ1 ≡ P1 andQ2 ≡ P2. Wemust prove A(P1 ∧ P2), A(P1 ∨ P2),

and A(P1 ⇒ P2). Consider the propositionsQ1∧Q2, ¬(¬Q1∧¬Q2), and ¬(Q1∧¬Q2). By De Morgan’s

Law, and the facts that x⇒ y ≡ ¬(x ∧ ¬y), P1 ≡ Q1, and P2 ≡ Q2:

Q1 ∧ Q2 ≡ Q1 ∧ Q2 ≡ P1 ∧ P2

¬(¬Q1 ∧ ¬Q2) ≡ Q1 ∨ Q2 ≡ P1 ∨ P2

¬(Q1 ∧ ¬Q2) ≡ Q1 ⇒ Q2 ≡ P1 ⇒ P2

BecauseQ1 andQ2 are {¬,∧}-only, our three propositions are {¬,∧}-only as well; therefore A(P1∧P2),

A(P1 ∨ P2), and A(P1 ⇒ P2) follow.

We’ve shown that A(φ) holds for any proposition φ, so the claim follows.

Taking it further: In the programming language ML, among others, a programmer can use both recursive definitions and a

form of recursion that mimics structural induction. For example, we can give a simple implementation of the recursive definition

of a well-formed formula from Example 5.18:

1 datatype wff = Variable of string
“A well-formed formula is a variable (whose name
is a string), or the negation of a well-formed
formula, or the conjunction of a pair of
well-formed formulas (wff * wff), or . . . .”)

2 | Not of wff
3 | And of (wff * wff)
4 | Or of (wff * wff)
5 | Implies of (wff * wff);

In ML, we can also write a function that mimics the structure of the proof in Example 5.21, using ML’s capability of pattern

matching function arguments. Here is an implementation of the recursive function that takes an arbitrary wff as input, and

produces an equivalent wff using only And and Not as output.

6 fun simplify (Variable var) = Variable var
7 | simplify (Not P) = Not(simplify P)
8 | simplify (And (P1, P2)) = And(simplify P1, simplify P2)
9 | simplify (Or (P1, P2)) = Not(And(Not(simplify P1), Not(simplify P2)))

10 | simplify (Implies (P1, P2)) = Not(And(simplify P1, Not(simplify P2)));

Conjunctive and Disjunctive Normal Forms

Here is another example of a proof by structural induction based on propositional logic, to establish Theo-

rems 3.18 and 3.19, that any proposition is logically equivalent to one that’s in conjunctive or disjunctive

normal form. (Recall that a proposition φ is in conjunctive normal form (CNF) if φ is the conjunction of
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one or more clauses, where each clause is the disjunction of one or more literals. A literal is a Boolean

variable or the negation of a Boolean variable. A proposition φ is in disjunctive normal form (DNF) if φ

is the disjunction of one or more clauses, where each clause is the conjunction of one or more literals.)

Theorem 5.13: CNF/DNF suffice.
Let φ be a Boolean formula that uses the connectives {∧,∨,¬,⇒}. Then:

1 there exists φdnf in disjunctive normal form so that φ and φdnf are logically equivalent.

2 there exists φcnf in conjunctive normal form so that φ and φcnf are logically equivalent.

Perhaps bizarrely, it will turn out to be easier to prove that any proposition is logically equivalent to both

one in CNF and one in DNF than to prove either claim on its own. So we will prove both parts of the

theorem simultaneously, by structural induction.

Problem-solving tip: Suppose we want to prove ∀x : P(x) by induction. Here’s a problem-solving strategy that’s highly coun-

terintuitive: it is sometimes easier to prove a stronger statement ∀x : P(x)∧Q(x). It seems bizarre that trying to prove more than

what we want is easier—but the advantage arises because the inductive hypothesis is a more powerful assumption! For example,

I don’t know how to prove that any proposition φ can be expressed in DNF (Theorem 5.13.1) by induction! But I do know how

to prove that any proposition φ can be expressed in both DNF and CNF by induction, as is done in Example 5.22.

We’ll make use of some handy notation in this proof: analogous to summation and product notation, we

write
∧n

i=1pi to denote p1 ∧ p2 ∧ · · · ∧ pn, and similarly
∨n

i=1pi means p1 ∨ p2 ∨ · · · ∨ pn. Here is the proof:

Example 5.22: Conjunctive/disjunctive normal form.

Proof. We start by simplifying the task: we use Example 5.21 to ensure that φ contains only the con-

nectives {¬,∧}. Let C(φ) and D(φ), respectively, denote the property that φ is logically equivalent to

a CNF proposition and a DNF proposition, respectively. We now proceed by structural induction on the

form of φ—which now can only be a variable, negation, or conjunction—to show that C(φ) ∧ D(φ)

holds for any proposition φ.

Base case:φ is a variable, sayφ = x.We’re done immediately; a single variable is actually in both CNF

and DNF. We simply choose φdnf = φcnf = x. Thus C(x) and D(x) follow immediately.

Inductive case I: φ is a negation, say φ = ¬P. We assume the inductive hypothesis C(P) ∧ D(P)—that

is, we assume that there are propositions Pcnf and Pdnf such that P ≡ Pcnf ≡ Pdnf, where Pcnf is in CNF

and Pdnf is in DNF. We must show C(¬P) and D(¬P).
We’ll first show D(¬P)—that is, that ¬P can be rewritten in DNF. By the definition of conjunctive

normal form, we know that the proposition Pcnf is of the form Pcnf =
∧n

i=1ci, where ci is a clause of the

form ci =
∨mi

j=1c
j
i, where cji is a variable or its negation. Therefore we have
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¬P≡

inductive hypothesis C(P)

¬Pcnf ≡

definition of CNF

¬
[

n∧
i=1

(
mi∨
j=1

cij

)]
≡

De Morgan’s Law

[
n∨

i=1
¬
(

mi∨
j=1

cij

)]
≡

De Morgan’s Law

[
n∨

i=1

(
mi∧
j=1
¬cij

)]
.

Once we delete double negations (that is, if cji = ¬x, then we write ¬cji as x rather than as ¬¬x), this last
proposition is in DNF, so D(¬P) follows.

The construction to show C(¬P)—that is, to give an CNF proposition logically equivalent to ¬P—is

strictly analogous; the only change to the argument is that we start from Pdnf instead of Pcnf.

Inductive case II: φ is a conjunction, say P ∧ Q. We assume the inductive hypotheses C(P) ∧ D(P) and

C(Q) ∧ D(Q)—that is, we assume that there are CNF propositions Pcnf and Qcnf and DNF propositions

Pdnf and Qdnf such that P ≡ Pcnf ≡ Pdnf and Q ≡ Qcnf ≡ Qdnf. We must show C(P ∧ Q) and D(P ∧ Q).

The argument for C(P∧Q) is the easier of the two: we have propositions Pcnf and Qcnf in CNF where

Pcnf ≡ P and Qcnf ≡ Q. Thus P ∧ Q ≡ Pcnf ∧ Qcnf—and the conjunction of two CNF formulas is itself

in CNF. So C(P ∧ Q) follows.

We have to work a little harder to prove D(P ∧ Q). Recall that, by the inductive hypothesis, there

are propositions Pdnf and Qdnf in DNF, where P ≡ Pdnf and Q ≡ Qdnf. By the definition of DNF, these

propositions have the form Pdnf =
∨n

i=1ci and Qdnf =
∨m

j=1dj, where every ci and dj is a clause that is a

conjunction of literals. Therefore

P ∧ Q≡

inductive hypothesis D(P) and definition of DNF

(
n∨

i=1
ci

)
∧ Q≡

distributivity of ∨ over ∧

n∨
i=1

(ci ∧ Q)≡

inductive hypothesis D(Q) and definition of DNF

n∨
i=1

(
ci ∧

m∨
i=j

dj

)
≡

distributivity of ∨ over ∧

n∨
i=1

m∨
j=1

(ci ∧ dj) .

Because every ci and dj is a conjunction of literals, ci ∧ dj is too, and thus this last proposition is in DNF!

So D(P ∧ Q) follows—as does the theorem.

The construction for a conjunction P ∧ Q in Theorem 5.22 is a little tricky, so let’s illustrate it with a

small example:

Example 5.23: An example of the construction from Example 5.22.

Suppose that we are trying to transform a propositionφ∧ψ into DNF. Suppose that we have (recursively)

computed φdnf = (p ∧ t) ∨ q and ψdnf = r ∨ (s ∧ t). Then the construction from Example 5.22 lets us

construct a proposition equivalent to φ ∧ψ as:

φ ∧ψ ≡ φdnf ∧ψdnf ≡
[
(p ∧ t)

c1
∨ (q)

c2

]
∧
[
(r)
d1
∨ (s ∧ t)

d2

]

≡
[
(p ∧ t)

c1
∧
[
(r) ∨ (s ∧ t)

d1 ∨ d2

]]
∨
[
(q)
c2
∧
[
(r) ∨ (s ∧ t)

d1 ∨ d2

]]
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≡
[
(p ∧ t ∧ r)

c1 ∧ d1
∨ (p ∧ t ∧ s ∧ t)

c1 ∧ d2

]
∨
[
(q ∧ r)
c2 ∧ d1

∨ (q ∧ s ∧ t)
c2 ∧ d2

]
.

Then the construction yields (p ∧ t ∧ r) ∨ (p ∧ t ∧ s ∧ t) ∨ (q ∧ r) ∨ (q ∧ s ∧ t) as the DNF proposition

equivalent to φ ∧ψ.

5.4.4 The Integers, Recursively Defined

Before we end the section, we’ll close our discussion of recursively defined structures and structural induc-

tion with one more potentially interesting observation. Although the basic form of induction in Section 5.2

appears fairly different, that basic form of induction can actually be seen as structural induction, too. The

key is to view the nonnegative integers Z≥0 as defined recursively:

Definition 5.14: Nonnegative integers, recursively defined.

A nonnegative integer is either:

1 zero, denoted by 0; or

2 the successor of a nonnegative integer, denoted by s(x) for a nonnegative integer x.

Under this definition, a proof of ∀n ∈ Z≥0 : P(n) by structural induction and a proof of ∀n ∈ Z≥0 : P(n)

by weak induction are literally identical. First, they have precisely the same base case: prove P(0). And,

second, they have precisely the same inductive case: prove P(n)⇒ P(s(n))—or, in other words, prove that

P(n)⇒ P(n+ 1).
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Computer Science Connections

Grammars, Parsing, and Ambiguity

In interpreters and compilers—systems that translate input source code written in a programming language like

Python, Java, or C into a machine-executable format—a key initial step is to parse the input into a format that

represents its structure. (A similar step occurs in systems designed to perform natural language processing.) The

structured representation of such an expression is called a parse tree, in which the leaves of the tree correspond

to the base cases of the recursive structural definition, and the internal nodes correspond to the inductive cases of

the definition. We can then use the parse tree for whatever purpose we desire: evaluating arithmetic expressions,

simplifying propositional logic, or any other manipulation. (See Figure 5.32.)

·

+

43

2

+

4·

32

Figure 5.32 Parse trees for two arithmetic expressions:
2 · (3+ 4) and (2 · 3) + 4.

In this setting, a recursively defined structure is

written as a context-free grammar (CFG). A grammar

consists of a set of rules that can be used to gener-

ate a particular example of this defined structure. (This

type of grammar is called context free because the rules

defined by the grammar can be used any time—that is,

without regard to the context in which the symbol on

the left-hand side of the rule appears. There are also

“context-sensitive” grammars, which remove this restriction; they tend to be more complicated to think about.) We’ll

take the definition of propositions over the variables {p, q, r} (Example 5.18) as a running example. Here is a CFG

for propositions, following that definition precisely. (Here “→” means “can be rewritten as” and “|” means “or.”)

S → p | q | r
S can be a propositional

variable

| ¬S
or S can be the

negation of a

proposition

| S ∨ S | S ∧ S | S ⇒ S
or S can be the ∧ or ∨ or ⇒ of

two propositions.

.

An expression is a valid proposition over the variables {p, q, r} if and only if it can be generated by a finite sequence

of applications of the rewriting rules in the grammar. For example,¬p∨p is a valid proposition over {p, q, r}, because
we can generate it as follows (the rule from the grammar that we’ve invoked in each step is shown above the arrow):

S →
S → S ∨ S

S ∨ S →
S → p

S ∨ p →
S → ¬S

¬S ∨ p →
S → p

¬p ∨ p. (1)

The parse tree corresponding to this sequence of rule applications is shown in Figure 5.33a. A complication that arises

with the grammar given above is that it is ambiguous: the same proposition can be produced using a fundamentally

different sequence of rule applications, which gives rise to a different parse tree:

S → ¬S → ¬S ∨ S → ¬p ∨ S → ¬p ∨ p. (2)

S

S

p

∨S

S

p

¬

(a) The correct order of
operations, corresponding
to derivation (1).

S

S

S

p

∨S

p

¬

(b) The wrong order of
operations, corresponding
to derivation (2).

Figure 5.33 Two parse trees for ¬p ∨ p.

The parse tree corresponding to this second derivation

is shown in Figure 5.33b. This second parse tree corre-

sponds to the expression ¬(p∨ p) instead of (¬p)∨ p,

which is the correct “order of operations” because ¬
binds tighter than ∨.
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It’s bad news if the grammar of a programming lan-

guage is ambiguous, because certain valid code is then

“allowed” to be interpreted in more than one way. (The

classic example is the attachment of else clauses: in

code like if P then if Q then X else Y, when

should Y be executed? When P is true and Q is false? Or when P is false?) Thus programming language designers

develop unambiguous grammars that reflect the desired behavior. (For more on context-free grammars and parsing,

and the relationship between context-free grammars and compilers/interpreters, see [5, 73, 120].)
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EXERCISES

Consider linked lists as defined in Example 5.15. See Figure 5.34 for some algorithms operating on linked lists.

5.83 Let L be a linked list. Prove by structural induction on L that length(L) returns the number of elements contained in L.

5.84 Prove by structural induction that contains(L, x) returns True if and only if x is one of the elements in L.

5.85 Prove by structural induction that sum(L) returns the sum of the elements of L. (Assume L contains only numbers.)

5.86 Here’s a variant of the definition of linked lists in Example 5.15, where we insist that the elements be in increasing order. Define a

nonempty sorted list as one of the following:

• ⟨x, ⟨⟩⟩; or
• ⟨x, ⟨y,L⟩⟩ where x ≤ y and ⟨y,L⟩ is a nonempty sorted list.

Prove by structural induction that in a nonempty sorted list ⟨x,L⟩, every element z in L satisfies z ≥ x.

Intuitively, a string of parentheses is unbalanced if there’s an open parenthesis that’s never closed (as in [[]) or if there’s a close

parenthesis that doesn’t close anything (as in []] ). Formally, define a string of balanced parentheses as any of the following:

• the empty string (consisting of zero characters);

• a string [ S ] where S is a string of balanced parentheses; or

• a string S1S2 where S1 and S2 are both strings of balanced parentheses.

For example, [[]][] is a string of balanced parentheses, using the third rule on [[]] and []. (And [] is a string of balanced

parentheses using the second rule on the empty string. Thus [[]] is, too, using the second rule on [].)

5.87 Prove by structural induction that every string of balanced parentheses has exactly the same number of [s as it does ]s.

5.88 Prove by structural induction that any prefix of a string of balanced parentheses has at least as many [s as it does ]s.

5.89 Prove by structural induction that the algorithm countLeaves(T) in Figure 5.35 returns the number of leaves in a binary tree T.

5.90 A binary search tree (BST) is a binary tree in which each node stores a “key,” and, for any node u, the key at node u is larger than

all keys in u’s left subtree and smaller than all the keys in u’s right subtree. (See p. 11-73.) That is, a BST is either:

• an empty tree, denoted by null; or

• a root node x, a left subtree Tℓ where all elements are less than x, and a right subtree Tr, where all elements are greater than x,

and Tℓ and Tr are both BSTs.

length(L): // L is any linked list

1 if L = ⟨⟩ then
2 return 0
3 else if L = ⟨x,L′⟩ then
4 return 1+ length(L′)

contains(L, x): // L is any linked list

1 if L = ⟨⟩ then
2 return False
3 else if L = ⟨y,L′⟩ then
4 return x = y or contains(L′, x)

sum(L): // L contains only numbers

1 if L = ⟨⟩ then
2 return 0
3 else if L = ⟨x,L′⟩ then
4 return x+ sum(L′)

Figure 5.34 Three algorithms on linked lists.

countLeaves(T):

1 if T = null then
2 return 0
3 else
4 TL,TR := the left and right subtrees of T
5 if TL = TR = null then
6 return 1
7 else
8 return countLeaves(TL) + countLeaves(TR)

A reminder of Definition 5.16: a binary tree is either

• an empty tree, denoted by null; or
• a root node x, a left subtree Tℓ, and a right subtree Tr,

where x is an arbitrary value and Tℓ and Tr are both
binary trees.

(Recall that a leaf of a binary tree T is a node in T whose left
subtree and right subtree are both null.)

Figure 5.35 A reminder of the definition of a binary tree, and an algorithm to count leaves in one.
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Prove that the smallest element in a nonempty BST is the bottommost leftmost node—that is, prove that

the smallest element in a BST with root x and left subtree Tℓ =




x if Tℓ = null

the smallest element in Tℓ if Tℓ ̸= null.

A heap is a binary tree where each node stores a priority, and in which every node satisfies the heap property: the priority of a node

u must be greater than or equal to the priorities of the roots of both of u’s subtrees. (The restriction only applies for a subtree that

is not null.) See p. 5-38.

5.91 Give a recursive definition of a heap.

5.92 Prove by structural induction that every heap is empty, or that no element of the heap is larger than its root node. (That is, the root

is a maximum element.)

5.93 Prove by structural induction that every heap is empty, or it has a leaf u such that u is no larger than any node in the heap. (That is,

the leaf u is a minimum element.)

A 2–3 tree is a data structure that is similar in spirit to a binary search tree (see Exercise 5.90—more precisely, a 2–3 tree is

analogous to a balanced form of BST, which is guaranteed to support fast operations like insertions, lookups, and deletions). The

name “2–3 tree” comes from the fact that each internal node in the tree must have precisely 2 or 3 children; no node has a single

child. Furthermore, all leaves in a 2–3 tree must be at the same “level” of the tree. Formally, a 2–3 tree of height h is one of the

following:

• a single node (in which case h = 0, and the node is called a leaf); or

• a node with 2 subtrees, both of which are 2–3 trees of height h− 1; or

• a node with 3 subtrees, all three of which are 2–3 trees of height h− 1.

5.94 Prove by structural induction that a 2–3 tree of height h has at least 2h leaves.

5.95 Prove by structural induction that a 2–3 tree of height h has at most 3h leaves. (This result plus Exercise 5.94 tells us that a 2–3 tree

that contains n leaf nodes has height between log3 n and log2 n.)

5.96 A 2–3–4 tree is a similar data structure to a 2–3 tree, except that a tree can be a single node or a node with 2, 3, or 4 subtrees. Give

a formal recursive definition of a 2–3–4 tree, and prove that a 2–3–4 tree of height h has at least 2h leaves and at most 4h leaves.

The next few exercises give recursive definitions of some familiar arithmetic operations which are usually defined nonrecursively.

In each, you’re asked to prove a familiar property by structural induction. Think carefully when you choose the quantity upon

which to perform induction, and don’t skip any steps in your proof! You may use the elementary-school facts about addition and

multiplication from Figure 5.36 in your proofs.

5.97 Let’s define an even number as either (i) 0, or (ii) 2 + k, where k is an even number. Prove by structural induction that the sum of

any two even numbers is an even number.

5.98 Let’s define a power of two as either (i) 1, or (ii) 2 · k, where k is a power of two. Prove by structural induction that the product of

any two powers of two is itself a power of two.

5.99 Let a1, a2, . . . , ak all be even numbers, for an arbitrary integer k ≥ 0. Prove that
∑k

i=1 ai is also an even number. (Hint: use weak

induction and Exercise 5.97.)

(a+ b) + c = a+ (b+ c)

Associativity of Addition

a+ b = b+ a Commutativity of Addition

(a · b) · c = a · (b · c)
Associativity of Multiplication

a · b = b · a Commutativity of Multiplication

a+ 0 = 0+ a = a Additive Identity

a · 1 = 1 · a = a Multiplicative Identity

a · 0 = 0 · a = 0 Multiplicative Zero

Figure 5.36 A few elementary-school facts about addition and multiplication.
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In Chapter 2 (Definition 2.5), we defined bn (for a base b ∈ R and an exponent n ∈ Z≥0) as denoting the result of multiplying

b by itself n times. As an alternative to that definition of exponentiation, we could instead give a recursive definition with integer

exponents: b0 = 1 and bn+1 = b · bn, for any nonnegative integer n.
5.100 Using the facts in Figure 5.36, prove by induction that bmbn = bm+n for any integers n ≥ 0 and m ≥ 0. Don’t skip any steps.

5.101 Using the facts in Figure 5.36 and Exercise 5.100, prove by induction that (bm)n = bmn for any integers n ≥ 0 and m ≥ 0. Again,

don’t skip any steps.

5.102 Suppose that we extend the well-formed formula (“wff”) definition from Example 5.18 to allow another logical connective: the

Sheffer stroke |, where p | q ≡ ¬(p ∧ q). Give a proof using structural induction (see Example 5.21 for an example) that any wff is

logically equivalent to one using Sheffer stroke as the only connective.

5.103 (programming required.) Write a program in the programming language ML (see p. 5-52) to translate an arbitrary statement of

propositional logic into a logically equivalent statement in which | is the only logical connective. (In other words, implement the

proof of Exercise 5.102 as a recursive function.)

5.104 Repeat Exercise 5.102 for Peirce’s arrow ↓, where p ↓ q ≡ ¬(p ∨ q).

5.105 (programming required.) Repeat Exercise 5.103 with ↓ as the only logical connective (using Exercise 5.104).

5.106 Call a logical proposition truth-preserving if the proposition is true under the all-true truth assignment. (That is, a proposition is

truth-preserving if and only if the first row of its truth table is True.) Prove the following claim by structural induction on the form

of the proposition:

Any logical proposition that uses only the logical connectives ∨ and ∧ is truth-preserving.

(A solution to this exercise yields a rigorous solution to Exercise 4.71—there are propositions that cannot be expressed using only

∧ and ∨. Explain.)

5.107 A palindrome is a string that reads the same front-to-back as it does back-to-front—for example, RACECAR or (ignoring spaces

and punctuation) A MAN, A PLAN, A CANAL---PANAMA! or 10011001. Give a recursive definition of the set of palindromic

bitstrings.

5.108 Let #0(s) and #1(s) denote the number of 0s and 1s in a bitstring s, respectively. Using structural induction and your definition

from Exercise 5.107, prove that, for any palindromic bitstring s, the value of [#0(s)] · [#1(s)] is an even number.
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5.5 Chapter at a Glance

Proofs by Mathematical Induction

Suppose that we want to prove that a property P(n) holds for all n ∈ Z≥0. To give a proof by mathematical

induction of the claim ∀n ∈ Z≥0 : P(n), we prove the base case P(0), and we prove the inductive case: for

every n ≥ 1, we have P(n− 1)⇒ P(n).

When writing an inductive proof of the claim ∀n ∈ Z≥0 : P(n), include each of the following steps:

1 A clear statement of the claim to be proven—that is, a clear definition of the property P(n) that will

be proven true for all n ≥ 0—and a statement that the proof is by induction, including specifically

identifying the variable n upon which induction is being performed. (Some claims involve multiple

variables, and it can be confusing if you aren’t clear about which is the variable upon which you are

performing induction.)

2 A statement and proof of the base case—that is, a proof of P(0).

3 A statement and proof of the inductive case—that is, a proof of P(n− 1)⇒ P(n), for a generic value of

n ≥ 1. The proof of the inductive case should include all of the following:

a a statement of the inductive hypothesis P(n− 1).

b a statement of the claim P(n) that needs to be proven.

c a proof of P(n), which at some point makes use of the assumed inductive hypothesis P(n− 1).

We can use a proof by mathematical induction to establish arithmetic properties, like a formula for the sum

of the nonnegative integers up to n—that is,
∑n

i=0 i =
n(n+1)

2 for any integer n ≥ 0—or a formula for a

geometric series:

if r ∈ R where r ̸= 1, and n ∈ Z≥0, then
n∑

i=0

ri =
rn+1 − 1
r− 1

.

(If r = 1, then
∑n

i=0r
i = n+1.) We can also use proofs by mathematical induction to prove the correctness

of algorithms, particularly recursive algorithms.

Strong Induction

Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by strong induction of

∀n ∈ Z≥0 : P(n), we prove the base case P(0), and we prove the inductive case: for every n ≥ 1, we

have [P(0) ∧ P(1) . . . ∧ P(n− 1)] ⇒ P(n). Strong induction is actually completely equivalent to weak

induction; anything that can be proven with one can also be proven with the other.

Generally speaking, using strong induction makes sense when the “reason” that P(n) is true is that P(k)

is true for more than one value of k < n (or a single value of k < n with k ̸= n− 1). (For weak induction,

the reason that P(n) is true is just P(n− 1).) We can use strong induction to prove many claims, including
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part of the Prime Factorization Theorem: if n ∈ Z≥1 is a positive integer, then there exist k ≥ 0 prime

numbers p1, p2, . . . , pk such that n =
∏k

i=1 pi.

Recursively Defined Structures and Structural Induction

A recursively defined structure, just like a recursive algorithm, is a structure defined in terms of one or

more base cases and one or more inductive cases. Any data type that can be understood as either a trivial

instance of the type or as being built up from a smaller instance (or smaller instances) of that type can

be expressed in this way. The set of structures defined is well ordered if, intuitively, every invocation of

the inductive case of the definition “makes progress” toward the base case(s) of the definition (and, more

formally, that every nonempty subset of those structures has a “least” element).

Suppose that we want to prove that P(x) holds for every x ∈ S, where S is the (well-ordered) set of

structures generated by a recursive definition. To give a proof by structural induction of ∀x ∈ S : P(x), we

prove the following:

1 Base cases: for every x defined by a base case in the definition of S, prove P(x).

2 Inductive cases: for every x defined in terms of y1, y2, . . . , yk ∈ S by an inductive case in the definition

of S, prove that P(y1) ∧ P(y2) . . . ∧ P(yk)⇒ P(x).

The form of a proof by structural induction that ∀x ∈ S : P(x) for a well-ordered set of structures S is

identical to the form of a proof using strong induction. Specifically, the proof by structural induction looks

like a proof by strong induction of the claim ∀n ∈ Z≥0 : Q(n), where Q(n) denotes the property “for any

structure x ∈ S that is generated using n applications of the inductive-case rules in the definition of S, we

have P(x).”
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Key Terms and Results

Key Terms

Proofs by Mathematical Induction

• proof by mathematical induction

• base case

• inductive case

• inductive hypothesis

• geometric series

• arithmetic series

• harmonic series

Strong Induction

• strong induction

• prime factorization

Recursively Defined Structures and

Structural Induction

• recursively defined structures

• structural induction

• well-ordered set

Key Results

Proofs by Mathematical Induction

1 Suppose that we want to prove that P(n) holds for all

n ∈ Z≥0. To give a proof by mathematical induction of

∀n ∈ Z≥0 : P(n), we prove the following:

a the base case P(0).

b the inductive case: for every n ≥ 1, we have

P(n− 1)⇒ P(n).

2 For any integer n ≥ 0, we have 1+ 2+ . . .+ n = n(n+1)
2 .

3 Let r ∈ R where r ̸= 1, and let n ∈ Z≥0. Then

n∑

i=0

ri =
rn+1 − 1
r− 1

.

(If r = 1, then
∑n

i=0 r
i = n+ 1.)

Strong Induction

1 Suppose that we want to prove that P(n) holds for all

n ∈ Z≥0. To give a proof by strong induction of

∀n ∈ Z≥0 : P(n), we prove the following:

a the base case P(0).

b the inductive case: for every n ≥ 1, we have

[P(0) ∧ P(1) . . . ∧ P(n− 1)]⇒ P(n).

2 The prime factorization theorem: let n ∈ Z≥1 be a

positive integer. Then there exist k ≥ 0 prime numbers

p1, p2, . . . , pk such that n =
∏k

i=1 pi. Furthermore, up to

reordering, the prime numbers p1, p2, . . . , pk are unique.

Recursively Defined Structures and Structural

Induction

1 To give a proof by structural induction of ∀x ∈ S : P(x),

we prove the following:

a the base cases: for every x defined by a base case in

the definition of S, we have that P(x).

b the inductive cases: for every x defined in terms of

y1, y2, . . . , yk ∈ S by an inductive case in the definition

of S, we have that P(y1) ∧ P(y2) . . . ∧ P(yk)⇒ P(x).
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