Proofs

N

N =

In which our heroes build ironclad scaffolding to support their claims,
thereby making them impervious to any perils they might encounter.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

402 CHAPTER 4. PROOFS

4.1 Why You Might Care

By far the best proof is experience.

Sir Francis Bacon (1561-1626)

A proof is a convincing argument that establishes a particular claim as fact. That
claim might be something explicitly computational: Bubble Sort performs fewer com-
parisons than Merge Sort when the input array is already sorted, for example. Or the claim
might be noncomputational, at least superficially: a property of an operating system,

a structural fact about the minimum-length sequence of flips to sort pancakes, the
impossibility of designing a voting system with a certain set of properties.

Generally speaking, our goal—in this chapter, in this book—is to establish new
facts. And that’s precisely the point of a proof: to derive a new fact from old facts,
while persuading the reader that the new fact is, indeed, a fact. (For example, we can
derive a new fact using Modus Ponens: if we know both p and p = g, then we can
conclude that g is a fact, too.) In Section 4.3, the technical meat of this chapter, we will
develop a toolbox of techniques to use in proofs, and some strategies for choosing
among these techniques. (In Section 4.5, we'll also catalogue some common types
of mistakes in purported proofs, so that you can avoid them—and recognize bogus
proofs when others attempt them.) We'll illustrate these proof techniques throughout
Section 4.3 with a hefty collection of examples about arithmetic.

While the proof techniques themselves are the “point” of this chapter, in many cases
the fact that we're proving is at least as interesting as the proof of that fact. Through-
out our tour of proof techniques, we’ll encounter a variety of examples of (fingers
crossed!) interesting facts: about propositional logic, including the fact that we need
only one logical connective (“nand”) to express every proposition; about geometry
(the Pythagorean theorem); about prime numbers; and about uncomputability (there
are problems that cannot be solved by any computer!). We begin in Section 4.2 with
an extended exploration of error-correcting codes, systems that allow for the reliable
transmission and storage of information even in environments that corrupt data as it’s
stored/ transmitted / received/ retrieved. (For example, CDs/DVDs are susceptible to
scratches, and deep-space satellites’ transmissions are susceptible to radiation.) This
section will merely scratch the surface of error-correcting codes, but it will serve as a
nice introduction to error-correcting codes—and to proofs.

Why are proofs useful in computer science? First, proofs help prevent bugs. Whether
or not she writes down in full detail a proof that her code is correct, a good software
developer is always reasoning carefully about whether a function performs the task it’s
supposed to perform, or whether a particular optimization continues to meet the given
specification. For a theoretical computer scientist, proofs are bread and butter: proofs
of correctness for novel algorithms, or proofs of the hardness of solving a particular
problem. For both theoretically and practically oriented computer scientists, a proof
often yields great insight that can avoid a brute force solution, improve the efficiency
of the code, or unearth some structural property of a problem that reveals that the
problem doesn’t even need to be solved in the first place.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 403

4.2 An Extended Application with Proofs: Error-Correcting Codes

Irrationally held truths may be more harmful than
reasoned errors.

Thomas H. Huxley (1825-1895)

This section introduces error-correcting codes, a way of encoding data so that it can
be transmitted correctly even in the face of (a limited number of) errors in transmis-
sion. These codes are used widely—for example, on DVDs/CDs and in file transfer
protocols—and they’re interesting to study on their own. But, despite appearances,
they are not the point of this section! Rather, they’re mostly an excuse to introduce a
technical topic with some interesting (and nonobvious) results—and to persuade you
of a few of those results. In other words, this section is really about proofs.

ERROR-DETECTING AND ERROR-CORRECTING CODES: THE BASIC IDEA
Visa and Mastercard use 16-digit numbers for their credit and debit cards, but it

turns out that there are only 10'°

valid credit-card numbers: a number is valid only

if a particular arithmetic calculation on the digits—more or less, adding up the digits
and taking the result modulo 10—always turns out to be zero. (See Exercises 4.1-4.5
for details of the calculation.) Or, to describe this fact in another way: if you get a
(mildly gullible) friend to read you any 15 digits of his or her credit-card number,

you can figure out the 16th digit. Less creepily, this system means that there’s an error-
detection mechanism built into credit-card numbers: if any one digit in your number is
mistranscribed, then a very simple algorithm can reject that incorrect card number as
invalid (because the calculation above will yield an answer other than zero).

In this section, we'll explore encoding schemes with this sort of error-handling ca-
pability. Suppose that you have some binary data that you wish to transmit to a friend
across an imperfect channel—that is, one that (due to cosmic rays, hardware failures,
or whatever) occasionally mistransmits a 0 as a 1, or vice versa. (When we refer to an
error in a bitstring x, what we mean is a “substitution error,” where some single bit in
x is flipped.) The fundamental idea will be to add redundancy to the transmitted data;
if there is enough redundancy relative to the number of errors, then enough correct
information will be transmitted to allow the receiver to reconstruct the original mes-
sage. We'll explore both error-detecting codes that are able to recognize whether an error
has occurred (at least, as long as there aren’t too many errors) and error-correcting codes
that can fix a small number of errors. To reiterate the above, though: although we're
focusing on error-correcting and error-detecting codes in this section, the fundamental
purpose of this section is to introduce proof techniques. Along the way, we’ll see some
interesting results about error-correcting codes, but the takeaway message is really
about the methods that we’ll use to prove those results.

Taking it further: Aside from credit-card numbers, other examples of error-detecting or error-correcting
codes include checksums on a transferred file—we might break a large file we wish to transmit into 32-bit
blocks, transmit those blocks individually, and transmit as a final 32-bit block the XOR of all previously
transmitted blocks—as a way to check that the file was transmitted properly. Error-correcting codes are
also used in storing data on media (hard disks and CDs/DVDs, for example) so that one can reconstruct
stored data even in the face of hardware errors (or scratches on the disc).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

404 CHAPTER 4. PROOFS

The idea of error detection appears in other contexts, too. UPC (“universal product code”) bar codes
on products in supermarkets use error checking similar to that in credit-card numbers. There are error-
detection aspects in DNA. And “the buddy system” from elementary school field trips detects any one
“deletion error” among the group (though two “deletions” may evade detection of the system).

4.2.1 A Formal Introduction

Imagine a sender who wishes to transmit a message m € {0, 1}k to a receiver. A code C is a
subset of {0,1}", listing the set of legal codewords; each k-bit message m is encoded as an
n-bit codeword c € C. The codeword is then transmitted to the receiver, but it may be
corrupted during transmission. The recipient of the (possibly corrupted) n-bit string ¢’
decodes ¢’ into a new message m’ € {0,1}*. The goal is that, so long as the corruption
is limited, the decoded message is identical to the original message—in other words,
that m =m’ as long as ¢’ = c. (We'll make the meaning of “~” precise soon.) Figure 4.1
shows a schematic of the process.

Figure 4.1: A
) sender | I recetver) schematic view of

error-correcting
codes. The goal
is that, as long as

me {O,l}k de{0,1}" m' € {O,l}k there isn’t too much
encode corruption ———- (ccodc ——- corruption, the
cc{o1}" received message

m' is identical to the
sent message .

(For an error-detecting code, the receiver still receives the bitstring ¢/, but determines
whether the originally transmitted codeword was corrupted instead of determining which
codeword was originally transmitted, as in an error-correcting code.)

MEASURING THE DISTANCE BETWEEN BITSTRINGS
Before we get to codes themselves, we need a way of quantifying how similar or

different two bitstrings are: The Hamming dis-
tance is named after
Richard Hamming,
Definition 4.1 (Hamming distance) a 20th-century
Let x,y € {0,1}" be two n-bit strings. The Hamming distance between x and y, denoted by American mathe-

matician/ computer
scientist who was
the third winner of

Alx,y) = ‘{1 €{1,2,...,n}:x; ;éyi}‘ . the Turing Award.

A(x,), is the number of positions in which x and y differ. In other words,

(Hamming distance is undefined if x and y don’t have the same length.)

For example, A(011,101) = 2 because 011 and 101 differ in bit positions #1 and #2, and
A0011,0111) =1 because 0011 and 0111 differ in bit #2. Similarly, A(0000,1111) = 4
because all four bits differ, and A(10101, 10101) =0 because all five bits match.

In Exercise 4.6, you'll show that the Hamming distance is a metric, which means that
it satisfies the following properties, for all bitstrings x,y,z € {0,1}":

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 405

o “reflexivity”: A(x,y) =0if and only if x =y;
o “symmetry”: A(x,y) =A{y, x); and
o “the triangle inequality”: A(x,y) < Alx,z)+A(z,). (See Figure 4.2.)

Informally, the fact that A is a metric means that it generally matches your intuitions
about geometric (Euclidean) distance.

ERROR-DETECTING AND ERROR-CORRECTING CODES

Figure 4.2: The
triangle inequality.
The distance from x
A codeisaset C C {0,1}", where |C| =2 for some integer 1 < k < n. Any element of to y isn't decreased

{0,1}" is called a message, and the elements of C are called codewords. by “stopping off” at
z along the way.

Definition 4.2 (Codes, messages, and codewords)

(It might seem a bit strange to require that the number of codewords in C be a precise
power of two—but doing so is convenient, as it allows us to consider all k-bit strings as
the set of possible messages, for k :=log, |C|.) Here’s an example of a code:

Example 4.1 (A small code)

The set C := {000000,101010,000111,100001} is a code. Because |C| =4 = 22 there
are four messages, namely the four elements of {0,1}* ={00,01,10,11}. And because
C C{o, 1}6, the codewords—the four elements of the set C—are elements of {0, 1}6.

We can think of a code as being defined by a pair of operations:

e encoding: given a message m € {0,1 }k, which codeword in C should we transmit?
(We’d break up a longer message into a sequence of k-bit message chunks.)

e decoding: from a received (possibly corrupted) bitstring ¢’ € {0,1}", what message
should we infer was sent? (Or, if we trying to detect errors rather than correct them:
from a received bitstring ¢’ € {0,1}", do we say that an error occurred, or not?)

For the moment, we’ll consider a generic (and slow) way of encoding and decoding.
Given C, we build a table mapping messages to codewords, by matching up the ith-
largest message with the ith-largest codeword (with both the messages from {0, 1 }k
and the codewords in C sorted in numerical order):

e We encode a message m by the codeword in row m of the table.
e We detect an error in a received bitstring ¢’ by reporting “no error” if ¢’ appears in

el
the table, and reporting “error” if ¢’ does not appear in the table. ;go g
e We decode a received bitstring ¢’ by identifying the codeword ¢ € C that’s closest é %
to ¢/, measured by Hamming distance. We decode ¢’ as the message in row c of the 00 | 000000
table. (If there’s a tie, we choose one of the tied-for-closest codewords arbitrarily.) 01 | 000111
10 | 100001
11 101010
Example 4.2 (Encoding and decoding with a small code) Figure 4.3: The
Recall the code {000000,101010,000111, 100001} from Example 4.1. Sorting the four message/ codeword
2 . . table for the code
codewords (and the messages from {0,1}"), we get the table in Figure 4.3. from Example 4.1.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

406 CHAPTER 4. PROOFS

oo =9

For example, we encode the message 10 as the codeword 100001. sz8¢8

o o O O

If we receive the bitstring 111110, we report “error” because 111110 is not in C. 23D

To decode the received bitstring 111110, we see that A(111110,000000) = 5, S/O()W 0<' 3<' ; 3<'
A(111110,000111) = 4, A(111110,100001) = 5, and A(111110,101010) = 2. The last gggg%T i § ; ;
of these distances is smallest, so we would decode 111110 as the message 11 (corre- 000011 |2 1 2 3
sponding to codeword 101010). 888%8(1) ; % g é
000110 |2 1 4 3

000111 |3 0 3 4

. Lo , , 001000 |1 4 3 2

The danger in error detection is that we’re sent a codeword ¢ € C that’s corrupted 001001 |2 3 2 3
. by p ” / , 001010 |2 3 4 1
into a bitstring ¢/, but we report “no error” because ¢’ € C. (Note that we're never o011 |3 2 3 2
wrong when we report “error.”) The danger in error correction is that we report an- 8338(13 g 2 ;1 2
other codeword ¢’ € C because ¢’ is closer to ¢’ than it is to c. (As we’ll see soon, 001110 |3 2 5 2
. . . 001111 [4 1 4 3

these dangers are really about Hamming distance between codewords: we might make a 010000 |1 4 3 4
mistake if two codewords in C are too close together, relative to the number of errors.) 8%88% % g i g
Here are the precise definitions of error-detecting and error-correcting codes: 8%8%(1) ; é i é
010101 |3 2 3 6

Definition 4.3 (Error-detecting and error-correcting codes) ezt
Let C C {0,1}" be a code, and let ¢ > 1 be any integer. gﬂgg(l) é Z g 431
We say that C can detect ¢ errors if, for any codeword ¢ € C and for any sequence of up to 011010 |3 4 5 2

£ errors applied to ¢, we can correctly report “error” or “no error.” 83%3 § i é i
; 011101 |4 3 4 5

The code C can correct £ errors if, for any codeword c € C and for any sequence of up to ¢ 011110 11 3 6 3
errors applied to c, we can correctly identify that c was the original codeword. OLLILL |5 2 5 4
100000t |1 4 1 2

100001° 12 3 0 3

Here’s an example, for our small example code: 18881? g ; % ;
100100 |2 3 2 3

Example 4.3 (Error detection and correction in a small code) igg%% g % ; ‘21
Recall C ={000000,101010,000111,100001} from Example 4.1. Figure 4.4 shows every 100111 [4 1 2 3
I . . , 101000 |2 5 2 1
bitstring x € {0, 1 }6, and the Hamming distance between x and each codeword in C. 101001 |3 4 1 2
There are 24 single-bit errors that can happen to codewords in C: there are 4 }818}(1)* 2 ; g (1)
choices of codeword, and, for each, 6 different one-bit errors that can occur: igﬂgg ?1 g ; é
noerrors: 000000 101010 000111 100001 et M

one error: 100000 901010 100111 900001 110000 |2 5 2 3

010000 111010 010111 110001 110001 (3 4 1 4

001000 100010 001111 101001 10010 13 403 2

000100 101110 000011 100101 110100 |3 2 3 1

000010 101000 000101 100011 110101 |4 3 2 5

000001 101011 000110 100000 110110 (4 3 4 3

110111 |5 2 3 4

This code can detect one error, because the 24 bitstrings below the line are all differ- iﬂggg 2 g g ;
ent from the 4 bitstrings above the line; we can correctly report whether the bitstring 111010 (4 5 4 1
111011 |5 4 3 2

in question is a codeword (no errors) or one of the 24 non-codewords (one error). Or, 111100 |4 5 4 3
to state this fact in a different way: the four starred lines of Figure 4.4 corresponding ﬂﬂ% g i g ;1
to uncorrupted codewords are not within one error of any other codeword. On the 1L j6 3 4 3

other hand, C cannot detect two errors. If we receive the bitstring 000000, we can’t Figure 4.4: The

Hamming distance

of every 6-bit string
whether the original codeword was 100001 (and two errors occurred, in 000000). to all codewords

(Receiving the bitstring 100001 creates the same problem.) from Example 4.1.

distinguish whether the original codeword was 000000 (and no errors occurred) or

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 407

The code C also cannot correct even one error. Consider the bitstring 100000. We
cannot distinguish (i) the original codeword was 000000 (and one error occurred)
from (ii) the original codeword was 100001 (and one error occurred). Or, to state this
fact differently: the two lines of Figure 4.4 marked with { are only one error away
from two different codewords. (That is, 100000 appears twice in the list of 24 bitstrings
below the line.)

4.2.2 Distance and Rate

Our goal with error-correcting codes is to ensure that the decoded message m’ is iden-
tical to the original message m, as long as there aren’t too many errors in the transmis-
sion. At a high level, we will achieve this goal by ensuring that the codewords in our
code are all “very different” from each other. If every pair of distinct codewords c; and
cp are far apart (in Hamming distance), then the closest codeword ¢ to the received
transmission ¢’ will correspond to the original message, even if “a few” errors occur.
(We'll quantify “very” and “a few” soon.)

Intuitively, this desire suggests adding a lot of redundancy to our codewords, by
making them more redundant. But we must balance this desire for robustness against
another desire that pulls in the opposite direction: we’d like to transmit a small num-
ber of bits (so that the number of “wasted” non-data bits is small). There’s a seem-
ing trade-off between these two measures of the quality of a code: increasing error
tolerance suggests making the codewords longer (so there’s room for them to differ
more); increasing efficiency suggests making the codewords shorter (so there are fewer
wasted bits). Let’s formally define both of these measures of code quality:

Definition 4.4 (Minimum distance)
The minimum distance of a code C is the smallest Hamming distance between two distinct
codewords of C: that is, the minimum distance of C is min {A(x,y): x,y € C and x #y}.

(Quiz question: if we hadn’t restricted the minimum in this definition to be only over
pairs such that x #y, what would the minimum distance have been?)

Definition 4.5 (Rate)
The rate of a code C is the ratio between message length and codeword length. That is, if C is a
code where |C| =2% and C C {0,1}", then the rate of C is the ratio .

S — = O

S — 9

S == 9O O

’ ini i i 5335
Let’s compute the rate and minimum distance for our running example: SS ==
000000(0 3 2 3

000111{3 0 3 4

Example 4.4 (Distance and rate in a small code) ig?g?(l) g 3 g 8

Recall the code C ={000000,101010,000111, 100001 } from Example 4.1.

The minimum distance of C is 2, because A(000000, 100001) = 2. You can check Figure 4.5 The

Hamming distance

Figure 4.4 (or see Figure 4.5) to see that no other pair of codewords is closer. between code-
The rate of C is %, because |C| =4 =[{0, 1}2 |, and the codewords have length 6. words of C from
Example 4.1.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

408 CHAPTER 4. PROOFS

RELATING MINIMUM DISTANCE AND ERROR DETECTION/ CORRECTION

We have now defined enough of the concepts that we can state a first nontrivial
theorem, which characterizes the error-detecting and error-correcting capabilities of a
code C in terms of the minimum distance of C. Here is the statement:

Theorem 4.1 (Relationship of minimum distance to detecting/correcting errors)
Let t > 0 be any integer. If the minimum distance of a code C is 2t +1, then C can detect 2t Problem-solving tip:
Step #1 in proving
any claim is to un-
derstand what it’s
We're now going to try to prove Theorem 4.1—that is, we're going to try to generate saying! (You can’t
persuade someone
of something you

errors and correct t errors.

a convincing argument that this statement is true. As with any statement that you try

to prove, our first task is to understand what exactly the claim is saying. In this case, the don’t understand.)
theorem makes a statement about a generic nonnegative integer t and a generic code C. One good way to
Plugging in particular values for t can help make the claim clearer: ;tlf;gnéopﬁisf; .
o If the minimum distance of a code C is 9—that is, the minimum distance is 2t +1 for Z:;tu;;;ﬁio the

t =4—then the claim says C can detect 2t =2 -4 =8 errors and correct t =4 errors.
e Suppose the minimum distance of C is 7. Writing 7 =2t +1 for t =3, the claim states

that C can detect 6 errors and correct 3 errors.
e If the minimum distance of C is 5, then C can detect 4 errors and correct 2 errors.
e If the minimum distance of C is 3, then C can detect 2 errors and correct 1 error.
e If the minimum distance of C is 1, then C can detect 0 errors and correct 0 errors.
Now that we have a better sense of what the theorem says, let’s prove it: Problem-soloing tip:

. . . Draw a picture to

Proof of Theorem 4.1. First we’ll prove the error-detection condition. We must argue help you clarify/
for the following claim: if a code C has minimum distance 2f +1, then C can detect understand the

statement you're

2t errors. In other words, for an arbitrary codeword ¢ € C and an arbitrary received trvi
rying to prove.

bitstring ¢’ with A(c,¢’) < 2t, our error-detection algorithm must be correct. (If

A(c, ") > 2t, then we're not obliged to correctly state that an error occurred, because
we're only arguing that we can detect 2t errors.) Recall that our error-detection algo-
rithm reports “no error” if ¢’ € C, and it reports “error” if ¢’ ¢ C. Thus:

e If Alc,c’) = 0, then no error occurred (because the received bitstring matches the
transmitted one). In this case, our error-detection algorithm correctly reports “no
error’—because ¢’ € C (because ¢’ =¢, and ¢ was a codeword).

e On the other hand, suppose 1 < A(c,¢’) < 2t—so an error occurred. The only
way that we’d fail to detect the error is if the received bitstring ¢’ is itself another
codeword. But this situation can’t happen, by the definition of minimum distance:
for any codeword ¢ € C, the set {¢’ : A(c,¢’) < 2t} cannot contain any elements of
C—otherwise the minimum distance of C would be 2¢ or smaller.

Figure 4.6: If

It may be helpful to think about this proof via Figure 4.6. the minimum
distance is 2f +1,

no codewords are
For the error-correction condition, suppose that x € C is the transmitted code- within distance 2t

word, and the received bitstring ¢’ satisfies A(x,¢’) < t. We have to persuade our- of each other.

selves that x is the codeword closest to ¢’ in Hamming distance. Lety € C — {x}

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 409

be any other codeword. We'll start from the triangle inequality, which tells us that
A, y) < Alx, ') +A(, y) and therefore that A(’,y) > Ax,y) — A(x, ¢’), and prove that
¢ is closer to x than it is to y:

ACLY) > A Y)— A,)
> 2t+1)— Alx,)

triangle inequality

Ax,y) > 2t +1 by definition of minimum distance

> (t+1)—t Al ') < t by assumption
=t+1

>t

> Alx,c). AG,¢') < t by assumption

This chain of inequalities shows ¢’ is closer to x than it is to y. (Pedantically speak-
ing, we're also relying on the symmetry of Hamming distance here: A(c’,y) = Ay, ¢’).
Again, see Exercise 4.6.) Because y was a generic codeword in C — {x}, we can con-
clude that the original codeword x is the one closest to ¢’. (See Figure 4.7.) O

Before we move on from the theorem, let’s reflect a little bit on the proof. (We’ll
concentrate on the error-correction half.) The most complicated part was unwinding
the definitions in the theorem statement, in particular of “C has minimum distance
2t 4+1” and “C can correct t errors.” Eventually, we had to argue for the claim

foreveryx € C,y € C — {x},and ¢’ € {0,1}": if A(x,c’) < t then A(x, ") < Ay,).

(In other words, if ¢’ is within f errors of x, then ¢’ is closer to x than to any other code-
word.) In the end, we were able to state the proof as a relatively simple sequence of
inequalities. After proving a theorem, it’s also worth briefly reflecting on what the the-
orem does not say. Theorem 4.1, for example, only addresses codes with a minimum
distance that’s an odd number. You'll be asked to consider the error-correcting and
error-detecting properties of a code C with an even minimum distance in Exercise 4.13.
We also didn’t show that we couldn’t do better: Theorem 4.1 says that a code C with
minimum distance 2¢ +1 can correct f errors, but the theorem doesn't say that C can'’t
correct t +1 (or more) errors. (But, in fact, it can’t; see Exercise 4.12.)

OUTLINE OF THE REMAINDER OF THE SECTION

Intuitively, rate and minimum distance are measures of the inherent tension in an
error-correcting code. A code that has a higher distance means that we are more ro-
bust to errors: the farther apart codewords are, the more corruption can occur before
we're unable to reconstruct the original message. A code that has a higher rate means
that we are “wasting” fewer bits in providing this robustness: the larger the rate, the
more our codeword contains “data” rather than “redundancy.” In the rest of this sec-
tion, we're going to prove several more theorems about error-correcting codes, explor-
ing the trade-off between rate and distance. (But it’s also worth noting that it’s not a
strict trade-off: sometimes we can improve in one measure without costing ourselves
in the other!) And, as we go, we'll continue to try to reflect on the proof techniques
that we use to establish these claims.

Here are the three main theorems that we’ll prove in the rest of this section:

Figure 4.7: If the
minimum distance
is 2t 41, a bitstring
within distance ¢
of one codeword is
more than t away
from every other
codeword.

Problem-solving tip:
When you're trying
to prove a claim of
the form p = g, try
to massage p to look
as much like g as
possible. A good
first step in doing
so is to expand out
the definitions of
the premises, and
then try to see what
additional facts you
can infer.

It is customary to
mark the end of
one’s proofs typo-
graphically; here,
we're using a tradi-
tional box symbol:
O. Other people
may write “QED,”
short for the Latin
phrase quod erat
demonstrandum
(“that which was to
be demonstrated”).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

410 CHAPTER 4. PROOFS

Theorem 4.2 (Good news)
There exists a code with 4-bit messages, minimum distance 3, and rate %

Theorem 4.3 (Better news)
There exists a code with 4-bit messages, minimum distance 3, and rate %.

Theorem 4.4 (Bad news)
There does not exist a code with 4-bit messages, minimum distance 3, and any rate strictly
better than 3.

Notice that the first two of these results say that a code with particular properties
exists, while the third result says that it’s impossible to create a code with a different
set of properties. Also notice that Theorem 4.3 is an improvement on Theorem 4.2:
we’ve made the rate better (higher) without making the minimum distance worse.
(When we can, we’ll prove more general versions of these theorems, too, not limited to
4-bit messages with minimum distance 3.)

We’ll prove Theorem 4.2 and Theorem 4.3 “by construction”—specifically, by build-
ing a code with the desired parameters. But, because Theorem 4.4 says that a code
with certain properties fails to exist, we’ll prove the result with a proof by contradiction:
we assume that a code with 4-bit messages with distance 3 and rate strictly better than
% does exist, and reasoning logically from that assumption, we will derive a false state-
ment (a contradiction). Because p = False = —p, we can conclude that the assumption
must have been false, and no such code can exist.

4.2.3 Repetition Codes

Intuitively, a good error-correcting code will amplify even a small difference between
two different messages—a single differing bit—into a larger difference between the
corresponding codewords. Perhaps the most obvious implementation of this idea

is simply to encode a message m by repeating the bits of m several times. This idea
gives rise to a simple error-correcting code, called the repetition code. (Actually, there
are many different versions of the repetition code, depending on how many times we
repeat m in the codeword.) Here’s the basic definition:

Definition 4.6 (Repetition code)
Let ¢ € Z=2. The RepetiTion, code for k-bit messages consists of the codewords

{mm m:mG{O,l}k}.
£ times

That is, the codeword corresponding to a message m € {0, 1}k is the {-fold repetition of the
message m, so each codeword is an element of {0, 1}“.

Here are some small examples of encoding/ decoding using repetition codes:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 411

Example 4.5 (Some codewords for the repetition code)

If we encode the message 00111 using the ReperiTION; code, we get the codeword
00111 00111 00111. If we encode the same message using the RePETITION5 code, we get
the codeword 00111 00111 00111 00111 00111.

For an example of decoding, suppose that we receive the (possibly corrupted)
bitstring ¢’ = 0010 0110 0010 under the ReperiTION; code. We detect that an error
occurred: ¢ is not a codeword, because the only codewords are 12-bit strings where
all three 4-bit thirds are identical. For error correction, note that the closest codeword
to ¢’ is 0010 0010 0010, so we decode ¢’ as corresponding to the message 0010.

The message/ codeword table for the ReperITIONS code for 4-bit messages is shown
in Figure 4.8. The distance and rate properties of the repetition code are relatively easy
to see (from the definition or from this style of table):

Lemma 4.5 (Distance and rate of the repetition code)
The RepetITION, Ccode has rate % and minimum distance £.

Proof. Recall that the rate of a code is the ratio %, where k is the length of the mes-
sages and 7 is the length of the codewords. A k-bit message is encoded as a (k¢)-bit
codeword (¢ repetitions of k bits), and so the rate of this code is & = %

For the minimum distance, consider any two distinct messages m,m’ € {0, 1}k
with m’ # m. We know that m and m’ must differ in at least one bit position, say bit
position i. (Otherwise m =m’.) But if m; #m!, then

the codeword corresponding tom =m m --- m and

the codeword corresponding tom’ =m' m’ - - m’

£ times

differ in at least one bit in each of the ¢ “blocks” (in the ith position of the block)}—for a
total of at least ¢ differences. Furthermore, the RepETITION; encodings of the messages
000 - --0and 100 - - - 0 differ in only ¢ places (the first bit of each “block”). Thus the
minimum distance of the ReperiTION, code is exactly . O

Lemma 4.5 says that the RepeTITION; code on 4-bit messages (see Figure 4.8) has
minimum distance 3 and rate % Thus we’ve proven Theorem 4.2: we had to show that
a code with these parameters exists, and we did so by explicitly building such a code.
This proof is an example of a “proof by construction”: to show that an object with a
particular property exists, we’ve explicitly built an object with that property.

It’s also worth noticing that we started out by describing a generic way to do encod-
ing and decoding for error-correcting codes in Section 4.2: after we build the table (like
the one in Figure 4.8), we encode a message by finding the corresponding codeword
in the table, and we decode a bitstring ¢’ by looking at every codeword and identify-
ing the one closest to ¢’. For particular codes, we may be to give a much more efficient
algorithm—and, indeed, we can do so for repetition codes. See Exercise 4.21.

m |c
0000 | 0000 0000 0000
0001 {0001 0001 0001
0010|0010 0010 0010
0011|0011 0011 0011
0100 {0100 0100 0100
0101 {0101 0101 0101
0110|0110 0110 0110
0111|0111 0111 0111
1000 { 1000 1000 1000
1001|1001 1001 1001
1010|1010 1010 1010
1011 {1011 1011 1011
1100 {1100 1100 1100
1101 {1101 1101 1101
1110{1110 1110 1110
1111|1111 1111 1111

Figure 4.8: The
RepETITION3 code for
4-bit messages.

Problem-solving tip:
When you're trying
to prove a claim of
the form Jx : P(x),
try using a proof by
construction first.
(There are other
ways to prove an
existential claim,
but this approach
is great when it’s
possible.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

412 CHAPTER 4. PROOFS

4.2.4 Hamming Codes

When we're encoding 4-bit messages, the RepeTiTiOoN; code achieves minimum distance
3 with 12-bit codewords. (So its rate is %.) But it turns out that we can do better by
defining another, cleverer code: the Hamming code! maintains the same minimum
distance, while improving the rate from % to %.

The basic idea of the Hamming code is to use an extra bit that, like the 16th digit
of a credit card number, redundantly reports a value computed from the previous
components of the message. Concretely, we could tack a single bit b onto the message
m, where b reports the parity of m—that is, whether there are an even or odd number
of bits set to 1 in m. If a single error occurs in the message, then b would be inconsis-
tent with the message m, and we’d detect that error. (See Exercise 4.19.) In fact, for
the Hamming code, we’ll use several different parity bits, corresponding to different
subsets of the bits of m.

Definition 4.7 (Parity function)
The parity of a sequence {(ay,ay, ..., ax) of bits is denoted either parity (a1, ay, ..., ax) or
M Day P - - - D ay, and its value is

1 if there are an odd number of i such that a; =1

M Bad---Dag:=
1 K {0 if there are an even number of i such that a; =1.

(We could also have defined this function as parity (i, . ..,a) := [, a;] mod 2.)

Hamming'’s insight was that it’s possible to achieve good error-correction properties
by using three different parity bits, corresponding to different subsets of the message
bits. It’s easiest to think of this code in terms of its encoding algorithm:

Definition 4.8 (Hamming code)
The Hamming code is defined via the following encoding function. We will encode a 4-bit
message (a, b, c,d) as the following 7-bit codeword:

(abcd b®cdd, adcdd, adbdd).
—

message bits parity bits

Applying this encoding to every 4-bit message yields the table of messages and their
corresponding codewords shown in Figure 4.9; here are a few examples in detail:

Example 4.6 (Sample Hamming code encodings)

message | codeword

a,bc,d |abec,d bdcdd),@dcdd),@dbdd)

0,0,0,0 |0,0,0,0,000©0),0®020),02050) =0000000
1,0,0,0 |1,0,0,0,0©030),1®020),(1®04£0) =1000011
1,1,1,0 |1,1,1,0,1®1®0),1®1€0),(1®140) =1110000.

The Hamming
code, like the
Hamming distance,
is named after
Richard Hamming,
who invented this
code in 1950. (He
was frustrated

that programs he
started running

on Friday nights
often failed over the
weekend because of
a single bit error in
memory.)

!'R. W. Hamming,.
Error detecting and
error correcting
codes. The Bell Sys-
tem Technical Journal,
XXIX(2):147-160,
April 1950.

The parity of 2 and
b can be denoted
as a @ b, because

if you think of

a,b € {0,1}, where
True = 1and
False = 0, then
parity(a,b) is the
XOR of a and b.

m c

0000 | 0000000
0001 | 0001111
0010 | 0010110
0011 | 0011001
0100 | 0100101
0101 | 0101010
0110 | 0110011
0111 | 0111100
1000 | 1000011
1001 | 1001100
1010 | 1010101
1011 | 1011010
1100 | 1100110
1101 | 1101001
1110 | 1110000
1111 | 1111111

Figure 4.9: The
Hamming code for
4-bit messages.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 413

(We could have described encoding for the Hamming code using matrix multiplication
instead; see Exercises 2.221-2.223.)

Before we analyze the rate and minimum distance of the Hamming code, let’s start
to develop some intuition by looking at a few received (possibly corrupted) code-
words. (We'll also begin to work out an efficient decoding algorithm as we go.)

Example 4.7 (Some Hamming code decoding problems)
Problem: You receive the following (possibly corrupted) Hamming code codewords.
Find the original message, assuming at most one error occurred in transmission.

1. 0000010
2.1000000 Recall that, for a
3. 1011010 message 4,b,¢c,d,
4. 1110111 the bits of the
uncorrupted
codeword are:
Solution: 1. We’ve received message bits 0000 and parity bits 010. Everything in the 1 4
received codeword is consistent with the message being m = 0000, except for 2. b
the second parity bit. So we infer that the second parity bit was corrupted, the Z' ;
transmitted codeword was 0000000, and the message was 0000. 5. bacamd
Could there have been a one-bit error in message bits instead? No: these parity g' Z g 22‘;

bits are consistent only with a message (a,b,c,d) witha # b (because the first
two received parity bits differ), and therefore with d =1 (because a # b implies
thata @b@d =1@d = —d, and the third parity bita & b & d is 0). But 10?1 and
01?1 are both at least two errors away from the received message 0000.

2. We've received message bits 1000 and parity bits 000. If the message bits were
uncorrupted, then the correct parity bits would have been 011. But then we
would have to have suffered two transmission errors in the parity bits, and we're
assuming that at most one error occurred. Thus the error is in the message bits;
the original message is 0000, and the first bit of the message was corrupted.

3. The parity bits for the message 1011 are indeed 010, so 1011010 is itself a legal
codeword for the message 1011, and no errors occurred at all.

4. These received bits are consistent with the message 1111 with parity bits 111,
where the fourth bit of the message was flipped.

From this example, the basic approach to decoding the Hamming code should start to
coalesce. Briefly, we compute what the parity bits should have been, supposing that the
received message bits (the first four bits of the received codeword) are correct; com-
paring the computed parity bits to the received parity bits allows us to deduce which,
if any, of the transmitted bits were erroneous. (More on efficient decoding later.) Why
does this approach to decoding work? (And, relatedly, why were the parity bits of the
Hamming code chosen the way that they were?) Here are two critical properties in the
Hamming code’s parity bits:

o cvery message bit appears in at least two parity bits. Thus any error in a received parity
bit is distinguishable from an error in a received message bit: an erroneous message

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

414 CHAPTER 4. PROOFS

bit will cause at least two parity bits to look wrong; an erroneous parity bit will
cause only that one parity bit to look wrong.

o no two message bits appear in precisely the same set of parity bits. Thus any error in a
received message bit has a different “signature” of wrong-looking parity bits: an
error in bit a affects parity bits #2 and #3; b affects parity bits #1 and #3; c affects #1
and #2; and d affects all three parity bits. Because all four of these signatures are
different, we can distinguish which message bit was corrupted based on which set of
two or more parity bits look wrong.

RATE AND MINIMUM DISTANCE OF THE HAMMING CODE
Let’s use the intuition that we’ve developed so far to establish the rate and mini-
mum distance for the Hamming code:

Lemma 4.6 (Distance and rate of the Hamming code)
The Hamming code has rate % and minimum distance 3.

Proof. The rate is straightforward to compute: we have 4-bit messages and 7-bit code-
words, so the rate is % by definition.

There are several ways to convince yourself that the minimum distance is 3—
perhaps the simplest way (though certainly the most tedious) is to compute the Ham-
ming distance between each pair of codewords in Figure 4.9. (There are only 16 code-
words, so we just have to check that all (16 - 15)/2 = 120 pairs of distinct codewords
have Hamming distance at least three.) You’'ll write a program to verify this claim in
Exercise 4.24. But here’s a different argument.

Consider any two distinct messages m € {0,1}* and m’ € {0,1}*. We must establish
that the codewords ¢ and ¢’ associated with m and m’ satisfy A(c,c’) > 3. We'll argue
for this fact by looking at three separate cases, depending on A(m, m’):

Case I: A(m, m") > 3. Then we're done immediately: the message bits of ¢ and ¢’ differ
in at least three positions (even without looking at the parity bits).

Case II: A(m,m") =2. Then at least one of the three parity bits contains one of the bit
positions where m; # m/ but not the other. (This fact follows from the second crucial
property above, that no two message bits appear in precisely the same set of parity
bits.) Therefore this parity bit differs in ¢ and ¢’. Thus there are two message bits
and at least one parity bit that differ, so A(c,¢’) > 3.

Case I1I: A(m,m") =1. Then at least two of the three parity bits contain the bit position
where m; # m. (This fact follows from the first crucial property above, that every
message bit appears in at least two parity bits.) Thus there are at least two parity
bits and one message bit that differ, and A(c, ¢’) > 3.

Note that A(m, m’) must be 1, 2, or > 3—it can’t be zero because m # m’—so, no matter
what A(m, m'), we've established that A(c,¢’) > 3.

Because, for the codewords corresponding to messages 0000 and 1110, we have
A(0000000, 1110000) =3, the minimum distance is in fact exactly equal to three. O

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 415

Lemma 4.6 says that the Hamming code encodes 4-bit messages with minimum
distance 3 and rate 3; thus we’ve proven Theorem 4.3. Let’s again reflect a little on
the proof. Our proof of the minimum distance in Lemma 4.6 was a proof by cases: we
divided pairs of codewords into three different categories (differing in 1, 2, or > 3 bits),
and then used three different arguments to show that the corresponding codewords
differed in > 3 places. So we showed that the desired distance property was true in all
three cases—and, crucially, that one of the cases applies for every pair of codewords.

Although we’re mostly omitting any discussion of the efficiency of encoding and
decoding, it’s worth a brief mention here. (The speed of these algorithms is a big deal
for error-correcting codes used in practice!) The algorithm for decoding under the
Hamming code is suggested by Figure 4.10: we calculate what the parity bits would
have been if the received message bits were uncorrupted, and identify which received
parity bits don’t match those calculated parity bits. Figure 4.10 tells us what inference
to draw from each constellation of mismatched parity bits.

Why does this decoding algorithm allow us to correct any single error? First, a
low-level answer: the Hamming code has a minimum distance of 3 = 2 -1 +1, so
Lemma 4.1 tells us that we can correct up to one error. So we know that a decoding
scheme is possible. At a higher level, the reason that this decoding procedure works
properly is that there are eight possible “< 1 error” corruptions of a codeword x—
namely one O-error string (x itself) and seven 1-error strings (one corresponding to
an error in each of the seven bit positions of x)}—and furthermore there are eight
different subsets of the three parity bits that can be “wrong.” The Hamming code
works by carefully selecting the parity bits in a way that each of these eight bitstrings
corresponds to a different one of the eight parity-bit subsets. In Exercises 4.25-4.28,
you’ll explore longer versions of the Hamming code (with longer messages and more
parity bits) with the same relationship.

Taking it further: As we’ve said, our attention here is mostly on the proofs and the proof techniques
that we’ve used to establish the claims in this section, rather than on error-correcting codes themselves.
But see p. 418 for an introduction to Reed-Solomon codes, the basis of the error-correcting codes used in
CDs/DVDs (among other applications).

4.2.5 Upper Bounds on Rates

In the last two sections, we’ve constructed two different codes, both for 4-bit messages
with minimum distance 3: the repetition code (rate %) and the Hamming code (rate
%). Because the message lengths and minimum distances match, and because higher
rates are better, the Hamming code is better. Here we’ll consider whether we can im-
prove the rate further, while still encoding 4-bit messages with minimum distance 3.
(In other words, can we make the codewords shorter than 7 bits?) The answer turns
out to be “no”—and we’ll prove that it’s impossible.

“BALLS” AROUND CODEWORDS

We'll start by thinking about “balls” around codewords in a general code. (The ball
of radius r around x € {0,1}" is the set {x" : A(x, x’) < r}—that is, the set of all points
that are within Hamming distance r of x.) Here’s a first observation:

Problem-solving tip:
If you discover that
a proposition seems
true “for different
reasons” in different
circumstances (and
those circumstances
seem to cover all
possible scenarios!),
then a proof by
cases may be a good
strategy to employ.

ASH R SH
DO
< (ST N
Dlo|®
) = =
514 |¢
8|8 |8
e
S8 % location
a.| a| a|of error
no error!
X parity #1
X parity #2
X |parity #3
XX bit ¢
X X |bitb
X | X |bita
X | X|X|bitd

Figure 4.10: Decod-
ing the Hamming
code. We conclude
that the stated
error occurred if
the received parity
bits and those cal-
culated from the
received message
bits mismatch in the
listed places.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

416 CHAPTER 4. PROOFS

Lemma 4.7 (The size of a ball of radius 1in {0,1}")

Let x € {0,1}", and define X := {x" € {0,1}" : A(x,x’) < 1}. Then |X| =n +1.

Proof. The bitstring x itself is an element of X, as are all bitstrings x’ that differ from

x in exactly one position. There are 1 such strings x: one that is x with the first bit
flipped, one that is x with the second bit flipped; . . .; and one that is x with the nth bit
flipped. Thus there are 1 +n total bitstrings in X. O

Here’s a second useful fact about these balls: in a code C, the balls around code-
words (of radius related to the minimum distance of C) cannot overlap.

Lemma 4.8 (Balls around codewords are disjoint)
Let C C {0,1}" be a code with minimum distance 2t +1. For distinct codewords x,y € C, the
sets {x" € {0,1}" : AQx,x’) < t} and {y' € {0,1}" : Aly, y') < t} are disjoint.

Proof. Suppose not: that is, suppose that the sets X := {x’ € {0,1}" : A(x,x’) < t}
and Y := {y’ € {0,1}" : A(y,y’) < t} are not disjoint. We will derive a contradiction
from this assumption—that is, a statement that can’t possibly be true. Thus we’ll have
proven that X N Y # @ = False, which allows us to conclude that X N Y = &, because
—p = False = p. That is, we're using a proof by contradiction.

To start again from the beginning: suppose that X and Y are not disjoint. That is,
suppose that there is some bitstring z € {0,1}" such thatz € X and z € Y. In other
words, by definition of X and Y, there is a bitstring z € {0, 1}" such that A(x,z) < t and
Ay, z) < t. Butif A(x,z) < t and A(y, z) < ¢, then, by the triangle inequality, we know

Al y) <A, 2)+AE y) < t+t =21

Therefore A(x,y) < 2t—but then we have two distinct codewords x,y € C with
A(x,y) < 2. This condition contradicts the assumption that the minimum distance
of C is 2t +1. (See Figure 4.11.) O

We could have used Lemma 4.8 to establish the error-correction part of Theo-
rem 4.1—a bitstring corrupted by <t errors from a codeword c is closer to c than to
any other codeword—but here we’ll use it, plus Lemma 4.7, to establish a upper bound
on the rate of codes. But, first, let’s pause to look at a similar argument in a different
(but presumably more familiar) domain: normal Euclidean geometry.

In a circle-packing problem, we are given an enclosing shape, and we’re asked to
place (“pack”)as many nonoverlapping unit circles (of radius 1) into that shape as
possible. (Sphere packing—what grocers have to do with oranges—is the 3-dimensional
analogue.) How many unit circles can we fit into a 6-by-6 square, for example? (See
Figure 4.12.) Here’s an argument that it’s at most 11: a unit circle has area 7 - 12 = 7,
and the 6-by-6 square has area 36; thus we certainly can't fit more than 3¢ ~ 11.459
nonoverlapping circles into the square. There isn’t room for 12. (In fact, we can’t even
fit 10, because the circles won't nestle together without wasting space “in between.”
Thus, in this case we’d say that the area-based bound is loose.)

Figure 4.11: If the
minimum distance
is 2t +1, the “balls”
of radius t around
each codeword are
disjoint.

Problem-solving tip:
When you're facing
a problem in a less
familiar domain,
try to find an
analogous problem
in a different, more
familiar setting to
help gain intuition.

VY D\

ANEAN A

Figure 4.12: Circles
packed in a square.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 417

USING PACKING ARGUMENTS TO DERIVE BOUNDS ON ERROR-CORRECTING CODES

Now, let’s return to error-correcting codes, and use the circle-packing intuition (and
the last two lemmas) to prove a bound on the number of n-bit codewords that can “fit”
into {0,1}" with minimum distance 3:

Lemma 4.9 (The “sphere-packing bound”: distance-3 version)
Let C C {0,1}" be a code with minimum distance three. Then |C| < 2"/ (n +1).

Proof. Foreachx € C,letS, := {x’ € {0,1}" : A(x,x) < 1} be the ball of radius 1
around x. Lemma 4.7 says that |Sy| = n +1 for each x. Further, Lemma 4.8 says that
every element of {0,1}" is in at most one Sy because the balls are disjoint. Therefore,
| {x" € {0,1}" :x"isinone of the Sy balls} | =) _ [S¢| =) (n+1)=[C|- (n +1).
xeC xeC

Also observe that every element of any Sy is an n-bit string. There are only 2" different
n-bit strings, so therefore

| {x" € {0,1}" : ¥’ is in one of the S, balls} | < 2".

Putting together these two facts, we see that [C| - (n +1) < 2". Solving for |C| yields the

desired relationship: |C| < nz—:l O

Corollary 4.10 (The Hamming code is optimal)
Any code with messages of length 4 and minimum distance 3 has codewords of length > 7.

(Thus the Hamming code has the best possible rate among all such codes.)

Proof. By Lemma 4.9, we know that |C| < 2"/ (n +1). With 4-bit messages we have
|C| =16, so we know that 16 < 2"/ (n +1), or, equivalently, that 2" > 16(n +1). And
27 =16(7 +1), while for any n < 7 this inequality does not hold. O

Corollary 4.10 implies Theorem 4.4, so we’ve now proven the three claims that
we set out to establish. Before we close, though, we’ll mention a few extensions.
Lemma 4.8 was general, for any code with an odd minimum distance. But Lemma 4.7
was specifically about codes with minimum distance 3. To generalize the latter lemma,
we’d need techniques from counting (see Chapter 9, specifically Section 9.4.)

Another interesting question: when is the bound from Lemma 4.9 exactly achiev-
able? If we have k-bit messages, n-bit codewords, and minimum distance 3, then
Lemma 4.9 says that 28 < 2"/ (n +1), or, taking logs, thatk < n — log, (1 +1). Be-
cause k has to be an integer, this bound is exactly achievable only when # +1 is an exact
power of two. (For example, if n = 9, this bound requires us to have 2 < 29/10 =
512/10 = 51.2. In other words, we need k < log, 51.2 ~ 5.678. But, because k € Z,
in fact we need k < 5. That means that this bound is not exactly achievable for n =9.)
However, it’s possible to give a version of the Hamming code for n =15 and k =7 with
minimum distance 3, as you'll show in Exercise 4.26. (In fact, there’s a version of the
Hamming code for any n =2¢ — 1; see Exercise 4.28.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

418 CHAPTER 4. PROOFS

CoMPUTER ScIENCE CONNECTIONS I

Reep-SoLomonN CoDEs

The error-correcting codes that are used in CDs and DVDs are a bit more
complicated than Repetition or Hamming codes, but they perform better.
We’ll leave out a lot of the details, but here is a brief sketch of how they work.
These codes are called Reed—Solomon codes, and they’re based on polynomials
and modular arithmetic. First, we're going to go beyond bits, to a larger “al-
phabet” of characters in our messages and codewords: instead of encoding
messages from {0, 1}k, we're going to encode messages from {0, 1,..., q}k, for
some integer 4. Here’s the basic idea: given a message m = (ml, my,..., mk>,
we will define a polynomial py, (x) as follows, with the coefficients of the polyno-
mial corresponding to the characters of the message:

k .
pm(x):=)_ mx'.
i=1

To encode the message 11, we will evaluate the polynomial for several values
of x: encode(m) := (P (1), pm), . .., pm(n)). See Figure 4.13 for an example.

Suppose that we use a k-character message and an n-character output.

It’s easy enough to compute that the rate is % But what about the minimum
distance? Consider two distinct messages m and m’. Note that p,, and p,,»
are both polynomials of degree at most k. Therefore f (x) := pp, (x) — pyy (x)
is a polynomial of degree at most k, too—and f (x) # 0, because m # m’.
Notice that {x : f(x) =0} = {x: pn(x) =puw &)}. And |[{x: f(x) =0}| < k,
by Lemma 2.3 (“degree-k polynomials have at most k roots”). Therefore
{x:f(x)=0}N{1,2,...,n}| < k: there are at most k values x for which
Pm(x) = ppy (x). We encoded m and m’ by evaluating p,, and p,, on n differ-
ent inputs, so there are at least n — k inputs on which these two polynomials
disagree. Thus the minimum distance is at least — k. For example, if we pick
n =2k, then we achieve rate % and minimum distance k.

How might we decode Reed—Solomon codes? Efficient decoding algo-
rithms rely on some results from linear algebra, but the basic idea is to find
the degree-k polynomial that goes through as many of the given points as pos-
sible. As a simple example, suppose you're looking for a 2-character message
(that is, something encoded as a quadratic), and you receive the codeword
(2,6,12,13,30,42). What was the original message? Plot the codeword and
see! See Figure 4.14: all but one of the components of the received codeword
is consistent with the polynomial py, (x) = x +x2, 50 you can decode this
codeword as the message (1, 1).

We’ve left out several important details of actual Reed-Solomon codes here.
One is that our computation of the rate was misleading: we only counted the
number of slots, rather than the “size” of those slots. (Figure 4.13 shows that
the numbers can get pretty big!) In real Reed—Solomon codes, every value
is stored modulo a prime. See p. 731 for discussion of how (and why) this fix
works. There’s also a clever trick used in the physical layout of the encoded
information on a CD/DVD: the bits for a particular codeword are spread out
over the disc, so that a single physical scratch doesn’t cause errors all to occur
in the same codeword.

Reed-Solomon codes are named after
Irving Reed and Gustave Solomon, 20th-
century American mathematicians who
invented them in 1960.

Consider the message m =(1,3,2).
Then py (x) =x +3x% +2x°. If we
choose 1 =6, then the encoding of this
message will be

(1) +3@7 +201),
1Q2)+3Q2)7 +2@2),
13)+33) +2(3),

1(4) +3(@4Y +2(),
1(5)+36)Y +26)°,
1(6)+3(6) +2(6))

=(6, 30, 84,180, 330, 546).

Alternatively, consider the message
m' =(3,0,3). Then p,, (x) =3x +3x°.
Again for n =6, the encoding of m’ is

BM)+3@),
3(2)+3@),
3(3)+3@3),
3(4)+3@4),
36)+36),

3(6) +3(6)°)
=(6,30,90, 204,390, 666).

Figure 4.13: An example Reed—Solomon
encoding.

50 -
40 - o
30 +]

20 - ’

or .0//.
P S
0 1 2 3 4 5 6

Figure 4.14: Decoding a received (cor-
rupted) Reed-Solomon codeword.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 419

4.2.6 Exercises

cc-check (17): Figure 4.15: An
Input: a 16-digit credit-card number n € {0,1,...,9}' algorithm for

1: sum :=0 testing the validity

2: fori=1,2,...,16: of credit-card

3: ifiis odd then numbers.

4 dz‘ =2 n;

5 else

6: dz‘ =n;

7 Increase sum by the ones’ and tens’ digits of d;. (That is, sum :=sum + (d; mod 10) + |d;/10] .)

8: return True if sum mod 10 =0, and False otherwise.

The algorithm for testing whether a given credit-card number is valid is shown in Figure 4.15. Here’s an example of the
calculation that cc-check (4471 8329 - - -) performs:

(original number) 4 4 7 1 8 3 2 9..
(odd-indexed digits doubled) 8 4 14 1 16 3 4 9..
(digits summed) 4 + 8 + 1+#4 + 1 +1+6 + 3 + 4 + 9..

(Try executing cc-check from Figure 4.15 on a few credit-card numbers, to make sure that you've understood the
algorithm correctly.) This code can detect any one substitution error, because

0,2,4,6,81=140,3=142,5=1+4,7=1+6,9=148
are all distinct (so, even in odd-indexed digits, changing the digit changes the overall value of sum).

41 (programming required) Implement cc-check in a programming language of your choice. Extend
your implementation so that, if it’s given any 16-digit credit/ debit-card number with a single digit replaced
by a "?", it computes and outputs the correct missing digit.

4.2 Suppose that we modified cc-check so that, instead of adding the ones digit and (if it exists) the tens
digit to sum in Line 7 of the algorithm, we instead simply added the ones digit. (That is, replace Line 7 by
sum :=sum +d;.) Does this modified code still allow us to detect any single substitution error?

4.3 Suppose that we modified cc-check so that, instead of doubling odd-indexed digits in Line 4 of
the algorithm, we instead tripled the odd-indexed digits. (That is, replace Line 4 by d; := 3 - n;.) Does this
modified code still allow us to detect any single substitution error?

4.4 What if we replace Line 4 by d; :=5 - n;?

4.5 There are simpler schemes that can detect a single substitution error than the one in cc-check: for
example, we could simply ensure that the sum of all the digits themselves (undoubled) is divisible by 10.
(Just skip the doubling step.) The credit-card encoding system includes the more complicated doubling step
to help it detect a different type of error, called a transposition error, where two adjacent digits are recorded
in reverse order. (If two digits are swapped, then the “wrong” digit is multiplied by two, and so this kind of
error might be detectable.) Does cc-check detect every possible transposition error?

A metric space consists of a set X and a function d : X x X — R=9, called a distance function, where d obeys the
following three properties:

o reflexivity: for any x and y in X, we have d(x,x) =0, and d(x,y) #0 whenever x #y.

o symmetry: for any x,y € X, we have d(x,y) =d(y, x).

e triangle inequality: for any x,y,z € X, we have d(x,y) < d(x,z) +d(z, y).

When it satisfies all three conditions, we call the function d a metric.

4.6 In this section, we've been measuring the distance between bitstrings using the Hamming dis-

tance, which is a function A : {0,1}" x {0,1}" — Z=9, denoting the number of positions in which x and y
differ. Prove that A is a metric. (Hint: think about one bit at a time.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

420 CHAPTER 4. PROOFS

The next few exercises propose a different distance function d : {0,1}" x {0,1}" — Z=°. For each, decide whether you
think the given function d is a metric or not, and prove your answer. (In other words, prove that d satisfies reflexivity,
symmetry, and the triangle inequality; or prove that d fails to satisfy one or more of these properties.)

4.7 For x,y € {0,1}", define d(x,y) as the smallesti € {0,1,...,n} such thatx;yy _, = Y41, u- For
example, 4(01000, 10101) =5 and d(01000,10100) = 3 and 4(01000, 10000) = 2 and 4(11010,01010) = 1. (This
function measures how far into x and y we must go before the remaining parts match; we could also define
d(x,y)as the largesti € {0,1,...,n} such that x; #y;, where we treat xy #y.) Is d a metric?

4.8 For x,y € {0,1}", define d(x, y) as the length of the longest consecutive run of differing bits in
corresponding positions of x and y—that is, d(x,y) :=max {j —i : forall k =i,i +1,...,j we have x; #y;} . For
example, 4(01000, 10101) = 3 and d(00100, 01010) = 3 and 4(01000, 10000) =2 and 4(11010,01000) =1. Isd a

metric?
4.9 Forx,y € {0,1}", define d(x, y) as the difference in the number of ones that appears in the
two bitstrings—that is, d(v,y) := ‘ [{i:xi =1} — |{i:yi =1} ‘ (The vertical bars here are a little con-

fusing: the bars around [{i : x; =1}| and |{i : y; =1}| denote set cardinality, while the outer vertical bars
denote absolute value.) For example, 4(01000,10101) = |1 — 3| = 2 and d(01000,10100) = |1 — 2| =1 and
d(01000,10000) =|1 — 1| =0 and d(11010,01010) =|2 — 2| =0. Is d a metric?

4.10 The distance version of the Sorensen index (a.k.a. the Dice coefficient) defines the distance based on The Serensen/ Dice
the fraction of ones in x or y that are in the same positions. Specifically, measure is named
after independent
2y xi Y work by two ecolo-
b y)=1- Y xi +yyi ’ gists fer the 1940s,
the Danish botanist
For example, d(01000,10101) =1 — 23 =1—§ =1and d(00100,01110) =1— #% =1- 2 =1/2and Thorvald Serensen
4(01000,11000) =1 — £ =1— 2 =1/3 and d(11010,01010) =1 — 22 =1 — % =3/5. Is d a metric? and the American
mammalogist Lee
4.11 Forx,y € {0, 1}", define d(x, y) as the difference in the numbers that are represented by the Raymond Dice.
two strings in binary. Writing this function formally is probably less helpful (particularly because the
higher powers of 2 have lower indices), but here it is: d(x,y) := |¥j_y x; - 2" — YLy 12" | . For example,

4(01000,10101) = |8 — 21| = 13 and d(01000, 10100) = |8 — 20| = 12 and d(01000, 10000) = |8 — 16| = 8 and
(11010, 01010) = |26 — 10| = 16. Is d a metric?

4.12 Show that we can’t improve on the parameters in Theorem 4.1: for any integer t > 0, prove that a
code with minimum distance 2f +1 cannot correct +1 or detect 2f +1 errors.

4.13 Theorem 4.1 describes the error-detecting and error-correcting properties for a code whose
minimum distance is any odd integer. This exercise asks you to give the analogous analysis for a code whose
minimum distance is any even integer. Let t > 1 be any integer, and let C be a code with minimum distance
2t. Determine how many errors C can detect and correct, and prove your answers.

Let ¢ € {0,1}" be a codeword. Until now, we've mostly talked about substitution errors, in which a single bit of c is
flipped from 0 to 1, or from 1 to 0. The next few exercises explore two other types of errors.

An erasure error occurs when a bit of ¢ isn't successfully transmitted, but the recipient is informed that the
transmission of the corresponding bit wasn’t successful. We can view an erasure error as replacing a bit c; from ¢ with
a ‘? (as in Exercise 4.1, for credit-card numbers). Thus, unlike a substitution error, the recipient knows which bit was
erased. (So a codeword 1100110 might become 1200112 after two erasure errors.) When codeword ¢ € {0,1}" is sent,
the receiver gets a corrupted codeword ¢’ € {0,1,?}" and where all unerased bits were transmitted correctly (that is, if
cj € {0,1}, then ¢} =¢;).

A deletion error is like a “silent erasure” error: a bit fails to be transmitted, but there’s no indication to the
recipient as to where the deletion occurred. (So a codeword 1100110 might become 10011 after two deletion errors.)

4.14 Let C be a code that can detect t substitution errors. Prove that C can correct t erasure errors.
4.15 Let C be a code that can correct ¢ deletion errors. Prove that C can correct f erasure errors.
4.16 Give an example of a code that can correct one erasure error, but can’t correct one deletion error.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.2. ERROR-CORRECTING CODES 421

Consider the following codes. For each, determine the rate and minimum distance of this code. How many errors can it

detect Jcorrect?

417 the “code” where all n-bit strings are codewords. (That is, C :={0,1}".)

4.18 the trivial code, defined as C :={0",1"}.

4.19 the parity-check code, defined as follows: the codewords are all n-bit strings with an even number

of bits set to 1.

4.20 Let’s extend the idea of the parity-check code, from the previous exercise, as an add-on to any
existing code with odd minimum distance.

LetC C {0, 1}” be a code with minimum distance 2¢ +1, for some integer ¢ > 0. Consider a new code C’,
in which we augment every codeword of C by adding a parity bit, which is zero if the number of ones in the
original codeword is even and one if the number is odd, as follows:

o :z{(xl,xz,...,xn, (Z?:l x;)mod 2) : x € C}.

Then the minimum distance of C’ is 2t +2. (Hint: consider two distinct codewords x,y € C. You have to argue that
the corresponding codewords x',y" € C have Hamming distance 2t +2 or more. Use two different cases, depending on
the value of A(x,y).)

4.21 Show that we can correctly decode the RepeiTION, code as follows: given a bitstring ¢/, for each
bit position i, we take the majority vote of the £ blocks’ ith bit in ¢/, breaking ties arbitrarily. (In other words,
prove that this algorithm actually gives the codeword that’s closest to ¢’.)

In some error-correcting codes, for certain errors, we may be able to correct more errors than Theorem 4.1 suggests: that
is, the minimum distance is 2t +1, but we can correct certain sequences of > t errors. We've already seen that we can’t
successfully correct every such sequence of errors, but we can successfully handle some sequences of errors using the
standard algorithm for error correction (returning the closest codeword).

4.22 The RepeTITION; cOde with 4-bit messages is only guaranteed to correct 1 error. What's the largest
number of errors that can possibly be corrected successfully by this code? Explain your answer.

4.23 In the Hamming code, we never correct more than 1 error successfully. Prove why not.

4.24 (programming required) Write a program, in a programming language of your choice, to verify that

any two codewords in the Hamming code differ in at least three bit positions.

Let’s find the “next” Hamming code, with 7-bit messages and 11-bit codewords and a minimum distance of 3. We'll use
the same style of codeword as in Definition 4.8: the first 7 bits of the codeword will simply be the message, and the next
4 bits will be parity bits (each for some subset of the message bits).

4.25 To achieve minimum distance 3, it will suffice to have parity bits with the following properties:
(@) each bit of the original message appears in at least two parity bits.
(b) no two bits of the original message appear in exactly the same set of parity bits.

Prove that these conditions are sufficient. That is, prove that any set of parity bits that satisfy conditions (a)
and (b) ensure that the resulting code has minimum distance 3.

4.26 Define 4 parity bits for 11-bit messages that satisfy conditions (a) and (b) from Exercise 4.25.
4.27 Define 5 parity bits for 26-bit messages that satisfy conditions (a) and (b) from Exercise 4.25.
4.28 Let ¢ € Z>9, and let n := 2¢ — 1. Prove that a code with n-bit codewords, minimum distance 3,

and messages of length nn — £ is achievable. (Hint: look at all £-bit bitstrings; use the bits to identify which message
bits are part of which parity bits.)

4.29 You have come into possession of 8 bottles of “poison,” except, you've learned, 7 are fake poison
and only 1 is really poisonous. Your master plan to take over the world requires you to identify the poison
by tomorrow. Luckily, as an evil genius, you have a small collection of very expensive rats, which you can use
for testing. You can give samples from bottles to multiple rats simultaneously (a rat can receive a mixture

of samples from more than one bottle), and then wait for a day to see which ones die. Obviously you can
identify the real poison with 8 rats (one bottle each), or even with 7 (one bottle each, one unused bottle; if
all rats survive then the leftover bottle is the poison). But how many rats do you need to identify the poison?
(Make the number as small as possible.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

422 CHAPTER 4. PROOFS

Letc € {0, 1}23. A handy fact (which you'll show in Exercise 9.132, after we’ve
developed the necessary tools for counting to figure out this quantity): the number of
23-bit strings ¢’ with A(c,c'") < 3 is exactly 2048 =2 =22312_ This fact means
that (according to a generalization of Lemma 4.9) it might be possible to achieve the
following code parameters:

:5:=0

addxto S
: return S.

1

2: for x € {0,1}* (in numerical order):
3: if A(x,y) >7forally € S then
4.
5

o 12-bit messages;
o 23-bit codewords; and
o minimum distance 7.

In fact, these parameters are achievable—and a code that achieves these parameters is surprisingly simple to construct.
The Golay code is an error-correcting code that can be constructed by the following so-called “greedy” algorithm

in Figure 4.16. (The loop should consider the strings x in lexicographic order: first 00 - - - 00, then 00 - - - 01, then

00 - - - 10, going all the way up to 11 - - - 11. Notice that therefore the all-zero vector will be added to S in the first
iteration of the while loop; a hundred and twenty-seven iterations later, 00000000000000001111111 will be the second
element added to S, and so forth.)

4.30 (programming required) Write a program, in a language of your choice (but see the warning be-
low), that implements the algorithm in Figure 4.16, and outputs the list of the 212 = 4096 different 23-bit
codewords of the Golay code in a file, one per line.
Implementation hint: suppose you represent the set S as an array, appending each element that passes
the test in Line 3 to the end of the array. When you add a bitstring x to S, the very next thing you do is to
consider adding x +1 to S. Implementing Line 3 by starting at the x-end of the array will make your code
much faster than if you start at the 00000000000000000000000-end of the array. Think about why!
Implementation warning: this algorithm is not very efficient! We're doing 223 iterations, each of which
might involve checking the Hamming distance of as many as 2'2 pairs of strings. On a mildly aging laptop,
my Python solution took about ten minutes to complete; if you ignore the implementation hint from the pre-
vious paragraph, it took 80 minutes. (I also implemented a solution in C; it took about 10 seconds following
the hint, and 100 seconds not following the hint.)

4.31 You and six other friends are imprisoned by an evil genius, in a room filled with eight bubbling
bottles marked as “poison.” (Though, really, seven of them look perfectly safe to you.) The evil genius,
though, admires skill with bitstrings and computation, and offers you all a deal.

You and your friends will each have a red or blue hat placed on your heads randomly. (Each hat has a
50% chance of being red and 50% chance of being blue, independent of all other hats’ colors.) Each person
can each see all hats except his or her own. After a brief moment to look at each others’ hats, all of you must
simultaneously say one of three things: RED, BLUE, or pass. The evil genius will release all of you from
your imprisonment if:

e everyone who says RED or BLUE correctly identifies their hat color; and
e at least one person says a color (that is, not everybody says pass).

You may collaborate on a strategy before the hats are placed on your heads, but once the hat is in place, no
communication is allowed.

An example strategy: all 7 of you pick a random color and say it. (You succeed with probability (1/2) =
1/128 =~ 0.0078.) Another example: you number yourselves 1,2,...,7, and person #7 picks a random color
and says it; everyone else passes. (You succeed with probability 1/2.)

Can you succeed with probability better than 1/2? If so, how?

4.32 In Section 4.2.5, we proved an upper bound for the rate of a code with a particular minimum
distance, based on the volume of “spheres” around each codeword. There are other bounds that we can
prove, with different justifications.

Suppose that we have a code C C {0,1}" with |C| = 2¥ and minimum distance d. Prove the Singleton
bound, which states that k < n —d +1. (Hint: what happens if we delete the first d — 1 bits from each codeword?)

Figure 4.16: The
“greedy algorithm”
for generating the
Golay code.

The Golay code

is named after
Marcel Golay, a
Swiss researcher
who discovered
them in 1949, just
before Hamming
discovered what
would later be
called the Ham-
ming code. A slight
variant of the Golay
code was used by
NASA around 1980
to communicate
with the Voyager
spacecraft as they
traveled to Saturn
and Jupiter.

Confusingly, the
Singleton bound

is named after
Richard Singleton,
a 20th-century
American computer
scientist; it has
nothing to do with
singleton sets (sets
containing only one
element).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 423

4.3 Proofs and Proof Techniques

Arguments are to be avoided; they are always vulgar
and often convincing.

Oscar Wilde (1854-1900)

In Section 4.2, we saw a number of claims about error-correcting codes—and, more
importantly, proofs that those claims were true. These proofs used several different
styles of argument: proofs that involved straightforward reasoning by starting from
the relevant definitions; proofs that used “case-based” reasoning; and proofs “by
contradiction” that argued that x must be true because something impossible would
happen if x were false. Indeed, whenever you face a claim that you need to prove, a
variety of different strategies (including these strategies from Section 4.2) are possible
approaches for you to employ. This section is devoted to outlining these and some
other common proof strategies. We'll first catalogue these techniques in Section 4.3.1,
and then, in Section 4.3.2, we’ll reflect briefly on the strategies and how to choose
among them—and also reflect on the writing part of writing proofs.

WHAT 1s A PROOF?
This chapter is devoted to techniques for proving claims—but before we explore
proof techniques, let’s spend a few words discussing what a proof actually is:

Definition 4.9 (Proof)
A proof of a proposition is a convincing argument that the proposition is true.

Definition 4.9 says that a proof is a “convincing argument,” but it doesn’t say to whom
the argument should be convincing. The answer is: to your reader. This definition may
be frustrating, but the point is that a proof is a piece of writing, and—just like with
fiction or a persuasive essay—you must write for your audience.

Taking it further: Different audiences will have very different expectations for what counts as “convinc-
ing.” A formal logician might not find an argument convincing unless she saw every last step, no matter
how allegedly obvious or apparently trivial. An instructor of early-to-mid-level computer science class
might be convinced by a proof written in paragraph form that omits some simple steps, like those that
invoke the commutativity of addition, for example. A professional CS researcher reading a publication
in conference proceedings would expect “elementary” calculus to be omitted.

Some of the debates over what counts as convincing to an audience—in other words, what counts as
a “proof”—were surprisingly controversial, particularly as computer scientists began to consider claims
that had previously been the exclusive province of mathematicians. See the discussion on p. 437 of the
Four-Color Theorem, which triggered many of these discussions in earnest.

To give an example of writing for different audiences, we'll give several proofs of
the same result. Here’s a claim regarding divisibility and factorials. (Recall that n!,
pronounced “n factorial,” is defined as n! :=n - (n —1)- (n —2)- - - 1.) Before reading
further, spend a minute trying to convince yourself why (}) is true:

Let n be a positive integer and let k be any integer satisfying 2 < k < n.
Then n! +1 is not evenly divisible by k. M)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

424 CHAPTER 4. PROOFS

We'll prove Claim (}) three times, using three different levels of detail:

Example 4.8 (Factorials: Proof I)

Proof (heavy detail). By the definition of factorial, we have that n! =T i, which can
be rewritten as n! = ﬁ—[f:ll i} k- [Ty i] - Letm = [Hi:ll i} - [Ty i]- Thus we
have that n! =k - m and m € Z, because the product of any finite set of integers is also
an integer.

Observe that n! +1 =mk +1. We claim that there is no integer ¢ such that k¢ =n! +1.
First, thereisno ¢/ < msuchthatk? = n! +1, becausekl/ < km = n! < n! +1.
Second, thereisno ¢ > m +1 such that k¢ = n!+1, because k > 2 implies that
k¢ > k(@m +1) =n! +k > n! +1. Because there is no such integer ¢/ < m and no such
integer ¢ > m, the claim follows. O

Example 4.9 (Factorials: Proof II)

Proof (medium detail). Define m =n!/k, so that n! =mk and n! +1 =mk +1. Because k is
an integer between 2 and 7, the definition of factorial implies that m is an integer. But
because k > 2, we know mk < mk +1 < (m +1)k. Thus mk +1 is not evenly divisible
by k, because this quantity is strictly between two consecutive integral multiples of k,
namely m -k and (m +1) - k. O

Example 4.10 (Factorials: Proof IIT)
Proof (light detail). Note that k evenly divides n!. The next integer evenly divisible by
kisn!+k. Butk > 2,son! < n! +1 < n! +k. The claim follows immediately. O

Which of the three proofs from Examples 4.8, 4.9, and 4.10 is best? It depends! The right
level of detail depends on your intended reader. A typical reader of this book would
probably be happiest with the medium-detail proof from Example 4.9, but it is up to
you to tailor your proof to your desired reader.

Taking it further: It turns out that one can encode literally all of mathematics using a handful of set-
theoretic axioms, and a lot of patience. It’s possible to write down everything in this book in ultraformal
set-theoretic notation, which serves the purpose of making arguments 100% airtight. But the high-
level computer science content can be hard to see in that style of proof. If you've ever programmed in
assembly language before, there’s a close analogy: you can express every program that you've ever
written in extremely low-level machine code, or you can write it in a high-level language like C or Java
or Python or Scheme (and, one hopes, make the algorithm much more understandable for the reader).
We'll prove a lot of facts in this book, but at the Python-like level of proof. Someone could “compile” our
proofs down into the low-level set-theoretic language—but we won't bother. (Lest you underestimate the
difficulty of this task: a proof that 2 +2 =4 would require hundreds of steps in this low-level proof!)
There are subfields of computer science (“formal methods” or “formal verification,” or “automated
theorem proving”) that take this ultrarigorous approach: start from a list of axioms, and a list of infer-
ence rules, and a desired theorem, and derive the theorem by applying the inference rules. When it is
absolutely life-or-death critical that the proof be 100% verified, then these approaches tend to be used: in
verifying protocols in distributed computing, or in verifying certain crucial components of a processor,
for example.

Writing tip: As you
study the material
in this book, you
will frequently

be given a claim
and asked to prove
it. To complete
this task well,

you must think
about the question
of for whom you
are writing your
proof. A reasonable
guideline is that
your audience

for your proofs is

a classmate or a
fellow reader of this
book who has read
and understood
everything up to
the point of the
claim that you're
proving, but hasn’t
thought about this
particular claim at
all.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 425

4.3.1 Proof Techniques

We will describe three general strategies for proofs:

e direct proof: we prove a statement ¢ by repeatedly inferring new facts from known
facts to eventually conclude ¢. (Sometimes we’ll divide our work into separate cases
and give different proofs in each case. And if ¢ is of the form p = g, we’ll generally
assume p and then try to infer g under that assumption.)

e proof by contrapositive: when the statement that we’re trying to prove is an implica-
tion p = ¢, we can instead prove g = —p—the contrapositive of the original claim.
The contrapositive is logically equivalent to the original implication, so once we’ve
proven ~g = —p, we can also conclude p = 4.

e proof by contradiction: we prove a statement ¢ by repeatedly assuming —p, and prov- ”Ythn E";utﬂa",e
eliminate e 1m-
ing something impossible—that is, proving =@ = False. Because —¢ therefore possible, whatever
cannot be true, we can conclude that ¢ must be true. remains, however
improbable, must
We'll oi dditi 1 1 £ h £ techni . be the truth.”
e’ll give some additional examples of each proof technique as we go, proving some — Sir Arthur Conan
purely arithmetic claims to illustrate the strategy. Doyle (1859-1930),
Almost every claim that we'll prove here—or that you'll ever need to prove—will be (Tlhgeg(s)l)g” of the Four

a universally quantified statement, of the form Vx € S : P(x). (Often the quantification
will not be explicit: we view any unquantified variable in a statement as being implic-
itly universally quantified.) To prove a claim of the form Vx € S : P(x), we usually
proceed by considering a generic element x € S, and then proving that P(x) holds.
(Considering a “generic” element means that we make no further assumptions about
x, other than assuming that x € S.) Because this proof establishes that an arbitrary

x € S makes P(x) true, we can conclude that Vx € S : P(x).

DIRECT PROOFS
The simplest type of proof for a statement ¢ is a derivation of ¢ from known facts.
This type of argument is called a direct proof :

Definition 4.10 (Direct Proof)
A direct proof of a proposition starts from known facts and implications, and repeatedly
applies logical deduction to derive new facts, eventually leading to the conclusion .

Most of the proofs in Section 4.2 were direct proofs. Here’s another, simpler example:

Example 4.11 (Divisibility by 4)
Let’s prove the correctness of a simple test of whether a given integer is divisible by 4:

Claim: Any positive integer # is divisible by 4 if and only if its last two digits are
themselves divisible by 4. (That is, n is divisible by 4 if and only if n’s last two
digits are in {00,04,08, ...,92,96}.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

426 CHAPTER 4. PROOFS

Proof. Letdy,dx_1,...,d1,dy denote the digits of n, reading from left to right, so that

n =dy +10d; +100d; +1000d3 +- - - +10%d,,
or, dividing both sides by 4,

n/4 = (do +10d;)/ 4 +25d, +250d5 +- - - +25 - 10724, (%)

The integer # is a divisible by 4 if and only if /4 is an integer, which because of (x)
occurs if and only if the right-hand side of (x) is an integer. And that’s true if and
only if (dp +10d1)/ 4 is an integer, because all other terms in the right-hand side of (x)
are integers. Therefore 4 | n if and only if 4 | (dy +10d7). The last two digits of 1 are
precisely dy +104;, so the claim follows. O

Note that this argument considers a generic positive integer #, and establishes the
result for that generic n. The proof relies on two previously known facts: (1) an integer
n is divisible by 4 if and only if /4 is an integer; and (2) for an integer a, we have that
x +a is an integer if and only if x is an integer. The argument itself uses these two basic
facts to derive the desired claim.

Let’s give another example, this time for an implication. The proof strategy of as-
suming the antecedent, discussed in Definition 3.22 in Section 3.4.3, is a form of direct
proof. To prove an implication of the form ¢ = 1), we assume the antecedent ¢ and
then prove ¢ under this assumption. This proof establishes ¢ = 1 because the only
way for the implication to be false is when ¢ is true but) is false, but the proof shows
that v is true whenever ¢ is true. Here’s an example of this type of direct proof, for a
basic fact about rational numbers. (Recall that a number x is rational if and only if there
exist integers 7 and d # 0 such that x = 7.)

Example 4.12 (The product of rational numbers is rational)

Claim: If x and y are rational numbers, then so is xy.

Proof. Assume the antecedent—that is, assume that x and y are rational. By the def-
inition of rationality, then, there exist integers ny, ny, d» # 0, and d, # 0 such that

—n =y
x=7andy = a, Therefore

my my ey

dx dy - dxdy ’

Both nyny and d.d,, are integers, because the product of any two integers is also an
integer. And dydy # 0 because both d, #0 and d, #0. Thus xy is a rational number, by
the definition of rationality. O

Xy =

ProOF BY cAsEs

Sometimes we’ll be asked to prove a statement of the form Vx € S : P(x) that indeed
seems true for every x € S—but the “reason” that P(x) is true seems to be different for
different “kinds” of elements x. For example, Lemma 4.6 argued that the Hamming

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES

distance between two Hamming-code codewords was at least three, based on three
different arguments based on whether the corresponding messages differed in 1, 2, or
> 3 positions. This proof was an example of a proof by cases:

Definition 4.11 (Proof by cases)
To give a proof by cases of a proposition ¢, we identify a set of cases and then prove two
different types of facts: (1) “in every case, @ holds”; and (2) one of the cases has to hold.

(Proofs by cases need not be direct proofs, but plenty of them are.) Here are two sim-
ple examples of proofs by cases:

Example 4.13 (Certain squares)
Claim: Let n be any integer. Then - (n +1)? is even.
Proof. We'll give a proof by cases, based on the parity of n:

e If nis even, then any multiple of # is also even, so we're done.
o Ifnisodd, then n 41 must be even. Thus any multiple of n +1 is also even, so
we're done again.

Because the integer n must be either even or odd, and the quantity 7 - (n +1)? is an

even number in either case, the claim follows. O

Example 4.14 (An easy fact about absolute values)
Claim: Letx € R. Then —|x| < x < |x|.
Proof. Observe that x > 0 or x < 0. In both cases, we’ll show the desired inequality:

e For the case that x > 0, we know —x < 0 < x. By the definition of absolute value,
we have |x| =x and —|x| = —x. Thus —|x| = —x <0 < x =x]|.
e For the case that x < 0, we know x < 0 < —x. By the definition of absolute value,

we have |x| = —x and —|x| =x. Thus —|x| =x < 0 < —x =x]|. O

Note that a proof by cases is only valid if the cases are exhaustive—that is, if every

situation falls into one of the cases. (If, for example, you try to prove Vx € R : P(x) with

the cases x > 0 and x < 0, you've left out x = 0—and your proof isn’t valid!) But the
cases do not need to be mutually exclusive (that is, they’re allowed to overlap), as long
as the cases really do cover all the possibilities; in Example 4.14, we handled the x =0
case in both cases x > 0 and x < 0. If all possible values of x are covered by at least one
case, and the claim is true in every case, then the proof is valid.

Here’s another slightly more complex example, where we’ll prove the triangle in-
equality for the absolute value function. (See Figure 4.2.)

Example 4.15 (Triangle inequality for absolute values)

Claim: Letx,y,z € R. Then |[x —y| < |x —z| +|y — z|.

Proof. Without loss of generality, assume thatx < y. (If y < x, then we simply swap
the names of x and y, and nothing changes in the claim.)

427

The phrase “with-
out loss of gen-
erality” indicates
that we won't ex-
plicitly write out
all the cases in the
proof, because the
omitted ones are
virtually identical
to the ones that we
are writing out. It
allows you to avoid
cut-and-paste-and-
search-and-replace
arguments for two
very similar cases.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

428 CHAPTER 4. PROOFS

Because we're assuming x < y, we must show that [x —z| +|y —z| > |[x —y| =y —x.
We'll consider three cases: z < x, or x < z <y, ory < z. See Figure 4.17.

case I
CaseI: z < x. Then
V4 X \y’)
|x —Z‘ +|y —Z‘ > ‘y —Z‘ |x — z| > 0 by the definition of absolute value. + [[:_] 3
=Yy—z x < y by assumption and z < x in Case I, so z < y too.
case II
Z y—x. z<xinCasel,so —z > —x.
¢
Casell: x <z <y. Then [_+_][_]
|x — Z‘ arF ‘y — Z‘ = (Zz—x)+ ‘y — Z‘ definition of absolute value and x < z in Case II. case III
= (Z — X) ar (1/ - Z) definition of absolute value and z < y in Case II. A
X 7z
=Yy—Xx algebra frearranging terms. E 5T -
-
Case III: y < z. Then Figure 4.17: The
three cases for
s Example 4.15: z can
\x — Z| ar |y — Z| > |x — Z‘ |y — z| > 0 by the definition of absolute value. fall to the left of x,
=zZ—X x <y by assumption and y < z in Case III, so x < z too. between x and y,
or to the right of
> y—x. z >y in Case III. y. In each case, we
argue that the sum
. of the lengths of the
In all three cases, we've shown that |x — z| +|y — z| > y — x, so the claim follows. O dashed lines is at
least y — x.

Notice the creative demand if you choose to develop a proof by cases: you have to
choose which cases to use! The proposition itself does not necessarily make obvious an
appropriate choice of which different cases to use.

PROOF BY CONTRAPOSITIVE

When we seek to prove a claim ¢, it suffices to instead prove any proposition that
is logically equivalent to ¢. (For example, a proof by cases with two cases g and —q
corresponds to the logical equivalencep = (g = p)A (—g = p).) A valid proof
of any logically equivalent proposition can be used to prove that ¢ is true, but a few
logical equivalences turn out to be particularly useful. A proof by contrapositive is a very
common proof technique that relies on this principle:

Definition 4.12 (Proof by contrapositive)
To give a proof by contrapositive of an implication ¢ = 1, we instead give a proof of the
implication =1 = —.

Recall from Section 3.4.3 that an implication p = ¢ is logically equivalent to its con-
trapositive ~q = —p. (An implication is true unless its antecedent is true and its con-
clusion is false, so =g = —p is true unless —q is true and —p is false, which is precisely
when p = g is false.) Here are two simple examples of proofs using the contrapositive,
one about absolute values and one about rational numbers:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 429

Example 4.16 (The sum of the absolute values vs. the absolute value of the sum)
Claim: If [x| +|y| #|x +y|, then xy < 0.
Proof. We'll prove the contrapositive:

If xy > 0, then |x| +|y| =|x +y|. (%)

To prove (x), assume the antecedent; that is, assume that xy > 0. We must prove
|x| +|y| = |x +y|. Because xy > 0, there are two cases: either both x > 0 and y > 0, or
bothx <0andy < 0.

CaseI: x > 0andy > 0. Then |x| +|y| =x +y, by the definition of absolute value. And
|x +y| =x +y too, because x > 0 and y > 0 implies that x +y > 0 as well.

Case II: x < 0and y < 0. Then |x| +|y| = —x +—y, by the definition of absolute value.
And |x +y| = —(x +y) = —x + —y too, because x < 0andy < 0implies that
x +y < 0as well. O

Example 4.17 (Irrational quotients have an irrational numerator or denominator)
Claim: Lety #0. If x/y is irrational, then either x is irrational or y is irrational.
Proof. We will prove the contrapositive:

If x is rational and y is rational, then x/ y is rational. 1)

(Note that, by De Morgan’s Laws, — (x is irrational or y is irrational) is equivalent to x
being rational and y being rational.)

To prove (), assume the antecedent—that is, assume that x is rational and y is
rational. By definition, then, there exist four integers 1y, ny, dx # 0, and d, # 0 such

thatx = ¥ and y = Z—y. Thus 5 = oy, (By the assumption that y # 0, we know that

— dn

ny # 0, and thus dyny, #0.) Both the numerator and denominator are integers, so ’y—‘ is

rational. O

Of course, you can always reuse previous results in any proof—and Example 4.12 is
particularly useful for the claim in Example 4.17. Here’s a second, shorter proof:

Example 4.18 (Irrational quotients, Version B)

Claim: Lety #0. If x/y is irrational, then either x is irrational or y is irrational.

Proof. We prove the contrapositive. Assume that x and y are rational. By definition,
then, y = 4 for some integers n and d # 0. Therefore 1 = 4 is rational too. (By the
assumption thaty # 0, we know thatn # 0.) But % =x- %, and both x and % are
rational. Therefore Example 4.12 implies that % is rational too. O

Here’s one more example of a proof that uses the contrapositive. When proving
an “if and only if” statement ¢ < v, we can instead give proofs of both ¢ = v and
1 = ¢, because ¢ & Y and (p = P)A (¥ = ¢)are logically equivalent. This type
of proof is sometimes called a proof by mutual implication. (We can also prove ¢ <

Writing tip: Help
your reader figure
out what'’s going
on! If you're going
to use a proof by
contrapositive, say
you're using a proof
by contrapositive!
Don'’t leave ‘em
guessing. This

tip applies for all
proof techniques:
your job is to
convince your
reader, so be kind
and informative to
your reader.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

430 CHAPTER 4. PROOFS

by giving a chain of logically equivalent statements that transform ¢ into ¢, but it is
often easier to prove one direction at a time.) Here’s an example of a proof by mutual
implication, which also uses the contrapositive to prove one of the directions:

Example 4.19 (Even integers (and only even integers) have even squares)
Claim: Let n be any integer. Then 7 is even if and only if n? is even.
Proof. We proceed by mutual implication.

First, we will show that if 7 is even, then #? is even too. Assume that 7 is even.
Then, by definition, there exists an integer k such that n = 2k. Therefore n> = (2k)* =
4k? =2 - (2k?). Thus n? is even too, because there exists an integer ¢ such that n? =2/.
(Namely, ¢ =2k>.)

Second, we will show the converse: if n2 is even, then 7 is even. We will instead
prove the contrapositive: if 1 is not even, then 77 is not even. Assume that 7 is not
even. Then 7 is odd, and there exists an integer k such that n = 2k +1. Therefore
n? = 2k +1)> =4k* +4k +1 =2(2k? +2k) +1. Thus n? is odd too, because there exists

an integer ¢ such that n? =2/ +1. (Namely, £ =2k* +2k.) O

PROOFs BY CONTRADICTION

The proof techniques that we’ve described so far establish a claim ¢ by arguing
that o must be true. Here, we’ll look at the other side of the coin, and prove ¢ has to
be true by proving that ¢ cannot be false. This approach is called a proof by contradic-
tion: we prove that something impossible must happen if ¢ is false (that is, we prove
- = False); thus the assumption — led us to an absurd conclusion, and we must
reject the assumption —¢ and instead conclude its negation ¢:

Definition 4.13 (Proof by contradiction)
To prove o using a proof by contradiction, we assume the negation of p and derive a

contradiction; that is, we assume —p and prove False.

(This proof technique is based on the logical equivalence of ¢ and the proposition

- = False.) We used a proof by contradiction in Lemma 4.8: to show that two par-
ticular sets X and Y were disjoint, we assumed that there was an elementz € X NY
(that is, we assumed that X and Y were not disjoint), and we showed that this assump-
tion led to a violation of the assumptions in the definitions of X and Y. Here’s another
simple example:

Example 4.20 (15x +111y =55057 for integers x and y?)
Claim: Suppose 15x +111y =55057, for two real numbers x and y. Then either x or y
(or both) is not an integer.

Proof. Suppose not: that is, suppose that x and y are integers with 15x +111y =55057.

But 15x +111y = 3 - (5x +37y), so 223 = 5x +37y. But then 223°7 must therefore
be an integer, because 5x 437y is—but @ = 18352.333 .- . ¢ Z. Therefore the

A proof by contra-
diction is also called
reductio ad absurdum
(Latin: “reduction
to an absurdity”).

As my grandfather
always used to say:
“If the conclusion
is obviously false,
reexamine the
premises.”

— Jay Liben (1913-
2006)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 431

assumption that both x € Z and y € Z was false, and at least one of x and y must be
nonintegral. O

Here is another example of a proof by contradiction, for a classical result showing that
there are numbers that aren’t rational:

Example 4.21 (The irrationality of v/2)
Claim: /2 is not rational.
Proof. We proceed by contradiction.

Assume that v/2 is rational. Therefore, by the definition of rationality, there exist
integers 1 and d # 0 such that n/d = /2, where n and d are in lowest terms (that is,
where 7 and d have no common divisors).

Squaring both sides yields that n?/d?> =2, and therefore that n> = 2d?. Because 24>
is even, we know that 12 is even. Therefore, by Example 4.19 (“ is even if and only if

2 is even”) we have that 7 is itself even.

n
Because 1 is even, there exists an integer k such that n = 2k, which implies that
n? = 4k%. Thus n? = 4k? and n? = 2d?, so 2d? = 4k? and d? = 2k?. Hence d? is even,
and—again using Example 4.19—we have that d is even.
But now we have a contradiction: we assumed that 7/ d was in lowest terms, but
we have now shown that # and d are both even! Thus the original assumption that

/2 was rational was false, and we can conclude that /2 is irrational. O

Note again the structure of this proof: suppose that v/2 is rational; therefore we can write
V2 = n/k where n and k have no common divisors, and (a few steps later) therefore n
and k are both even. Because 7 and k cannot both have no common divisors and also
both be even, we’ve derived an absurdity. The only way we could have gotten to this
absurdity is via our assumption that /2 was rational—so we conclude that this as-
sumption must have been false, and therefore V/2 is irrational.

Note that, when you're trying to prove an implication ¢ = 1), a proof by contraposi-

tive has some similarity to a proof by contradiction:

e in a proof by contrapositive, we prove -t = —¢, by assuming - and proving —¢.

e in a proof by contradiction, we prove False under the assumption —(p = ¢)—that
is, under the assumption that ¢ A —¢p. (Note that there’s an extra creative demand
here: you have to figure out which contradiction to derive—something that’s not
generally made immediately clear by the given claim.)

Proofs by contrapositive are generally preferred over proofs by contradiction when

a proof by contrapositive is possible. A proof by contradiction can be hard to follow
because we’re asking the reader to temporarily accept an assumption that we’ll later
show to be false, and there can be a mental strain in keeping track of what’s been as-

Writing tip: It's
always a good idea
to help your reader
with “signposts”
in your writing.

In a proof by
contradiction,
announce at the
outset that you're
assuming —p

for the purposes

of deriving a
contradiction;
when you reach a
contradiction, say
that you've reached
a contradiction,
and declare that
therefore the
assumption - was
false, and ¢ is true.

sumed and what was previously known. (Notice that the claim in Example 4.21 wasn't
an implication, so a proof by contrapositive wasn’t an option. The proofs of Lemma 4.8
and Example 4.20, though, could have been rephrased as proofs by contrapositive.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

432 CHAPTER 4. PROOFS

PROOFS BY CONSTRUCTION AND DISPROOFS BY COUNTEREXAMPLE

So far we’ve concentrated on proofs of universally quantified statements, where
you are asked to show that some property holds for all elements of a given set. (Every
example proof in this section, except the two proofs by contradiction about the irra-
tionality of /2 and the infinitude of primes, were proofs of a “for all” statement—and,
actually, even those two claims could have been phrased as universal quantifications.
For example, we could have phrased Example 4.21 as the following claim: for all inte-
gers n and d, we have # d - v/2.) Sometimes you'll confront a universally quantified
statement that’s false, though. The easiest way to prove that Vx € S : P(x)is false is
using a disproof by counterexample:

Definition 4.14 (Disproof by counterexample)

A counterexample fo a claim Vx € S : P(x)is a particular element y € S such that P(y)is
false. A disproof by counterexample of —Vx € S : P(x) is such a counterexample y € S,
together with a proof that P(y) is false.

Finding a counterexample for a claim requires creativity: you have to think about why
a claim might not be true, and then try to construct an example that embodies that
reason. Here is a simple example:

Example 4.22 (Unique sums of squares)

Claim: Let 7 be a positive integer such that n = a? +b? for positive integers a and b.
Then n cannot be expressed as the sum of the squares of two positive integers ex-
cepta and b. (Alternatively, this claim could be written more tersely as: No positive
integer is expressible in two different ways as the sum of two perfect squares.)

The claim is false, and we will prove that it is false by counterexample. We can
start trying some examples. One easy class of potential counterexamples is a% +1 for
an integer a. 12 +12 = 2 can’t be expressed a different way. What about 5? 10? 17?
26? 37? 50?7 65? 82? By testing these examples, we find that 65 is a counterexample to
the claim. Observe that 12 +8% =1 +64 = 65,and 4* +7% =16 +49 = 65. Another
counterexample is 50, as 50 = 52 452 =12 472,

What about when you're asked to prove an existential claim Jx : P(x)? One ap-
proach is to prove the claim by contradiction: you assume Vx : =P (x), and then derive
some contradiction. This type of proof is called nonconstructive: you have proven that
an object with a certain property must exist, but you haven't actually described a par-
ticular object with that property. In contrast, a proof by construction actually identifies a
specific object that has the desired property:

Definition 4.15 (Proof by construction)
A constructive proof or proof by construction for a claim 3x € S : P(x) actually builds an
object satisfying the property P: first, we identify a particular element y € S; and, second, we

prove P(y).

Problem-solving tip:
One way you might
try to identify coun-
terexample to a
claim is by writing
a program: write

a loop that tries a
bunch of examples;
if you ever find one
for which the claim
is false, then you've
found a counterex-
ample. Just because
you haven’t found
a counterexample
with your program
doesn’t mean that
there isn’t one—
unless you've tried
all the elements of
S—but if you do
find a counterex-
ample, it’s still a
counterexample

no matter how you
found it!

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 433

For example, here’s a simple claim that we’ll prove twice, once nonconstructively and
once constructively:

Example 4.23 (The last two digits of some squares)

Claim: There exist distinct integers x,y € {1901,1902,...,2014} such that the last
two digits of x? and y? are the same. (In other words, x> mod 100 =y? mod 100.)

Nonconstructive. There are 114 different numbers in the set {1901, 1902, ...,2014}.

There are only 100 different possible values for the last two digits of numbers. Thus,

because there are 114 elements assigned to only 100 categories, there must be some

category that contains more than one element. O

Constructive. Letx =1986 and y = 1964. Both numbers’ squares have 96 as their last
two digits: 19867 =3,944,196 and 1964* =3,857,296. O

It’s generally preferable to give a constructive proof when you can. A constructive
proof is sometimes harder to develop than a nonconstructive proof, though: it may
require more insight about the kind of object that can satisfy a given property, and
more creativity in figuring out how to actually construct that object.

Taking it further: A constructive proof of a claim is generally more satisfying for the reader than a
nonconstructive proof. A proof by contradiction may leave a reader unsettled—okay, the claim is true,
but what can we do with that?—while a constructive proof may be useful in designing an algorithm, or
it may suggest further possible claims to try to prove. (There’s even a school of thought in logic called
constructivism that doesn’t count a proof by contradiction as a proof!)

4.3.2 Some Brief Thoughts about Proof Strategy

So far in this section, we’ve concentrated on developing a toolbox of proof techniques.
But when you're confronted with a new claim and asked to prove it, you face a difficult
task in figuring out which approach to take. (It's even harder if you're asked to for-
mulate a claim and then prove it!) As we discussed in Chapter 3, there’s no formulaic
approach that’s guaranteed to work—you must be creative, open-minded, persistent.
You will have to accept that you will explore approaches that end up being dead ends.
This section will give a few brief pointers about proof strategy—some things to try
when you're just starting to attack a new problem. We'll start with some concrete
advice in the form of a three-step plan, largely inspired by an outstanding book by

George Pélya.? (I highly recommend Pélya as further reading!) 2 George Pélya.
How to Solve It.
1. Understand what you're trying to do. Read the statement that you're trying to prove. Doubleday, Garden

. City, N, 1957.
Reread it. What are the assumptions? What is the desired conclusion? (That is,

what are you trying to prove under the given assumptions?) Remind yourself of
any unfamiliar notation or terminology. Pick a simple example and make sure the
alleged theorem holds for your example. (If not, either you've misunderstood some-
thing or the claim is false.) Reread the statement again.

If you're not given a specific claim—for example, you're asked to prove or dis-
prove a given statement, or if you're asked for the “best possible” solution to a

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

434 CHAPTER 4. PROOFS

problem—then it’s harder but even more important to understand what you're
trying to do. Play around with some examples to generate a sense of what might
be plausibly true. Then try to form a conjecture based on these examples or the
intuition that you've developed.

2. Do it. Now that you have an understanding of the statement that you're trying to
prove, it’s time to actually prove it. You might start by trying to think about slightly
different problems to help grant yourself insight about this one. Are there results
that you already know that “look similar” to this one? Can you solve a more general
problem? Make the premises look as much like the conclusion as possible. Expand
out the definitions; write down what you know and what you have to derive, in
primitive terms. Can you derive some facts from the given hypotheses? Are there
easier-to-prove statements that would suffice to prove the desired conclusion?

Look for a special case: add assumptions until the problem is easy, and then
see if you can remove the extra assumptions. Restate the problem. Restate it again.
Make analogies to problems that you've already solved. Could those related prob-
lems be directly valuable? Or could you use a similar technique to what you used
in that setting? Try to use a direct proof first; if you're finding it difficult to construct
a direct proof of an implication, try working on the contrapositive instead. If both of
these approaches fail, try a proof by contradiction. When you have a candidate plan
of attack, try to execute it. If there’s a picture that will help clarify the steps in your
plan, draw it. Sketch out the “big” steps that you'd need to make the whole proof
work. Make sure they fit together. Then crank through the details of each big step.
Do the algebra. Check the algebra. If it all works out, great! If not, go back and try
again. Where did things go off the rails, and can you fix them?

Think about how to present your proof; then actually write it. Note that what
you did in figuring out how to prove the result might or might not be the best way to
present the proof.

3. Think about what you've done. Check to make sure your proof is reasonable. Did you
actually use all the assumptions? (If you didn’t, do you believe the stronger claim
that has the smaller set of assumptions?) Look over all the steps of your proof. Turn
your internal skepticism dial to its maximum, and reread what you just wrote. Ask
yourself Why? as you think through each step. Don’t let yourself get away with
anything.

After you're satisfied that your proof is correct, work to improve it. Can you
strengthen the result by making the conclusion stronger or the assumptions weaker?
Can you make the proof constructive? Simplify the argument as much as you can.
Are there unnecessary steps? Are there unnecessarily complex steps? Are there
subclaims that would be better as separate lemmas?

It’s important to be willing to move back and forth among these steps. You'll try to
prove a claim ¢, and then you’ll discover a counterexample to ¢—so you go back and
modify the claim to a new claim ¢’ and try to prove ¢’ instead. You’'ll formulate a
draft of a proof of ¢’ but discover a bug when you check your work while reflecting
on the proof. You'll go back to proving ¢/, fix the bug, and discover a new proof that’s

Problem-solving tip:
If you're totally
stuck in attempting
to prove a statement
true, switch to
trying to prove

it false. If you
succeed, you're
done—or, by
figuring out why
you're struggling
to construct a
counterexample,
you may figure out
how to prove that
the statement is
true.

Problem-solving tip:
Check your work!
If your claim says
something about

a general 7, test it
for n =1. Compare
your answer to a
plot, or the output
of a quick program.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 435

bugfree. You'll think about your proof and realize that it didn’t use all the assumptions
of ¢/, so you'll formulate a stronger claim ¢ and then go through the proof of ¢’ and
reflect again about the proof.

Taking it further: One of the most famous—and prolificl—mathematicians of modern times was Paul
Erdés (1913-1996), a Hungarian mathematician who wrote literally thousands of papers over his career,
on a huge range of topics. Erdds used to talk about a mythical “Book” of proofs, containing the perfect
proof of every theorem (the clearest, the most elegant—the best!). See p. 438 for some more discussion of
The Book, and of Paul Erdés himself.

4.3.3 Some Brief Thoughts about Writing Good Proofs

When you're writing a proof, it’s important to remember that you are writing. Proofs,

like novels or persuasive essays, form a particular genre of writing. Treat writing a

proof with the same care and attention that you would give to writing an essay:.
Make your argument self-contained; include definitions of all variables and all

nonstandard notation. State all assumptions, and explain your notation. Choose your
Writing tip: Draft.

. . . : 7
notation and terminology carefully; name your variables well. Here’s an example. Write. Edit. Rewrite.

Example 4.24 (Pythagorean Theorem, stated poorly)
Theorem: a> +b* =c?.

This formulation is a terrible way of phrasing the theorem: the reader has no idea what
a, b, and c are, or even that the theorem has anything whatsoever to do with geometry.
(The Pythagorean Theorem, from geometry, states that the square of the hypotenuse
of a right triangle is equal to the sum of the squares of its legs.) Here’s a much better
statement of the Pythagorean Theorem:

C
a
Example 4.25 (Pythagorean Theorem, stated well) &

Theorem: Leta and b denote the lengths of the legs of a right triangle, and let c denote b

the length of its hypotenuse. Then a? +b* =c?. Figure 4.18: A right
triangle.

If you are worried that your audience has forgotten the geometric terminology from

this statement, then you might add the following clarification:
As reminder from geometry, a right triangle is a 3-sided polygon with one 90° angle,
called a right angle. The two sides adjacent to the right angle are called legs and the third
side is called the hypotenuse. Figure 4.18 shows an example of a right triangle. Here the Thanks to Josh
legs are labeled 2 and b, and the hypotenuse is labeled c. As is customary, the right angle E\agvll;xfai;legsgjz
is marked with the special square-shaped symbol O. and 4.25.

Because the “standard” phrasing of the Pythagorean Theorem—which you might
have heard in high school—calls the length of the legs a and b and the length of the
hypotenuse c, we use the standard variable names. Calling the leg lengths ¢ and ¢ and
the hypotenuse » would be hard on the reader; conventionally in geometry 6 and ¢ are
angles, while r is a radius. Whenever you can, make life as easy as possible for your reader.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

436 CHAPTER 4. PROOFS

(By the way, we'll prove the Pythagorean Theorem in Example 4.14, and you'll prove it
again in Exercise 4.75.)

Above all, remember that your primary goal in writing is communication. Just as Writing tip: In
when you are programming, it is possible to write two solutions to a problem that L"riﬁ“g a prozlf,
ee our reader
both “work,” but which differ tremendously in readability. Document! Comment mfoﬁrfled about
your code; explain why this statement follows from previous statements. Make your the status of every

sentence. And
make sure that
everything you
write is a sentence.
For example, every
sentence contains
a verb. (Note that
a symbol like “="
is read as “is equal
to” and is a verb.)
Is the sentence an
assumption? A
goal? A conclusion?
Annotate your
sentences with
signaling words
and phrases to
make it clear what
each statement

is doing. For
example, introduce
statements that
follow logically
from previous
statements with
words like hence,
thus, so, therefore,
and then.

proofs—and your code!—a pleasure to read.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 437

CoMPUTER ScIENCE CONNECTIONS I

ARE Massive CoMPUTER-GENERATED PROOFS PROOFs?

As we've said, what we mean by a “proof” is an argument that convinces
the audience that the claim is true. What, then, is the status of the so-called
proof of the claim Checkers is a draw when both players play optimally? The
“proof” of this claim that we discussed on p. 344 hinged on showing that the
software system Chinook can never lose at checkers—which was established
via massive computation to perform a large-scale search of the checkers game
tree.? Is that “proof” convincing? Can such a proof ever be convincing? It’s
clear that a human reader cannot accommodate the 5 x 102 checkers board
positions in his or her brain, so it’s not convincing in the sense that a reader
would be able to verify every step of the argument. But, on the other hand, a
reader could potentially be convinced that Chinook’s code is correct, even if
the output is too big for a reader to find convincing.

The philosophical question about whether a large-scale computer-generated
proof “counts” actually as a proof first arose in the late 1970s, when the Four-
Color Theorem was first proven(?).* Here is the theorem:

Any “map” of contiguous geometric regions can be colored using four colors
so that no two adjacent regions share the same color.

Two quick notes: first, adjacent means sharing a positive-length border; two re-
gions meeting at a point don’t need different colors. Second, the requirement
of regions being contiguous means the map can’t require two disconnected
regions (like the Lower 48 States and Alaska) to get the same color.

The computational proof of four-color theorem given by Appel and Haken
proceeds as follows. Appel and Haken first identified a set of 1476 different
map configurations and proved (in the traditional way, by giving a convincing
argument) that, if the four-color theorem were false, it would fail on one of
these 1476 configurations. They then wrote a computer program that showed
how to color each one of these 1476 configurations using only four colors.

The theorem follows (“if there were a counterexample at all, there’d be a
counterexample in one of the 1476 cases—and there are no counterexamples
in the 1476 cases”).

A great deal of controversy followed the publication of Appel and Haken’s
work. Some mathematicians felt strongly that a proof that’s too massive for
a human to understand is not a proof at all. Others were happy to accept the
proof, particularly because the four-colorability question had been posed,
and remained unresolved, for centuries. Computer scientists, by our nature,
tend to be more accepting of computational proof than mathematicians—but
there are still plenty of interesting questions to ponder. For example, as we
discussed on p. 344, some errors in the execution of the code that generates
Chinook’s proof are known to have occurred, simply because hardware errors
happen at a high enough rate that they will arise in a computation of this size.
Thus bit-level corruption may have occurred, without 100% correction, in
Chinook’s proof that checkers is a draw under optimal play. So is Chinook’s
“proof” really a proof? (Of course, there are also plenty of human-generated
purported proofs that contain errors!)

% Jonathan Schaeffer, Neil Burch, Yngvi
Bjornsson, Akihiro Kishimoto, Martin
Muller, Rob Lake, Paul Lu, and Steve
Sutphen. Checkers is solved. Science,
317(5844):1518-1522, 14 September 2007.

* Kenneth Appel and Wolfgang Haken.
Solution of the four color map problem.
Scientific American, 237 (4):108-121,
October 1977.

Figure 4.19: A four-colored map of the
87 counties in Minnesota.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

438 CHAPTER 4. PROOFS

CoMPUTER ScIENCE CONNECTIONS I

PauL Erpés, “THE Book,” AND ERDSS NUMBERS

After you've completed a proof of a claim—and after you've celebrated
completing it—you should think again about the problem. In programming,
there are often many fundamentally different algorithms to solve a particular
problem; in proofs, there are often many fundamentally different ways of
proving a particular theorem. And, just as in programming, some approaches
will be more elegant, more clear, or more efficient than others.
Paul Erdés, a prolific and world-famous mathematician who published ap-
proximately 1500 papers before his death in 1996 (including papers on math,
physics, and computer science), used to talk about “The Book” of proofs. “The
Book” contains the ideal proof of each theorem—the most elegant, insightful,
and beautiful proof. (If you believe in God, then The Book contains God’s
proofs.) There’s even a non-metaphorical book called Proofs from The Book that
collects some of the most elegant known proofs of some theorems.” Proving 5 Martin Aigner and Giinter Ziegler.
a theorem is great, but giving a beautiful proof is even better. Strive for the Proofs from The Book. Springer, 4th
“book proof” of every theorem. EE LR, 2005
Erdés was one of the most respected mathematicians of his time—and
one of the most eccentric, too. (He forswore most material possessions, and
instead traveled the world, crashing in the guest rooms of his research collab-
orators for months at time.) Because of Erdés’s prolific publication record and
his great respect from the research community, a measure of a certain type of
fame for researchers has sprung up around him. A researcher’s Erdds num-
ber is 1 if she has coauthored a published paper with Erdés; it’s 2 if she has
coauthored a published paper with someone with an Erdés number of one;
and so forth. For example, Bill Gates has an Erdés number of 4: he wrote a
paper on the pancake-flipping problem with Christos Papadimitriou, who has
coauthored a paper with someone (Xiao Tie Deng) who wrote a paper with
someone (Pavol Hell) who wrote a paper with Paul Erdés.
If you're more of a movie person than a peripatetic mathematician person,
then you may be more familiar with a very similar notion from the entertain-
ment world, the so-called Bacon game. The goal here is to connect a given actor
to Kevin Bacon via the shortest possible chain of intermediaries, where two
actors are linked if they have appeared together in a movie. The Erd6s Number Project, maintained
It is a source of great pride for researchers to have small ErdGs numbers. at http://www.oakland.edu/enp by
And, although Erdés numbers themselves are really nothing more than a Jerry Cirpazmnein e Ocld il s
k . X is a good place to look for more infor-
nerdy source of amusement, the ideas underlying them are fundamental in mation. You can see more about the
graph theory, the subject of Chapter 11. A closely related topic is the small- Bacon game at the Oracle of Bacon, at
world phenomenon, also known as “six degrees of separation,” the principle http://oracleofbacon.org.
that almost any two people are likely to be connected by a short chain of
intermediate friends. The “six degrees of separation” phrase came from an

important early paper by the social psychologist Stanley Milgram;® it has ¢ Stanley Milgram. The small world
spawned a massive amount of recent research by computer scientists, who problem. Psychology Today, 1:61-67, May
1967.

have begun working to analyze questions about human behavior that have
only become visible in the “Facebook era” in which it is now possible to study
collective decision making on an massive scale.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.3. PROOFS AND PROOF TECHNIQUES 439

4.3.4 Exercises

Prove the following claims about divisibility.

4.33 The binary representation of any odd integer ends with a 1.
4.34 A positive integer n is divisible by 5 if and only if its last digit is 0 or 5.
4.35 Let k be any positive integer. Then any positive integer 1 is divisible by 2¥ if and only if its last k

digits are divisible by 2. (This exercise is a generalization of Example 4.11.)

Prove the following claims about rationality.

4.36 If x and y are rational numbers, then x — y is also rational.
4.37 If x and y are rational numbers and y #0, then ’y—‘ is also rational.
4.38 One of the following statements is true and one is false:

e If xy and x are both rational, then y is too.
e If x —y and x are both rational, then y is too.

Decide which statement is true and which is false, and give proof/ disproof of both.

4.39 Let 1 be any integer. Prove by cases that n® — 1 is evenly divisible by 3.

4.40 Let n be any integer. Prove by cases that n? +1 is not evenly divisible by 3.

4.41 Prove that |x| +|y| > |x +y| for any real numbers x and y.

4.42 Prove that |x| — |y| < |x — y| for any real numbers x and y.

4.43 Prove that the product of the absolute values of x and y is equal to the absolute value of their
product—that is, prove that |x| - |y| = |x - y| for any real numbers x and y.

4.44 Suppose that x,y € R satisfy |x| < |y|. Prove that @ <yl

4.45 Let A and B be sets. Prove that A x B =B x Aifand only if A = @ or B =@ or A = B. Prove the

result by mutual implication, where the proof of the < direction proceeds by contrapositive.

Letx > Oandy > 0 be arbitrary real numbers. The arithmetic mean of x and y is (x +y)/ 2, their average. The
geometric mean of x and y is /Xy.

4.46 First, a warm-up exercise: prove that x> > 0 for any real number x. (Hint: yes, it's easy.)
4.47 Prove the Arithmetic Mean-Geometric Mean inequality: for x,y € RZ%, we have /7 < (x +y)/2.

(Hint: (x —y)* > 0 by Exercise 4.46. Use algebraic manipulation to make this inequality look like the desired one.)
4.48 Prove that the arithmetic mean and geometric mean of x and y are equal if and only if x =y.

In Chapter 2, when we defined square roots, we introduced Heron’s method, a
first-century algorithm to compute \/x given x. See p. 218, or Figure 4.20 for a
reminder. Here you'll prove two properties that help establish why this algorithm

Input: A positive real number x
Output: A real number y where y> ~ x

correctly computes square roots: Let yo be arbitrary, and let i :=0.
4.49 Assume thatyy > +/x. Prove that, for every i > 1, we have while (y;)? is too far away from x
. 3
¥i > /x. In other words, prove that if y > /x then (y +’y—‘)/2 > \/x too. let yist = %42-%. Candleti=i+1.
return y;
4.50 Suppose thaty > /x. Prove that ; is closer to y/x than y is—that
is, prove that \; — Vx| < |y — V/x|. (Hint: show that |y — /x| — |/x — §| >0.) Figure 4.20: A re-
Now, using this result and Exercise 4.44, prove that y;4; as computed in Heron’s Method is closer to /x minder of Heron’s
than y;, as long as y; > /x. method for com-

The second property that you just proved (Exercise 4.50) shows that Heron's method improves its estimate of \/X in puting square roots.

every iteration. (We haven't shown “how much” improvement Heron’s method achieves in an iteration, or even that
this algorithm is converging to the correct answer—let alone quickly!—but, in fact, it is.)

Prove the following claims using a proof by contrapositive.

4.51 Letn € Z2%. If n mod 4 € {2,3}, then 1 is not a perfect square.

4.52 Let n and m be integers. If nm is not evenly divisible by 3, then neither 1 nor m is evenly divisible
by 3. (In fact, the converse is true too, but you don’t have to prove it.)

4.53 Letn € Z29. If 2n* +n +5 is odd, then is even.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

440 CHAPTER 4. PROOFS

Prove the following claims using a proof by mutual implication, using a proof by contrapositive for one direction.

4.54 Let n be any integer. Then 1 is even if and only if 7 is even.

4.55 Let n be any integer. Then n is divisible by 3 if and only if n? is divisible by 3.

Prove the following claims using a proof by contradiction.

4.56 Let x,y be positive real numbers. If x> — y? =1, then x or y (or both) is not an integer.

4.57 Suppose 12x +3y =254, for real numbers x and y. Then either x or y (or both) is not an integer.
4.58 Adapt Example 4.21 to prove that ¥/2 =21/3 is irrational. (You may find Exercise 4.54 helpful.)
4.59 Adapt Example 4.21 to prove that v/3 is irrational. (You may find Exercise 4.55 helpful.)

4.60 Consider an array A[1...n]. A value x is called a strict majority element of A if strictly more than

half of the elements in A are equal to x—in other words, if
n
|[{i€ {1,2,...,n}: Ali] =x}| > 5
Give a proof by contradiction that every array has at most one strict majority element.

In Example 4.12, Exercise 4.36, and Exercise 4.37, we proved that if x and y are both rational, then so are all three
of xy, x —y, and 5 The converse of each of these three statements is false. Disprove the following claims by giving

counterexamples:

4.61 If xy is rational, then x and y are rational.

4.62 If x — y is rational, then x and y are rational.

4.63 If ’y—‘ is rational, then x and y are rational.

4.64 In Example 4.22, we disproved the following claim by giving a counterexample:

Claim 1: No positive integer is expressible in two different ways as the sum of two perfect squares.
Let’s consider a related claim that is not disproved by our counterexamples from Example 4.22:
Claim 2: No positive integer is expressible in three different ways as the sum of two perfect squares.

Disprove Claim 2 by giving a counterexample.

4.65 Leonhard Euler, an 18th-century Swiss mathematician to whom the idea of an abstract formal
model of networks (graphs; see Chapter 11) is due, made the observation that the polynomial

fn) =n? +n +41

yields a prime number when it’s evaluated for many small integers n: for example, f (0) =41 and f (1) =43
and f (2) =47 and f (3) =53, and so forth. Prove or disprove the following claim: the function f (n) yields a prime
for every nonnegative integer n.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 441

4.4 Some Examples of Proofs

Few things are harder to put up with than the
annoyance of a good example.

Mark Twain (1835-1910)
Pudd’nhead Wilson (1894)

We’ve now catalogued a variety of proof techniques, discussed some strategies for
proving novel statements, and described some ideas about presenting proofs well.
Section 4.3 illustrated some proof techniques with a few simple examples each, entirely
about numbers and arithmetic. In this section, we’ll give a few “bigger”—and perhaps
more interesting!—examples of theorems and proofs.

4.4.1 A Proof about Propositional Logic: Conjunctive/Disjunctive Normal Form

We'll start with a result about propositional logic, namely showing that any proposi-
tion is logically equivalent to another proposition that has a “simpler” structure. Recall
the definitions of conjunctive and disjunctive normal form:

Definition 4.16 (Reminder: Conjunctive /Disjunctive Normal Form)
In propositional logic, a literal is a Boolean variable or its negation (like p or —p).

A proposition ¢ is in conjunctive normal form (CNF) if ¢ is the conjunction of one or
more clauses, where each clause is the disjunction of one or more literals.

A proposition ¢ is in disjunctive normal form (DNF) if ¢ is the disjunction of one or

more clauses, where each clause is the conjunction of one or more literals.

Here are two small examples of CNF and DNF:

(pVgqV-r)A(qVr) (conjunctive normal form)

(~pA=gAT)V (g A-rVs)V (r). (disjunctive normal form)

Back in Chapter 3, we claimed that every proposition is logically equivalent to one in

CNF and one in DNF, but we didn’t prove it. Here we will. - &
First, though, let’s recall an example from Chapter 3 and brainstorm a bit about how N
to generalize that result into the desired theorem. In Example 3.26, we converted p < g ? % ? _Qf ;
into DNF as the logically equivalent proposition (p A q) V (—p A —q). Note that this T|F||F| F|F
expression has two clauses p A g and —p A —g, each of which is true in one and only one row I; E }; II:: FI;
of the truth table. And our full proposition (p A q) V (—p A —q) is true in precisely two
rows of the truth table. (See Figure 4.21.) f;lg);ef?o‘iilf;ﬂh
Can we make this idea general? Yes! For an arbitrary proposition ¢, and for any and the clauses
particular row of the truth table for ¢, we can construct a clause that’s true in that row gr\l CFonverting it to

and only in that row. We can then build a DNF proposition that’s logically equivalent
to ¢ by “or”ing together each of the clauses corresponding to the rows in which ¢ is
true. And then we’re done!

(Well, we're almost done! There is one subtle bug in the proof sketch in the previous
paragraph—can you find it? We'll fix the issue in the last paragraph of the proof below.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

442 CHAPTER 4. PROOFS

Theorem 4.11 (All propositions are expressible in DNF (Theorem 3.2))
For any proposition , there exists a proposition 1y, in disjunctive normal form such that

0 = Vguf

Proof. Let ¢ be an arbitrary proposition, say over the Boolean variables py, .. ., px.

For any particular truth assignment p for the variables py, ..., px, we'll construct
a conjunction c, that’s true under p and false under all other truth assignments. Let
X1,X2,...,xg be the variables assigned true by p, and y1,v2, ..., yx—¢ be the variables
assigned false by p. Then the clause

Cpi =Xy ANXo N AXp AY1r AYa A- o= AN gy

is true under p, and c,, is false under every other truth assignment.

We can now construct a DNF proposition 14y that is logically equivalent to ¢ by
“or”ing together the clause c, for each truth assignment p that makes ¢ true. Build
the truth table for ¢, and let S, denote the set of truth assignments for py, ..., py under
which ¢ is true. If the truth assignments in S, are {p1, p2, ..., pu }, then define

Yanf :=Cp; V Cpy V-V Cp,,. (%)

It’s easy to see that 14ns is true under every truth assignment p under which ¢ was
true (because the clause c, is true under p). And, for a truth assignment p under which
» was false, every disjunct in 14n¢ evaluates to false, so the entire disjunction is false

under such a p, too. Thus ¢ = Pgn¢. frobéem—soging
1p: be on the
There’s one thing we have to be careful about: what happens if S, = @—that is, lopokout for special
if ¢ is unsatisfiable? (This issue is the minor bug we mentioned before the theorem cases (like an

unsatisfiable ¢ in

statement.) The construction in (x) doesn't work, but it’s easy to handle this case too: Theorem 4.11), and

we simply choose an unsatisfiable DNF proposition like p A =p as qn- O see whether you
can handle them
Note that, although we didn’t phrase it as such from the beginning, our proof of separately from the

argument for the

Theorem 4.11 was actually a proof by cases, with two cases corresponding to ¢ being “typical” case

unsatisfiable and ¢ being satisfiable.
As an illustration, let’s use the construction from Theorem 4.11 to transform an
example proposition into DNF:

Example 4.26 (Converting p = (g A\ r) to DNF)
Problem: Find a proposition in DNF logically equivalent to p = (g A 7).

Solution: To convert p = (q A r)to DNF, we start from the truth table, and then “or”
together the propositions corresponding to each row that’s marked with as True:

plalr|lanr | p=@Ar)

T|T|T T T PAGAT
T|T]|F F F pPAGN—r
T|F|T F F pA—-gAT
T|F|F F F pA—gNA—r
F|T|T T T “PAGAT
F|T]|F F T “pAgA -
F|F|T F T “PA-g AT
F|F|F F T “pA—g A -

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 443

Our DNF proposition will therefore have five clauses, one for each of the five truth
assignments under which this implication is true:

@AgNAT) NV (pAgGAT) VN (pAgA-r) YV (pA—gAT) V. (p A—g A).
‘v_/

TTT FTT FTF FFT FFF

CONJUNCTIVE NORMAL FORM

Now that we’ve proven that we can translate any proposition into disjunctive nor-
mal form (the “or of ands”), we'll turn our attention to conjunctive normal form (the
“and of ors”).

Theorem 4.12 (All propositions are expressible in CNF)
For any proposition , there exists a proposition s in conjunctive normal form such that

P = Penf-

Though it’s not initially obvious, Theorem 4.12 actually turns out to be easy to prove

by making use of the DNF result. The crucial idea—and, once again, it's an idea that Problem-solving
tip: Try being
lazy first! Think
negation of a DNF proposition into a CNF proposition. So, to build a CNF proposition about whether

requires some genuine creativity to come up with!—is that it’s fairly simple to turn the

logically equivalent to ¢, we'll construct a DNF proposition that is logically equivalent there’s a way to
use a previously

established result
the resulting proposition into CNF. Here are the details: to make the current
problem easier.

to —; we can then negate that DNF proposition and use De Morgan’s Laws to convert

Proof. If ¢ is a tautology, the task is easy; just define @ =p V —p.

Otherwise, ¢ is a nontautology, say over the variables py, ..., px. Using Theo-
rem 4.11, we can construct a DNF proposition ¢ that is logically equivalent to —¢.
(Note that, using our construction from Theorem 4.11, the proposition ¢ will have k
literals in every clause, because — is satisfiable.) Thus the form of ¢ will be

V=CIA - ACOVE A AV V(A A

for some m > 1, where each ci is a literal. Recall that ¢) = —¢, so we also know that
—1) = . Let’s negate 9

== A ADVEN ARV V(A A
=N ACIAAGEA AN AN A
De Morgan’s Law: =(pV q) = ~p A —q
NV AA GV V) A (Y -V e,
De Morgan’s Law: —(p A q) = —p V —q, applied once per clause

Il
T
e

<

But this expression is in CNF once we remove any doubly negated literals—that is, we
replace any occurrences of =—p by p instead. Thus we’ve constructed a proposition in
conjunctive normal form that’s logically equivalent to —¢ = . O

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

444 CHAPTER 4. PROOFS

As an illustration of this construction, let’s convert p = (g A ¥}—which we converted
to DNF in Example 4.26—to conjunctive normal form too:

Example 4.27 (Converting p = (9 /A r) to CNF)
In Example 4.26, we converted the proposition ¢ =p = (g A r) into DNF. Here we’ll
convert it into CNE, using Theorem 4.12. Again, we start from the truth table for —¢:

¢
—(p= @A)

<

p=

>
~
-

pPAGAT
pAqNA T
pPAGAT
pPA—gN-r
pAGAT
pAgA-r
pA—qAT

-p A -q A —r

sl s il s e s B I B B IS
R (N T Q| N
oS R R N I VS| (B
oo o | >
HHE A AT s s
oo e o e o L o 2 N B (s

We first construct a DNF proposition equivalent to —¢. This proposition has three
clauses, one for each of the truth assignments under which - is true (and ¢ is false):

—p=@PAqA-T) V PA-qgAT) V (pA—gA)

TTF TFT TFF

We negate this proposition and use De Morgan’s Laws to push around the negations:

e==[PAgA=)V @A-GAT)V (pA—qgA-T)]

Eﬁ(p/\b]ﬁﬁr) VAN ﬁ(p/\ﬁl/]/\r) VAN ﬁ(]?Aﬁ&]/\ﬁ?‘) De Morgan
= (ﬁp \ -q \ ﬁﬁ7’) A (ﬁP Vv -q V ﬁ7’) A\ (ﬁp V g V ﬁﬁ7’) De Morgan
= (_‘p VgV r) A (_‘p VgV —r) A (_‘P VgV r). Double Negation

So (=pV —qVr)A(=pVqgV-r)A(—pVqVr)isaCNF proposition that’s logically
equivalent to p = (7 A r). We can verify via truth table that this proposition is indeed
logically equivalent to p = (g A 7).

One last comment about these proofs: it’s worth emphasizing again that there’s gen-
uine creativity required in proving these theorems. Through the strategies from Sec-
tion 4.3.2 and through practice, you can get better at having the kinds of creative ideas
that lead to proofs—but that doesn’t mean that these results should have been “obvi-
ous” to you in advance. It takes a real moment of insight to see how to use the truth
table to develop the DNF proposition to prove Theorem 4.11, or how to use the DNF
formula of the negation to prove Theorem 4.12.

Taking it further: Theorems 4.11 and 4.12 said that “a proposition 1) (of a particular form) exists for
every ¢ ’—but our proofs actually described an algorithm to build ¢ from . (That’s a more computa-
tional way to approach a question: a statement like “such-and-such exists!” is the kind of thing more
typically proven by mathematicians, and “a such-and-such can be found with this algorithm!” is a claim
more typical of computer scientists.) Our algorithms in Theorems 4.11 and 4.12 aren’t very efficient,
unfortunately; they require 2¢ steps just to build the truth table for a k-variable proposition. We'll give

a (sometimes, and somewhat) more efficient algorithm in Chapter 5 (see Section 5.4.3) that operates
directly on the form of the proposition (“syntax”) rather than on using the truth table (“semantics”).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 445

SOME OTHER RESULTS ABOUT PROPOSITIONAL LOGIC

In the exercises, you'll be asked to prove a large collection of other facts about
propositional logic. We’ll highlight one of them, which is similar in spirit to the the-
orems about DNF and CNEF: you'll show that any proposition ¢ is logically equivalent
to a simpler proposition that uses only one kind of logical connective, called “nand.”
For reasons of physics, building the physical circuitry for the logical connective nand—
as in “not and,” where p nand g means —(p A g)—is much simpler than other logical
connectives. (The physical reasons relate specifically to the way that transistors—the
most basic building blocks for digital circuits—work.) The truth table for nand—also
known as the Sheffer stroke |—appears in Figure 4.22.

It turns out that every (every!) logical connective can be expressed in terms of |. In
other words, if you have enough nand gates, then you will be able to build any logical
circuit that you want. Here is a theorem that formally states this result:

Theorem 4.13 (All propositions are expressible using only |)
For any Boolean formula ¢ over py, ..., px, there exists a proposition Ypapd.onty such that (i)
© = Yand-onty, A (i) Yuand-onty contains only py, . .., px and the logical connective |

The theorem follows from Exercise 4.69, where you'll show that every logical connec-
tive can be expressed in terms of |. (To give a fully rigorous proof, we will need to use
mathematical induction, the subject of Chapter 5. Mathematical induction will essen-
tially allow us to apply the results of Exercise 4.69 recursively to translate an arbitrary

proposition ¢ into ¢nand-only-)

Taking it further: Indeed, real circuits are typically built exclusively out of nand gates, using logical
equivalences to construct and/ or/ not gates from a small number of nand gates. Although it may be
initially implausible if this is the first time that you've heard it, the processor of a physical computer is
essentially nothing more than a giant circuit built out of nand gates and wires. With some thought, you
can build a circuit that takes two integers (represented in binary, as a 64-bit sequence) and computes
their sum. Similarly, but more thought-provokingly, you can build a circuit that takes an instruction (add
these numbers; compare those numbers; save this thing in memory; load the other thing from memory)
and performs the requested action. That circuit is a computer!

Incidentally, all of the logical connectives can also be defined in terms of the logical
connective known as Peirce’s arrow | and also known as nor, as in “not or.” (You'll
prove the analogous result to Theorem 4.13 for Peirce’s arrow in Exercise 4.70.)

4.4.2 The Pythagorean Theorem

Example 4.24 presented the Pythagorean Theorem, which you probably once saw in
a long-ago geometry class: the square of the length of hypotenuse of a right trian-
gle equals the sum of the squares of the lengths of the legs. Let’s prove it. In brain-
storming about this theorem, here’s an idea that turns out to be helpful. Because the
statement of Pythagorean theorem involves side lengths raised to the second power
(“squared”), we might be able to think about the problem using geometric squares,
appropriately configured. Here’s a proof that proceeds using this geometric idea:

The Sheffer stroke |
is named after the
early-20th-century
logician Henry
Sheffer.

Figure 4.22: The
truth table for nand
(also known as the
Sheffer stroke |),
and nor (also
known as Peirce’s
arrow).

Peirce’s arrow

is named after

the 18th-century
logician Charles
Peirce. Its truth
table is also shown
in Figure 4.22.

The original for-
mulation of the
Pythagorean The-
orem is attributed
to Pythagoras, a
Greek mathemati-
cian/ philosopher
who lived around
500 BCE.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

446 CHAPTER 4. PROOFS

Theorem 4.14 (The Pythagorean Theorem)
Let a and b denote the lengths of the legs of a right triangle, and let c denote the length of its
hypotenuse. Then a> +b* = c2.

Proof. Starting with the
given right triangle in Fig-
ure 4.23(a), draw a square
with side length ¢, where
one side of the square coin-
cides with the hypotenuse c

of the given triangle, as in a L a

Figure 4.23(b). Now draw b b
three new triangles, each

(@) Theright triangle. (b) ... with an added square.

— —

(c) ... and three added triangles.

identical to the first. Place
these three new triangles symmetrically around the square that we just drew, so that
each side of the square coincides with the hypotenuse of one of the four triangles, as
in Figure 4.23(c). Each of these four triangles has leg lengths a and b and hypotenuse c.
Including both the c-by-c square and the four triangles, the resulting figure is a square
with side length a +b.

To complete the proof, we will account for the area of Figure 4.23(c) in two different
ways. First, because a square with side length x has area x2, we have that

area of the enclosing square = (a +b)* =a” +2ab +b*.

Second, this enclosing square can be decomposed into a c-by-c square and four identi-
cal right triangles with leg lengths a and b. Because the area of a right triangle with leg
lengths x and y is xy/ 2, we also have that

area of the enclosing square =4 - (area of one triangle) +c>

1
=4 Zgb +c>
Sab +e
=2ab +c?.

But the area of the enclosing square is the same regardless of whether we count it all
together, or in its five disjoint pieces. Therefore a® +2ab +b? = 2ab +c?. The theorem
follows by subtracting 2ab from both sides. O

There are many proofs of the Pythagorean theorem—in fact, hundreds! There is
a classic proof attributed to Euclid (see p. 447), and many subsequent and different
proof approaches followed over the millennia. There’s even a book that collects over
350 different proofs of the result!” There’s an important lesson to draw from the many
proofs of this theorem: there’s more than one way to do it. Just as there are usually many
fundamentally different algorithms for the same problem (think about sorting, for
example), there are usually many fundamentally different techniques that can prove
the same theorem. Keep an open mind; there is absolutely no shame in proving a
result using a different approach than the “standard” way!

Figure 4.23: Illustra-
tions for the proof
of the Pythagorean
Theorem, Theo-
rem 4.14.

7 Elisha Scott
Loomis. The
Pythagorean Propo-
sition. National
Council of Teachers
of Mathematics,
June 1968.
“There’s more than
one way to do it” is
also the motto of
the programming
language Perl.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 447

4.4.3 Prime Numbers

We'll return to arithmetic for our next set of examples, a pair of proofs about the prime
numbers. Recall that a positive integer n > 2 is prime if and only if the only positive
integers that divide n evenly are 1 and # itself. Also recall that a positive integer n > 2
that is not prime is called composite. (That is, the integer n is composite if and only if
there exists a positive integer k ¢ {1, n} such that k divides n evenly.)

We'll start with another example of a proof by contradiction:

Theorem 4.15 (An infinitude of primes)
There are infinitely many prime numbers.

Proof. We proceed by contradiction.

Suppose, for the purposes of deriving a contradiction, that there are only finitely
many primes. This assumption means that there is a largest prime number, which we
will call p. Consider the integer p!, the factorial of this largest prime p. Let’s consider
two separate cases: either p! 41 is prime, or p! +1 is not prime.

e If p! +1is prime, then we have a contradiction of the assumption that p is the largest
prime, because p! +1 > p is also prime.

o If p! +1is not prime, then by definition it is evenly divisible by some integer k sat-
isfying 2 < k < p!. But we proved in Example 4.8 that p! +1 is not evenly divisible
by any integer between 2 and p, inclusive. Thus the smallest integer k that evenly
divides p! +1 must exceed p. Further, this integer k must be prime—otherwise some
2 < k' < k divides k and therefore divides p! +1, but k was the smallest divisor of
p!+1. Thus k > p is prime, and again we have a contradiction of the assumption that
p is the largest prime.

In either case, we have a contradiction! Thus the original assumption—there are only
finitely many prime numbers—is false, and so there are infinitely many primes. O

We’ll now turn to another result about prime numbers, relating to the primality
testing problem: you are given a positive integer n, and you have to determine whether
n is prime. The definition of primality says that n is composite if there’s an integer
k € Z —{1,n} such that k| n, but it should be easy to see that 1 is composite if and only
if there’s an integer k € {2,3,...,n — 1} such that k | n. (That is, the largest possible
divisor of n is n — 1.) But we can do better, strengthening this result by shrinking the
largest candidate value of k:

Theorem 4.16 (A composite number 7 has a factor < /1)
A positive integer n > 2 is evenly divisible by some other integer k € {2,3,...,[\/n|} if and
only if n is composite.

Proof. We'll proceed by mutual implication.

A similar proof

to the one for
Theorem 4.15
dates back around
2300 years. It's
due to Euclid,

the ancient Greek
mathematician after
whom Euclidean
geometry—and
the Euclidean
algorithm (see
Section 7.2.4)—is
named.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

448 CHAPTER 4. PROOFS

The forward direction is easy: if there’s some integer k € {2,3,..., [/n]} withk #n
such that k evenly divides 7, then by definition n is composite. (That integer k satisfies
k|nandk ¢ {1,n}.)

For the other direction, assume that the integer n > 2 is composite. By definition
of composite, there exists a positive integer k ¢ {1,n} such that n mod k = 0—that is,
there exist positive integers k ¢ {1,n} and d such thatdk =n,sod | nand k | n. We
must have that d # 1 (otherwisedk =1 -k =k =n,butk < n)and d # n (otherwise
dk =nk > n,butdk = n). Thus there exist positive integers d,k ¢ {1,n} such that
dk =n. Butifbothd > \/nand k > /n, then dk > /n - \/n =n, which contradicts the
fact that dk =n. Thus eitherd < \/nork < y/n. O

Taking it further: Generating large prime numbers (and testing the primality of large numbers)is a
crucial step in many modern cryptographic systems. See the discussion on p. 454 for some discussion
of algorithms for testing primality suggested by these proofs, and a bit about the role that they play in
modern cryptographic systems.

4.4.4 Uncomputability

We'll close this section with one of the most important results in computer science,
dating from the early 20th century: there are problems that cannot be solved by computers.
At that time, great thinkers were pondering some of the most fundamental questions
that can be asked in CS. What is a computer? What is computation? What is a pro-
gram? What tasks can be solved by computers/ programs? One of the deepest and
most mind-numbing results of this time was a proof, developed independently by
Alan Turing and by Alonzo Church, that there are uncomputable problems. That is,
there is a problem P for which it’s possible to give a completely formal description of
the right answer—but it’s not possible to write a program that solves P.

Here, we'll prove this theorem. Specifically, we’ll describe the halting problem, and
prove that it’s uncomputable. (Informally, the halting problem is: given a function p
written in Python and an input x, does p get stuck in an infinite loop when it’s run on x?) The
result is a great example of a proof by contradiction, where we will exploit the abyss of
self-reference to produce the contradiction.

PROBLEMS

Before we address the computability of the halting problem, we have to define pre-
cisely what we mean by a “problem” and “computable.” A problem is the kind of task
that we wish to solve with a computer program. We will focus on yes-no problems,
called decision problems:

Definition 4.17 (Problem)
A problem is a description of a set of valid inputs, and a specification of the corresponding
output for each them. A decision problem is one where the output is either “yes” or “no.”

(In other words, a decision problem is specified by a description of a set of possible
inputs, along with a description of those inputs for which the correct answer is “yes.”)
We’ve already encountered several decision problems:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 449

Example 4.28 (Some sample decision problems)
e PRIMALITY: the set of possible inputs is the set of positive integers; the set of “yes”
inputs is the set of prime numbers. (The “no” inputs are 1 and the composites.)

® SATISFIABILITY: any propositional-logic proposition ¢ is a valid input, and ¢ is a
“yes” input if and only if ¢ is satisfiable.

An instance of a problem is a valid input for that problem. (An invalid input is one
that isn’t the right “kind of thing” for that problem.) We will refer to an instance x of
a problem P as a yes-instance if the correct output is “yes,” and as a no-instance if the
correct output is “no.” For example, 17 or 18 are both instances of priMALITY; 17 is a
yes-instance, while 18 is a no-instance; p V —p is an invalid input.

COMPUTABILITY

Problems are the things that we’ll be interested in solving via computer programs.
Informally, problems that can be solved by computer are called computable and those
that cannot be solved by computer are called uncomputable. It'll be easiest to think of
computability in terms of your favorite programming language, whatever it may be.
For the sake of concreteness, we’ll pretend it’s Python, though any language would do.

Taking it further: The original definition of computability given by Alan Turing used an abstract device
called a Turing machine; a programming language is called Turing complete if it can solve any problem that
can be solved by a Turing machine. Every non-toy programming language is Turing complete: Java, C,
C-++ Python, Ruby, Perl, Haskell, BASIC, Fortran, Assembly Language, whatever.

Formally, we’ll define computability in terms of the existence of an algorithm,
which we will think of as a function written in Python:

Definition 4.18 (Computability)
A decision problem P is computable if there exists a Python function A that solves P. That
is, P is computable if there exists a Python function A such that, on any input x:

() A terminates when run on x.
(i) A(x) returns true if and only if x is a yes-instance of P.

Notice that we insist that the Python function .4 must actually terminate on any input
x: it’s not allowed to run forever. Furthermore, running A4 (x) returns True if x is a yes-
instance of P and running A (x) returns False if x is a no-instance of P.

The decision problems from Example 4.28 are both computable:

Example 4.29 (Computability of some sample decision problems)

e PRIMALITY is computable: both isPrime and isPrimeBetter (p. 454) are algorithms
that could be implemented as a Python function that (i) terminates when run on
any positive integer, and (ii) returns True on input # if and only if is prime.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

450 CHAPTER 4. PROOFS

® SATISFIABILITY is computable, too: as we discussed in Section 3.3.1, we can ex-

haustively try all truth assignments for ¢, checking whether any of them satis-
fies ¢. This algorithm is slow—if ¢ has n variables, there are 2" different truth
assignments—but it is guaranteed to terminate for any input ¢, and correctly de-

cides whether ¢ is satisfiable.

PROGRAMS THAT TAKE SOURCE CODE AS INPUT

The inputs to the problems or programs that we’ve talked
about so far have been integers (for PRiMALITY) Or Boolean
formulas (for satisriasiLiTY). Of course, other input types
like rational numbers or lists are possible, too. Programs that
take programs as input are a particularly important category.

Taking it further: Although you might not have thought about them in
these terms, you've frequently encountered programs that take programs as

input. For example, in any introductory CS class, you've seen one frequently:

the Python interpreter python, the Java compiler javac, and the C compiler
gcc all take programs (written in Python or Java or C, respectively) as input.

It’s easy to think up some decision problems where the
input is a Python program. Here’s one, about comment-
ing code. (For example, it’s not hard to imagine an Intro
CS instructor setting up an automated grading system for
programs that gives an automatic zero to any submitted
assignment that contains no comments.)

def commentedTester(sourceCode):
for character in sourceCode:
if character == "#"
and isn’t inside quotes:
return True
return False

def absoluteValue(n):
if n > 0:
return n
else:
return -1 *x n

def isEven(n):
% is Python’s mod operator
if n %2 ==0:
return True # n is even
else:
return False # n is odd

Figure 4.24: Python
source code for

Example 4.30 (The comMmMENTED decision problem) three functions.

Define the decision problem coMMENTED as follows:

Input: the Python source code s for a function
Output: “yes” if s contains at least one comment; “no” otherwise.

In Python, a comment starts with # and goes until the end of the line, so as long as a
appears somewhere in the source code s—and not inside quotation marks—then s
is a yes-instance of coMMENTED; otherwise s is a no-instance.

The coMMENTED problem is computable: testing whether s is a yes-instance can be
done by looking at the characters of s one by one, and testing to see whether any
one of those characters starts a comment. A Python program commentedTester
that solves coMmMENTED is shown in Figure 4.24. (The details of testing whether
character is inside quotes are omitted from the source code, but otherwise the code
for commentedTester is valid, runnable Python code.)

Consider running commentedTester on the other instances shown Figure 4.24. Ob-
serve that absoluteValue is a no-instance of coMMENTED, because it doesn’t contain
the comment character # at all, and isEven is a yes-instance of COMMENTED, because
it contains three comments. As desired, if we ran commentedTester on these two
pieces of source code, the output would be False and True, respectively.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 451

Example 4.30 showed that the decision problem cOMMENTED is def commentedTester (sourceCode) :

computable by giving a Python function commentedTester that solves for character in sourceCode:
if character == "#"

, . . . , and isn’t inside quotes:
Python source code we please, let’s do something a little bizarre: let’s return True

COMMENTED. Because we can run commentedTester on any piece of

run commentedTester on the source code for commentedTester itself (!). return False

There weren't any comments in commentedTester—the only # in the Figure 4.25: A

code is inside quotes—so the source code of commentedTester is a no-instance of reminder of
the Python

source code for
then running st on s¢t returns False. This idea of taking some source code s and run- commentedTester.

COMMENTED. Put a different way, if st denotes the source code of commentedTester,
ning s on s itself will be essential in the rest of this section.

THE HALTING PROBLEM
The key decision problem that we’ll consider is the halting problem:

Definition 4.19 (The Halting Problem)
Define the decision problem HALTINGPROBLEM as follows:

Input: a pair (s, x), where s is the source code of a syntactically valid Python function that
takes one arqument, and x is any value;
Output: “yes” if s terminates when run on input x; “no” otherwise.

That is, (s, x) is a yes-instance of HALTINGPROBLEM if s(x) terminates (doesn’t get stuck in
an infinite loop), and it's a no-instance if s(x) does get stuck in an infinite loop.

We can now use the idea of running a function with itself as input to show that the
Halting Problem is uncomputable, by contradiction:

Theorem 4.17 (Uncomputability of the Halting Problem)
HALTINGPROBLEM is uncomputable.

Proof. We give a proof by contradiction. Suppose for the sake of contradiction that the
Halting Problem is computable—that is, assume

There’s a Python function Ap,jting solving the Halting Problem. 1)

(In other words, for the Python source code s of a one-argument function, and any
value x, running Apiing (5, ¥) always terminates, and returns True if and only if run-
ning s on x does not result in an infinite loop.)

. . . makeSelfSafe(s): # the input s is the Python source
Now consider the Python function makeSelfSafe in # code of a one-argument function.

Figure 4.26. The function makeSelfSafe takes as input safe = Anatting (s,5)
if safe:

run s on input s
tests whether running s on s itself is “safe” (does not return True

the Python source code s of a one-argument function,

cause an infinite loop), and if it’s safe then it runs s on Figure 4.26: The

s. We claim that makeSelfSafe never gets stuck in an infinite loop: Python code for
makeSelfSafe.
For any Python source code s, makeSelfSafe(s) terminates.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

452 CHAPTER 4. PROOFS

To see that (2) is true, observe that Step 1 of the algorithm always terminates, by as-
sumption (1). Step 2 of the algorithm ensures that s is called on input s if and only
if Ahalt'mg (s,5) said that s terminates when run on s. And, by assumption, Ahalﬁng is
always correct. Thus s is run on input s only if s terminates when run on input s. So
Step 2 of the algorithm always terminates. And Step 3 of the algorithm doesn’t do
anything except return, so it terminates immediately. Thus (2) follows.

Write smss to denote the Python source code of makeSelfSafe. Because smss is itself
Python source code, Fact (2) implies that

makeSelfSafe(Smss) terminates. 3)

In other words, running smss 0N Smss terminates. Thus, by the assumption (1) that
Ahalﬁng is correct, we can conclude that

Ahalt'mg (Smss, Smss) returns true. @)

But now consider what happens when we run makeSelfSafe on its own source code—
that is, when we compute makeSelfSafe(smss). Observe that safe is set to true in Step 1
of the algorithm, by Fact (4). Thus Step 2 calls makeSelfSafe(smss) recursively! But
therefore makeSelfSafe(Smgs) calls makeSelfSafe(smgs), which calls makeSelfSafe(Smss),
and so on, ad infinitum. In other words,

makeSelfSafe(smss) does not terminate.)

But (3) and (5) are contradictory! Thus the only assumption that we made, namely (1),
was false. Therefore there does not exist a correct always-terminating algorithm for the
Halting Problem. That is, the Halting Problem is uncomputable. O

To summarize Theorem 4.17: we showed that the assumption of the existence of
an algorithm for the halting problem leads to a contradiction, and therefore we con-
clude that such an algorithm cannot exist. The contradiction is, at its heart, about
self-reference—an algorithmic version of the Liar’s Paradox: This sentence is false.

Taking it further: Computability theory is the study of what problems can and cannot be solved by com-
puters. Computability was a primary focus of theoretical computer science from the 1930s through
roughly the 1970s. (After that time, the focus of theoretical computer scientists began to shift to com-
plexity theory, which addresses the question of what problems can and cannot be solved efficiently by
computers.) You can read more about the halting problem in any textbook on computability theory, and
in Douglas Hofstadter’s amazing book Gddel, Escher, Bach.® For extra amusement, you can even find a full
proof of Theorem 4.17 in poem form, in Figure 4.27. And see p. 455 for a discussion of some practically
relevant problems that are also uncomputable.

8 Dexter Kozen.
Automata and Com-
putability. Springer,
1997; Michael
Sipser. Introduction
to the Theory of Com-
putation. Course
Technology, 3rd
edition, 2012; and
Douglas Hofstadter.
Gdadel, Escher, Bach:
An Eternal Golden
Braid. Vintage, 1980.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 453

Scooping the Loop Snooper: A proof that the Halting Problem is undecidable
Geoffrey K. Pullum

No general procedure for bug checks will do.

Now, I won't just assert that, I'll prove it to you.

I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P

that for specified input permits you to see

whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later

(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then P prints out ‘Good.”
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,

then P reports ‘Bad!—which means you're in the soup.

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind

that would shatter your reason and scramble your mind.

Here’s the trick that I'll use—and it’s simple to do.
I'll define a procedure, which I will call Q,

that will use P’s predictions of halting success

to stir up a terrible logical mess.

For a specified program, say A, one supplies,

the first step of this program called Q I devise

is to find out from P what’s the right thing to say
of the looping behavior of A run on A.

If P’s answer is “Bad!’, Q will suddenly stop.

But otherwise, Q will go back to the top,

and start off again, looping endlessly back,

till the universe dies and turns frozen and black.

And this program called Q wouldn’t stay on the shelf;
I'would ask it to forecast its run on itself.

When it reads its own source code, just what will it do?
What's the looping behavior of Q run on Q?

If P warns of infinite loops, Q will quit;

yet P is supposed to speak truly of it!

And if Q’s going to quit, then P should say ‘Good.’
Which makes Q start to loop! (P denied that it would.)

No matter how P might perform, Q will scoop it:

Q uses P’s output to make P look stupid.

Whatever P says, it cannot predict Q:

P is right when it’s wrong, and is false when it’s true!

I've created a paradox, neat as can be—

and simply by using your putative P.

When you posited P you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?

I don’t have to tell you; I'm sure you must know.
A reductio: There cannot possibly be

a procedure that acts like the mythical P.

You can never find general mechanical means

for predicting the acts of computing machines;

it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!

Figure 4.27: A proof
of Theorem 4.17, in
poetic form, from

? Geoffrey K. Pul-
lum. Scooping

the loop snooper:
A proof that the
halting problem is
undecidable. Math-
ematics Magazine,
73(4):319-320, 2000.
Used by permis-
sion of Geoffrey

K. Pullum.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

454 CHAPTER 4. PROOFS

CoMPUTER ScIENCE CONNECTIONS I

CRYPTOGRAPHY AND THE (GENERATION OF PRIME NUMBERS

As we'll see in Section 7.5, prime numbers are used extensively in cryptog-
raphy. The RSA cryptosystem—named after the first letters of its inventors’ last
names'’—uses as a primary step the generation of two large prime numbers,
perhaps ~128-bit integers.

The primary reason that prime numbers are useful in cryptography is an
asymmetry in the apparent difficulty of two directions of a problem. If you
are given two (big) prime numbers p and g, then computing their product pq is
easy. But if you are given a number 7 that is guaranteed to be the product of
two prime numbers, finding those two numbers—factoring n—appears to be
much harder. For example, if you're told that n =504,761, it will probably take
you a long time to figure out that n =251 - 2011. But if you're told that p =251
and g = 2011, then you should be able to calculate pg = 504,761 in just a few
seconds.

A crucial step in RSA, then, is the generation of large prime numbers. This
step can be accomplished by choosing a random integer of the appropriate
size and then testing whether that number is prime. (We keep retrying until
the random number turns out to be prime.)

A little consideration of the definition of primality implies that we can
test whether an integer 7 is prime using the algorithm in Figure 4.28, which
tests all candidate divisors between 2 and n — 1. This algorithm requires us
to do roughly # divisibility checks (actually, to be precise, n — 2 divisibility
checks). Using Theorem 4.16, the algorithm can be improved to do only about
/n divisibility checks, as Figure 4.29.

We can test these two algorithms empirically. A Python implementation
using n — 1 calls to isPrime to find all primes in the integers {2, ...,n} took
about three minutes for n = 65,536 on a 2010-era laptop. For the same 7,
isPrimeBetter took about a second. This difference is a nice example of the
way in which theoretical, proof-based techniques can improve actual widely
used algorithms.

In part because of its importance to cryptography, there has been signifi-
cant work on algorithms for primality testing over recent decades—improving
far beyond the roughly /7 division tests of isPrimeBetter. In general, an
efficient algorithm for a number 7 should require a number of steps propor-
tional to log n rather than proportional to 1 or even /1. (For example, when
you add two 10-digit numbers by hand, you want to do about 10 operations,
rather than about 1,000,000,000 operations.) Thus isPrimeBetter is still not as
efficient as we’d like.

There are some very efficient randomized algorithms for primality testing
which are actually used in real cryptosystems, including the Miller-Rabin
test." This randomized algorithm performs a (randomly chosen) test that all
prime numbers pass and most composite numbers fail; repeating with many
different randomly chosen tests decreases the probability of getting a wrong
answer to an arbitrarily small number. (See p.742.) And more recently, three
researchers gave the first theoretically efficient algorithm for primality testing
that’s not randomized."

10R. L. Rivest, A. Shamir, and L. Adle-
man. A method for obtaining digital
signatures and public-key cryptosys-
tems. Communications of the ACM,
21:120-126, February 1978.

isPrime(n):
1: k:=2
2: while k < n:
3: if nis evenly divisible by k
then
4: return False
5. k:=k+1
6: return True

Figure 4.28: Slow primality testing.

isPrimeBetter (n):
1: k:=2
2: while k <]—\/ﬂ 2
3: if nis evenly divisible by k and

n #k then
4: return False
5. k:=k+1

6: return True

Figure 4.29: Faster primality testing.
(We could further save roughly another
factor of two by checking only k =2 and
odd k > 3.)

T Gary L. Miller. Riemann’s hypothesis
and tests for primality. Journal of Com-
puter and System Sciences, 13(3):300-317,
1976; and Michael O. Rabin. Proba-
bilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128-138,
1980.

12 Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena. Primes is in P. Annals of
Mathematics, 160:781-793, 2004.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS

CoMPUTER ScIENCE CONNECTIONS I

Ortrer UncomputaBLE ProBLEMS (THAT You MiGHT CARE ABOUT)

The Halting Problem may seem like a purely abstract problem, and there-
fore one that doesn’t matter in the real world—sure, it'd be nice to have an
infinite-loop detector in your Python interpreter or Java compiler, but would
it just be a vaguely helpful feature for students in Intro CS classes but nobody
else? The answer is a resounding no: while the Halting Problem itself may
seem obscure, there are many uncomputable problems that, if solved, would
vastly improve operating systems or compilers. But they’re uncomputable,
and therefore the desired improvements cannot be made.

Here’s one example. Modern operating systems use virtual memory for
their applications. The physical computer has a limited amount of physical
memory—say, eight gigabytes of RAM—that applications can use. But the
operating system “pretends” that it has a much larger amount of memory,
so that the word processor, web browser, Java compiler, and solitaire game
can each act as though they had even more than eight gigabytes of memory
that they don’t have to share. Memory (both virtual and real) is divided into
chunks of a fixed size, called pages. The operating system stores pages that
are actively in use in physical memory (RAM), and relegates some of the not-
currently-used pages to the hard drive. At every point in time, the operating
system’s paging system decides which pages to leave in physical memory, and
which pages to “eject” to the hard drive. (This idea is the same as what you do
when you're cooking several dishes in a kitchen with limited counter space:
you have to relegate some of the not-currently-being-prepared ingredients
to the fridge. And at every moment you have to decide which ingredients to
leave on the counter, and which to “eject” to the fridge.) See Figure 4.30.

Here’s a problem that a paging system would love to solve: given a page p
of memory that an application has used, will that application ever access the
contents of p again? Let’s call this problem wiLLBEUsepAcain. When the
paging system needs to eject a page, ideally it would eject a page that’s a no-
instance of wiLLBEUsEDAcAIN, because it will never have to bring that page
back into physical memory. (When you're out of counter space, you would of
course prefer to put away some ingredient that you're done using.)

Unfortunately for operating system designers, wiLLBEUseDAGAINis
uncomputable. There’s a very quick proof, based on the uncomputability of
the Halting Problem. Consider the algorithm:

1. run the Python function f on the input x.
2. if f(x) terminates, then access some memory from page p.

This algorithm accesses page p if and only if (f, x) is a yes-instance of the
Halting Problem.

Therefore if we could give an algorithm to solve the wiLLBEUsED AGAIN prob-
lem, then we could give an algorithm to solve the Halting Problem. But we already
know that we can’t give an algorithm to solve the Halting Problem. If p = g
and —g, then we can conclude —p; therefore wiLLBEUsEDAGAIN is uncom-
putable.

455

Hard Disk

(a) Initial configuration, with pages
#1,2,6 in memory, and remaining
pages on disk.

RAM

Hard Disk

(b) Program requests data on page #2.

It’s in memory, so it’s just fetched;
nothing else happens.

_RAM _ Hard Disk

‘C J g 13578,...

(c) Program requests data on page #4.

It’s on disk, so it’s fetched and
replaces some page in RAM—say, #1.

_RAM _ Hard Disk

‘C J g 35678,...

(d) Program requests data on page #1.

It’s on disk, so it’s fetched and
replaces some page in RAM—say, #6.

Figure 4.30: A sample sequence of
memory fetches in a paged memory
system.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

456 CHAPTER 4. PROOFS

4.4.5 Exercises

Figure 4.31 shows the truth tables for all 16 different binary logical operators, with each column named if it’s a logical
operator that we've already seen:

plal|lTue | pVg|pea| p |p=>a| q |peq|pia|plg|pog| g > plq | False
T(T| T | T [T |T| T [T T [T [F|F [E[E|[F|[E]F]E
rle\ 7|t | v 7| F |F| F | F|T| T |T|T|F|F|F]|F
rlr|\ | | F |F| T |7 F | F|T| T |F|F|T|T|F]|TF
Fle|l 7| F | T |F| T |F| T | F|T|F|T|F|T|F|T]|F

Figure 4.31: The full

set of binary logical
A set S of binary operators is said to be universal if every binary logical operation can be expressed using some combi- yio8

nation of the operators in S. Formally, a set S is universal if, for every Boolean expression over variables py, ..., P, operators.
there exists a Boolean expression v that is logically equivalent to where 1 uses only the variables p., . .., px and the
logical connectives in S.
4.66 Prove that the set {V, A, =, -} is universal. (Hint: To do so, you need to show that, for each column
through (16| of Figure 4.31, you can build a Boolean expression ; over the variables p and q that uses only the operators
{V, A, =, =}, and such that ; is logically equivalent to p mq.)
4.67 Prove that the set {V, A, =} is universal. (Hint: once you've done Exercise 4.66, all you have to do is
show that you can express = using {V, A\, =}.)
4.68 Prove that {V, =} and {A, —} are both universal.
4.69 Prove that the set {| }—the set containing just the Sheffer stroke, that is, nand—is universal.
4.70 Prove that the singleton set {] } is universal.
4.71 Prove that the set {A, V} is not universal. (Hint: what happens under the all-true truth assignment?)
4.72 Let ¢ be a fully quantified proposition of predicate logic. Prove that ¢ is logically equivalent
to a fully quantified proposition ¢ in which all quantifiers are at the outermost level of 1. In other words, the
proposition ¥ must be of the form
Vaxi: Vaxa: - Vaxe: Py, xo,..., %),

where each ¥ 5 is either a universal or existential quantifier. (The transformation that you performed in
Exercise 3.178 put Goldbach’s Conjecture in this special form.) (Hint: you might find the results from Exer-
cises 4.66—4.71 helpful. Using these results, you can assume that o has a very particular form.)
4.73 Prove that, for any integer n > 1, there is an n-variable logical proposition ¢ in conjunctive
normal form such that the truth-table translation to DNF (from Theorem 4.11) yields an DNF proposition
with exponentially more clauses than ¢ has.
4.74 Prove that the area of a right triangle with legs x and y is xy/ 2.
4.75 Use Figure 4.32(a)
as an outline to give a differ-
ent proof of the Pythagorean c
theorem. c H

[T
4.76 Exercise 4.47
asked you to prove (via O X
algebra) the Arithmetic Mean— b ¢
Geometric Mean inequality: a / Y
for x,y € R=", we have ¢
VY < (x +¥)/2. Here (@) Another way to prove the (b) Using the Pythagorean Theorem for the
you'll reprove the result P

: ythagorean Theorem. Arithmetic Mean/ Geometric Mean inequality.

geometrically. Suppose that

x > y, and draw two circles
of radius x and y tangent to Figure 4.32: More
each other, and tangent to a horizontal line. See Figure 4.32(b). Considering the right triangle shown in that on the Pythagorean
diagram, and using the Pythagorean theorem and the fact that the hypotenuse is the longest side of a right Theorem.

triangle, prove the result again.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.4. SOME EXAMPLES OF PROOFS 457

Let x,y € R be two points in the plane. As usual, denote their coordinates by x1 and xy, and y1 and vy, respectively.
The Euclidean distance between these points is the length of the line that connects them: \/(x1 — y1 2 + (xa — y2 2.
The Manhattan distance between them is |x1 — y1| +|x2 — y2|: the number of blocks that you would have to walk
“over” plus the number that you'd have to walk “up” to get from one point to the other. Denote these distances by

deuclidean and dmanhaftan'
4.77 Prove that deyclidean % ¥) < @manhattan ¢,) for any two points x, .

4.78 Prove that there exists a constant a such that both

L dmanhattan (x, y) <a- deuclidean (X, y) for all pOiI‘ltS x and Y and
e there exist points x*, y* such that dianhattan @*, ¥*) =4 - deyclidean %, ¥*)

A positive integer n is called a perfect number if it is equal to the sum of all positive integer factors 1 < k < n
of n. For example, the number 14 is not perfect: the numbers less than 14 that evenly divide 14 are {1,2,7}, but
1+2+7 =10 #14.

4.79 Prove that at least one perfect number exists.

4.80 Prove that, for any prime integer p, the positive integer p* is not a perfect number.

4.81 Letn > 10 be any positive integer. Prove that the set {n,n +1,...,n +5} contains at most two
prime numbers.

4.82 Let 1 be any positive integer. Prove or disprove: any set of ten consecutive positive integers

{n,n+1,...,n +9} contains at least one prime number.

4.83 (Thanks to the NPR radio show Car Talk, from which I learned this exercise.) Imagine a junior high
school, with 100 lockers, numbered 1 through 100. All lockers are initially closed. There are 100 students,
each of whom—brimming with teenage angst—systematically goes through the lockers and slams some

of them shut and yanks some of them open. Specifically, in round i :=1,2,...,100, student #i changes the
state of every ith locker: if the door is open, then it’s slammed shut; if the door is closed, then it’s opened.
(So student #1 opens them all, student #2 closes all the even-numbered lockers, etc.) Which lockers are open
after this whole process is over? Prove your answer.

4.84 We proved the following claim in Theorem 4.16: A positive integer n > 2 is evenly divisible by
some other integer k € {2,3,..., [\/n]} if and only if n is composite. If we delete the word “other,” this claim
becomes false. Prove that this modified claim is false.

4.85 Prove that the unmodified claim (retaining the word “other”) remains true if the bounds on k are
changed fromk € {2,3,..., [/n]} tok € {[Vn],...,n—1}.
4.86 Prove that the bound cannot be changed from k € {2,3,..., [y/n]} tok € {[Vn/2|,...,[3vn/2]}.

That is, prove that the following claim is false: A positive integer n > 2 is evenly divisible by some other integer
ke {[vn/2|,...,|3vn/2]} ifand only if n is composite.

4.87 Let n be any positive integer, and let p,, denote the smallest prime number that evenly divides 7.
Prove that there are infinite number of integers # such that p, > +/n. (This fact establishes that we cannot
change the bound in the aforementioned theorem to anything smaller than /n.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

458 CHAPTER 4. PROOFS

4.5 Common Errors in Proofs

Mistakes were made.

Ron Ziegler (1939-2003), press secretary for President
Richard Nixon during Watergate

We’ve now spent considerable time establishing a catalogue of proof techniques
that you can use to prove theorems, along with some examples of these techniques in
action. We'll close this chapter with a brief overview of some common flaws in proofs,
so that you can avoid them in your own work (and be on the lookout for them in the
work of others). Recall that a proof consists of a sequence of logical inferences, deriv-
ing new facts from assumptions or previously established facts. A valid inference is one
whose conclusion is always true as long as the facts that it relies on were true. (That
is, a valid step never creates a false statement from true ones.) An invalid inference
is one in which the conclusion can be false even if the premises are all true. An invalid
argument can also be called a logical fallacy, a fallacious argument, or just a fallacy. In a
correct proof, of course, every step is valid. Here are a few examples of a single logical
inference, some of which might be fallacious:

Example 4.31 (Some (valid and invalid) logical inferences)

Problem: Here are several inferences. In each case, there are two premises, and a
conclusion that is claimed to follow logically from those premises. Which of these
inferences are valid, and which are fallacies?

1. Premises: (a) All software is buggy. (b) Windows is a piece of software.
Conclusion: Therefore, Windows is buggy.

2. Premises: (a) All people are annoying sometimes. (b) Mark Zuckerberg is a
person.
Conclusion: Therefore, Mark Zuckerberg is annoying sometimes.

3. Premises: (a)If you handed in an exam without your name on it, then you got a
zero. (b) You handed in an exam without your name on it.
Conclusion: Therefore, you got a zero.

4. Premises: (a)If you handed in an exam without your name on it, then you got a
zero. (b) You handed in an exam with your name on it.
Conclusion: Therefore, you didn’t get a zero.

Solution: We abstract away from buggy software and annoying people by rewriting Problem-soloing

these arguments in purely logical form: tip: To make the
. logical structure
1. Assumea € S and assume Vx € S : P(x). Conclude P(a). of an argument
2. Assumea € S and assume Vx € S : P(x). Conclude P(a). clearer, consider an
abstract form of the

argument in which
4. Assume p = g and assume —p. Conclude —g. you use variables

3. Assume p = g and assume p. Conclude g.

to name the atomic

In this format, we see first that (1) and (2) are actually the same logical argument propositions.

(with different meanings for the symbols), and they’re both valid. Argument (3) is

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.5. COMMON ERRORS IN PROOFS 459

precisely an invocation of Modus Ponens (see Chapter 3), and it’s valid. But (4)is a
fallacy: the fact that p = g and —p is consistent with either g or —¢, so in particular
when p =False and g =True the premises are true but the conclusion is false.

Each of these examples purports to convince its reader of its conclusion, under the
assumption that the premises are true. Valid arguments will convince any (reasonable)
reader that their conclusion follows from their premises. Fallacious arguments are
buggy; a vigilant reader will not accept the conclusion of a fallacious argument even if
she accepts the premises.

Taking it further: A useful way to think about validity and fallacy is as follows. An argument with

premises py,py, ..., px and conclusion c is valid if and only if p1 Ap, A --- Ap, = cis a theorem. If

there is a circumstance in which py Apa A --- Apr = cis false—in other words, where the premises
p1 Ap2 A - - Apy are all true but the conclusion c is false—then the argument is fallacious.

Some of the most famous disasters in the history of computer science have come from some bugs that
arose because of an erroneous understanding of some property of a system—and a lack of valid proof of
correctness for the system. These bugs have been costly, with both lives and many dollars lost. See p. 464
for a few highlights/lowlights.

Your main job in proofs is simple: avoid fallacies! But that can be harder than it
sounds. The remainder of this section is devoted to a few types of common mistakes in
proofs—that is, some common types of fallacies.

A BROKEN PROOF
The most common mistake in a purported proof is simple but insidious: a single
statement is alleged to follow logically from previous statements, but it doesn’t. Here’s

a somewhat subtle example:

Example 4.32 (What’s wrong with this logic?)
Problem: Find the error in this purported proof, and give a counterexample to the
claim.

False Theorem: LetF, = {k € Z=! : k|n} denote the factors of an integer n > 2.
Then |F,| is even.

Proof. Let Fgman C F be the set of factors of n that are less than /n. Let Fyig CF
be the set of factors of n that are greater than /n. Observe that every d € Fypan
has a unique entry 1/d corresponding to it in Fy,;s. Therefore |Fsman| = [Fpig|- Let

k = [Fsman| = |Foig|- Note that k is an integer. Thus F, contains precisely k elements
less than /n and k elements greater than /1, and so |F,| = 2k, which is an even
number. O

Solution: The problem comes right at the end of the proof:
Thus Fy, contains precisely k elements less than \/n and k elements greater than \/n, and so
|Fp| =2k.
The problem is that this statement discounts the possibility that /7 itself might be
in F. For an integer n that’s a perfect square, we have that \/n € F, and therefore
|F| =2k +1. For example, the integer 9 is a counterexample, because Fg = {1, 3,9}
and |Fq| =3.

Problem-solving tip:
The kind of mistake
in Example 4.32,

in which there’s

a single step that
doesn’t follow from
the previous step,
can sometimes be
difficult to sniff out.
But it’s the kind

of bug that you

can spot by simply
being tiberskeptical
of everything

that’s written in a
purported proof.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

460 CHAPTER 4. PROOFS

But while an error of this form—one step in the proof that doesn’t actually fol-
low from the previously established facts—may be the most common type of bug
in a proof, there are some other, more structural errors that can arise. Most of these
structural errors come from errors of propositional logic—namely by proving a new
proposition that’s not in fact logically equivalent to the given proposition. Here are a
few of these types of flawed reasoning.

FALLACY: PROVING TRUE

We are considering a claim . We proceed as follows: we assume ¢, and (correctly)
prove True under that assumption. (Usually, for some reason, the “proof” writer puts
a little check mark in their alleged proof at this point: v".) What can we conclude about
©? The answer is: absolutely nothing! The reason: we’ve proven that ¢ = True, but
anything implies true. (Both True = True and False = True are true implications.)
Here’s a classical example of a bogus proof that uses this fallacious reasoning:

Example 4.33 (What’s wrong with this logic?)
Problem: Find the error in this purported proof.

False Theorem: 1 =0.
Proof. Suppose that 1 =0. Then:

1=0
therefore, multiplying both sides by 0 0-1=0-0
and therefore, 0=0. v
And, indeed, 0 =0.
Thus the assumption that 1 =0 was correct, and the theorem follows. O

Solution: We have merely shown that (1 =0) = (0 =0), which does not say anything
about the truth or falsity of 1 =0; anything implies true.

FALLACY: AFFIRMING THE CONSEQUENT

We are considering a claim . We prove (correctly) that ¢ = 1), and we prove (cor-
rectly) that ¢). We then conclude ¢. (Recall that ¢ is the consequent of the implication
¢ = 1, and we have “affirmed” it by proving 1.) This “proof” is wrong because it
confuses necessary and sufficient conditions: when we prove ¢ = 1, we’ve shown that
one way for 1) to be true is for ¢ to be true. But there might be other reasons that ¢ is
true! Here’s an example of a fallacious argument that uses this bogus logic:

Example 4.34 (What's wrong with this logic?)
Problem: Find the error in this argument:

Premises: (1) If it’s raining, then the computer burning will be postponed.
(2) The computer burning was postponed.
Conclusion: Therefore, it’s raining.

Writing tip: When
you're trying

to prove that

two quantities a
and b are equal,
it’s generally
preferable to
manipulate a until
it equals b, rather
than “meeting

in the middle”

by manipulating
both sides of the
equation until
you reach a line

in which the two
sides are equal.
The “manipulate
a until it equals b”
style of argument
makes it clear to
the reader that you
are provinga =b
rather than proving
(@ =b) = True.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.5. COMMON ERRORS IN PROOFS 461

Solution: This fallacious argument is an example of affirming the consequent. The
first premise here merely says that the computer burning will be postponed if it
rains; it does not say that rain is the only reason that the burning could be post-
poned. There may be many other reasons why the burning might be delayed:
for example, the inability to find a match, the sudden vigilance of the health and
safety office, or a last-minute stay of execution by the owner of the computer.

FALLACY: DENYING THE HYPOTHESIS

Denying the hypothesis is a closely related fallacy to affirming the consequent: we
prove (correctly) that 1) = ¢, and we prove (correctly) that —¢); we then (fallaciously)
conclude —¢. This logic is buggy for essentially the same reason as affirming the
consequent. (In fact, denying the hypothesis is the contrapositive of affirming the
consequent—and therefore a fallacy too, because it’s logically equivalent to a fallacy.)
The implication ¢y = ¢ means that one way of ¢ being true is for ¢ to be true, but
it does not mean that there is no other way for ¢ to be true. Here’s an example of a
fallacious argument of this type:

Example 4.35 (What's wrong with this logic?)
Problem: Find the error in this argument:

Premises: (1) If you have resolved the P-versus-NP question, then you are famous.
(2) You have not resolved the P-versus-NP question.

Conclusion: Therefore, you are not famous.

Solution: This fallacious argument is an example of denying the hypothesis. The first
premise says that one way to be famous is to resolve the P-versus-NP question (see
p- 326 for a brief description of this problem), but it does not say that resolving
the P-versus-NP question is the only way to be famous. For example, you could be
famous by being the President of the United States or by founding Google.

FALLACY: FALSE DICHOTOMY

A false dichotomy or false dilemma is a fallacious argument in which two nonexhaus-
tive alternatives are presented as exhaustive (without acknowledgement that there are
any unmentioned alternatives).

Example 4.36 (False Dichotomy)
The flawed step in Example 4.32 can be interpreted as a false dilemma: implicitly, that
proof relied on the assertion that if k evenly divides 7, then

k € Fyman = {factors of n that are less than \/n} or
k € Fyig = {factors of n that are greater than /n} .

But of course the third unmentioned possibility is that k = v/n.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

462 CHAPTER 4. PROOFS

(The classical false dichotomy, often found in political rhetoric, is “either you're with
us or you're against us”: actually, you might be neutral on the issue, and therefore
neither “with” nor “against” us!)

FALLACY: BEGGING THE QUESTION

We wish to prove a proposition ¢. A purported proof of ¢ that begs the question is
one that assumes ¢ along the way. That is, the “proof” assumes precisely the thing
that it purports to prove, and thus actually proves ¢ = ¢. Although this type of
fallacious reasoning sounds ridiculous, the assumption of the desired result can be
very subtle; you must be vigilant to catch this type of error. Here’s an example of a
fallacious argument of this kind:

Example 4.37 (What’s wrong with this logic?)
Problem: Find the error in this proof:

False Theorem: Let be a positive integer such that n +n1? is even. Then is odd.

Proof. Assume the antecedent—that is, assume that 7 + 712 is even. Let k be the
integer such that n =2k +1. Then

n+n? =2k +1 + 2k +1)?
=2k +1 +4k* +4k +1
=4k +6k +2
=2. (2k* +3k +1),

which is even because it is equal to 2 times an integer. But n> = 2k +1)* =
4k? +4k +1 is odd (because 4k? and 4k are both even). Therefore
n= n +n? = n?
~———

even by the above argument odd by the above argument

An even number less an odd number is an odd number, which implies that 7 must

be odd too. O

Solution: The problem comes very early in the “proof,” in the sentence
Let k be the integer such that n =2k +1.

But this statement implicitly assumes that 7 is an odd integer; an integer k such
thatn = 2k +1 exists only if n is odd. So the proof begs the question: it assumes
that n is odd, and—after some algebraic shenanigans—concludes that 7 is odd.

OTHER FALLACIES

We have discussed a reasonably large collection of logical fallacies into which some
less-than-careful or less-than-scrupulous proof writers may fall. But there are many
other types of flaws in arguments that more typically arise in informal contexts; these
are the kinds of flawed arguments that are—sadly—often used in politics. (Some of

Problem-solving

tip: Even without
identifying the
specific bug in
Example 4.37, we
could notice that
there’s something
fishy by doing

the post-proof
plausibility check
to make sure that
all premises were
actually used. The
“proof” states that
it is assuming the
antecedent, but

we actually derived
the fact that 1 +n?
is even. So we
never used that
assumption in the
“proof.” (In fact,

n +n? is even for
any positive integer
n.) But, because

we didn’t use the
assumption, the
same proof works
just as well without
it as an assumption,
so we could use the
same “proof” to
establish this claim
instead:

Patently
False The-
orem: Let n
be a positive
integer. Then
n is odd.

Given that this new
claim is obviously
false, there must be
a bug in the proof.
The only challenge
is to find that bug.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.5. COMMON ERRORS IN PROOFS 463

them have analogues in more mathematical settings, too.) Here are a few examples of
other types of fallacies that you may encounter in “real-world” arguments:

o Confusing correlation and causation. Phenomena A and B are said to be (positively)
correlated if they occur together more often than their individual frequencies would
predict. (See Chapter 10.) But just because A and B are correlated does not mean
that one causes the other! For example, the user population of Facebook is much
younger than is the population at large. We could say, correctly, that Being young
is correlated with using Facebook. But Using Facebook makes you young is an obviously
absurd conclusion. (Some correlation-versus-causation mistakes are subtler; your
reaction to Being young makes you use Facebook is probably less virulent, but it is
equally unsupported by the facts that we’ve cited here.) Always be wary when
attempting to infer causal relationships!

o Ad hominem attacks. An ad hominem attack ignores the logical argument and speaks Latin ad hominen:
to the arguer: Bob doesn’t know the difference between contrapositive and converse, and he “to the man.”

says that n is prime. So n must be composite.

e Equivocation or shifting language. This type of argument relies on changes in the
meanings of the words/ variables in an argument. This shift can be grammatical:
Time waits for no man, and no man is an island; therefore, time waits for an island. Or it
can be in the semantics of a particular word: 1024 is a prime example of an exact power
of two, and prime numbers are evenly divisible only by 1 and themselves; therefore, 1024 is
not divisible by 4. A similar type of fallacy can also occur when a variable in a proof
is introduced to mean two different things.

Taking it further: This listing is just a brief outline of some of the many invalid techniques of persua-
sion/ propaganda; a much more extensive and thorough list is maintained by Gary Curtis at http://

For example,
www. fallacyfiles.org/. You might also be interested in books that catalogue fallacious techniques of p

13 Madsen Pirie.

argument. - :
How to Win Every

. Argument: The Use

It is always your job to be vigilant—both when reading proofs written by others, and Abuse of Logic.
and in developing your own proofs—to avoid fallacious reasoning. Continuum, 2007.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

464 CHAPTER 4. PROOFS

CoMPUTER ScIENCE CONNECTIONS I

Tuae Cost oF MissinGg Proors: SoME Famous Buas in CS

There’s an apocryphal story that the first use of the word “bug” to refer to
a flaw in a computer system was in the 1940s: Grace Hopper, a rear admiral
in the US Navy and a pioneer in early programming, found a moth (a literal,
physical moth) jamming a piece of computer equipment and causing a mal-
function. (The story is true, but the Oxford English Dictionary reports uses of
“bug” to refer to a technological fault dating back to Thomas Edison in the
late 1800s.) But there are many other stories of bugs that are both more impor-
tant and more true. When a computer system “almost” works—when there’s
no proof that it works correctly in all circumstances—there can be grave reper-
cussions, in dollars and lives lost. Here are a few of the most famous, and
most costly, bugs in history:"*

The Pentium division bug: In 1994, Thomas Nicely, at the time a math pro-
fessor, discovered a hardware bug in Intel’s new Pentium chip that caused
incorrect results when some floating-point numbers were divided by certain
other floating-point numbers. The flaw resulted from a lookup table for the
division operation that was missing a handful of entries. Although the range
of numbers that were incorrectly divided was limited, the resulting brouhaha
led to a full Pentium recall and about $500 million in losses for Intel.”

The Ariane 5 rocket: The European Space Agency’s rocket, carrying a
$400,000,000 payload of satellites, exploded 40 seconds into its first flight,
in 1996. The rocket had engaged its self-destruct system, which was correctly
triggered when it strayed from its intended trajectory. But the altered trajec-
tory was caused by a sequence of errors, including an integer overflow error:
the rocket’s velocity was too big to fit into the 16-bit variable that was being
used to store it."* (An Ariane 5 rocket was much faster than the Ariane 4

For a list of one person’s view of the ten
worst bugs in history, including these
three and some other sordid tales, see:
4 Simpson Garfinkel. History’s worst
software bugs. Wired Magazine, 2005.

For more information on these bugs and
their aftermath, see:

5 Tvars Peterson. MathTrek: Pentium
bug revisited. MAA Online, May 1997.

167. L. Lions. Ariane 5 flight 501 failure
report: Report by the enquiry board,
1996.

rockets for which the code was originally developed.)
Embarrassingly, the overflow caused a subsystem to -
output a diagnostic error code that was interpreted as
navigation data. More embarrassingly still, this entire
subsystem played no role in navigation after liftoff, and
would have caused no harm if it were just turned off.
The Therac-25: The Therac-25 was a medical de-
vice in use in the mid-1980s that treated tumors with
a focused beam of radiation. The device fired a con-
centrated X-ray beam of extremely high dosage into
a diffuser that would reduce the beam’s intensity to poien e
the desired levels before it was directed at the patient. .
But it turned out that a particularly fast touch-typing
operator could cause the high-intensity beam to be
fired without the diffuser in place: hitting enter at the

Therac-25 unit
Treatment table

Motion
power switch

Beam
onjoff light

precise moment that an internal variable reset to zero
caused the undiffused beam to be fired. (This kind of bug is called a race con-
dition, in which the output of a system depends crucially on the precise timing
of events like operator input.) At least five patients were killed by radiation
overdoses."”

Figure 4.33: Image of the Therac-25.
Reprinted with permission from
7 Nancy Leveson. Safeware: System Safety

and Computers. Pearson Education, Inc.,
New York, 1995.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.5. COMMON ERRORS IN PROOFS 465

4.5.1 Exercises

Identify whether the following arguments are valid or fallacious. Justify your answers.

4.88 Premises: (a) Every programming language that uses garbage collection is slow; and (b) C does not
use garbage collection.
Conclusion: Therefore, C is slow.

4.89 Premises: (a) If a piece of software is written well, then it was built with its user in mind; and (b)
The Firefox web browser is a piece of software that was written with its user in mind.
Conclusion: Therefore, the Firefox web browser is written well.

4.90 Premises: (a) If a processor overheats while multiplying, then it overheats while computing square
roots; and (b) The xMax processor does not overheat while computing square roots.
Conclusion: Therefore, the xMax processor does not overheat while multiplying.

491 Premises: (a) Every data structure is either slow at insertions or lookups; and (b) The data struc-
ture called the Hackmatack tree is slow at insertions.
Conclusion: Therefore, the Hackmatack tree is slow at lookups.

4.92 Premises: (a) Every web server has an IP address; and (b) www.cia.gov is a web server.
Conclusion: Therefore, www. cia.gov has an IP address.

4.93 Premises: (a) If a computer system is hacked, then there was user error or the system had a design
flaw; and (b) A computer at NASA was hacked; and (c) That computer did not have a design flaw.
Conclusion: Therefore, there was user error.

In the next several problems, you will be presented with a false claim and a bogus proof of that false claim. For each,
you!'ll be asked to (a) identify the precise error in the proof, and (b) give a counterexample to the claim. (Note that saying
why the claim is false does not address (a) in the slightest—it would be possible to give a bogus proof a true claim!)

False Claim #1: Let n be a positive integer and let p,q € Z=2, where p and q are prime. If n is evenly
divisible by both p and q, then n is also evenly divisible by pq. (FC-1)

Bogus proof of (FC-1). Because p | n, there exists a positive integer k such that n = pk. Thus, by assumption,
we know that g | pk. Because p and g are both prime, we know that p does not evenly divide g, and thus the
only way that g | pk can hold is if q | k. Hence k = g¢ for some positive integer ¢, and thus n = pk = pqt.

Therefore pq | n. o
4.94 State precisely what’s wrong with the proof of (FC-1).

4.95 Give a counterexample to (FC-1).

False Claim #2: 721 is prime. (FC-2)

Bogus proof of (FC-2). In Example 4.8, we proved that n! 41 is not evenly divisible by any k satisfying
2 <k < n. Observe that 6! = 720. Therefore, 721 = 6! +1 isn’t evenly divisible by any integer between 2

and 720 inclusive, and therefore 721 is prime. O
4.96 State precisely what’s wrong with the proof of (FC-2).

4.97 Without using a calculator, disprove (FC-2).

4.98 Without using a calculator, find an integer n such that n! +1 is prime.

False Claim #3: \/2/ 4 and 8/ /2 are both rational. (FC-3)
Bogus proof of (FC-3). In Example 4.12, we proved that if x and y are rational then xy is rational too. Here, let
x=+?2/4 and y =8/ V2. Then xy = ‘/Tﬁ . % = % =2.So xy =2 is rational, and x and y are too. O
4.99 State precisely what’s wrong with the proof of (FC-3).

4.100 Prove that 8/ /2 isn’t rational.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

466 CHAPTER 4. PROOFS

False Claim #4: Let 1 be any integer. Then 12 | n if and only if 12 | n?. (FC-4)
Bogus proof of (FC-4), similar to Example 4.19. We proceed by mutual implication.

e First, assume that 12 | n. Then, by definition, there exists an integer k such that n = 12k. Therefore
n? = (12k? =12 - (12k?). Thus 12 | n? too.

e Second, we must show the converse: if 12 | n2, then 12 | n. We prove the contrapositive. Assume that
12 fn. Then there exist integers k and r € {1,...,11} such that n = 12k +r. Therefore n> = (12k +r)* =
144k? +24kr +7* = 12(12k> +2kr) +2. Because r < 12, adding r? to a multiple of 12 does not result in
another multiple of 12. Thus 12 fn?. |

4.101 State precisely what’s wrong with the proof of (FC-4).
4.102 Disprove (FC-4).

False Claim #5: \/4 is irrational. (FC-5)

Bogus proof of (FC-5). We'll follow the same outline as Example 4.21. Our proof is by contradiction.

Assume that v/4 is rational. Therefore, there exist integers nn and d # 0 such thatn/d = V4, where 1 and d
have no common divisors.

Squaring both sides yields that n?/d? = 4, and therefore that n> = 442. Because 4d° is divisible by 4,
we know that 12 is divisible by 4. Therefore, by the same logic as in Example 4.19, we have that n is itself
divisible by 4.

Because 1 is divisible by 4, there exists an integer k such that n = 4k, which implies that n> = 16k>. Thus
n? =16k? and n? =4d?, so d?> =4k?. Hence d is divisible by four.

But now we have a contradiction: we assumed that 1/ d was in lowest terms, but we have now shown that
n? and d? are both divisible by 4, and therefore both 1 and d must be even! Thus the original assumption was
false, and /4 is irrational. O

4.103 State precisely what’s wrong with the proof of (FC-5).

False Claim #6: 3 < 2. (FC-6)

Bogus proof of (FC-6). Let x and y be arbitrary nonnegative numbers. Because y > 0 implies —y < y, we can
add x to both sides of this inequality to get

x—y <x+y. @)
Similarly, adding y — 3x to both sides of —x < x yields
y—4x <y -2 @)
Observe that whenever g < b and ¢ < d, we know thatac < bd. So we can combine (1) and (2) to get
¥ =Yy —4x) < @ +y)y — 2%). @)
Multiplying out and then combining like terms, we have
xy — 4x% — y? +4xy < xy — 22% +y% — 2xy, and @)
6xy < 2x% +247. ®)

This calculation was valid for any x,y > 0. Forx =y = v/1/2, we havexy = x2 = y? = (/1/2)* =1/2.
Plugging into (5), we have

6/2) < 2/2)+2/2). ©)

In other words, we have 3 < 2. O

4.104 State precisely what’s wrong with the proof of (FC-6).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.5. COMMON ERRORS IN PROOFS 467

Computer vision is the subfield of computer science devoted to developing algorithms that can “understand” images.
For example, some security systems use facial recognition software to decide whether to grant access to a particular
person. We desire to maximize the probability that the vision algorithm we choose gets the answer right—that is, grants
access to the person if and only if that person is authorized to enter.

Suppose that we have two algorithms, A and B, that we have employed on two different cameras in a test run.
Suppose that algorithm A is deployed on Camera I. It makes the correct decision on 75% of the CS majors at Camera
Iand 60% of philosophy majors at Camera 1. (That is, when a CS major arrives at Camera I, algorithm A correctly
decides whether to grant her access 75% of the time.) Algorithm B, deployed at Camera II, makes the correct decision on
70% of CS majors and 50% of philosophy majors. The following claim seems obvious, because Algorithm A performed
better for both philosophy majors and CS majors:

Claim: Algorithm A is right a higher fraction of the time (overall, combining both majors) than Algorithm B.

But the claim is false, as you’'ll show!

4.105 The falsehood of this claim (for example, in the scenario illustrated by the next exercise) is called
Simpson’s Paradox because the behavior is so counterintuitive. State precisely where the following argument
goes wrong:

Observe that Algorithm A had a better success probability with CS majors, and also had a better success
probability with philosophy majors. Therefore Algorithm A was right a higher fraction of the time (in total, for
both philosophy majors and CS majors) than Algorithm B.

4.106 Suppose that there were 100 CS majors and 100 philosophy majors who went by Camera I. Sup-
pose that 1000 CS majors and 100 philosophy majors went by Camera II. Calculate the success rate for
Algorithm A at Camera I, over all people. Do the same for Algorithm B at Camera II

4.107 Here is an obviously false theorem, together with a (nonobviously) bogus proof. Identify pre-
cisely the flaw in the argument and explain where the proof fails.

False Theorem: 1 =0.

Proof. Consider the four shapes in Figure 4.34(a), and the two arrangements thereof in Figure 4.34(b). (See
below.)

The area of the triangle in the first configuration is 13 - 5/2 =65/ 2, as it forms a right triangle with height
5 and base 13. But the second configuration also forms a right triangle with height 5 and base 13 as well, and
therefore it too has area 65/2. But the second configuration has one unfilled square in the triangle, and thus

we have
65 65
0=7-7
=area of the second bounding triangle — area of the first bounding triangle
= (1 +area of four constituent shapes) — (area of four constituent shapes)
=1
Thus 0 =1. O

(@) The shapes.

Figure 4.34: Some
shapes and their
(b) Two configurations. arrangements, for
Exercise 4.107.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

468 CHAPTER 4. PROOFS

The following two statements are theorems from geometry that you may recall from high school:

o the angles of a triangle sum to precisely 180°.

o if the three angles of triangle T are precisely equal to the three angles of Ty, then Ty and T, are similar, and their
sides are in the same ratios. (That is, if the side lengths of Ty are a, b, c and the side lengths of T, are x,y, z, then
a/x =b/y=c/z.)

These statements are theorems, but they're used in the following utterly bogus “proof” of the Pythagorean Theorem

(actually one that was published, in 1896!).

4.108 State precisely what’s wrong with the following purported proof of the Pythagorean Theorem.

Proof. Consider an arbitrary right triangle. Let the two legs and hypotenuse, respectively,
have length 4, b, and c, and let the angles between the legs and the hypotenuse be given
by 8 and ¢ =90° — 6. (See Figure 4.35(a).) Draw a line perpendicular to the hypotenuse)
to the opposite vertex, dividing the interior of the triangle into two separate sections, g
which are shaded with different colors in Figure 4.35(b). Observe that the unlabeled angle ?
within the smaller shaded interior triangle must be ¢ =90° — 6, because the other angles
of the smaller shaded interior triangle are (just like for the enclosing triangle) 90° and
0. Similarly, the unlabeled angle within the larger shaded interior triangle must be 6. b @)
Therefore we have three similar triangles, all with angles 90°, 6, and ¢. Call the lengths of
the previously unnamed sides x, y, and z as in Figure 4.35(c). Now we can assemble our
known facts. By assumption,
2 =3+, v = x*+2%, and y+z) = > +1?, p <
which we can combine to yield
@
W +2) =227 +y* +2%. 1))
2 _ .2 2 ®)
Expanding (y +z)” =y~ +2yz +z° and subtracting common terms from both sides, we have
2yz =242, @) y
which, dividing both sides by two, yields a A
[
yz = x2. 3)
s . b
But (3) is immediate: we know that (c) Note thatc =y +z.
x/y=z/x @) Figure 4.35: Dia-

because the two shaded triangles are similar, and therefore the two triangles have the grams for Exercise
same ratio of the length of the hypotenuse to the length of the longer leg. Multiplying 4.108.
both sides of (4) by xy gives us x?> =yz, as desired. O

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.6. CHAPTER AT A GLANCE 469

4.6 Chapter at a Glance

Error-Correcting Codes

Although the main purpose of this section was to introduce proofs, here’s a brief sum-
mary of the results about error-correcting and error-detecting codes, too.

A codeis aset C C {0,1}", where |C| = 2F for some integer 1 < k < n. A message is
an element of {0, 1}k ; the elements of C are called codewords. Consider any codeword
¢ € C and for any sequence of up to ¢ errors applied to ¢ to produce ¢’. The code C
can detect £ > 0 errors if we can always correctly report “error” or “no error,” and can
correct £ errors if we can always correctly identify that c was the original codeword.

The Hamming distance between strings x,y € {0,1}", denoted A(x,), is the num-
ber of positions i in which x; # y;. The minimum distance of a code C is the smallest
Hamming distance between two distinct codewords of C. The rate of a code with k-bit
messages and n-bit codewords is k/ n. If the minimum distance of a code C is 2t +1 for
an integer t, then C can detect 2t errors and correct ¢ errors.

The RepetITION, Code creates codewords via the ¢-fold repetition of the message. This
code has rate 1/ ¢ and minimum distance ¢. The Hamming code creates 7-bit codewords
from 4-bit messages by adding three different parity bits to the message. This code has
rate 4/7 and minimum distance 3. Any code with messages of length 4 and minimum
distance 3 has codewords of length > 7. (Thus the Hamming code has the best possible
rate among all such codes.) We can prove this result via a “sphere-packing” argument
and a proof by contradiction.

Proofs and Proof Techniques

A proof of a claim ¢ is a convincing argument that ¢ is true. (A proof should be writ-
ten with its audience in mind.) A variety of useful proof techniques can be employed
to prove a given claim ¢:

o direct proof: we prove ¢ by repeatedly inferring new facts from known facts to even-
tually conclude ¢. (Sometimes we divide a proof into multiple cases, or “assume the
antecedent,” where we prove p = g by assuming p and deriving 4.)

You may also prove ¢ by proving a claim logically equivalent to ¢:
e proof by contrapositive: to prove p = g, we instead prove g = —p.

o proof by contradiction (or reductio ad absurdum): to prove ¢, we instead prove that
- = False—that is, we prove that - leads to an absurdity.

We say that y € S with —P(y) is a counterexample to the claim Vx € S : P(x). A proof by
construction of the claim 3x € S : P(x) proceeds by constructing a particular y € S and
proving that P(y). A nonconstructive proof establishes 3x € S : P(x) without giving an
explicit y € S for which P(x)—for example, by proving Jx € S : P(x) by contradiction.
The process of developing a proof requires persistence, open-mindedness, and
creativity. Here’s a helpful three-step plan to use when developing a new proof: (1)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

470 CHAPTER 4. PROOFS

understand what you're trying to do (checking definitions and small examples); (2) do
it (by trying the proof techniques catalogued here, and thinking about analogies from
similar problems that you've solved previously); and (3) think about what you've done
(reflecting on and trying to improve your proof). Remember that writing a proof is a
form of writing! Be kind to your reader.

Some Examples of Proofs

We can use these proof techniques to establish a wide variety of facts—about arith-
metic, propositional logic, geometry, prime numbers, and computability. For more
extensive examples, see Section 4.4. We'll highlight one result: there are problems that
we can formally define, but that cannot be solved by any computer program; these
problems (including the Halting Problem) are called uncomputable.

Common Errors in Proofs

A valid inference is one whose conclusion is always true as long as the facts that it
relies on were true. An invalid inference is one in which the conclusion can be false
even if the premises are all true. An invalid, or fallacious, argument can also be called a
logical fallacy or just a fallacy. In a correct proof, of course, every step is valid.

Perhaps the most common error in a proof is simply asserting that a fact ¢ follows
from previously established facts, when actually ¢ is not implied by those facts. Other
common types of fallacious reasoning are structural errors that involve purporting to
prove a statement ¢, but instead proving a statement that is not logically equivalent to
. (For example, the fallacy of proving true: a “proof” of ¢ that assumes ¢ and proves
True. But ¢ = True is true regardless of the truth of ¢, so this purported proof proves
nothing.) Be vigilant; do not let anyone—yourself or others!—get away with fallacious
reasoning.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

4.6. CHAPTER AT A GLANCE 471

Key Terms and Results
Key Terms Key Results
ErrOR-CORRECTING CODES ErRROR-CORRECTING CODES
e Hamming distance 1. If the minimum distance of a code C is 2t + 1 for an inte-
e code, message, codeword gert >0, then C can detect 2t errors and correct t errors.
e error-detecting/correcting code 2. For 4-bit messages and minimum distance 3, there exist
e minimum distance, rate codes with rate % (such as the RepeTITION3 code) and with
e repetition code rate 7 (such as the Hamming code), but not with rate
o Hamming code 4
& better than 7.

Proors aAND Proor TECHNIQUES Proors AND Proor TECHNIQUES

e proof 1
e proof techniques:

. You can prove a claim ¢ with a direct proof, or by instead

proving a different claim that is logically equivalent to ¢.
— direct proof Examples include proofs by contrapositive and proofs by
— proof by contrapositive contradiction.

= proof by contradiction 2. A useful three-step process for developing proofs is: (1)

e counterexample understand what you're trying to do; (2) do it; and (3)
think about what you've done. All three steps are impor-

tant, and doing each will help with the other steps.

e constructive/ nonconstructive proof

SomE ExaMPLES OF PROOEFs .) .
3. Writing a proof is a form of writing.

e conjunctive/ disjunctive normal form
e uncomputability
e the Halting Problem

SoME ExaMPLES OF PrROOFs

1. All logical propositions are equivalent to propositions in

conjunctive/ disjunctive normal form, or using only nand.
VarLip aND FaLLAciOUS ARGUMENTS

o valid argument 2. There are infinitely many prime numbers.

e fallacious/ invalid argument; fallacy 3. There are problems that can be specified completely for-
e fallacy: proving true mally that are uncomputable (that is, cannot be solved

e fallacy: affirming the consequent by any computer program). The Halting Problem is one
o fallacy: denying the hypothesis example.

o fallacy: false dichotomy

e fallacy: begging the question VaLip aAND FarLacious ARGUMENTS

1. There are many common mistakes in proofs that are
centered on several types of fallacious reasoning. These
fallacies are essentially all the result of purporting to
prove a statement ¢ by instead proving a statement v,
where 1 fails to be logically equivalent to ¢.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

