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Mathematical Induction

In which our heroes wistfully dream about having dreams about dreaming
about a very simple and pleasant world in which no one sleeps at all.
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502 CHAPTER 5. MATHEMATICAL INDUCTION

5.1 Why You Might Care
Each problem that I solved became a rule which
served afterwards to solve other problems.

René Descartes (1596–1650)

Recursion is a powerful technique in computer science. If we can express a solution
to problem X in terms of solutions to smaller instances of the same problem X—and
we can solve X directly for the “smallest” inputs—then we can solve X for all inputs.
There are many examples. We can sort an n-element arrayA by sorting the left half
of A and the right half of A and merging the results together; 1-element arrays are
trivially sorted. (That’s merge sort.) We can build an efficient data structure for storing
and searching a set of keys by selecting one of those keys k, and building two such
data structures for keys < k and for keys > k; to search for a key x, we compare x to k
and search for x in the appropriate substructure. And a trivial empty data structure
can store an empty set of keys. (That’s a binary search tree.) And many other things are
best understood recursively: factorials, the Fibonacci numbers, fractals (see Figure 5.1),
and finding the median element of an unsorted array, for example.

Figure 5.1: The Von
Koch Snowflake
fractal, shown at
levels {0, 1, 2, 3, 4}.
A level-ℓ snowflake
consists of three
level-ℓ lines. A
level-0 line is

; a level-ℓ
line consists of four
level-(ℓ − 1) lines
arranged in the
shape .

Mathematical induction is a technique for proofs that is directly analogous to recur-
sion: to prove that P(n) holds for all nonnegative integers n, we prove that P(0) is true,
and we prove that for an arbitrary n ≥ 1, if P(n− 1) is true, then P(n) is true too. The
proof of P(0) is called the base case, and the proof that P(n− 1) ⇒ P(n) is called the
inductive case. In the same way that a recursive solution to a problem relies on solu-
tions to a smaller instance of the same problem, an inductive proof of a claim relies on
proofs of a smaller instance of the same claim.

A full understanding of recursion depends on a thorough understanding of mathe-
matical induction. And many other applications of mathematical induction will arise
throughout the book: analyzing the running time of algorithms, counting the number
of bitstrings that have a particular form, and many others.

In this chapter, we will introduce mathematical induction, including a few varia-
tions and extensions of this proof technique. We will start with the “vanilla” form of
proofs by mathematical induction (Section 5.2). We will then introduce strong induction
(Section 5.3), a form of proof by induction in which the proof of P(n) in the induc-
tive case may rely on the truth of all of P(0), P(1), . . . , and P(n− 1) instead of just on
P(n− 1). Finally, we will turn to structural induction (Section 5.4), a form of inductive
proof that operates directly on recursively defined structures like linked lists, binary
trees, or well-formed formulas of propositional logic.
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5.2 Proofs by Mathematical Induction
So if you find nothing in the corridors open the doors,
if you find nothing behind these doors there are more
floors, and if you find nothing up there, don’t worry,
just leap up another flight of stairs. As long as you
don’t stop climbing, the stairs won’t end, under your
climbing feet they will go on growing upwards.

Franz Kafka (1883–1924)
Fürsprecher (Advocates) (c. 1922)

5.2.1 An Overview of Proofs by Mathematical Induction
The principle of mathematical induction says the following: to prove that a statement
P(n) is true for all nonnegative integers n, we can prove that P “starts being true” (the
base case) and that P “never stops being true” (the inductive case). Formally, a proof by
mathematical induction proceeds as follows:

Definition 5.1 (Proof by mathematical induction)
Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by
mathematical induction of ∀n ∈ Z≥0 : P(n), we prove the following:

1. the base case: prove P(0).
2. the inductive case: for every n ≥ 1, prove P(n− 1) ⇒ P(n).

When we’ve proven both the base case and the inductive case as in Definition 5.1, we
have established that P(n) holds for all n ∈ Z≥0. Here’s an example to illustrate how
the base case and inductive case combine to establish this fact:

Example 5.1 (Proving P(5) from a base case and inductive case)
Problem: Suppose we’ve proven both the base case (P(0)) and the inductive case

(P(n− 1) ⇒ P(n), for any n ≥ 1) as in Definition 5.1. Why do these two facts
establish that P(n) holds for all n ∈ Z≥0? For example, why do they establish P(5)?

Solution: Here is a proof of P(5), using the base case once and the inductive case five
times. (At each stage we make use of modus ponens—which, as a reminder, states
that from p ⇒ q and p, we can conclude q.)

We know P(0) base case (5.1)
and we know P(0) ⇒ P(1) inductive case, with n = 1 (5.2)

and thus we can conclude P(1). (5.1), (5.2), and modus ponens (5.3)

We know P(1) ⇒ P(2) inductive case, with n = 2 (5.4)
and thus we can conclude P(2). (5.3), (5.4), and modus ponens (5.5)

We know P(2) ⇒ P(3) inductive case, with n = 3 (5.6)
and thus we can conclude P(3). (5.5), (5.6), and modus ponens (5.7)
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504 CHAPTER 5. MATHEMATICAL INDUCTION

We know P(3) ⇒ P(4) inductive case, with n = 4 (5.8)
and thus we can conclude P(4). (5.7), (5.8), and modus ponens (5.9)

We know P(4) ⇒ P(5) inductive case, with n = 5 (5.10)
and thus we can conclude P(5). (5.9), (5.10), and modus ponens (5.11)

This sequence of inferences established that P(5) is true. We can use the same
technique to prove that P(n) holds for an arbitrary integer n ≥ 0, using the base
case once and the inductive case n times.

The principle of mathematical induction is as simple as in Example 5.1—we apply
the base case to get started, and then repeatedly apply the inductive case to conclude
P(n) for any larger n—but there are several analogies that can help to make proofs by
mathematical induction more intuitive; see Figure 5.2.

Dominoes falling: We have an infinitely long line of dominoes, numbered 0, 1, 2, . . . , n, . . .. To convince
someone that the nth domino falls over, you can convince them that
• the 0th domino falls over, and
• whenever one domino falls over, the next domino falls over too.
(One domino falls, and they keep on falling. Thus, for any n ≥ 0, the nth domino falls.)

Climbing a ladder: We have a ladder with rungs numbered 0, 1, 2, . . . , n, . . .. To convince someone that a
climber climbing the ladder reaches the nth rung, you can convince them that
• the climber steps onto rung #0.
• if the climber steps onto one rung, then she also steps onto the next rung.
(The climber starts to climb, and the climber never stops climbing. Thus, for any n ≥ 0, the climber
reaches the nth rung.)

Whispering down the alley: We have an infinitely long line of people, with the people numbered
0, 1, 2, . . . ,n, . . .. To argue that everyone in the line learns a secret, we can argue that
• person #0 learns the secret.
• if person #n learns the secret, then she tells person #(n + 1) the secret.
(The person at the front of the line learns the secret, and everyone who learns it tells the secret to the
next person in line. Thus, for any n ≥ 0, the nth person learns the secret.)

Falling into the depths of despair: Consider the Pit of Infinite Despair, which is filled with nothing but
despair and goes infinitely far down beneath the surface of the earth. (The Pit does not respect
physics.) Suppose that:
• the Evil Villain is pushed into the pit (that is, She is in the Pit zero meters below the surface).
• if someone is in the Pit at a depth of n meters beneath the surface, then She falls to depth n + 1

meters beneath the surface.
(The Villain starts to fall, and if the Villain has fallen to a certain depth then She falls another meter
further. Thus, for any n ≥ 0, the Evil Villain eventually reaches depth n in the Pit.)

Figure 5.2: Some
analogies to make
mathematical
induction more
intuitive.

Taking it further: “Mathematical induction” is somewhat unfortunately named because its name
collides with a distinction made by philosophers between two types of reasoning. Deductive reasoning
is the use of logic (particularly rules of inference) to reach conclusions—what computer scientists would
call a proof. A proof by mathematical induction is an example of deductive reasoning. For a philosopher,
though, inductive reasoning is the type of reasoning that draws conclusions from empirical observations.
If you’ve seen a few hundred ravens in your life, and every one that you’ve seen is black, then you might
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conclude All ravens are black. Of course, it might turn out that your conclusion is false, because you
haven’t happened upon any of the albino ravens that exist in the world; hence what philosophers call
inductive reasoning leads to conclusions that may turn out to be false.

A first example: summing powers of two
Let’s use mathematical induction to prove a simple arithmetic property:

Theorem 5.1 (A formula for the sum of powers of two)
For any nonnegative integer n, we have

n
∑
i=0

2i = 2n+1 − 1.

As a plausibility check, let’s test the given formula for some small values of n: Problem-solving tip:
Do this kind of
plausibility check,
and test out a claim
for small values of
n before you try to
prove it. Often the
process of testing
small examples
either reveals a
misunderstanding
of the claim or helps
you see why the
claim is true in
general.

n = 1 : 20 + 21 = 1 + 2 = 3 22 − 1 = 3
n = 2 : 20 + 21 + 22 = 1 + 2 + 4 = 7 23 − 1 = 7
n = 3 : 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 24 − 1 = 15

These small examples all check out, so it’s reasonable to try to prove the claim. Here is
our first example of a proof by induction:

Example 5.2 (A proof of Theorem 5.1)
Let P(n) denote the property

n
∑
i=0

2i = 2n+1 − 1.

We’ll prove that ∀n ∈ Z≥0 : P(n) by induction on n.
base case (n = 0): We must prove P(0). That is, we must prove ∑0

i=0 2i = 20+1 − 1. But
this fact is easy to prove, because both sides are equal to 1: ∑0

i=0 2i = 20 = 1, and
20+1 − 1 = 2− 1 = 1.

inductive case (n ≥ 1): We must prove that P(n− 1) ⇒ P(n), for an arbitrary integer
n ≥ 1. We prove this implication by assuming the antecedent—namely, we assume
P(n− 1) and prove P(n). The assumption P(n− 1) is

n−1
∑
i=0

2i = 2(n−1)+1 − 1. (∗)

We can now prove P(n)—under the assumption (∗)—by showing that the left-hand
and right-hand sides of P(n) are equal:

n
∑
i=0

2i =
[
n−1
∑
i=0

2i
]
+ 2n by the definition of summations

= [2(n−1)+1 − 1] + 2n by (∗), a.k.a. by the assumption that P(n− 1)

= 2n − 1 + 2n by algebraic manipulation

= 2 · 2n − 1
= 2n+1 − 1.
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506 CHAPTER 5. MATHEMATICAL INDUCTION

We’ve thus shown that ∑n
i=0 2i = 2n+1 − 1—in other words, we’ve proven P(n).

We’ve proven the base case P(0) and the inductive case P(n− 1) ⇒ P(n), so by the
principle of mathematical induction we have shown that P(n) holds for all n ∈ Z≥0.

Taking it further: In case the inductive proof doesn’t feel 100% natural, here’s another way to make the
result from Example 5.2 intuitive: think about binary representations of numbers. Written in binary, the
number ∑n

i=0 2i will look like 11 · · · 111, with n + 1 ones. What happens when we add 1 to, say, 11111111
(= 255)? It’s a colossal sequence of carrying (as 1 + 1 = 0, carrying the 1 to the next place):

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

+ 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0.

In other words, 2n+1 − 1 is written in binary as a sequence of n + 1 ones—that is, 2n+1 − 1 = ∑n
i=0 2i .

Example 5.2 follows the standard outline of a proof by mathematical induction. We
will always prove the inductive case P(n − 1) ⇒ P(n) by assuming the antecedent
P(n− 1) and proving P(n). The assumed antecedent P(n− 1) in the inductive case of
the proof is called the inductive hypothesis. You may see “in-

ductive hypothesis”
abbreviated as IH.A second example, and a template for proofs by induction

Here’s another proof by induction, with the parts of the proof carefully labeled:

Warning! P(n)
denotes a proposi-
tion—that is, P(n) is
either true or false.
(We’re proving that,
in fact, it’s true for
every n.) Despite its
apparent tempta-
tion to people new
to inductive proofs,
it is nonsensical
to treat P(n) as a
number.

Example 5.3 (Summing powers of −1)
Claim: For any integer n ≥ 0, we have that

n
∑
i=0

(−1)i =




1 if n is even
0 if n is odd.

Proof. Step #1: Clearly state the claim to be proven. Clearly state that the proof will be by
induction, and clearly state the variable upon which induction will be performed.

Let P(n) denote the property
n
∑
i=0

(−1)i =
{

1 if n is even
0 if n is odd.

We’ll prove that ∀n ∈ Z≥0 : P(n) by induction on n.

Step #2: State and prove the base case.

base case (n = 0): We must prove P(0). But ∑0
i=0(−1)i = (−1)0 = 1, and 0 is even.

Step #3: State and prove the inductive case. Within the statement and proof of the
inductive case . . .

. . . Step #3a: state the inductive hypothesis.

inductive case (n ≥ 1): We assume the inductive hypothesis P(n− 1), namely
n−1
∑
i=0

(−1)i =
{

1 if n− 1 is even
0 if n− 1 is odd.
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. . . Step #3b: state what we need to prove.
We must prove P(n).

. . . Step #3c: prove it,making use of the inductive
hypothesis and stating where it was used.

n
∑
i=0

(−1)i =
[
n−1
∑
i=0

(−1)i
]
+ (−1)n definition of summations

=
{

1 + (−1)n if n− 1 is even
0 + (−1)n if n− 1 is odd. inductive hypothesis

=
{

1 + (−1)n if n is odd
0 + (−1)n if n is even. n is odd ⇔ n− 1 is even

=
{

1 +−1 if n is odd
0 + 1 if n is even. (−1)n = ±1, depending on whether n is even; see Exercise 5.3.

=
{

0 if n is odd
1 if n is even.

Thus we have proven P(n), and the theorem follows.

We can treat the labeled pieces of Example 5.3 as a checklist for writing proofs by

Writing tip: In the
inductive case
of a proof of an
equality—like
Example 5.3—start
from the left-hand
side of the equality
and manipulate it
until you derive
the right-hand
side of the equality
exactly. If you work
from both sides
simultaneously,
you’re at risk of the
fallacy of proving
true—or at least the
appearance of that
fallacy!

induction. You should ensure that when you write an inductive proof, you include
each of these steps. These steps are summarized in Figure 5.3.

Checklist for a proof by mathematical induction:
1. A clear statement of the claim to be proven—that is, a clear definition of the property P(n) that

will be proven true for all n ≥ 0—and a statement that the proof is by induction, including
specifically identifying the variable n upon which induction is being performed. (Some claims
involve multiple variables, and it can be confusing if you aren’t clear about which is the
variable upon which you are performing induction.)

2. A statement and proof of the base case—that is, a proof of P(0).
3. A statement and proof of the inductive case—that is, a proof of P(n− 1) ⇒ P(n), for a generic

value of n ≥ 1. The proof of the inductive case should include all of the following:
(a) a statement of the inductive hypothesis P(n− 1).
(b) a statement of the claim P(n) that needs to be proven.
(c) a proof of P(n), which at some point makes use of the assumed inductive hypothesis.

Figure 5.3: A
checklist of the
steps required
for a proof by
mathematical
induction.

The sum of the first n integers
We’ll do another simple example of an inductive proof of an arithmetic property, by

showing that the sum of the integers between 0 and n is n(n+1)
2 . (For example, for n = 4

we have 0 + 1 + 2 + 3 + 4 = 10 = 4(4+1)
2 .) Here’s a proof:

Example 5.4 (Sum of the first n integers)
Problem: Show that 0 + 1 + · · · + n is n(n+1)

2 , for any integer n ≥ 0.
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508 CHAPTER 5. MATHEMATICAL INDUCTION

Solution: First, we must phrase this problem in terms of a property P(n) that we’ll
prove true for every n ≥ 0. For a particular integer n, let P(n) denote the claim that

n
∑
i=0

i = n(n + 1)
2 .

We will prove that P(n) holds for all integers n ≥ 0 by induction on n.
base case (n = 0): Note that ∑0

i=1 i = 0 and 0(0+1)
2 = 0 too. Thus P(0) follows.

inductive case (n ≥ 1): Assume the inductive hypothesis P(n− 1), namely
n−1
∑
i=0

i = (n− 1)((n− 1) + 1)
2 .

We must prove P(n)—that is, we must prove that ∑n
i=0 i = n(n+1)

2 . Here is the
proof:

n
∑
i=0

i =
[
n−1
∑
i=0

i
]
+ n definition of summations

= (n− 1)((n− 1) + 1)
2 + n inductive hypothesis

= (n− 1)n + 2n
2 putting terms over common denominator

= n(n− 1 + 2)
2 factoring

= n(n + 1)
2 .

Thus we’ve shown P(n) assuming P(n− 1), which completes the proof.

Problem-solving
tip: Your first task
in giving a proof
by induction is
to identify the
property P(n) that
you’ll prove true
for every integer
n ≥ 0. Sometimes
the property is
given to you more
or less directly and
sometimes you’ll
have to formulate
it yourself, but
in any case you
need to identify the
precise property
you’re going to
prove before you
can prove it!

Taking it further: While the summation that we analyzed in Example 5.4 may seem like a purely arith-
metic example, it also has direct applications in CS—particularly in the analysis of algorithms. Chapter 6 is
devoted to this topic, and there’s much more there, but here’s a brief preview.

A basic step in analyzing an algorithm is counting how many steps that algorithm takes, for an input
of arbitrary size. One particular example is Insertion Sort, which sorts an n-element array by repeatedly
ensuring that the first k elements of the array are in sorted order (by swapping the kth element backward
until it’s in position). The total number of swaps that are done in the kth iteration can be as high as
k − 1—so the total number of swaps can be as high as ∑n

k=1 k − 1 = ∑n−1
i=0 i. Thus Example 5.4 tells us that

Insertion Sort can require as many as n(n− 1)/2 swaps.

Generating a conjecture: segments in a fractal
In the inductive proofs that we’ve seen thus far, we were given a problem statement

that described exactly what property we needed to prove. Solving these problems
“just” requires proving the base case and the inductive case—which may or may not
be easy, but at least we know what we’re trying to prove! In other problems, though,
you may also have to first figure out what you’re going to prove, and then prove it.
Obviously this task is generally harder. Here’s one example of such a proof, about the
Von Koch snowflake fractal from Figure 5.1:
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Figure 5.4: Von
Koch lines of level
0, 1, . . . , 5. (A Von
Koch snowflake
consists of three
Von Koch lines,
all of the same
level, arranged
in a triangle; see
Figure 5.1.)

Example 5.5 (Vertices in a Von Koch Line)
Problem: A Von Koch line of level 0 is a straight line segment; a Von Koch line of level
ℓ ≥ 1 consists of four Von Koch lines of level (ℓ− 1), arranged in the shape . (See
Figure 5.4.) Conjecture a formula for the number of vertices (that is, the number of
segment endpoints) in a Von Koch line of level ℓ. Prove your formula by induction.

Solution: Our first task is to formulate a conjecture for the number of vertices in a
Von Koch line of level ℓ. Let’s start with a few small examples, based on Figure 5.4:
• a level-0 line has 2 endpoints (and 1 segment).
• a level-1 line has 5 endpoints (and 4 segments): the two at the far left and far

right, plus the three in the start, middle, and end of the “bump” in the center.
• a level-2 line—after some tedious counting in the picture in Figure 5.4—turns

out to have 17 endpoints (and 16 segments).
There are a few ways to think about this pattern. Here’s one that turns out to be
helpful: a level-ℓ line contains 4 lines of level (ℓ− 1), so it contains 16 lines of level
(ℓ− 2). And thus, expanding it all the way out, the level-ℓ line contains 4ℓ lines of
level 0. The number of endpoints that we observe is 2 = 40 + 1, then 5 = 41 + 1,
then 17 = 42 + 1. (Why the “+1?” Each segment starts where the previous segment
ended—so there is one more endpoint than segment, because of the last segment’s
second endpoint.)

So it looks like there are 4ℓ + 1 endpoints in a Von Koch line of level ℓ. Let’s turn
this observation into a formal claim, with an inductive proof:
Claim: For any ℓ ≥ 0, a Von Koch line of level ℓ has 4ℓ + 1 endpoints.
Proof. Let P(ℓ) denote the claim that a Von Koch line of level ℓ has 4ℓ + 1 endpoints.
We’ll prove that P(ℓ) holds for all integers ℓ ≥ 0 by induction on ℓ.
base case (ℓ = 0): We must prove P(0). By definition, a Von Koch line of level 0 is a

single line segment, which has 2 endpoints. Indeed, 40 + 1 = 1 + 1 = 2.
inductive case (ℓ ≥ 1): We assume the inductive hypothesis, namely P(ℓ − 1),

and we must prove P(ℓ). The key observation is that a Von Koch line of level
ℓ consists of four Von Koch lines of level (ℓ− 1)—and the last endpoint of line
#1 is identical to the first endpoint of line #2; the last endpoint of #2 is the first
of #3, and the last endpoint of #3 is the first of #4. Therefore there are three
endpoints that are shared among the four lines of level (ℓ− 1). Thus:

the number of endpoints in a Von Koch line of level ℓ
= 4 ·

[
the number of endpoints in a Von Koch line of level (ℓ− 1)

]
− 3

by the definition of a Von Koch line, and by the above discussion

= 4 ·
[
4ℓ−1 + 1

]
− 3 by the inductive hypothesis

= 4ℓ + 4− 3 multiplying through

= 4ℓ + 1. algebra

Thus P(ℓ) follows, completing the proof.
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A note and two variations on the inductive template
The basic idea of induction is simple: the reason that P(n) holds is that P(n− 1) held,

and the reason that P(n− 1) held is that P(n− 2) held—and so forth, until eventually
the proof finally rests on P(0), the base case. A proof by induction can sometimes look

Warning! If you
do not use the in-
ductive hypothesis
P(n− 1) in the proof
of P(n), then some-
thing is wrong—or,
at least, your proof
is not actually a
proof by induction!

superficially like it’s circular reasoning—that we’re assuming precisely the thing that
we’re trying to prove. But it’s not! In the inductive case, we’re assuming P(n− 1) and
proving P(n)—we are not assuming P(n) and proving P(n).

Taking it further: The superficial appearance of circularity in a proof by induction is equivalent to the
superficial appearance that a recursive function in a program will run forever. (A recursive function
f will run forever if calling f on n results in f calling itself on n again! That’s the same circularity that
would happen if we assumed P(n) and proved P(n).) The correspondence between these aspects of
induction and recursion should be no surprise; induction and recursion are essentially the same thing.
In fact, it’s not too hard to write a recursive function that “implements” an inductive proof by outputting
a step-by-step argument establishing P(n) for an arbitrary n, as in Example 5.1.

Our proofs so far have shown ∀n ∈ Z≥0 : P(n) by proving P(0) as a base case. If we
instead want to prove ∀n ∈ Z≥k : P(n) for some integer k, we can prove P(k) as the base
case, and then prove the inductive case P(n− 1) ⇒ P(n) for all n ≥ k + 1.

Another variation in writing inductive proofs relates to the statement of the induc-
tive case. We’ve proven P(0) and P(n− 1) ⇒ P(n) for arbitrary n ≥ 1. Some writers
prefer to prove P(0) and P(n) ⇒ P(n + 1) for arbitrary n ≥ 0. The difference is merely
a reindexing, not a substantive difference: it’s just a matter of whether one thinks of
induction as “the nth domino falls because the (n− 1)st domino fell into it” or as “the
nth domino falls and therefore knocks over the (n + 1)st domino.”

In the remainder of this section, we’ll give some more examples of proofs by math-
ematical induction, following the template of Figure 5.3. While the examples that
we’ve used so far have almost all related to summations, the same style of inductive
proof can be used for a wide variety of claims. We’ll encounter many inductive proofs
throughout the book, and you’ll find inductive proofs ubiquitous throughout com-
puter science. We’ll start with some more summation-based proofs, and then move on
to inductive proofs of some other types of statements.

5.2.2 Some Numerical Examples: Geometric, Arithmetic, and Harmonic Series
We’ll now introduce three types of summations that arise frequently in computer
science: geometric sequences (1, 2, 4, 8, 16, . . .); arithmetic sequences (2, 4, 6, 8, 10, . . .);
and the harmonic sequence (1, 12 , 13 , 14 , 15 , . . .). Summations involving all of these types
of sequences can be analyzed inductively, and we’ll address all three of them here
and in the exercises. (The statements we’ll prove are both useful facts to know about
geometric/arithmetic/harmonic sequences, and good practice with induction.)

Geometric series

Definition 5.2 (Geometric sequences and series)
A geometric sequence is a sequence of numbers where each number is generated by
multiplying the previous entry by a fixed ratio α ∈ R, starting from an initial value x0.
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(Thus the sequence is 〈x0, x0 · α, x0 · α2, x0 · α3, . . .〉.) A geometric series or geometric
sum is ∑n

i=0 x0αi.

Examples include 〈2, 4, 8, 16, 32, . . .〉; or 〈1, 13 , 19 , 1
27 , . . .〉; or 〈1, 1, 1, 1, 1, . . .〉.

It turns out that there is a relatively simple formula expressing the sum of the first n
terms of a geometric sequence:

Theorem 5.2 (Analysis of geometric series)
Let α ∈ R where α 6= 1, and let n ∈ Z≥0. Then

n
∑
i=0
αi = αn+1 − 1

α− 1 .

(If α = 1, then ∑n
i=0 α

i = n + 1.)
(For simplicity, we stated Theorem 5.2 without reference to x0. Because we can pull a
constant multiplicative factor out of a summation, we can use the theorem to conclude
that ∑n

i=0 x0αi = x0 · ∑n
i=0 α

i = x0 · α
n+1−1
α−1 .)

We will be able to prove Theorem 5.2 using a proof by mathematical induction:

Problem-solving
tip: The inductive
cases of many
inductive proofs
follow the same
pattern: first, we
use some kind of
structural definition
to “pull apart” the
statement about
n into something
kind of statement
about n− 1 (plus
some “leftover”
other stuff), then
apply the inductive
hypothesis to
simplify the n− 1
part. We then
manipulate the
result of using
the inductive
hypothesis plus the
leftovers to get the
desired equation.

Example 5.6 (Geometric series)
Proof of Theorem 5.2. Consider a fixed real number α with α 6= 1, and let P(n) denote
the property that

n
∑
i=0
αi = αn+1 − 1

α− 1 .

We’ll prove that P(n) holds for all integers n ≥ 0 by induction on n.

base case (n = 0): Note that ∑0
i=0 α

i = α0 and α0+1−1
α−1 both equal 1. Thus P(0) holds.

inductive case (n ≥ 1): We assume the inductive hypothesis P(n− 1), namely
n−1
∑
i=0

αi = αn − 1
α− 1 ,

and we must prove P(n). Here is the proof:
n
∑
i=0
αi = αn +

n−1
∑
i=0

αi definition of summation

= αn + α
n − 1
α− 1 inductive hypothesis

= αn(α− 1) + αn − 1
α− 1 putting the fractions over a common denominator

= αn+1 − αn +αn − 1
α− 1 multiplying out

= αn+1 − 1
α− 1 . simplifying

Thus P(n) holds, and the theorem follows.
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Notice that Examples 5.2 and 5.3 were both special cases of Theorem 5.2. For the
former, Theorem 5.2 tells us that ∑n

i=0 2i = 2n+1−1
2−1 = 2n+1 − 1; for the latter, this theorem

tells us that
n
∑
i=0

(−1)i = (−1)n+1 − 1
−1− 1 = 1− (−1)n+1

2 =
{ 1−(−1)

2 = 1 if n is even
1−1
2 = 0 if n is odd.

A corollary of Theorem 5.2 addressing infinite geometric sums will turn out to be
useful later, so we’ll state it now. (You can skip over the proof if you don’t know calcu-
lus, or if you haven’t thought about calculus recently.)

Corollary 5.3
Let α ∈ R where 0 ≤ α < 1, and define f (n) = ∑n

i=0 α
i. Then:

1. ∑∞
i=0 α

i = 1
1−α , and

2. For all n ≥ 0, we have 1 ≤ f (n) ≤ 1
1−α .

Proof. The proof of (1) requires calculus. Theorem 5.2 says that f (n) = αn+1−1
α−1 , and we

take the limit as n → ∞. Because α < 1, we have that limn→∞ αn+1 = 0. Thus as n → ∞
the numerator αn+1 − 1 tends to −1, and the entire ratio tends to 1/(1− α).

For (2), observe that ∑n
i=0 α

i is definitely greater than or equal to ∑0
i=0 α

i (because
α ≥ 0 and so the latter results by eliminating n nonnegative terms from the former).
Similarly, ∑n

i=0 α
i is definitely less than or equal to ∑∞

i=0 α
i. Thus:

f (n) = ∑n
i=0 α

i ≥ ∑0
i=0 α

i = α0 = 1
f (n) = ∑n

i=0 α
i ≤ ∑∞

i=0 α
i = 1

1−α .

Arithmetic series

Definition 5.3 (Arithmetic sequences and series)
An arithmetic sequence is a sequence of numbers where each number is generated by adding
a fixed step-size α ∈ R to the previous number in the sequence. The first entry in the
sequence is some initial value x0 ∈ R. (Thus the sequence is
〈x0, x0 +α, x0 + 2α, x0 + 3α, . . .〉.) An arithmetic series or sum is ∑n

i=0(x0 + iα).

Examples include 〈2, 4, 6, 8, 10, . . .〉; or 〈1, 13 ,− 1
3 ,−1,− 5

3 , . . .〉; or 〈1, 1, 1, 1, 1, . . .〉. You’ll
prove a general formula for an arithmetic sum in the exercises.

Harmonic series

Definition 5.4 (Harmonic series)
A harmonic series is the sum of a sequence of numbers whose kth number is 1

k . The nth
harmonic number is defined by Hn := ∑n

k=1
1
k .

Thus, for example, we have H1 = 1, H2 = 1 + 1
2 = 1.5,H3 = 1 + 1

2 + 1
3 ≈ 1.8333, and

H4 = 1 + 1
2 + 1

3 + 1
4 ≈ 2.0833.
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Giving a precise equation for the value of Hn requires a bit more work, but we can
very easily prove upper and lower bounds on Hn by induction. (If you’ve had calculus,
then there’s a simple way for you to approximate the value of Hn, as The name “har-

monic” comes from
music: when a note
at frequency f is
played, overtones
of that note—other
high-intensity
frequencies—can be
heard at frequencies
2f , 3f , 4f , . . .. The
wavelengths of the
corresponding
sound waves are
1
f , 1

2f , 1
3f , 1

4f , . . ..

Hn =
n
∑
x=1

1
x ≈

∫ n

x=1
1
x dx = ln n.

But we’ll do a calculus-free version here.) We will be able to prove the following,
which captures the value of Hn to within a factor of 2, at least when n is a power of 2:

Theorem 5.4 (Bounds on the (2k)th harmonic number)
For any integer k ≥ 0, we have k + 1 ≥ H2k ≥ k

2 + 1.

We’ll prove half of Theorem 5.4 (namely k + 1 ≥ H2k ) by induction in Example 5.7,
leaving the other half to the exercises. We will also leave to the exercises a proof of
upper and lower bounds for Hn when n is not an exact power of 2.

Example 5.7 (Inductive proof that k + 1 ≥ H2k )
Proof. Let P(k) denote the property that k + 1 ≥ H2k . We’ll use induction on k to prove
that P(k) holds for all integers k ≥ 0.

base case (k = 0): We have that H2k = H20 = H1 = 1, and k + 1 = 0 + 1 = 1 as well.
ThereforeH2k = 1 = k + 1.

inductive case (k ≥ 1): Let k ≥ 1 be an arbitrary integer. We must prove P(k)—that
is, we must prove that k + 1 ≥ H2k . To do so, we assume the inductive hypothesis
P(k− 1), namely that k ≥ H2k−1. Consider H2k :

H2k =
2k

∑
i=1

1
i definition of the harmonic numbers

=
[
2k−1

∑
i=1

1
i

]
+
[

2k

∑
i=2k−1+1

1
i

]
splitting the summation into parts

= H2k−1 +
[

2k

∑
i=2k−1+1

1
i

]
definition of the harmonic numbers, again

≤ H2k−1 +
[

2k

∑
i=2k−1+1

1
2k−1

]
every term in the summation ∑2k

i=2k−1+1
1
i is smaller than 1

2k−1

≤ H2k−1 + 2k−1 · 1
2k−1 there are 2k−1 terms in the summation

= H2k−1 + 1 1
x · x = 1 for any x 6= 0

≤ k + 1. inductive hypothesis

Thus we’ve proven that H2k ≤ k + 1—that is, we’ve proven P(k). This proof com-
pletes the inductive case, and the theorem follows.
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The proof in Example 5.7 is perhaps the first time in this chapter in which we
needed some serious insight and creativity to establish the inductive case. The struc-
ture of a proof by induction is rigid—we must prove a base case P(0); we must prove
an inductive case P(n − 1) ⇒ P(n)—but that doesn’t make the entire proof totally
formulaic. (The proof of the inductive case must use the inductive hypothesis at some
point, so its statement gives you a little guidance for the kinds of manipulations to try.)
Just as with all the other proof techniques that we explored in Chapter 4, a proof by
induction can require you to think—and all of strategies that we discussed in Chapter 4
may be helpful to deploy.

5.2.3 Some More Examples
We’ll close this section with a few more examples of proofs by mathematical induc-
tion, but we’ll focus on things other than analyzing summations. Some of these exam-
ples are still about arithmetic properties, but they should at least hint at the breadth of
possible statements that we might be able to prove by induction.

Comparing algorithms: which is faster?
Suppose that we have two different candidate algorithms that solve a problem re-

lated to a set S with n elements—a brute-force algorithm that tries all 2n possible subsets
of S, and a second algorithm that computes the solution by looking at only n2 subsets
of S. Which would be faster to use? It turns out that the latter algorithm is faster, and
we can prove this fact (with a small caveat for small n) by induction:

n 2n n2
0 1 0
1 2 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36
7 128 49

n = 4

2n n2

Figure 5.5: Small
values of 2n and n2,
and a plot of the
functions.

Example 5.8 (2n vs. n2)
We’d like to prove that 2n ≥ n2 for all integers n ≥ 0—but it turns out not to be
true! (See Figure 5.5.) Indeed, 23 < 32. But the relationship appears to begin to hold
starting at n = 4. Let’s prove it, by induction:

Claim: For all integers n ≥ 4, we have 2n ≥ n2.
Proof. Let P(n) denote the property 2n ≥ n2. We’ll use induction on n to prove that
P(n) holds for all n ≥ 4.

base case (n = 4): For n = 4, we have 2n = 16 = n2, so the inequality P(4) holds.

inductive case (n ≥ 5): Assume the inductive hypothesis P(n− 1)—that is, assume
2n−1 ≥ (n− 1)2. We must prove P(n). For n ≥ 4, note that n2 ≥ 4n (by multiplying
both sides of the inequality n ≥ 4 by n). Thus n2 − 4n ≥ 0, and so

2n = 2 · (2n−1) definition of exponentiation

≥ 2 · (n− 1)2 inductive hypothesis

= 2n2 − 4n+ 2 multiplying out

= n2 + (n2 − 4n) + 2 rearranging

≥ n2 + 0 + 2 by the above discussion, we have n2 − 4n ≥ 0

> n2.
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Thus we have shown 2n > n2, which completes the proof of the inductive case. The
claim follows.

Taking it further: In analyzing the efficiency of algorithms, we will frequently have to do the type of
comparison that we just completed, to compare the amount of time consumed by one algorithm versus
another. Chapter 6 discusses this type of comparison in much greater detail, but here’s one example of
this sort.

Let X be a sequence. A subsequence of X results from selecting some of the entries in X—for exam-
ple, TURING is a subsequence of OUTSOURCING. For two sequences X and Y, a common subsequence is a
subsequence of both X and Y. The longest common subsequence of X and Y is, naturally, the common
subsequence of X and Y that’s longest. (For example, TURING is the longest common subsequence of
DISTURBINGLY and OUTSOURCING.)

Given two sequences X and Y of length n, we can find the longest common subsequence fairly easily
by testing every possible subsequence of X to see whether it’s also a subsequence of Y. This brute-force
solution takes requires testing 2n subsequences of X. But there’s a cleverer approach to solving this
problem using an algorithmic design technique called dynamic programming (see p. 959 or a textbook
on algorithms) that avoids redoing the same computation—here, testing the same sequence of letters
to see if it appears in Y—more than once. The dynamic programming algorithm for longest common
subsequence requires only about n2 steps.

Proving algorithms correct: factorial
fact(n):
1: if n = 1 then
2: return 1
3: else
4: return n · fact(n− 1)

Figure 5.6: Pseu-
docode for factorial:
given n ∈ Z≥1, we
wish to compute
the value of n!.

We just gave an example of using a proof by induction to
analyze the efficiency of an algorithm, but we can also use
mathematical induction to prove the correctness of a recursive
algorithm. (That is, we’d like to show that a recursive algo-
rithm always returns the desired output.) Here’s a simple
example, for the natural recursive algorithm to compute factorials (see Figure 5.6):

Example 5.9 (Factorial)
Consider the recursive algorithm fact in Figure 5.6. For a positive integer n, let P(n)
denote the property that fact(n) = n!. We’ll prove by induction on n that, indeed, P(n)
holds for all integers n ≥ 1.

base case (n = 1): Observe that fact(1) returns 1 immediately. And 1! = 1 by defini-
tion. Thus P(1) holds.

inductive case (n ≥ 2): We assume the inductive hypothesis P(n− 1), namely that
fact(n− 1) returns (n− 1)!. We want to prove that fact(n) returns n!. But this claim
is easy to see:

fact(n) = n · fact(n− 1) by inspection of the algorithm

= n · (n− 1)! by the inductive hypothesis

= n! by definition of !

Therefore the claim holds by induction.

In fact, induction and recursion are basically the same thing: recursion “works” by
leveraging a solution to a smaller instance of a problem to solve a larger instance of
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the same problem; a proof by induction “works” by leveraging a proof of a smaller
instance of a claim to prove a larger instance of the same claim. (Actually, one common
use of induction is to analyze the efficiency of a recursive algorithm. We’ll discuss this
type of analysis in great depth in Section 6.4.)

Taking it further: While induction is much more closely related to recursive algorithms than nonrecur-
sive algorithms, we can also prove the correctness of an iterative algorithm using induction. The basic
idea is to consider a statement, called a loop invariant, about the correct behavior of a loop; we can prove
inductively that a loop invariant starts out true and stays true throughout the execution of the algorithm.
See the discussion on p. 517.

Divisibility
We’ll close this section with one more numerical example, about divisibility: Writing tip: Exam-

ple 5.10 illustrates
why it is crucial
to state clearly
the variable upon
which induction is
being performed.
This statement
involves two vari-
ables, k and n, but
we’re performing
induction on only
one of them!

Example 5.10 (kn − 1 is evenly divisible by k− 1)
Claim: For any n ≥ 0 and k ≥ 2, we have that kn − 1 is evenly divisible by k− 1.
(For example, 7n − 1 is always divisible by 6, as in 7 − 1, 49− 1, and 343− 1. And
k2− 1 is always divisible by k− 1; in fact, factoring k2− 1 yields k2− 1 = (k− 1)(k +1).)
Proof. We’ll proceed by induction on n. That is, let P(n) denote the claim

For all integers k ≥ 2, we have that kn − 1 is evenly divisible by k− 1.

We will prove that P(n) holds for all integers n ≥ 0 by induction on n.

base case (n = 0): For any k, we have kn − 1 = k0 − 1 = 1− 1 = 0. And 0 is evenly
divisible by any positive integer, including k− 1. Thus P(0) holds.

inductive case (n ≥ 1): We assume the inductive hypothesis P(n− 1), and we need to
prove P(n). Let k ≥ 2 be an arbitrary integer. Then:

kn − 1 = kn − k + k− 1 antisimplification: x = x + k − k.

= k · (kn−1 − 1) + k− 1 factoring

By the inductive hypothesis, kn−1 − 1 is evenly divisible by k − 1. In other words,
by the definition of divisibility, there exists a nonnegative integer a such that
a · (k− 1) = kn−1 − 1. Therefore

kn − 1 = k · a · (k− 1) + k− 1
= (k− 1) · (k · a + 1).

Because k · a + 1 is a nonnegative integer, (k − 1) · (k · a + 1) is by definition evenly
divisible by k− 1. Thus kn − 1 = (k− 1) · (k · a + 1) is evenly divisible by k− 1. Our
k was arbitrary, so P(n) follows.

Problem-solving
tip: In inductive
proofs, try to
massage the expres-
sion in question
into something—
anything!—that
matches the form
of the inductive hy-
pothesis. Here, the
“antisimplification”
step is obviously
true but seems
completely bizarre.
Why did we do it?
Our only hope in
the inductive case is
to somehow make
use of the inductive
hypothesis. Here,
the inductive hy-
pothesis tells us
something about
kn−1 − 1—so a
good strategy is to
transform kn − 1
into an expression
involving kn−1 − 1,
plus some leftover
stuff.
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Computer Science Connections

Loop Invariants
In Example 5.9, we saw how to use a proof by induction to establish that

a recursive algorithm correctly solves a particular problem. But proving the
correctness of iterative algorithms seems different. An approach—pioneered
in the 1960s by Robert Floyd and C. A. R. Hoare1—is based on loop invariants, 1 Robert W. Floyd. Assigning meanings

to programs. In Proceedings of Symposia
in Applied Mathematics XIX, American
Mathematical Society, pages 19–32,
1967; and C. A. R. Hoare. An axiomatic
basis for computer programming.
Communications of the ACM, 12(10):576–
585, October 1969.

and can be used to analyze nonrecursive algorithms. A loop invariant for a
loop L is logical property P such that (i) P is true before L is first executed;
and (ii) if P is true at the beginning of an iteration of L, then P is true after that
iteration of L. The parallels to induction are clear; property (i) is the base case,
and property (ii) is the inductive case. Together, they ensure that P is always
true, and in particular P is true when the loop terminates.

insertionSort(A[1 . . . n]):
1: i := 2
2: while i ≤ n:
3: j := i
4: while j > 1 and A[j] > A[j− 1]:
5: swap A[j] and A[j− 1]
6: j := j− 1
7: i := i + 1

Figure 5.7: Insertion Sort.

Here’s an example of a sketch of a proof of correctness of Insertion Sort
(Figure 5.7) using loop invariants. (Many proofs using loop invariants would
proceed with more formal detail.) We claim that the property

P(k) := A[1 . . . k + 1] is sorted after completing k iterations of the outerwhile loop

is true for all k ≥ 0. (That is, P is a loop invariant for the outerwhile loop.)

Proof (sketch). For the base case (k = 0), we’ve completed zero iterations—that
is, we have only executed line 1. But A[1 . . . k + 1] is then vacuously sorted,
because it contains only the lone element A[1].

For the inductive case (k ≥ 1), we assume the inductive hypothesis
P(k− 1)—that is, A[1 . . . k] was sorted before the kth iteration. The kth iter-
ation of the loop executed lines 2–7, so we must show that the execution of
these lines extended the sorted segment A[1 . . . k] to A[1 . . . k + 1]. A formal
proof of this claim would use another loop invariant, like

Q(j) := both A[1 . . . j− 1] and A[j . . . i] are sorted, and A[j− 1] < A[j + 1]

but for this proof sketch we’ll be satisfied by concluding the desired conclu-
sion by inspection of the algorithm’s code.

Because P(n− 1) is true (after n− 1 iterations of the loop), we know that
A[1 . . . (n− 1) + 1] = A[1 . . . n] is sorted, as desired.

Loop invariants can also be extremely valuable as part of the development

binarySearch(A[1 . . . n], x):
// output: is x in the sorted array A?
1: lo := 1
2: hi := n
3: while lo ≤ hi:
4: middle := ⌊ lo+hi

2 ⌋
5: if A[middle] = x then
6: return True
7: else if A[middle] > x then
8: hi := middle − 1
9: else
10: lo := middle + 1
11: return False
Figure 5.8: Binary Search.

of programs. For example, many people end up struggling to correctly write
binary search—but by writing down loop invariants before actually writing
the code, it’s actually easy. If we think about the property

if x is in A, then x is one of A[lo, . . . , hi]

as a loop invariant as we write the program, binary search becomes much
easier to get right. Many programming languages allow programmers to
use assertions to state logical conditions that they believe to always be true
at a particular point in the code. A simple assert(P) statement can help a
programmer identify bugs earlier in the development process and avoid a
great deal of debugging trauma later.
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5.2.4 Exercises

Prove that the following claims hold for all integers n ≥ 0, by induction on n:

5.1
n
∑
i=0

i2 = n(n+ 1)(2n + 1)
6

5.2
n
∑
i=0

i3 = n4 + 2n3 + n2
4

5.3 (−1)n =
{ 1 if n is even

−1 if n is odd

5.4
n
∑
i=1

1
i(i + 1) = n

n + 1

5.5
n
∑
i=1

2
i(i + 2) = 3

2 − 1
n + 1 − 1

n + 2

5.6
n
∑
i=1

i · (i!) = (n + 1)!− 1

5.7 In a typical optical camera lens, the light that enters the lens (through the opening called the
aperture) is controlled by a collection of movable blades that can be adjusted inward to narrow the area
through which light can pass. (There are two effects of narrowing this opening: first, the amount of light
entering the lens is reduced, darkening the resulting image; and, second, the depth of field—the range of
distances from the lens at which objects are in focus in the image—increases.) Although some lenses allow
continuous adjustment to their openings, many have a sequence of so-called stops: discrete steps by which
the aperture narrows. (See Figure 5.9.) These steps are called f -stops (the “f” is short for “focal”), and they
are denoted with some unusual notation that you’ll unwind in this exercise. The “fastest” f -stop for a lens
measures the ratio of two numbers: the focal length of the lens divided by the diameter of the aperture of
the lens. (For example, you might use a lens that’s 50mm long and that has a 25mm diameter, which yields
an f -stop of 50mm/25mm = 2.) One can also “stop down” a lens from this fastest setting by adjusting the
blades to shrink the diameter of the aperture, as described above. (For example, for the 50mm-long lens with
a 25mm diameter, you might reduce the diameter to 12.5mm, which yields an f -stop of 50mm/12.5mm = 4.)

f/1

f/1.4

f/2

f/2.8

f/4

f/5.6

Figure 5.9: A par-
ticular lens of a
camera, shown at
several different
f -stops. These con-
figurations are only
an approximation—
the real blades are
shaped somewhat
differently than is
shown here.

Consider a camera lens with a 50mm focal length, and let d0 := 50mm denote the diameter of the lens’s
aperture diameter. “Stopping down” the lens by one step causes the lens’s aperture diameter to shrink by a
factor of 1√

2—that is, the next-smaller aperture diameter for a diameter di is defined as

di+1 := di√
2
, for any i ≥ 0.

Give a closed-form expression for dn—that is, give a nonrecursive numerical expression whose value is equal
to dn (where your expression involves only real numbers and the variable n). Prove your answer correct by
induction on n. Also give a closed-form expression for two further quantities:
• the “light-gathering” area (that is, the area of the aperture) of the lens when its diameter is set to dn.
• the f -stop fn of the lens when its diameter is set to dn.
(Using your formula for fn, can you explain the f -stop names from Figure 5.9?)

5.8 What is the sum of the first n odd positive integers? First, formulate a conjecture by trying a few
examples (for example, what’s 1 + 3, for n = 2? What’s 1 + 3 + 5, for n = 3? What’s 1 + 3 + 5 + 7, for n = 4?).
Then prove your answer by induction.
5.9 What is the sum of the first n even positive integers? Prove your answer by induction.

5.10 Let α ∈ R and let n ∈ Z≥0, and consider the arithmetic sequence 〈x0, x0 + α, x0 + 2α, . . .〉. (Recall
that each entry in an arithmetic sequence is a fixed amount more than the previous entry. Three examples
are 〈1, 3, 5, 7, 9, . . .〉, with x0 = 1 and α = 2; 〈25, 20, 15, 10, . . .〉, with x0 = 25 and α = −5; and 〈5, 5, 5, 5, 5, . . .〉,
with x0 = 5 and α = 0.) An arithmetic sum or arithmetic series is the sum of an arithmetic sequence. For the
arithmetic sequence 〈x0, x0 + α, x0 + 2α, . . .〉, formulate and prove correct by induction a formula expressing
the value of the arithmetic series n

∑
i=0

(x0 + iα).

(Hint: note that ∑n
i=0 iα = α∑n

i=0 i = αn(n+1)
2 , by Example 5.4.)

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0M0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 5.10: A
chess board. The
knight can move to
any of the marked
positions.

5.11 In chess, a knight at position 〈r, c〉 can move in an L-shaped pattern to any of eight positions:
moving over one row and up/down two columns (〈r ± 1, c ± 2〉), or two rows over and one column
up/down (〈r ± 2, c ± 1〉). (See Figure 5.10.) A knight’s walk is a sequence of legal moves, starting from a
square of your choice, that visits every square of the board. Prove by induction that there exists a knight’s
walk for any n-by-n chessboard for any n ≥ 4. (A knight’s tour is a knight’s walk that visits every square only
once. It turns out that knight’s tours exist for all even n ≥ 6, but you don’t need to prove this fact.)
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5.12 (programming required) In a programming language of your choice, implement your proof from
Exercise 5.11 as a recursive algorithm that computes a knight’s walk in an n-by-n chessboard.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0S0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 5.11: A rook
can move to any
of the positions
marked with a
circle.

5.13 In chess, a rook at position 〈r, c〉 can move in a straight line either horizontally or vertically (to
〈r± x, c〉 or 〈r, c± x〉, for any integer x). (See Figure 5.11.) A rook’s tour is a sequence of legal moves, starting
from a square of your choice, that visits every square of the board once and only once. Prove by induction that
there exists a rook’s tour for any n-by-n chessboard for any n ≥ 1.

Figure 5.12 shows three different fractals. One is the Von Koch snowflake (Figure 5.12(a)), which we’ve already seen: a
Von Koch line of size s and level 0 is just a straight line segment; a Von Koch line of size s and level ℓ consists of four
Von Koch lines of size (s/3) and level (ℓ − 1) arranged in the shape ; a Von Koch snowflake of size s and level ℓ
consists of a triangle of three Von Koch lines of size s and level ℓ.

The other two fractals in Figure 5.12 are new. Figure 5.12(b) shows the Sierpinski triangle: a Sierpinski triangle
of level 0 and size s is an equilateral triangle of side length s; a Sierpinski triangle of level (ℓ + 1) is three Sierpinski tri-
angles of level ℓ and side length s/2 arranged in a triangle. Figure 5.12(c) shows a related fractal called the Sierpinski
carpet, recursively formed from 8 smaller Sierpinski carpets (arranged in a 3-by-3 grid with a hole in the middle); the
base case is just a filled square.

The Von Koch
snowflake is named
after Helge von
Koch, a 19th/20th-
century Swedish
mathematician;
the Sierpinski
triangle/carpet
are named after
Wacław Sierpiński,
a 20th-century Pol-
ish mathematician.

Suppose that we draw each of these fractals at level ℓ and with size 1. What is the perimeter of each of these fractals?
(By “perimeter,” we mean the total length of all boundaries separating regions inside the figure from regions outside—
which includes, for example, the boundary of the “hole” in the Sierpinski carpet. For the Sierpinski fractals as drawn
here, the perimeter is precisely the length of lines separating colored-in from uncolored-in regions.) In each case,
conjecture a formula and prove your answer correct by induction.
5.14 Von Koch snowflake 5.15 Sierpinski triangle 5.16 Sierpinski carpet
Draw each of these fractals at level ℓ and with size 1. What is the enclosed area of each of these fractals? (Again, for the
Sierpinski fractals as drawn here, the enclosed area is precisely the area of the colored-in regions.)
5.17 Von Koch snowflake 5.18 Sierpinski triangle 5.19 Sierpinski carpet
In the last few exercises, you computed the fractals’ perimeter/area at level ℓ. But what if we continued the fractal-
expansion process forever? What are the area and perimeter of an infinite-level fractal? (Hint: use Corollary 5.3.)
5.20 Von Koch snowflake 5.21 Sierpinski triangle 5.22 Sierpinski carpet

(a) The Von Koch snowflake, at levels 0, 1, 2, 3, and 4.

(b) The Sierpinski triangle, at levels 0, 1, 2, 3, and 4.

(c) The Sierpinski carpet, at levels 0, 1, 2, and 3.

Figure 5.12: Three
fractals: the Von
Koch snowflake, the
Sierpinski triangle,
and the Sierpinski
carpet.
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5.23 (programming required) Write a recursive function sierpinskiTriangle(level, length, x, y), in a
language of your choice, to draw a Sierpinski triangle of side length length at level levelwith bottom-left
coordinate 〈x, y〉. (You’ll need to use some kind of graphics package with line-drawing capability.)

Write your function so that—in addition to drawing the fractal—it returns both the total length and total
area of the triangles that it draws. Use your function to verify some small cases of Exercises 5.15 and 5.18.

5.24 (programming required) Write a recursive function sierpinskiCarpet(level, length, x, y), in a pro-
gramming language of your choice, to draw a Sierpinski carpet. (See Exercise 5.23 for the meaning of the
parameters.) Write your function so that—in addition to drawing the fractal—it also returns the area of the
boxes that it encloses. Use your function to verify some small cases of your answer to Exercise 5.19. 4 9 2

3 5 7
8 1 6

Figure 5.13: A
Magic Square.

5.25 An n-by-n magic square is an n-by-n grid into which the numbers 1, 2, . . . ,n2 are placed, once each.
The “magic” is that each row, column, and diagonal must be filled with numbers that have the same sum. For
example, a 3-by-3 magic square is shown in Figure 5.13. Conjecture and prove a formula for what the sum of
each row/column/diagonal must be in an n-by-n magic square.

Recall from Section 5.2.2 the harmonic numbers, where Hn := ∑n
i=1

1
i is the sum of the reciprocals of the first n

positive integers. Further recall Theorem 5.4, which states that k + 1 ≥ H2k ≥ k
2 + 1 for any integer k ≥ 0.

5.26 In Example 5.7, we proved that k + 1 ≥ H2k . Using the same type of reasoning as in the example,
complete the proof of Theorem 5.4: show by induction that H2k ≥ k

2 + 1 for any integer k ≥ 0.
5.27 Generalize Theorem 5.4 to numbers that aren’t necessarily exact powers of 2. Specifically, prove
that log n + 2 ≥ Hn ≥ (log n− 1)/2 + 1 for any real number n ≥ 1. (Hint: use Theorem 5.4.)

odd?(n):
1: if n = 0 then
2: return False
3: else
4: return not odd?(n− 1)

sum(n,m):
1: if n = m then
2: return m
3: else
4: return n + sum(n + 1,m)

Figure 5.14: Two
algorithms.

5.28 Prove Bernoulli’s inequality: let x ≥ −1 be an arbitrary real number. Prove by induction
on n that (1 + x)n ≥ 1 + nx for any positive integer n.

Prove that the following inequalities f (n) ≤ g(n) hold “for sufficiently large n.” That is, identify an integer
k and then prove (by induction on n) that f (n) ≤ g(n) for all integers n ≥ k.
5.29 2n ≤ n!
5.30 bn ≤ n!, for an arbitrary integer b ≥ 1
5.31 3n ≤ n2
5.32 n3 ≤ 2n

5.33 Prove that, for any nonnegative integer n, the algorithm odd?(n) returns True if and
only if n is odd. (See Figure 5.14.)
5.34 Prove that the algorithm sum(n,m) returns ∑m

i=n i (again see Figure 5.14) for any m ≥ n.
(Hint: perform induction on the value of m− n.)
5.35 Describe how your proof from Exercise 5.34 would change if Line 4 from the sum
algorithm in Figure 5.14 were changed to return m + sum(n,m− 1) instead of n + sum(n + 1,m).

5.36 Prove by induction on n that 8n − 3n is divisible by 5 for any nonnegative integer n.
5.37 Conjecture a formula for the value of 9n mod 10, and prove it correct by induction on n. (Hint: try
computing 9n mod 10 for a few small values of n to generate your conjecture.)
5.38 As in the previous exercise, conjecture a formula for the value of 2n mod 7, and prove it correct.

5.39 Suppose that we count, in binary, using an n-bit counter that goes from 0 to 2n − 1. There are
2n different steps along the way: the initial step of 00 · · · 0, and then 2n − 1 increment steps, each of which
causes at least one bit to be flipped. What is the average number of bit flips that occur per step? (Count the
first step as changing all n bits.) For example, for n = 3, we have 000 → 001 → 010 → 011 → 100 → 101 →
110 → 111, which has a total of 3 + 1 + 2 + 1 + 3 + 1 + 2 + 1 = 14 bit flips. Prove your answer.

dog

dog

dog

Figure 5.15: A
configuration of
fences, and a valid
way to deploy my
dogs.

5.40 To protect my backyard from my neighbor, a biology professor who is sometimes a little over-
friendly, I have acquired a large army of vicious robotic dogs. Unfortunately the robotic dogs in this batch
are very jealous, and they must be separated by fences—in fact, they can’t even face each other directly
through a fence. So I have built a collection of n fences to separate my backyard into polygonal regions,
where each fence completely crosses my yard (that is, it goes from property line to property line, possibly
crossing other fences). I wish to deploy my robotic dogs to satisfy the following property:

For any two polygonal regions that share a boundary (that is, are separated by a fence segment), one of
the two regions has exactly one robotic dog and the other region has zero robotic dogs.

(See Figure 5.15.) Prove by induction on n that this condition is satisfiable for any collection of n fences.
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5.3 Strong Induction
It’s not true that life is one damn thing after another; it
is one damn thing over and over.

Edna St. Vincent Millay (1892–1950)

In the proofs by induction in Section 5.2, we established the claim ∀n ∈ Z≥0 : P(n)
by proving P(0) [the base case] and proving that P(n− 1) ⇒ P(n) [the inductive case].
But let’s think again about what happens in an inductive proof, as we build up facts
about P(n) for ever-increasing values of n. (Glance at Example 5.1 again.)

1. We prove P(0).
2. We prove P(0) ⇒ P(1), so we conclude P(1), using Fact #1.

Now we wish to prove P(2). In a proof by induction like those from Section 5.2, we’d
proceed as follows:

3. We prove P(1) ⇒ P(2), so we conclude P(2), using Fact #2.

In a proof by strong induction, we allow ourselves to make use of more assumptions:
namely, we know that P(1) and P(0) when we’re trying to prove P(2). (By way of con-
trast, we’ll refer to proofs like those from Section 5.2 as using weak induction.) In a
proof by strong induction, we proceed as follows instead:

3′. We prove P(0)∧ P(1) ⇒ P(2), so we conclude P(2), using Fact #1 and Fact #2.

In a proof by strong induction, in the inductive case we prove P(n) by assuming n
different inductive hypotheses: P(0), P(1), P(2), . . . , and P(n− 1). Or, less formally: in
the inductive case of a proof by weak induction, we show that if P “was true last time”
then it’s still true this time; in the inductive case of a proof by strong induction, we show
that if P “has been true up until now” then it’s still true this time.

5.3.1 A Definition and a First Example
Here is the formal definition of a proof by strong induction:

Definition 5.5 (Proof by strong induction)
Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by strong
induction of ∀n ∈ Z≥0 : P(n), we prove the following:

1. the base case: prove P(0).
2. the inductive case: for every n ≥ 1, prove [P(0)∧ P(1)∧ · · · ∧ P(n− 1)] ⇒ P(n).

Generally speaking, using strong induction makes sense when the “reason for” P(n) is
that P(k) is true for more than one index k ≤ n− 1, or that P(k) is true for some index
k ≤ n− 2. (For weak induction, the “reason for” P(n) is that P(n− 1) is true.)

Strong induction makes the inductive case easier to prove than weak induction,
because the claim that we need to show—that is, P(n)—is the same, but we get to
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use more assumptions in strong induction: in strong induction, we’ve assumed all
of P(0) ∧ P(1) ∧ . . . ∧ P(n− 1); in weak induction, we’ve assumed only P(n− 1). We
can always ignore those extra assumptions, so it’s never harder to prove something by
strong induction than with weak induction. (Strong induction is actually equivalent

Writing tip: While
anything that can
be proven using
weak induction
can also be proven
using strong induc-
tion, you should
still use the tool
that’s best suited to
the job—generally,
the one that makes
the argument easi-
est to understand.

to weak induction; anything that can be proven with one can also be proven with the
other. See Exercises 5.75–5.76.)

A first example: a simple algorithm for parity
In the rest of this section, we’ll give several examples of proofs by strong induction.

We’ll start here with a proof of correctness for a blazingly simple algorithm that com-
putes the parity of a positive integer. (Recall that the parity of n is the “evenness” or
“oddness” of n.) See Figure 5.16 for the parity algorithm.

parity(n): // assume that n ≥ 0 is an integer.
1: if n ≤ 1 then
2: return n
3: else
4: return parity(n− 2)

Figure 5.16: A
simple parity
algorithm.

We’ve already used (weak) induction to prove the cor-
rectness of recursive algorithms that, given an input of size
n, call themselves on an input of size n− 1. (That’s how we
proved the correctness of the factorial algorithm fact from
Example 5.9.) But for recursive algorithms that call them-
selves on smaller inputs but not necessarily of size n− 1, like parity, we can use strong
induction to prove their correctness.

Example 5.11 (The correctness of parity)
Claim: For any nonnegative integer n ≥ 0,

parity(n) = n mod 2.

Proof. Write P(n) to denote the property that parity(n) = n mod 2. We proceed by
strong induction on n to show that P(n) holds for all n ≥ 0:

base cases (n = 0 and n = 1): By inspection of the algorithm, parity(0) returns 0 in
Line 2, and, indeed, 0 mod 2 = 0. Similarly, we have parity(1) = 1, and 1 mod 2 = 1
too. Thus P(0) and P(1) hold.

inductive case (n ≥ 2): Assume the inductive hypothesis P(0)∧ P(1)∧ · · · ∧ P(n− 1).
Namely, assume that

for any integer 0 ≤ k < n, we have parity(k) = k mod 2.

We must prove P(n)—that is, we must prove parity(n) = n mod 2:

parity(n) = parity(n− 2) by inspection (specifically because n ≥ 2 and by Line 4)

= (n− 2) mod 2 by the inductive hypothesis P(n− 2)

= n mod 2,

where (n− 2) mod 2 = n mod 2 by Definition 2.9. (Note that the inductive hypoth-
esis applies for k := n− 2 because n ≥ 2 and therefore 0 ≤ n− 2 < n.)
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There are two things to note about the proof in Example 5.11. First, using strong
induction instead of weak induction made sense because the inductive case relied on
P(n− 2) to prove P(n); we did not show P(n− 1) ⇒ P(n). Second, we needed two
base cases: the “reason” that P(1) holds is not that P(−1) was true. (In fact, P(−1) is
false—parity(−1) isn’t equal to 1! Think about why.) The inductive case of the proof in
Example 5.11 does not correctly apply for n = 1, and therefore we had to handle that
case separately.

5.3.2 Some Further Examples of Strong Induction
We’ll continue this section with several more examples of proofs by strong induction.
We’ll first turn to a proof about prime factorization of integers, and then look at one
geometric and one algorithmic claim.

Prime factorization
Recall that an integer n ≥ 2 is called prime if the only positive integers that evenly

divide it are 1 and n itself. It’s a basic fact about numbers that any positive integer can
be uniquely expressed as the product of primes: The prime factor-

ization theorem
is also sometimes
called the Funda-
mental Theorem of
Arithmetic.

Theorem 5.5 (Prime Factorization Theorem)
Let n ∈ Z≥1 be a positive integer. Then there exist k ≥ 0 prime numbers p1, p2, . . . , pk such
that n = ∏k

i=1 pi. Furthermore, up to reordering, the primes p1, p2, . . . , pk are unique.

While proving the uniqueness requires a bit more work (see Section 7.3.3), we can give a
proof using strong induction to show that a prime factorization exists.

Example 5.12 (Prime factorization)
Let P(n) denote the first part of Theorem 5.5, namely the claim

there exist k ≥ 0 prime numbers p1, p2, . . . , pk such that n =
k

∏
i=1

pi.

We will prove that P(n) holds for any integer n ≥ 1, by strong induction on n.

base case (n = 1): Recall that the product of zero multiplicands is 1. (See Section
2.2.7.) Thus we can write n as the product of zero prime numbers. Thus P(1) holds.

inductive case (n ≥ 2): We assume the inductive hypothesis—namely, we assume
that P(n′) holds for any positive integer n′ where 1 ≤ n′ ≤ n− 1. We must prove
P(n). There are two cases:

• If n is prime, then there’s nothing to do: define p1 := n, and we’re done immedi-
ately. (We’ve written n as the product of 1 prime number.)

• If n is not prime, then by definition n can be written as the product n = a · b, for
positive integers a and b satisfying 2 ≤ a ≤ n− 1 and 2 ≤ b ≤ n− 1. (The
definition of (non)primality says that n = a · b for a /∈ {1, n}; it should be easy to
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convince yourself that neither a nor b can be smaller than 2 or larger than n− 1.)
By the inductive hypotheses P(a) and P(b), we have

a = q1 · q2 · · · · · qℓ and b = r1 · r2 · · · · · rm (∗)

for prime numbers q1, . . . , qℓ and r1, . . . , rm. By (∗) and the fact that n = a · b,

n = q1 · q2 · · · · · qℓ · r1 · r2 · · · · · rm.

Because each qi and ri is prime, we have now written n as the product of ℓ +m
prime numbers, and P(n) holds. The theorem follows.

primeFactor(n):
1: if n = 1 then
2: return 〈〉 or “P(1) is true!”
3: else
4: if n is prime then
5: return 〈n〉 or “P(n) is true!”
6: else
7: find factors a, bwhere 2 ≤ a ≤ n− 1 and 2 ≤ b ≤ n− 1 such that n = a · b.
8: 〈q1, ..., qk〉 := primeFactor(a)
9: 〈r1, ..., rm〉 := primeFactor(b)
10: return 〈q1, ..., qk , r1, ..., rm〉 or “P(n) is true, because P(a) ∧ P(b)!”

Figure 5.17: The
proof of Exam-
ple 5.12, interpreted
as a recursive
algorithm.

Taking it further: As with any
inductive proof, it may be useful to
view the proof from Example 5.12
as a recursive algorithm, as shown
in Figure 5.17. (Notice that there’s
some magic in the “algorithm,” in
the sense that Line 7 doesn’t tell
us how to find the values of a and
b—but we do know that such values
exist, by definition.) We can think
of the inductive case of an inductive
proof as “making a recursive call” to
a proof for a smaller input.

For example, primeFactor(2) returns 〈2〉 and primeFactor(5) returns 〈5〉, because both 2 and 5
are prime. For another example, the result of primeFactor(10) is 〈2, 5〉, because 10 is not prime, but
we can write 10 = 2 · 5 and primeFactor(2) returns 〈2〉 and primeFactor(5) returns 〈5〉. The re-
sult of primeFactor(70) could be 〈7, 2, 5〉, because 70 is not prime, but we can write 70 = 7 · 10 and
primeFactor(7) returns 〈7〉 and primeFactor(10) returns 〈2, 5〉. Or primeFactor(70) could be 〈7, 5, 2〉
because 70 = 35 · 2, and primeFactor(35) returns 〈7, 5〉 and primeFactor(2) returns 〈2〉. (Which ordering
of the values is the output depends on the magic of Line 7. The second part of Theorem 5.5, about the
uniqueness of the prime factorization, says that it is only the ordering of these numbers that depends on
the magic; the numbers themselves must the same.)

Triangulating a polygon

Figure 5.18: A
polygon. The dots
are called vertices;
the lines connecting
them are the sides;
and the shaded
region (excluding
the boundary) is the
interior.

We’ll now turn to a proof by strong induction about a geometric question,
instead of a numerical one. A convex polygon is, informally, the points “inside” a
set of n vertices: imagine stretching a giant rubber band around n points in the
plane; the polygon is defined as the set of all points contained inside the rubber
band. See Figure 5.18 for an example. Here we will show that an arbitrary convex
polygon can be decomposed into a collection of nonoverlapping triangles.

Example 5.13 (Decomposing a polygon into triangles)
Problem: Prove the following claim:

Claim: Any convex polygon P with k ≥ 3 vertices can be decomposed into a set of
k− 2 triangles whose interiors do not overlap.

(For an example, and an outline of a possible proof, see Figure 5.19.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



5.3. STRONG INDUCTION 525

(a) The original polygon P.
u

v

A
B

(b) Two vertices u, v of P, and P
divided into A and B (above
and below the 〈u, v〉 line).

(c) The subpolygons A and B
divided into triangles, using
the inductive hypothesis.

Figure 5.19: An
example of the
recursive decompo-
sition of a polygon
into interior-disjoint
triangles.

Solution: Let Q(k) denote the claim that any k-vertex polygon can be decomposed
into a set of k − 2 interior-disjoint triangles. We’ll give a proof by strong induction
on k that Q(k) holds for all k ≥ 3. (Note that strong induction isn’t strictly neces-
sary to prove this claim; we could give an alternative proof using weak induction.)
base case (k = 3): There’s nothing to do: any 3-vertex polygon P is itself a trian-

gle, so the collection {P} is a set of k − 2 = 1 triangles whose interiors do not
intersect (vacuously, because there is only one triangle). Thus Q(3) holds.

inductive case (k ≥ 4): We assume the inductive hypothesis: any convex polygon
with 3 ≤ ℓ < k vertices can be decomposed into a set of ℓ− 2 interior-disjoint
triangles. (That is, we assume Q(3),Q(4), . . . ,Q(k− 1).) We must prove Q(k).

Let P be an arbitrary k-vertex polygon. Let u and v be any two nonadjacent
vertices of P. (Because k ≥ 4, such a pair exists.) Define A as the “above the
〈u, v〉 line” piece of P and B as the “below the 〈u, v〉 line” piece of P. Notice that
P = A ∪ B, both A and B are convex, and the interiors of A and B are disjoint.
Let ℓ be the number of vertices in A. Observe that ℓ ≥ 3 and ℓ < k because u
and v are nonadjacent. Also observe that B contains precisely k − ℓ + 2 vertices.
(The “+2” is because vertices u and v appear in both A and B.) Note that both
3 ≤ ℓ ≤ k − 1 and 3 ≤ k − ℓ + 2 ≤ k − 1, so we can apply the inductive
hypothesis to both ℓ and k− ℓ + 2.

Therefore, by the inductive hypothesis Q(ℓ), the polygon A is decomposable
into a set S of ℓ− 2 interior-disjoint triangles. Again by the inductive hypothesis
Q(k− ℓ + 2), the polygon B is decomposable into a set T of k − ℓ + 2− 2 = k − ℓ

interior-disjoint triangles. Furthermore because A and B are interior disjoint, the
triangles of S ∪ T all have disjoint interiors. Thus P itself can be decomposed
into the union of these two sets of triangles, yielding a total of ℓ− 2 + k − ℓ =
k− 2 interior-disjoint triangles.

We’ve shown both Q(3) and Q(3) ∧ · · · ∧ Q(k − 1) ⇒ Q(k) for any k ≥ 4, which
completes the proof by strong induction.

Taking it further: The style of triangulation from Example 5.13 has particularly important implications in
computer graphics, in which we seek to render representations of complicated real-world scenes using
computational techniques. In many computer graphics applications, complex surfaces are decomposed
into small triangular regions, which are then rendered individually. See p. 528 for more discussion.
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quickSort(A[1 . . .n]):
1: if n ≤ 1 then
2: return A
3: else
4: choose pivot ∈ {1, . . . , n}, somehow.
5: L := 〈〉
6: R := 〈〉
7: for i ∈ {1, . . . ,n} with i 6= pivot:
8: if A[i] < A[pivot] then
9: append A[i] to L
10: else
11: append A[i] to R
12: L := quickSort(L)
13: R := quickSort(R)
14: return L + 〈A[pivot]〉 + R

(a) The pseudocode.

7 2 4 3 1 6 5 8 9 choose 3 as the pivot value

2 1︸︷︷︸
L

3 7 4 6 5 8 9︸ ︷︷ ︸
R

partition into L and R

1 2︸︷︷︸
L, sorted

3 4 5 6 7 8 9︸ ︷︷ ︸
R, sorted

recursively sort L and R

(b) An example of quick sort. Starting from an array
724316589, we (through whatever mechanism) choose 3
as the pivot value, divide the array into the elements< 3
and those> 3, and recursively sort those two pieces.

Figure 5.20: Quick
Sort: pseudocode,
and an example.

Proving algorithms correct: Quick Sort
We’ve now seen a proof of correctness by strong induction for a simple recursive al-

gorithm (for parity), and proofs of somewhat more complicated non-algorithmic prop-
erties. Here we’ll prove the correctness of a somewhat more complicated algorithm—
the recursive sorting algorithm called Quick Sort—again using strong induction.

The idea of the Quick Sort algorithm is to select a pivot value x from an input array
A; we then partition the elements of A into those less than x (which we then sort re-
cursively), then x itself, and finally the elements of A greater than x (which we again
sort recursively). We also need a base case: an input array with fewer than 2 elements
is already sorted. (See Figure 5.20(a) for the algorithm.) For example, suppose we wish
to sort all 43 U.S. Presidents by birthday. (Grover Cleveland will appear only once.) Even without two

Grover Cleveland
entries in the array,
the simplifying
assumption that
we’re making
about distinct
elements actually
doesn’t apply for
the U.S. Presidents:
James Polk and
Warren Harding
were both born on
November 2nd.
(Think about how
you’d modify the
proof that follows to
handle duplicates.)

Barack Obama’s birthday is August 4th. If we choose him as the pivot, then Quick Sort
would first divide all the other presidents into two lists, of those with pre–August 4th
and post–August 4th birthdays,

before[1 . . . 23] := 〈George Washington [February 22nd], . . . ,George W. Bush [July 6th]〉
after[1 . . . 19] := 〈John Adams [October 30th], . . . , Bill Clinton [August 19th]〉,

and then recursively sort before and after. Then the final sorted list will be

before in sorted order Barack Obama after in sorted order
prez[1], . . . , prez[23], prez[24], prez[25], . . . , prez[43]

(See Figure 5.20(b) for another example of Quick Sort.)
While the efficiency of Quick Sort depends crucially on how we choose the pivot

value (see Chapter 6), the correctness of the algorithm holds regardless of that choice.
For simplicity, we will prove that Quick Sort correctly sorts its input under the as-
sumption that all the elements of the input array A are distinct. (The more general
case, in which there may be duplicate elements, is conceptually no harder, but is a bit
more tedious.) It is easy to see by inspection of the algorithm that quickSort(A) re-
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turns a reordering of the input array A—that is, Quick Sort neither deletes or inserts
elements. Thus the real work is to prove that Quick Sort returns a sorted array:

piv
otL R

1. x
2. y
3. x, y
4. x, y
5. x y
6. y x

Figure 5.21: The
cases of the proof in
Example 5.14.

Example 5.14 (Correctness of Quick Sort)
Claim: For any array Awith distinct elements, quickSort(A) returns a sorted array.
Proof. Let P(n) denote the claim that quickSort(A[1 . . .n]) returns a sorted array for
any n-element array A with distinct elements. We’ll prove P(n) for every n ≥ 0, by
strong induction on n.

base cases (n = 0 and n = 1): Both P(0) and P(1) are trivial: any array of length 0 or 1
is sorted.

inductive case (n ≥ 2): We assume the inductive hypothesis P(0), . . . ,P(n− 1): for
any array B[1 . . . k] with distinct elements and length k < n, quickSort(B) returns
a sorted array. We must prove P(n). Let A[1 . . .n] be an arbitrary array with dis-
tinct elements. Let pivot ∈ {1, . . . , n} be arbitrary. We must prove that x appears
before y in quickSort(A) if and only if x < y. We proceed by cases, based on the
relationship between x, y, and A[pivot]. (See Figure 5.21.)

Case 1: x = A[pivot]. The elements appearing after x in quickSort(A) are precisely
the elements of R. And R is exactly the set of elements greater than x. Thus x
appears before y if and only if y appears in R, which occurs if and only if x < y.

Case 2: y = A[pivot]. Analogously to Case 1, x appears before y if and only if x
appears in L, which occurs if and only if x < y.

Case 3: x < A[pivot] and y < A[pivot]. Then both x and y appear in L. Because
A[pivot] does not appear in L, we know that L contains at most n − 1 ele-
ments, all of which are distinct because they’re a subset of the distinct ele-
ments of A. Thus the inductive hypothesis P(|L|) says that x appears before y
in quickSort(L) if and only if x < y. And x appears before y in quickSort(A) if
and only if x appears before y in quickSort(L).

Case 4: x > A[pivot] and y > A[pivot]. Then both x and y appear in R. An analo-
gous argument to Case 3 shows that x appears before y if and only if x < y.

Case 5: x < A[pivot] and y > A[pivot]. It is immediate both that x appears before y
(because x is in L and y is in R) and that x < y.

Case 6: x > A[pivot] and y < A[pivot]. It is immediately apparent that x does not
appear before y and that x 6< y.

In all six cases, we have established that x < y if and only if x appears before y in the
output array; furthermore, the cases are exhaustive. The claim follows.

Taking it further: In addition to proofs of correctness for algorithms, like the one for quickSort that
we just gave, strong induction is crucial in analyzing the efficiency of recursive algorithms; we’ll see
many examples in Section 6.4. And strong induction can also be fruitfully applied to understanding (and
designing!) data structures—for example, see p. 529 for a discussion of maximum heaps.
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Computer Science Connections

Triangulation, Computer Graphics, and 3D Surfaces

Figure 5.22: Three strategies for refining
a triangulation of a rabbit. Reprinted,
with permission, from:

Here is a typical problem in computer graphics: we are given
a three-dimensional scene consisting of a collection of objects of
various shapes and sizes, and we must render a two-dimensional
image that is a visual display of the scene. (Computer graphics
uses a lot of matrix computation to facilitate the projection of a
3-dimensional shape onto a 2-dimensional surface.)

A typical approach—to simplify and speed the algorithms for
displaying these scenes—approximates the three-dimensional
shapes of the objects in the scene using triangles instead of ar-
bitrary shapes. Triangles are the easiest shape to process com-
putationally: the “real” triangle in the scene can be specified
completely by three 3-dimensional points corresponding to the
vertices; and the rendered shape in the image is still a triangle
specified completely by 2-dimensional points corresponding to the
vertices’ projections onto the image. Specialized hardware called a
graphics processing unit (GPU)makes these computations extremely
fast on many modern computers.

When rendering a scene, we might compute a single color c that
best represents the color of a given triangle in the real scene, and
then display a solid c-colored (projected) triangle in the image.
We can approximate any three-dimensional shape arbitrarily well
using a collection of triangles, and we can refine a triangulation by
dividing splitting one triangle into two pieces, and then properly
rendering each constituent triangle:

Note that there are many different ways to subdivide a given
triangle into two separate triangles. Which subdivision we pick
might depend on the geometry of the scene; for example, we
might try to make the subtriangles roughly similar in size, or
maximally different in color.

The larger the number of triangles we use, the better the match
between the real 3-dimensional shape and the triangulated ap-
proximation. But, of course, the more triangles we use, the more
computation must be done (and the slower the rendering will
be). By identifying particularly important triangles—for exam-
ple, those whose colors vary particularly widely, or those at a
particularly steep angle to their neighbors, or those whose angles
to the viewer are particularly extreme—we can selectively refine
“the most important parts” of the triangulation to produce higher
quality images.2 (See Figure 5.22.)

2 Tobias Isenberg, Knut Hartmann, and
Henry König. Interest value driven
adaptive subdivision. In Simulation and
Visualisation (SimVis), pages 139–149.
SCS European Publishing House, 2003.
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Computer Science Connections

Max Heaps
When we design data structures to support particular operations, it is often

the case that we wish to maintain some properties in the way that the data
are stored. Here’s one example, for an implementation of priority queues, that
we’ll establish using a proof by mathematical induction. A priority queue is a
data structure that stores a set of jobs, each of which has a priority; we wish to
be able to insert new jobs (with specified priorities) and identify/extract the
existing job with the highest priority.

A maximum heap is one way of implementing priority queues. A maxi-

x

≤ x ≤ x

Figure 5.23: The maximum heap prop-
erty. For a node with value x, the
children must have values ≤ x.

mum heap is a binary tree—see Section 5.4 or Chapter 11—in which every
node stores a job with an associated priority. Every node in the tree satisfies
the (maximum) heap property (see Figure 5.23): the priority of node umust be
greater than or equal to the priorities of each of u’s children. (A heap must
also satisfy another property, being “nearly complete”—intuitively, a heap
has no “missing nodes” except in the bottommost layer; this “nearly com-
plete” property is what guarantees that heaps implement priority queues very
efficiently.) An example of a heap is shown in Figure 5.24.

It’s easy to check that the topmost node (the root) of the maximum heap in
8

5

4

2

1

7

6 3

Figure 5.24: A maximum heap.

Figure 5.24 has the highest priority. Heaps are designed so that the root of the
tree contains the node with the highest priority—but this claim requires proof.
Here is a proof by induction:
Claim: In any binary tree in which every node satisfies the maximum heap

property, the node with the highest priority is the root.
Proof. We’ll proceed by strong induction on the number of layers of nodes in
the tree. (This proof is an example of a situation in which it’s not immediately
clear upon what quantity to perform induction, but once we’ve chosen the
quantity well, the proof itself is fairly easy.) Let P(ℓ) denote the claim

In any tree containing ℓ layers of nodes, in which every node satisfies
the maximum heap property, the node with the highest priority is the
root of the tree.

We will prove that P(ℓ) holds for all ℓ ≥ 1 by strong induction on ℓ.
base case (ℓ = 1): The tree has only one level—that is, the root is the only

node in the tree. Thus, vacuously, the root has the highest priority, because
there are no other nodes.

inductive case (ℓ ≥ 2): We assume the inductive hypothesis P(1), . . . ,P(ℓ− 1).
Let x be the priority of the root of the tree. If the root has only one child,
say with priority a, then by the inductive hypothesis every element y be-
neath a satisfies y ≤ a. (There are at most ℓ− 1 layers in the tree beneath a,
so the inductive hypothesis applies.) By the heap property, we know a ≤ x,
and thus every element y satisfies y ≤ x. If the root has a second child, say
with priority b, then by the inductive hypothesis every element z beneath b
satisfies z ≤ b. (There are at most ℓ− 1 layers in the tree beneath b, so the
inductive hypothesis applies again.) Again, by the heap property, we have
b ≤ x, so every element z satisfies z ≤ x.

x
a

x
a b
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5.3.3 Exercises

parity(n): // assume that n ≥ 0 is an integer.
1: if n ≤ 1 then
2: return n
3: else
4: return parity(n− 2)

toBinary(n): // assume that n ≥ 0 is an integer.
1: if n ≤ 1 then
2: return 〈n〉
3: else
4: 〈bk, . . . , b0〉 := toBinary(⌊n/2⌋)
5: x := parity(n)
6: return 〈bk, . . . , b0, x〉

Figure 5.25: A
reminder of the
parity algorithm
(from Figure 5.16),
and an algorithm to
convert an integer
to binary.

5.41 In Example 5.11, we showed the correctness of the parity function
(see Figure 5.25)—that is, for any n ≥ 0, we have that parity(n) = n mod 2.
Prove by strong induction on n that the depth of the recursion (that is, the
total number of calls to parity made) for parity(n) is 1 + ⌊n/2⌋.

5.42 Consider the algorithm in Figure 5.25, which finds the binary
representation of a given integer n ≥ 0. For example, toBinary(13) =
〈1, 1, 0, 1〉, and 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 8 + 4 + 0 + 1 = 13.

Prove the correctness of toBinary by strong induction—that is, prove that
for any n ≥ 0, we have ∑k

i=0 bi2i = n where toBinary(n) = 〈bk, . . . , b0〉.

Your proof of the correctness of toBinary(n) establishes that any nonnegative inte-
ger can be represented in binary. Now you’ll show that this binary representation is
unique—or, at least, unique up to leading zeros. (For example, we can represent 7
in binary as 111 or 0111 or 00111, but only 111 has no leading zeros.)
5.43 Prove that every nonnegative integer n that can be represented as a k-bit string is uniquely repre-
sented as a k-bit bitstring. In other words, prove the following claim, for any integer k ≥ 1:

Let a := 〈ak, ak−1, . . . , a0〉 and b := 〈bk, bk−1, . . . , b0〉 be two k-bit sequences.
If ∑k

i=0 ai2i = ∑k
i=0 bi2i , then for all i ∈ {k, k − 1, . . . , 0} we have ai = bi .

Your proof should be by (weak) induction on k.

In Chapter 7, we’ll talk in a great deal more detail about modular arithmetic, and we’ll discuss a more general algorithm
for converting from one base to another on p. 714. In Chapter 7, we’ll do most of the computation iteratively; here you’ll
fill in a few pieces recursively.
5.44 Generalize the parity(n) algorithm to remainder(n, k) to recursively compute the number
r ∈ {0, 1, . . . , k− 1} such that remainder(n, k) = n mod k. Assume that k ≥ 1 and n ≥ 0 are both inte-
gers, and follow the same algorithmic outline as in Figure 5.25. Prove your algorithm correct using strong
induction on n.
5.45 Generalize the toBinary(n) algorithm to baseConvert(n, k) to recursively convert the integer n
to base k. Assume that k ≥ 2 and n ≥ 0 are both integers, and follow the same algorithmic outline as
in Figure 5.25. Prove using strong induction on n that if baseConvert(n, k) = 〈bℓ, bℓ−1, . . . , b0〉 with each
bi ∈ {0, 1, . . . , k − 1}, then n = ∑ℓ

i=0 kibi .

5.46 Prove by strong induction on n that, for every integer n ≥ 4, it is possible to make n dollars using
only two- and five-dollar bills. (That is, prove that any integer n ≥ 4 can be written as n = 2a + 5b for some
integer a ≥ 0 and some integer b ≥ 0.)
5.47 Consider a sport in which teams can score two types of goals, worth either 3 points or 7 points.
For example, Team Vikings might (theoretically speaking) score 32 points by accumulating, in succession,
3, 7, 3, 7, 3, 3, 3, and 3 points. Find the smallest possible n0 such that, for any n ≥ n0, a team can score exactly
n points in a game. Prove your answer correct by strong induction.

starting
configuration:

your turn:

crony’s turn:

your turn:

You win!

Figure 5.26: You
start with n = 5
cards on the table,
and you make the
first move. You win
because you took
the last card.

5.48 You are sitting around the table with a crony you’re in cahoots with. You and the crony decide
to play the following silly game. (The two of you run a store called the Cis-Patriarchal Pet Shop that sells
nothing but vicious robotic dogs. The loser of the game has to clean up the yard where the dogs roam—not
a pleasant chore—so the stakes are high.) We start with n ∈ Z≥1 stolen credit cards on a table. The two
players take turns removing cards from the table. In a single turn, a player can choose to remove either one
or two cards. A player wins by taking the last credit card. (See Figure 5.26.)

Prove (by strong induction on n) that if n is divisible by three, then the second player to move can guar-
antee a win, and if n is not divisible by three, then the first player to move can guarantee a win.
Consider the following modifications of the game from Exercise 5.48. The two players start with n cards on the table,
as before. Determine who wins the modified game: conjecture a condition on n that describes precisely when the first
player can guarantee a win under the stated modification, and prove your answer.
5.49 Let k ≥ 2 be any integer. As in the original game, the player who takes the last card wins—but
each player is now allowed to take any number of cards between 1 and k in any single move.
5.50 As in the original game, players can take only 1 or 2 cards per turn—but the player who is forced
to take the last card loses (instead of winning by managing to take the last card).
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Define the Fibonacci numbers by the sequence f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. Thus the first
several Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .. (We’ll see a lot more about the Fibonacci numbers in
Section 6.4.) Prove each of the following statements by induction (weak or strong, as appropriate) on n: The Fibonacci num-

bers are named
after Leonardo of
Pisa (also some-
times known as
Leonardo Bonacci
or just as Fibonacci),
a 13th-century Ital-
ian mathematician.

5.51 fn mod 2 = 0 if and only if n mod 3 = 0. (That is, every third Fibonacci number is even.)
5.52 fn mod 3 = 0 if and only if n mod 4 = 0.
5.53

n
∑
i=1

fi = fn+2 − 1 5.54
n
∑
i=1

(fi)2 = fn · fn+1
5.55 Prove Cassini’s identity: fn−1 · fn+1 − (fn)2 = (−1)n for any n ≥ 2.
5.56 For a k-by-k matrix M, the matrix Mn is also k-by-k, and its value is the result of the n-fold multi-
plication of M by itself: MM · · ·M. Or we can define matrix exponentiation recursively: M0 := I (the k-by-k
identity matrix), andMn+1 := M ·Mn. With this definition in mind, prove the following identity:

[1 1
1 0

]n−1
·
[1
0
]
=
[ fn
fn−1

]
for any n ≥ 2.

You may use the associativity of matrix multiplication in your answer: for any matrices A, B, and C of the
appropriate dimensions, we have A(BC) = (AB)C.

The Lucas numbers
and Jacobsthal
numbers are named
after Édouard Lu-
cas, a 19th-century
French mathemati-
cian, and Ernst
Jacobsthal, a 20th-
century German
mathematician,
respectively.

Define the Lucas numbers as L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3. (The Fibonacci numbers are a much
more famous cousin of the Lucas numbers; the Lucas numbers follow the same recursive definition as the Fibonacci
numbers, but start from a different pair of base cases.) Prove the following facts about the Lucas numbers, by induction
(weak or strong, as appropriate) on n:
5.57 Ln = fn + 2fn−1 5.58 fn = Ln−1 + Ln+1

55.59 (Ln)2 = 5(fn)2 + 4(−1)n
(Hint: for Exercise 5.59, you may need to conjecture a second property relating Lucas and Fibonacci numbers to
complete the proof of the given property P(n)—specifically, try to formulate a property Q(n) relating LnLn−1 and
fnfn−1, and prove P(n) ∧Q(n) with a single proof by strong induction.)

Define the Jacobsthal numbers as J1 = 1, J2 = 1, and Jn = Jn−1 + 2Jn−2 for n ≥ 3. (Thus the Jacobsthal numbers are a
more distant relative of the Fibonacci numbers: they have the same base case, but a different recursive definition.) Prove
the following facts about the Jacobsthal numbers by induction (weak or strong, as appropriate) on n:
5.60 Jn = 2Jn−1 + (−1)n−1, for all n ≥ 2. 5.61 Jn = 2n − (−1)n

35.62 Jn = 2n−1 − Jn−1, for all n ≥ 2.

(a) The empty 2-by-n grid, plus the
1-by-2 domino (in both orientations)
and the 2-by-2 square.

(b) The five ways to tile the n = 4 grid using dominoes.

(c) The six additional tilings for the n = 4 grid when we
also allow the use of the square tiles.

Figure 5.27: A tiling
problem, using
1-by-2 dominoes and
2-by-2 squares.

The next two problems are previews of Chapter 9, where we’ll talk about how to count the size of sets (often, sets that
are described in somewhat complicated ways). You should be able to attack these problems without the detailed results
from Chapter 9, but feel free to glance ahead to Section 9.2 if you’d like.
5.63 You are given a 2-by-n grid that you must tile, using either 1-by-2 dominoes or 2-by-2 squares. The
dominoes can be arranged either vertically or horizontally. (See Figure 5.27.) Prove by strong induction
on n that the number of different ways of tiling the 2-by-n grid is precisely Jn+1. (Be careful: it’s easy to
accidentally count some configurations twice—for example, make sure that you count only once the tiling of
a 2-by-3 grid that uses three horizontal dominoes.)
5.64 Suppose that you run out of squares, so you can now only use dominoes for tiling. (See Fig-
ure 5.27(b).) How does your answer to the last exercise change? How many different tilings of a 2-by-n grid
are there now? Prove your answer.
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Figure 5.28: The Fi-
bonacci word fractal
s14, visualized as in
Exercise 5.68.

The Fibonacci word fractal defines a sequence of bitstrings using a similar recursive description to the Fibonacci
numbers. Here’s the definition:

s1 := 1 s2 := 0 for n ≥ 3, sn := sn−1 ◦ sn−2︸ ︷︷ ︸
the concatenation of sn−1 and sn−2

.

For example, we have s3 = s2 ◦ s1 = 01 and s4 = s3 ◦ s2 = 010 and s5 = s4 ◦ s3 = 01001 and s6 = s5 ◦ s4 = 01001010.
It turns out that if we delete the last two bits from sn, the resulting string is a palindrome (reading the same back-to-
front and front-to-back). Here you’ll prove a few slightly simpler properties, using strong induction on n:
5.65 The number of bits in sn is precisely fn (the nth Fibonacci number).
5.66 The string sn does not contain two consecutive 1s or three consecutive 0s.
5.67 Let #0(x) and #1(x) denote the number of 0s and 1s in a bitstring x, respectively. Show that, for all
n ≥ 3, the quantity #0(sn)− #1(sn) is a Fibonacci number.
5.68 (programming required) The reason that sn is called the “Fibonacci word fractal” is that it’s possi-
ble to visualize these “words” (strings) as a geometric fractal by interpreting 0s and 1s as “turn” and “go
straight,” respectively. Specifically, here’s the algorithm: start pointing east. For the ith symbol in sn, for
i = 1, 2, . . . , |sn|: if the symbol is 1 then do not turn; if the symbol is a 0 and i is even, turn 90◦ to the right;
and if the symbol is a 0 and i is odd, turn 90◦ to the left. In any case, proceed in your current direction by
one unit. (See Figure 5.28.) Write a program to draw a bitstring using these rules; then implement the recur-
sive definition of the Fibonacci word fractal and “draw” the strings s1, s2, . . . , s16. (For efficiency’s sake, you
may want to compute sn with a loop instead of recursively; see Figure 6.41 in Chapter 6 for some ideas.)

5.69 The sum of the interior angles of any triangle is 180◦ . Now, using this fact and induction, prove
that any polygon with k ≥ 3 vertices has interior angles that sum to 180k − 360 degrees. (See Figure 5.29.)

Figure 5.29: The
interior angles and
a diagonal for a
polygon.

5.70 A diagonal of a polygon is a line that connects two non-adjacent vertices. (See Figure 5.29.) How
many diagonals are there in a triangle? A quadrilateral? A pentagon? Formulate a conjecture for the num-
ber d(k) of diagonals in a k-gon, and prove your formula correct by induction. (Hint: consider lopping off a
triangle from the polygon.)

binarySearch(A[1 . . . n], x):
1: if n ≤ 0 then
2: return False
3: middle := ⌊ 1+n

2 ⌋
4: if A[middle] = x then
5: return True
6: else if A[middle] > x then
7: return binarySearch(A[1 . . .middle− 1], x)
8: else
9: return binarySearch(A[middle + 1 . . . n], x)
merge(X[1 . . .n],Y[1 . . .m]):
1: if n = 0 then
2: return Y
3: else if m = 0 then
4: return X
5: else if X[1] < Y[1] then
6: return X[1] followed bymerge(X[2 . . . n],Y)
7: else
8: return Y[1] followed bymerge(X,Y[2 . . .m])
mergeSort(A[1 . . . n]):
1: if n = 1 then
2: return A
3: else
4: L := mergeSort(A[1 . . . ⌊ n2

⌋])
5: R := mergeSort(A[⌊ n2

⌋ + 1 . . . n])
6: return merge(L,R)

Figure 5.30: Binary
Search, Merge,
and Merge Sort,
recursively.

5.71 Prove that the recursive binary search algorithm shown in Fig-
ure 5.30 is correct. That is, prove that the following condition is true, by
strong induction on n: For any sorted array A[1 . . . n], binarySearch(A, x)
returns true if and only if x ∈ A.

5.72 Prove by weak induction on the quantity (n +m) that themerge
algorithm in Figure 5.30 satisfies the following property for any n ≥ 0 and
m ≥ 0: given any two sorted arrays X[1 . . .n] and Y[1 . . .m] as input, the
output of merge(X,Y) is a sorted array containing all elements of X and all
elements of Y.
5.73 Prove by strong induction on n thatmergeSort(A[1 . . . n]), shown
in Figure 5.30, indeed sorts its input.

5.74 Give a recursive algorithm to compute a list of all permuta-
tions of a given set S. (That is, compute a list of all possible orderings of
the elements of S. For example, permutations({1, 2, 3}) should return
{〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉}, in some order.) Prove
your algorithm correct by induction.

Prove that weak induction, as defined in Section 5.2, and strong induction are
equivalent. (Hint: in one of these two exercises, you will have to use a differ-
ent predicate than P.)
5.75 Suppose that you’ve written a proof of ∀n ∈ Z≥0 : P(n) by
weak induction. I’m in an evil mood, and I declare that you aren’t allowed
to prove anything by weak induction. Explain how to adapt your weak-
induction proof to prove ∀n ∈ Z≥0 : P(n) using strong induction.
5.76 Now suppose that, obeying my new Draconian rules, you have
written a proof of ∀n ∈ Z≥0 : P(n) by strong induction. In a doubly evil
mood, I tell you that now you can only use weak induction to prove things.
Explain how to adapt your strong-induction proof to prove ∀n ∈ Z≥0 : P(n)
using weak induction.
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5.4 Recursively Defined Structures and Structural Induction
When a thing is done, it’s done. Don’t look back. Look
forward to your next objective.

George C. Marshall (1880–1959)
In the proofs that we have written so far in this chapter, we have performed induc-

tion on an integer: the number that’s the input to an algorithm, the number of ver-
tices of a polygon, the number of elements in an array. In this section, we will address
proofs about recursively defined structures, instead of about integers, using a version
of induction called structural induction that proceeds over the defined structure itself,
rather than just using numbers.

5.4.1 Recursively Defined Structures
A recursively defined structure, just like a recursive algorithm, is a structure defined
in terms of one or more base cases and one or more inductive cases. Any data type that
can be understood as either a trivial instance of the type or as being built up from
a smaller instance (or smaller instances) of that type can be expressed in this way.
For example, basic data structures like a linked list and a binary tree can be defined
recursively. So too can well-formed sentences of a formal language—languages like
Python, or propositional logic—among many other examples. In this section, we’ll
give recursive definitions for some of these examples.

Linked lists

1 7 7 6

Figure 5.31: An
example linked list.

A linked list is a commonly used data structure in which we
store a sequence of elements (just like the sequences from Sec-
tion 2.4). The reasons that linked lists are useful are best left to
a data structures course, but here is a brief synopsis of what a linked list actually is.
Each element in the list, called a node, stores a data value and a “pointer” to the rest of
the list. A special value, often called null, represents the empty list; the last node in
the list stores this value as its pointer to represent that there are no further elements in
the list. See Figure 5.31 for an example. (The slashed line in Figure 5.31 represents the
null value.) Here is a recursive definition of a linked list:

Example 5.15 (Linked list)
A linked list is either:

1. 〈〉, known as the empty list; or
2. 〈x, L〉, where x is an arbitrary element and L is a linked list.

For example, Figure 5.31 shows the linked list that consists of 1 followed by the
linked list containing 7, 7, and 6 (which is a linked list consisting of 7 followed by
a linked list containing 7 and 6, which is a linked list consisting of 7 followed by
the linked list containing 6, which is . . . ). That is, Figure 5.31 shows the linked list
〈1, 〈7, 〈7, 〈6, 〈〉〉〉〉〉.
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Binary trees
1

3

5

2

4

8

Figure 5.32: An
example binary
tree.

We can also recursively define a binary tree (see
Section 11.4.2). Again, deferring the discussion
of why binary trees are useful to a course on data
structures, here is a quick summary of what they
are. Like a linked list, a binary tree is a collection
of nodes that store data values and “pointers” to
other nodes. Unlike a linked list, a node in a binary
tree stores two pointers to other nodes (or null,
representing an empty binary tree). These two
pointers are to the left child and right child of the
node. The root node is the one at the very top of the
tree. See Figure 5.32 for an example; here the root
node stores the value 1, and has a left child (the binary tree with root 3) and a right
child (the binary tree with root 2). Here is a recursive definition:

Example 5.16 (Binary trees)
A binary tree is either:

1. the empty tree, denoted by null; or
2. a root node x, a left subtree Tℓ, and a right subtree Tr, where x is an arbitrary value

and Tℓ and Tr are both binary trees.

Taking it further: In many programming languages, we can explicitly define data types that echo these
recursive definitions, where the base case is a trivial instance of the data structure (often nil or None or
null). In C, for example, we can define a binary tree with integer-valued nodes as:

struct binaryTree {

int root;

struct binaryTree *leftSubtree;

struct binaryTree *rightSubtree;

}

The base case—an empty binary tree—is NULL; the inductive case—a binary tree with a root node—has
a value stored as its root, and then two binary trees (possibly empty) as its left and right subtrees. (In
C, the symbol * means that we’re storing a reference, or pointer, to the subtrees, rather than the subtrees
themselves, in the data structure.)

Define the leaves of a binary tree T to be those nodes contained in T whose left sub-
tree and right subtree are both null. Define the internal nodes of T to be all nodes that
are not leaves. In Figure 5.32, for example, the leaves are the nodes 5 and 8, and the
internal nodes are {1, 2, 3, 4}.

Taking it further: Binary trees with certain additional properties turn out to be very useful ways of
organizing data for efficient access. For example, a binary search tree is a binary tree in which each node
stores a “key,” and the tree is organized so that, for any node u, the key at node u is larger than all the
keys in u’s left subtree and smaller than all the keys in u’s right subtree. (For example, we might store the
email address of a student as a key; the tree is then organized alphabetically.) Another special type of a
binary search tree is a heap, in which each node’s key is larger than all the keys in its subtrees. These two
data structures are very useful in making certain common operations very efficient; see p. 529 (for heaps)
and p. 1160 (for binary search trees) for more discussion.
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Sentences in a language
In addition to data structures, we can also define sentences in a language using a re-

cursive definition—for example, arithmetic expressions of the type that are understood
by a simple calculator; or propositions (as in Chapter 3’s propositional logic):

Example 5.17 (Arithmetic expressions)
An arithmetic expression is any of the following:

1. any integer n;
2. −E, where E is an arithmetic expression; or
3. E⊙ F, where E and F are arithmetic expressions and ⊙ ∈ {+,−, ·, /} is an operator.

Example 5.18 (Sentences of propositional logic)
A sentence of propositional logic (also known as a well-formed formula, or wff ) over the
propositional variables X is one of the following:

1. x, for some x ∈ X;
2. ¬P, where P is a wff over X; or
3. P ∨Q, P∧Q, or P ⇒ Q, where P and Q are wffs over X.

We implicitly used the recursive definition of logical propositions from Example 5.18
throughout Chapter 3, but using this recursive definition explicitly allows us to ex-
press a number of concepts more concisely. For example, consider a truth assignment
f : X → {True, False} that assigns True or False to each variable in X. Then the truth
value of a proposition over X under the truth assignment f can be defined recursively
for each case of the definition:
• the truth value of x ∈ X under f is f (x);
• the truth value of ¬P under f is True if the truth value of P under f is False, and the

truth value of ¬P under f is False if the truth value of P under f is True;
• and so forth.

Taking it further: Linguists interested in syntax spend a lot of energy constructing recursive definitions
(like those in Examples 5.17 and 5.18) of grammatical sentences of English. But one can also give a
recursive definition for non-natural languages: in fact, another structure that can be defined recursively
is the grammar of a programming language itself. As such, this type of recursive approach to defining (and
processing) a grammar plays a key role not just in linguistics but also in computer science. See the
discussion on p. 543 for more.

5.4.2 Structural Induction
The recursively defined structures from Section 5.4.1 are particularly amenable to
inductive proofs. For example, recall from Example 5.16 that a binary tree is one of
the following: (1) the empty tree, denoted by null; or (2) a root node x, a left subtree
Tℓ, and a right subtree Tr, where Tℓ and Tr are both binary trees. To prove that some
property P is true of all binary trees T, we can use (strong) induction on the number n
of applications of rule #2 from the definition. Here is an example of such a proof:
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An (abbreviated)
reminder of the
recursive definition
of a binary tree:
Rule #1: null is a

binary tree;
Rule #2: if Tℓ and

Tr are binary trees,
then 〈x,Tℓ,Tr〉 is a
binary tree.

x

(a) The only
binary tree
produced by 1
application of
rule #2 has one
node, which is a
leaf.

x

Tℓ Tr

(b) If T was
produced by
≥ 2 applications
of rule #2, then
at least one of
Tℓ and Tr is not
null, and the
leaves of T are
precisely the
leaves of Tℓ plus
the leaves of Tr.

Figure 5.33: Il-
lustrations of the
inductive case for
Example 5.19.

Example 5.19 (Internal nodes vs. leaves in binary trees)
Recall that a leaf in a binary tree is a node whose left and right subtrees are both
empty; an internal node is any non-leaf node. Write leaves(T) and internals(T) to denote
the number of leaves and internal nodes in a binary tree T, respectively.

Claim: In any binary tree T, we have leaves(T) ≤ internals(T) + 1.
Proof. We proceed by strong induction on the number of applications of rule #2 used
to generate T. Specifically, let P(n) denote the property that leaves(T) ≤ internals(T) + 1
holds for any binary tree T generated by n applications of rule #2; we’ll prove that P(n)
holds for all n ≥ 0, which establishes the claim.

base case (n = 0): The only binary tree generated with 0 applications of rule #2 is the
empty tree null. Indeed, leaves(null) = internals(null) = 0, and 0 ≤ 0 + 1.

inductive case (n ≥ 1): Assume the inductive hypothesis P(0)∧ P(1)∧ · · · ∧ P(n− 1):
for any binary tree B generated using k < n applications of rule #2, we have
leaves(B) ≤ internals(B) + 1. We must prove P(n).
We’ll handle the case n = 1 separately. (See Figure 5.33(a).) The only way to make
a binary tree T using one application of rule #2 is to use rule #1 for both of T’s
subtrees, so T must contain only one node (which is itself a leaf). Then T contains
1 leaf and 0 internal nodes, and indeed 1 ≤ 0 + 1.
Otherwise n ≥ 2. (See Figure 5.33(b).) Observe that the tree T must have been
generated by (a) generating a left subtree Tℓ using some number ℓ of applications
of rule #2; (b) generating a right subtree Tr using some number r of applications
of rule #2; and then (c) applying rule #2 to a root node x, Tℓ, and Tr to produce T.
Therefore r + ℓ + 1 = n, and therefore r < n and ℓ < n. Ergo, we can apply the
inductive hypothesis to both Tℓ and Tr, and thus

leaves(Tℓ) ≤ internals(Tℓ) + 1 (1)
leaves(Tr) ≤ internals(Tr) + 1. (2)

Also observe that, because r + ℓ + 1 = n ≥ 2, either Tr 6= null or Tℓ 6= null, or
both. Thus the leaves of T are the leaves of Tℓ and Tr, and internal nodes of T are
the internal nodes of Tℓ and Tr plus the root x (which cannot be a leaf because at
least one of Tℓ and Tr is not empty). Therefore

leaves(T) = leaves(Tℓ) + leaves(Tr) (3)
internals(T) = internals(Tℓ) + internals(Tr) + 1. (4)

Putting together these facts, we have

leaves(T) = leaves(Tℓ) + leaves(Tr) by (3)

≤ internals(Tℓ) + 1 + internals(Tr) + 1 by (1) and (2)

= internals(T) + 1. by (4)

Thus P(n) holds, which completes the proof.
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Structural induction: the idea
The proof in Example 5.19 is perfectly legitimate, but there is another approach that

we can use for recursively defined structures, called structural induction. The basic idea
is to perform induction on the structure of an object itself rather than on some integer:
instead of a case for n = 0 and a case for n ≥ 1, in a proof by structural induction our
cases correspond directly to the cases of the recursive structural definition.

For structural induction to make sense, we must impose some restrictions on the re-
cursive definition. Specifically, the set of structures defined must be well ordered,which
intuitively ensures that every invocation of the inductive case of the definition “makes
progress” toward the base case(s) of the definition. (More precisely, a set of objects is
well ordered if there’s a “least” element among any collection of those objects.) For the
type of recursive definitions that we’re considering—where there are base cases in the
definition, and all instances of the structure are produced by a finite-length sequence
of applications of the inductive rules in the definition—structural induction is a valid
technique to prove facts about the recursively defined structure.

Taking it further: More formally, a set S of structures is well ordered if there exists a “smaller than”
relationship ≺ between elements of S such that, for any nonempty T ⊆ S, there exists a minimal element m
in T—that is, there exists m ∈ T such that no x ∈ T satisfies x ≺ m. (There might be more than one least
element in T.) For example, the set Z≥0 is well ordered, using the normal ≤ relationship. However, the
set R is not well ordered: for example, the set {x ∈ R : x > 2} has no smallest element using ≤. But the
set of binary trees is well ordered; the relation ≺ is “is a subtree of.”

One can prove that a set S is well ordered if and only if a proof by mathematical induction is valid on
a set S (where the base cases are the minimal elements of S, and to prove P(x) we assume the inductive
hypotheses P(y) for any y ≺ x).

Proofs by structural induction
Here is the formal definition of a proof by structural induction:

Definition 5.6 (Proof by structural induction)
Suppose that we want to prove that P(x) holds for every x ∈ S, where S is the (well-ordered)
set of structures generated by a recursive definition, and P is some property. To give a proof
by structural induction of ∀x ∈ S : P(x), we prove the following:

1. Base cases: for every x defined by a base case in the definition of S, prove P(x).
2. Inductive cases: for every x defined in terms of y1, y2, . . . , yk ∈ S by an inductive case in

the definition of S, prove that P(y1) ∧ P(y2) ∧ · · · ∧ P(yk) ⇒ P(x).

In a proof by structural induction, we can view both base cases and inductive cases
in the same light: each case assumes that the recursively constructed subpieces of
a structure x satisfy the stated property, and we prove that x itself also satisfies the
property. For a base case, the point is just that there are no recursively constructed
pieces, so we actually are not making any assumption.

Notice that a proof by structural induction is identical in form to a proof by strong
induction on the number of applications of the inductive-case rules used to generate the object.
For example, we can immediately rephrase the proof in Example 5.19 to use structural
induction instead. While the structure of the proof is identical, structural induction
can streamline the proof and make it easier to read:
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Example 5.20 (Internal nodes vs. leaves in binary trees, take II)
Claim: In any binary tree T, we have leaves(T) ≤ internals(T) + 1.
Proof. Let P(T) denote the property that leaves(T) ≤ internals(T) + 1 for a binary tree
T. We proceed by structural induction on the form of T.

base case (T = null): Then leaves(T) = internals(T) = 0, and indeed 0 ≤ 0 + 1.

inductive case (T has root x, left subtree Tℓ, and right subtree Tr): We assume the
inductive hypotheses P(Tℓ) and P(Tr), namely

leaves(Tℓ) ≤ internals(Tℓ) + 1 (1)
leaves(Tr) ≤ internals(Tr) + 1. (2)

• If x is itself a leaf, then Tℓ = Tr = null, and therefore leaves(T) = 1 and
internals(T) = 0, and indeed 1 ≤ 0 + 1.

• Otherwise x is not a leaf, and either Tr 6= null or Tℓ 6= null, or both. Thus the
leaves of T are the leaves of Tℓ and Tr, and internal nodes of T are the internal
nodes of Tℓ and Tr plus the root x. Therefore

leaves(T) = leaves(Tℓ) + leaves(Tr) (3)
internals(T) = internals(Tℓ) + internals(Tr) + 1. (4)

Putting together these facts, we have

leaves(T) = leaves(Tℓ) + leaves(Tr) by (3)

≤ internals(Tℓ) + 1 + internals(Tr) + 1 by (1) and (2)

= internals(T) + 1. by (4)

Thus P(n) holds, which completes the proof.

5.4.3 Some More Examples of Structural Induction: Propositional Logic
We’ll finish this section with two more proofs by structural induction, about proposi-
tional logic—using Example 5.18’s recursive definition.

Propositional logic using only ¬ and ∧
First, we’ll give a formal proof using structural induction of the claim that any

propositional logic statement can be expressed using ¬ and ∧ as the only logical con-
nectives. (See Exercise 4.68.)

Example 5.21 (All of propositional logic using ¬ and ∧)
Claim: For any logical proposition ϕ using the connectives {¬,∧,∨,⇒}, there exists

a proposition using only {¬,∧} that is logically equivalent to ϕ.
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Proof. For a logical proposition ϕ, let A(ϕ) denote the property that there exists a
{¬,∧}-only proposition logically equivalent to ϕ. We’ll prove by structural induction
on ϕ that A(ϕ) holds for any well-formed formula ϕ (see Example 5.18):

base case: ϕ is a variable, say ϕ = x. The proposition x uses no connectives—and
thus is vacuously {¬,∧}-only—and is obviously logically equivalent to itself. Thus
A(x) follows.

inductive case I: ϕ is a negation, say ϕ = ¬P. We assume the inductive hypothesis
A(P). We must prove A(¬P). By the inductive hypothesis, there is a {¬,∧}-only
proposition Q such that Q ≡ P. Consider the proposition ¬Q. Because Q ≡ P, we
have that ¬Q ≡ ¬P, and ¬Q contains only the connectives {¬,∧}. Thus ¬Q is a
{¬,∧}-only proposition logically equivalent to ¬P. Thus A(¬P) follows.

inductive case II: ϕ is a conjunction, disjunction, or implication, say ϕ = P1 ∧ P2,
ϕ = P1 ∨ P2, or ϕ = P1 ⇒ P2. We assume the inductive hypotheses A(P1) and
A(P2)—that is, we assume there are {¬,∧}-only propositions Q1 and Q2 with
Q1 ≡ P1 and Q2 ≡ P2. We must prove A(P1 ∧ P2), A(P1 ∨ P2), and A(P1 ⇒ P2).
Consider the propositions Q1 ∧Q2, ¬(¬Q1 ∧ ¬Q2), and ¬(Q1 ∧ ¬Q2). By De Mor-
gan’s Law, and the facts that x ⇒ y ≡ ¬(x ∧ ¬y), P1 ≡ Q1, and P2 ≡ Q2:

Q1 ∧Q2 ≡ Q1 ∧Q2 ≡ P1 ∧ P2
¬(¬Q1 ∧ ¬Q2) ≡ Q1 ∨Q2 ≡ P1 ∨ P2
¬(Q1 ∧ ¬Q2) ≡ Q1 ⇒ Q2 ≡ P1 ⇒ P2

BecauseQ1 and Q2 are {¬,∧}-only, our three propositions are {¬,∧}-only as well;
therefore A(P1 ∧ P2), A(P1 ∨ P2), and A(P1 ⇒ P2) follow.

We’ve shown that A(ϕ) holds for any proposition ϕ, so the claim follows.

Figure 5.34: Well-
formed formulas in
ML.

Taking it further: In the programming language ML, among others, a programmer can use both re-
cursive definitions and a form of recursion that mimics structural induction. For example, we can give
a simple implementation of the recursive definition of a well-formed formula from Example 5.18: a
well-formed formula is a variable, or the negation of a well-formed formula, or the conjunction of a
pair of well-formed formulas (wff * wff), or . . ..) In ML, we can also write a function that mimics the
structure of the proof in Example 5.21, using ML’s capability of pattern matching function arguments. See
Figure 5.34 for both the recursive definition of the wff datatype and the recursive function simplify,
which takes an arbitrary wff as input, and produces a wff that uses only And and Not as output.

datatype wff = Variable of string

| Not of wff

| And of (wff * wff)

| Or of (wff * wff)

| Implies of (wff * wff);

fun simplify (Variable var) = Variable var

| simplify (Not P) = Not(simplify P)

| simplify (And (P1, P2)) = And(simplify P1, simplify P2)

| simplify (Or (P1, P2)) = Not(And(Not(simplify P1), Not(simplify P2)))

| simplify (Implies (P1, P2)) = Not(And(simplify P1, Not(simplify P2)));
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Conjunctive and Disjunctive Normal Forms
Here is another example of a proof by structural induction based on propositional

logic, to establish Theorems 3.1 and 3.2, that any proposition is logically equivalent to
one that’s in conjunctive or disjunctive normal form.

(Recall that a proposition ϕ is in conjunctive normal form (CNF) if ϕ is the conjunction
of one or more clauses, where each clause is the disjunction of one or more literals. A
literal is a Boolean variable or the negation of a Boolean variable. A proposition ϕ is in
disjunctive normal form (DNF) if ϕ is the disjunction of one or more clauses, where each
clause is the conjunction of one or more literals.)

Theorem 5.6 (CNF/DNF suffice)
Let ϕ be a Boolean formula that uses the connectives {∧,∨,¬,⇒}. Then:

1. there exists ϕdnf in disjunctive normal form so that ϕ and ϕdnf are logically equivalent.
2. there exists ϕcnf in conjunctive normal form so that ϕ and ϕcnf are logically equivalent.

Perhaps bizarrely, it will turn out to be easier to prove that any proposition is logically
equivalent to both one in CNF and one in DNF than to prove either claim on its own. So
we will prove both parts of the theorem simultaneously, by structural induction.

Problem-solving tip:
Suppose we want
to prove ∀x : P(x)
by induction.
Here’s a problem-
solving strategy
that’s highly coun-
terintuitive: it is
sometimes eas-
ier to prove a
stronger statement
∀x : P(x) ∧Q(x). It
seems bizarre that
trying to prove more
than what we want
is easier—but the
advantage arises
because the induc-
tive hypothesis is
a more powerful
assumption! For ex-
ample, I don’t know
how to prove that
any proposition ϕ
can be expressed
in DNF (Theorem
5.6.1) by induction!
But I do know how
to prove that any
proposition ϕ can
be expressed in both
DNF and CNF by in-
duction, as is done
in Example 5.22.

We’ll make use of some handy notation in this proof: analogous to summation and
product notation, we write ∧n

i=1pi to denote p1 ∧ p2 ∧ · · · ∧ pn, and similarly ∨n
i=1pi

means p1 ∨ p2 ∨ · · · ∨ pn. Here is the proof:

Example 5.22 (Conjunctive/disjunctive normal form)
Proof. We start by simplifying the task: we use Example 5.21 to ensure that ϕ con-
tains only the connectives {¬,∧}. Let C(ϕ) and D(ϕ), respectively, denote the prop-
erty that ϕ is logically equivalent to a CNF proposition and a DNF proposition, re-
spectively. We now proceed by structural induction on the form of ϕ—which now
can only be a variable, negation, or conjunction—to show that C(ϕ) ∧D(ϕ) holds for
any proposition ϕ.

base case: ϕ is a variable, say ϕ = x. We’re done immediately; a single variable is
actually in both CNF and DNF. We simply choose ϕdnf = ϕcnf = x. Thus C(x) and
D(x) follow immediately.

inductive case I: ϕ is a negation, say ϕ = ¬P. We assume the inductive hypothesis
C(P)∧D(P)—that is, we assume that there are propositions Pcnf and Pdnf such that
P ≡ Pcnf ≡ Pdnf, where Pcnf is in CNF and Pdnf is in DNF. We must show C(¬P)
and D(¬P).
We’ll first show D(¬P)—that is, that ¬P can be rewritten in DNF. By the defini-
tion of conjunctive normal form, we know that the proposition Pcnf is of the form
Pcnf =

∧n
i=1ci, where ci is a clause of the form ci =

∨mi
j=1c

j
i , where cji is a variable or its

negation. Therefore we have
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¬P ≡ ¬Pcnf ≡ ¬



n∧

i=1




mi∨

j=1
cij




 inductive hypothesis C(P) and definition of CNF

≡



n∨

i=1
¬



mi∨

j=1
cij




 De Morgan’s Law

≡
n∨

i=1




mi∧

j=1
¬cij


 De Morgan’s Law

Once we delete double negations (that is, if cji = ¬x, then we write ¬cji as x rather
than as ¬¬x), this last proposition is in DNF, so D(¬P) follows.
The construction to show C(¬P)—that is, to give an CNF proposition logically
equivalent to ¬P—is strictly analogous; the only change to the argument is that we
start from Pdnf instead of Pcnf.

inductive case II: ϕ is a conjunction, say P ∧Q. We assume the inductive hypothe-
ses C(P) ∧D(P) and C(Q) ∧D(Q)—that is, we assume that there are CNF proposi-
tions Pcnf and Qcnf and DNF propositions Pdnf and Qdnf such that P ≡ Pcnf ≡ Pdnf
and Q ≡ Qcnf ≡ Qdnf. We must show C(P ∧Q) and D(P∧Q).

• The argument for C(P ∧ Q) is the easier of the two: we have propositions Pcnf
and Qcnf in CNF where Pcnf ≡ P and Qcnf ≡ Q. Thus P ∧Q ≡ Pcnf ∧Qcnf—and
the conjunction of two CNF formulas is itself in CNF. So C(P ∧Q) follows.

• We have to work a little harder to prove D(P ∧ Q). Recall that, by the induc-
tive hypothesis, there are propositions Pdnf and Qdnf in DNF, where P ≡ Pdnf
and Q ≡ Qdnf. By the definition of DNF, these propositions have the form
Pdnf =

∨n
i=1ci and Qdnf =

∨m
j=1dj, where every ci and dj is a clause that is a con-

junction of literals. Therefore

P ∧Q ≡ Pdnf ∧Q ≡
( n∨

i=1
ci
)
∧Q inductive hypothesis D(P) and definition of DNF

≡
n∨

i=1
(ci ∧Q) distributivity of ∨ over ∧

≡
n∨

i=1


ci ∧

m∨

i=j
dj


 inductive hypothesis D(Q) and definition of DNF

≡
n∨

i=1

m∨

j=1

(ci ∧ dj
) . distributivity of ∨ over ∧

Because every ci and dj is a conjunction of literals, ci ∧ dj is too, and thus this last
proposition is in DNF! So D(P∧Q) follows—as does the theorem.
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The construction for a conjunction P ∧ Q in Theorem 5.22 is a little tricky, so let’s
illustrate it with a small example:

Example 5.23 (An example of the construction from Example 5.22)
Suppose that we are trying to transform a proposition ϕ ∧ ψ into DNF. Suppose that
we have (recursively) computed ϕdnf = (p ∧ t) ∨ q and ψdnf = r ∨ (s ∧ t). Then the
construction from Example 5.22 lets us construct a proposition equivalent to ϕ∧ ψ as:

ϕ∧ ψ ≡ ϕdnf ∧ ψdnf ≡
[
(p∧ t)︸ ︷︷ ︸

c1

∨ (q)︸︷︷︸
c2

]
∧
[

(r)︸︷︷︸
d1

∨ (s∧ t)︸ ︷︷ ︸
d2

]

≡
[
(p∧ t)︸ ︷︷ ︸

c1

∧
[
(r) ∨ (s∧ t)︸ ︷︷ ︸

d1∨d2

]
]
∨
[

(q)︸︷︷︸
c2

∧
[
(r)∨ (s∧ t)︸ ︷︷ ︸

d1∨d2

]
]

≡
[
(p∧ t ∧ r)︸ ︷︷ ︸

c1∧d1

∨ (p∧ t ∧ s ∧ t)︸ ︷︷ ︸
c1∧d2

]
∨
[
(q∧ r)︸ ︷︷ ︸
c2∧d1

∨ (q∧ s ∧ t)︸ ︷︷ ︸
c2∧d2

]
.

Then the construction yields

(p∧ t ∧ r) ∨ (p∧ t ∧ s ∧ t) ∨ (q∧ r) ∨ (q∧ s ∧ t)

as the DNF proposition equivalent to ϕ∧ ψ.

5.4.4 The Integers, Recursively Defined
Before we end the section, we’ll close our discussion of recursively defined structures
and structural induction with one more potentially interesting observation. Although
the basic form of induction in Section 5.2 appears fairly different, that basic form of
induction can actually be seen as structural induction, too. The key is to view the
nonnegative integers Z≥0 as defined recursively:

Definition 5.7 (Nonnegative integers, recursively defined)
A nonnegative integer is either:

1. zero, denoted by 0; or
2. the successor of a nonnegative integer, denoted by s(x) for a nonnegative integer x.

Under this definition, a proof of ∀n ∈ Z≥0 : P(n) by structural induction and a proof of
∀n ∈ Z≥0 : P(n) by weak induction are identical:

• they have precisely the same base case: prove P(0); and
• they have precisely the same inductive case: prove P(n) ⇒ P(s(n))—or, in other

words, prove that P(n) ⇒ P(n+ 1).
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Computer Science Connections

Grammars, Parsing, and Ambiguity
In interpreters and compilers—systems that translate input source code

written in a programming language like Python, Java, or C into a machine-
executable format—a key initial step is to parse the input into a format that
represents its structure. (A similar step occurs in systems designed to per-
form natural language processing.) The structured representation of such an
expression is called a parse tree, in which the leaves of the tree correspond to
the base cases of the recursive structural definition, and the internal nodes
correspond to the inductive cases of the definition. We can then use the parse
tree for whatever purpose we desire: evaluating arithmetic expressions, sim-
plifying propositional logic, or any other manipulation. (See Figure 5.35.)

In this setting, a recursively defined structure is written as a context-free

·

2 +

3 4
Figure 5.35: A parse tree for the arith-
metic expression 2 · (3 + 4).

grammar (CFG). A grammar consists of a set of rules that can be used to gener-
ate a particular example of this defined structure. We’ll take the definition of

This type of grammar is called context
free because the rules defined by the
grammar can be used any time—that is,
without regard to the context in which
the symbol on the left-hand side of the
rule appears.

propositions over the variables {p, q, r} (Example 5.18) as a running example.
Here is a CFG for propositions, following that definition precisely. (Here “→”
means “can be rewritten as” and “|” means “or.”)

S → p | q | r S can be a propositional variable . . .
| ¬S . . . or the negation of a proposition . . .
| S∨ S | S∧ S | S ⇒ S . . . or the ∧/∨/⇒ of two propositions.

An expression ϕ is a valid proposition over the variables {p, q, r} if and only if
ϕ can be generated by a finite-length sequence of applications of the rewriting
rules in the grammar. For example, ¬p ∨ p is a valid proposition over {p, q, r},
because we can generate it as follows:

S → S∨ S → S∨ p → ¬S∨ p → ¬p ∨ p.

(We used the rule S → p twice, the rule S → ¬S once, and the rule S → S ∨ S
once.) The parse tree corresponding to this sequence of rule applications is
shown in Figure 5.36(a).

A complication that arises with the grammar given above is that it is

S

S

¬ S

p

∨ S

p

(a) The correct order of operations.

S

¬ S

S

p

∨ S

p
(b) The wrong order of operations.

Figure 5.36: Two parse trees for ¬p∨ p.ambiguous: the same proposition can be produced using a fundamentally
different sequence of rule applications, which gives rise to a different parse
tree, shown in Figure 5.36(b):

S → ¬S → ¬S∨ S → ¬p∨ S → ¬p ∨ p.

The parse tree in Figure 5.36(b) corresponds to ¬(p ∨ p) instead of (¬p) ∨ p,
which is the correct “order of operations” because ¬ binds tighter than ∨.

It’s bad news if the grammar of a programming language is ambiguous,
because certain valid code is then “allowed” to be interpreted in more than
one way. (The classic example is the attachment of else clauses: in code like
if P then if Q then X else Y, when should Y be executed? When P is true
and Q is false? Or when P is false?) Thus programming language designers
develop unambiguous grammars that reflect the desired behavior.3

More on context-free grammars and
parsing, and their relationship to
compilers and interpreters, can be found
in books like
3 Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Prentice
Hall, 2nd edition, 2006; Dexter Kozen.
Automata and Computability. Springer,
1997; and Michael Sipser. Introduction
to the Theory of Computation. Course
Technology, 3rd edition, 2012.
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5.4.5 Exercises
length(L): // assume L is a linked list.
1: if L = 〈〉 then
2: return 0
3: else if L = 〈x,L′〉 then
4: return 1 + length(L′)

sum(L): // assume L is a linked list containing integers.
1: if L = 〈〉 then
2: return 0
3: else if L = 〈x,L′〉 then
4: return x + sum(L′)

Figure 5.37: Two
algorithms on
linked lists.

5.77 Let L be a linked list (as defined in Example 5.15). Prove by
structural induction on L that length(L) returns the number of elements
contained in L. (See Figure 5.37 for the algorithm.)
5.78 Let L be a linked list containing integers. Prove by structural
induction on L that sum(L) returns the sum of the numbers contained in L.
(See Figure 5.37 for the algorithm.)

5.79 In Example 5.15, we gave a recursive definition of a linked list.
Here’s a variant of that definition, where we insist that the elements be in
increasing order. Define a nonempty sorted list as one of the following:
1. 〈x, 〈〉〉; or
2. 〈x, 〈y,L〉〉 where x ≤ y and 〈y,L〉 is a nonempty sorted list.
Prove by structural induction that in a nonempty sorted list 〈x, L〉, every element z in L satisfies z ≥ x.

A string of balanced parentheses (with a close parenthesis that matches every open parenthesis, and appears to its right)
is one of the following:
1. the empty string (consisting of zero characters);
2. a string [ S ] where S is a string of balanced parentheses; or
3. a string S1S2 where S1 and S2 are both strings of balanced parentheses.
For example, [[]][] is a string of balanced parentheses, using Rule 3 on [[]] and []. (Note that [] is a string of
balanced parentheses using Rule 2 on the empty string (Rule 1), and therefore [[]] is by using Rule 2 on [].)
5.80 Prove by structural induction that every string of balanced parentheses according to this defini-
tion has exactly the same number of open parentheses as close parentheses.
5.81 Prove by structural induction that any prefix of a string of balanced parentheses according to this
definition has at least as many open parentheses as it does close parentheses.

countLeaves(T):
1: if T = null then
2: return 0
3: else
4: TL,TR := the left and right subtrees of T
5: if TL = TR = null then
6: return 1
7: else
8: return countLeaves(TL) + countLeaves(TR)

Figure 5.38: An
algorithm to count
leaves in a binary
tree.

5.82 Recall from Definition 5.16 that we defined a binary tree as
1. an empty tree, denoted by null; or
2. a root node x, a left subtree Tℓ, and a right subtree Tr, where x is an arbi-

trary value and Tℓ and Tr are both binary trees.
Recall further that a leaf of a binary tree T is a node in T whose left subtree
and right subtree are both null. Prove by structural induction that the
algorithm countLeaves(T) in Figure 5.38 returns the number of leaves in a
binary tree T.

5.83 Recall that a binary search tree (BST) is a binary tree in which each
node stores a “key,” and, for any node u, the key at node u is larger than
all keys in u’s left subtree and smaller than all the keys in u’s right subtree.
(See p. 1160.) That is, a BST is either:
1. an empty tree, denoted by null; or
2. a root node x, a left subtree Tℓ where all elements are less than x, and a right subtree Tr, where all elements

are greater than x, and Tℓ and Tr are both BSTs.
Prove that the smallest element in a nonempty BST is the bottommost leftmost node—that is, prove that

the smallest element in a BST with root x and left subtree Tℓ =
{
x if Tℓ = null

the smallest element in Tℓ if Tℓ 6= null.

A heap is a binary tree where each node stores a priority, and in which every node satisfies the heap property: the
priority of a node u must be greater than or equal to the priorities of the roots of both of u’s subtrees. (The restriction
only applies for a subtree that is not null.)
5.84 Give a recursive definition of a heap.
5.85 Prove by structural induction that every heap is empty, or that no element of the heap is larger
than its root node. (That is, the root is a maximum element.)
5.86 Prove by structural induction that every heap is empty, or it has a leaf u such that u is no larger
than any node in the heap. (That is, the leaf u is a minimum element.)
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A 2–3 tree is a data structure, similar in spirit to a binary search tree (see Exercise 5.83)—or, more precisely, a bal-
anced form of BST, which is guaranteed to support fast operations like insertions, lookups, and deletions. The name
“2–3 tree” comes from the fact that each internal node in the tree must have precisely 2 or 3 children; no node has a
single child. Furthermore, all leaves in a 2–3 tree must be at the same “level” of the tree.
5.87 Formally, a 2–3 tree of height h is one of the following:
1. a single node (in which case h = 0, and the node is called a leaf ); or
2. a node with 2 subtrees, both of which are 2–3 trees of height h− 1; or
3. a node with 3 subtrees, all three of which are 2–3 trees of height h− 1.
Prove by structural induction that a 2–3 tree of height h has at least 2h leaves and at most 3h leaves. (There-
fore a 2–3 tree that contains n leaf nodes has height between log3 n and log2 n.)
5.88 A 2–3–4 tree is a similar data structure to a 2–3 tree, except that a tree can be a single node or a
node with 2, 3, or 4 subtrees. Give a formal recursive definition of a 2–3–4 tree, and prove that a 2–3–4 tree of
height h has at least 2h leaves and at most 4h leaves.

(a + b) + c = a + (b + c) Associativity of Addition

a + b = b + a Commutativity of Addition

a + 0 = 0 + a = a Additive Identity

(a · b) · c = a · (b · c) Associativity of Multiplication

a · b = b · a Commutativity of Multiplication

a · 1 = 1 · a = a Multiplicative Identity

a · 0 = 0 · a = 0 Multiplicative Zero

Figure 5.39: A few
elementary-school
facts about addition
and multiplication.

The next few exercises give recursive definitions of some familiar arithmetic operations which
are usually defined nonrecursively. In each, you’re asked to prove a familiar property by
structural induction. Think carefully when you choose the quantity upon which to perform
induction, and don’t skip any steps in your proof! You may use the elementary-school facts
about addition and multiplication from Figure 5.39 in your proofs:
5.89 Let’s define an even number as either (i) 0, or (ii) 2 + k, where k is an even
number. Prove by structural induction that the sum of any two even numbers is an
even number.
5.90 Let’s define a power of two as either (i) 1, or (ii) 2 · k, where k is a power of
two. Prove by structural induction that the product of any two powers of two is itself
a power of two.
5.91 Let a1 , a2, . . . , ak all be even numbers, for an arbitrary integer k ≥ 0. Prove that

[
k

∑
i=1

ai
]
is also an

even number. (Hint: use weak induction and Exercise 5.89.)

In Chapter 2, we defined bn (for a base b ∈ R and an exponent n ∈ Z≥0) as denoting the result of multiplying b by
itself n times (Definition 2.5). As an alternative to that definition of exponentiation, we could instead give a recursive
definition with integer exponents: b0 := 1 and bn+1 := b · bn, for any nonnegative integer n.
5.92 Using the associativity/commutativity/identity/zero properties in Figure 5.39, prove by induc-
tion that bmbn = bm+n for any integers n ≥ 0 and m ≥ 0. Don’t skip any steps.
5.93 Using the facts in Figure 5.39 and Exercise 5.92, prove by induction that (bm)n = bmn for any
integers n ≥ 0 and m ≥ 0. Again, don’t skip any steps.

Recall Example 5.18, in which we defined a well-formed formula (a “wff”) of propositional logic as a variable; the
negation (¬) of a wff; or the conjunction/disjunction/implication (∧, ∨, and ⇒) of two wffs. Assuming we allow the
corresponding new connective in the following exercises as part of a wff, give a proof using structural induction (see
Example 5.21 for an example) that any wff is logically equivalent to one using only . . .
5.94 Sheffer stroke |, where p | q ≡ ¬(p∧ q) 5.95 Peirce’s arrow ↓, where p ↓ q ≡ ¬(p∨ q)
(programming required) In the programming language ML (see Figure 5.34 for more), write a program to translate
an arbitrary statement of propositional logic into a logically equivalent statement that has the following special form.
(In other words, implement the proof of Exercises 5.94 and 5.95 as a recursive function.)
5.96 | is the only logical connective 5.97 ↓ is the only logical connective

5.98 Call a logical proposition truth-preserving if the proposition is true under the all-true truth assign-
ment. That is, a proposition is truth-preserving if and only if the first row of its truth table is True.) Prove
the following claim by structural induction on the form of the proposition:

Any logical proposition that uses only the logical connectives ∨ and ∧ is truth-preserving.
(A solution to this exercise yields a rigorous solution to Exercise 4.71—there are propositions that cannot be
expressed using only ∧ and ∨. Explain.)

5.99 A palindrome is a string that reads the same front-to-back as it does back-to-front—for example,
RACECAR or (ignoring spaces/punctuation) A MAN, A PLAN, A CANAL--PANAMA! or 10011001. Give a recursive
definition of the set of palindromic bitstrings.
5.100 Let #0(s) and #1(s) denote the number of 0s and 1s in a bitstring s, respectively. Using your recur-
sive definition from the previous exercise, prove by structural induction that, for any palindromic bitstring s,
the value of [#0(s)] · [#1(s)] is an even number.
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5.5 Chapter at a Glance

Proofs by Mathematical Induction
Suppose that we want to prove that a property P(n) holds for all n ∈ Z≥0. To give a
proof by mathematical induction of the claim ∀n ∈ Z≥0 : P(n), we prove the base case P(0),
and we prove the inductive case: for every n ≥ 1, we have P(n− 1) ⇒ P(n).

When writing an inductive proof of the claim ∀n ∈ Z≥0 : P(n), include each of the
following steps:

1. A clear statement of the claim to be proven—that is, a clear definition of the prop-
erty P(n) that will be proven true for all n ≥ 0—and a statement that the proof is by
induction, including specifically identifying the variable n upon which induction
is being performed. (Some claims involve multiple variables, and it can be confus-
ing if you aren’t clear about which is the variable upon which you are performing
induction.)

2. A statement and proof of the base case—that is, a proof of P(0).

3. A statement and proof of the inductive case—that is, a proof of P(n− 1) ⇒ P(n), for
a generic value of n ≥ 1. The proof of the inductive case should include all of the
following:

(a) a statement of the inductive hypothesis P(n− 1).
(b) a statement of the claim P(n) that needs to be proven.
(c) a proof of P(n), which at some point makes use of the assumed inductive hy-

pothesis P(n− 1).

We can use a proof by mathematical induction on arithmetic properties, like a formula
for the sum of the nonnegative integers up to n—that is, ∑n

i=0 i = n(n+1)
2 for any integer

n ≥ 0—or a formula for a geometric series:

if α ∈ R where α 6= 1, and n ∈ Z≥0, then
n
∑
i=0
αi = αn+1 − 1

α− 1 .

(If α = 1, then ∑n
i=0α

i = n + 1.) We can also use proofs by mathematical induction to
prove the correctness of algorithms, particularly recursive algorithms.

Strong Induction
Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by strong
induction of ∀n ∈ Z≥0 : P(n), we prove the base case P(0), and we prove the inductive
case: for every n ≥ 1, we have [P(0)∧ P(1) . . .∧ P(n− 1)] ⇒ P(n). Strong induction is
actually completely equivalent to weak induction; anything that can be proven with
one can also be proven with the other.

Generally speaking, using strong induction makes sense when the “reason” that
P(n) is true is that P(k) is true for more than one value of k < n (or a single value
of k < n with k 6= n − 1). (For weak induction, the reason that P(n) is true is just
P(n− 1).) We can use strong induction to prove many claims, including part of the
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Prime Factorization Theorem: if n ∈ Z≥1 is a positive integer, then there exist k ≥ 0
prime numbers p1, p2, . . . , pk such that n = ∏k

i=1 pi.

Recursively Defined Structures and Structural Induction
A recursively defined structure, just like a recursive algorithm, is a structure defined
in terms of one or more base cases and one or more inductive cases. Any data type that
can be understood as either a trivial instance of the type or as being built up from a
smaller instance (or smaller instances) of that type can be expressed in this way. The
set of structures defined is well ordered if, intuitively, every invocation of the inductive
case of the definition “makes progress” toward the base case(s) of the definition (and,
more formally, that every nonempty subset of those structures has a “least” element).

Suppose that we want to prove that P(x) holds for every x ∈ S, where S is the
(well-ordered) set of structures generated by a recursive definition. To give a proof
by structural induction of ∀x ∈ S : P(x), we prove the following:

1. Base cases: for every x defined by a base case in the definition of S, prove P(x).
2. Inductive cases: for every x defined in terms of y1, y2, . . . , yk ∈ S by an inductive case

in the definition of S, prove that P(y1) ∧ P(y2) . . .∧ P(yk) ⇒ P(x).

The form of a proof by structural induction that ∀x ∈ S : P(x) for a well-ordered set
of structures S is identical to the form of a proof using strong induction. Specifically,
the proof by structural induction looks like a proof by strong induction of the claim
∀n ∈ Z≥0 : Q(n), where Q(n) denotes the property “for any structure x ∈ S that is
generated using n applications of the inductive-case rules in the definition of S, we
have P(x).”
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Key Terms and Results

Key Terms
Proofs by Mathematical
Induction
• proof by mathematical induction
• base case
• inductive case
• inductive hypothesis
• geometric series
• arithmetic series
• harmonic series

Strong Induction
• strong induction
• prime factorization

Recursively Defined Structures and
Structural Induction
• recursively defined structures
• structural induction
• well-ordered set

Key Results
Proofs by Mathematical Induction
1. Suppose that we want to prove that P(n) holds for all

n ∈ Z≥0. To give a proof by mathematical induction of
∀n ∈ Z≥0 : P(n), we prove the following:
(a) the base case P(0).
(b) the inductive case: for every n ≥ 1, we have

P(n− 1) ⇒ P(n).
2. For any integer n ≥ 0, we have 1 + 2 + . . . + n = n(n+1)

2 .
3. Let α ∈ R where α 6= 1, and let n ∈ Z≥0. Then

n
∑
i=0
αi = αn+1 − 1

α− 1 .

(If α = 1, then ∑n
i=0 α

i = n + 1.)

Strong Induction
1. Suppose that we want to prove that P(n) holds for all

n ∈ Z≥0. To give a proof by strong induction of
∀n ∈ Z≥0 : P(n), we prove the following:
(a) the base case P(0).
(b) the inductive case: for every n ≥ 1, we have

[P(0)∧ P(1) . . .∧ P(n− 1)] ⇒ P(n).
2. The prime factorization theorem: let n ∈ Z≥1 be a

positive integer. Then there exist k ≥ 0 prime numbers
p1, p2, . . . , pk such that n = ∏k

i=1 pi. Furthermore, up to
reordering, the prime numbers p1, p2, . . . , pk are unique.

Recursively Defined Structures and Structural
Induction
1. To give a proof by structural induction of ∀x ∈ S : P(x), we

prove the following:
(a) the base cases: for every x defined by a base case in the

definition of S, we have that P(x).
(b) the inductive cases: for every x defined in terms of

y1, y2, . . . , yk ∈ S by an inductive case in the definition
of S, we have that P(y1) ∧ P(y2) . . .∧ P(yk) ⇒ P(x).
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