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Logic

In which our heroes move carefully through the marsh, making sure that
each step follows safely from the one before it.
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302 CHAPTER 3. LOGIC

3.1 Why You Might Care
How fondly dost thou reason!

William Shakespeare (1564–1616)
The Comedy of Errors

Logic is the study of truth and falsity, of theorem and proof, of valid reasoning in
any context. In this chapter, we focus on formal logic, in which it is the “form” of the
argument that matters, rather than the “content.” This chapter will introduce the two
major types of formal logic:

• propositional logic (Sections 3.2 and 3.3), in which we will study the truth and falsity
of statements, how to construct logical statements from basic logical operators (like
and and or), and how to reason about those statements.

• predicate logic (Sections 3.4 and 3.5), which gives us a framework to write logical
statements of the form “every x . . .” or “there’s some x such that . . ..”

One of our main goals in this chapter will be to define a precise, formal, and unam-
biguous language to express reasoning—in which writer and reader agree on what
each word means.

Logic is the foundation of all of computer science; it’s the reasoning that you use
when you write the condition of an if statement or when you design a circuit to add
two 32-bit integers or when you design a program to beat a grandmaster at chess. Be-
cause logic is the study of valid reasoning, any endeavor in which one wishes to state
and justify claims rigorously—such as that of this book—must at its core rely on logic.
Every condition that you write in a loop is a logical statement. When you sit down to
write binary search in Python, it is through a (perhaps tacit) use of logical reasoning
that you ensure that your code works properly for any input. When you use a search
engine to look for web pages on the topic “beatles and not john or paul or george or
ringo” you’ve implicitly used logical reasoning to select this particular query. Solving
a Sudoku puzzle is nothing more and nothing less than following logical constraints
to their conclusion. The central component of a natural language processing (NLP)
system is to take an utterance by a human user that’s made in a “natural” language
like English and “understand” what it means—and understanding what a sentence
means is essentially the same task as understanding the circumstances under which
the sentence is true, and thus is a question of logic.

And these are just a handful of examples; for a computer scientist, logic is the basis
of the discipline. Indeed, the processor of a computer is built up from almost un-
thinkably simple logical components: wires and physical implementations of logical
operations like and, or, and not. Our main goal in this chapter will be to introduce the
basic constructs of logic. But along the way, we will encounter applications of logic to
natural language processing, circuits, programming languages, optimizing compilers,
and building artificially intelligent systems to play chess and other games.
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3.2 An Introduction to Propositional Logic
Everyone wishes to have truth on his side, but not
everyone wishes to be on the side of truth.

Richard Whately (1787–1863)

A proposition is a statement that is either true or false—In December 2012, Facebook
had over one billion users or Java is a programming language that uses indentation to denote
block structure, for example. Propositional logic is the study of propositions, including
how to formulate statements as propositions, how to evaluate whether a proposition
is true or false, and how to manipulate propositions. The goal of this section is to
introduce propositions—including related terminology, standard notation, and some
techniques for reasoning about propositions.

3.2.1 Propositions and Truth Values
We’ll begin, briefly, with propositions themselves:

Definition 3.1 (Propositions and Truth Values)
A proposition is a statement that is either true or false. For a particular proposition p, the
truth value of p is its truth or falsity.

A proposition is also sometimes called a Boolean expression or a Boolean formula. (See
Section 2.2.1.) A proposition is written in English as a declarative sentence, the kind of
sentence that usually ends with a period. (Questions and demands—like Did you try
binary search? or Use quicksort!—aren’t the kinds of things that are true or false, and so
they’re not propositions.) Here are a few examples:

Example 3.1 (Some sample propositions)
The following statements are all propositions:

1. 2 + 2 = 4.
2. 33 is a prime number.
3. Barack Obama is the 44th person to be president of the United States.
4. Every even integer greater than 2 can be written as the sum of two prime num-

bers.

(The last of these propositions is called Goldbach’s conjecture; it’s more complicated
than the other propositions in this example, and we’ll return to it in Section 3.4.)

Let’s determine the above propositions’ truth values:

Example 3.2 (Determining truth values)
Problem: What are the truth values of the propositions from Example 3.1?

Solution: These propositions’ truth values are
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1. True. It really is the case that 2 + 2 equals 4.
2. False. The integer 33 is not a prime number because 33 = 3 · 11. (Prime numbers

are evenly divisible only by 1 and themselves; 33 is evenly divisible by 3 and 11.)
3. False. Although Barack Obama is called president #44, Grover Cleveland was

president #22 and #24. So Barack Obama is actually the 43rd person to be presi-
dent of the United States, not the 44th.

4. Unknown (!). Goldbach’s conjecture was first made in 1742, but has thus far
resisted proof—or disproof! It’s easy to check that particular small even integers
can be written as the sum of two prime numbers; for example, 4 = 2 + 2, 6 =
3 + 3, 8 = 3 + 5, 10 = 3 + 7, and so on. But is it true for all even integers greater
than 2? We simply don’t know! Many even integers have been tested, and no
violation has been found in any of these tests. But, as far as we know, the next
even integer we test can’t be written as the sum of two primes. See Example 3.47
and Exercises 3.178–3.181.

Before we move on from Example 3.2, there’s an important point to make about state-
ments that have an unknown truth value. Even though we don’t know the truth value
of Goldbach’s conjecture, it is still a proposition and thus it has a truth value. That is,
Goldbach’s conjecture is indeed either true or false; it’s just that we don’t know which
it is. (Like the proposition The person currently sitting next to you is wearing clean under-
wear: it has a truth value, you just don’t know what truth value it has.)

Taking it further: Goldbach’s conjecture stands in contrast to declarative sentences whose truth is ill-
defined—for example, This book is boring and Logic is fun. Whether these claims are true or false depends
on the (imprecise) definitions of words like boring and fun. We’re going to de-emphasize subtle “shades
of truth” questions of this form throughout the book, but see p. 314 for some discussion, including the
role of ambiguity in software systems that interact with humans via English language input and output.

There is also a potentially interesting philosophical puzzle that’s hiding in questions about the truth
values of natural-language utterances. Here’s a silly (but obviously true) statement: The sentence “snow is
white” is true if and only if snow is white. (Of course!) This claim becomes a bit less trivial if the embedded
proposition is stated in a different language—Spanish or Dutch, say: The sentence “La nieve es blanca” is
true if and only if snow is white; or The sentence “Sneeuw is wit” is true if and only if snow is white. But there’s
a troubling paradox lurking here. Surely we would like to believe that the English sentence x and the
French translation of the English sentence x have the same truth value. For example, Snow is white and
La neige est blanche surely are both true, or they’re both false. (And, in fact, it’s the former.) But this belief
leads to a problem with certain self-referential sentences: for example, This sentence starts with a ‘T’ is
true, but Cette phrase commence par un ‘T’ is, surely, false.1

1

For more on para-
doxes and puzzles
of translation, see
1 Douglas Hofs-
tadter. Le Ton Beau
de Marot: In Praise
of the Music of Lan-
guage. Basic Books,
1998; and R. M.
Sainsbury. Para-
doxes. Cambridge
University Press,
3rd edition, 2009.

3.2.2 Atomic and Compound Propositions
We will distinguish between two types of propositions, those that cannot be broken
down into conceptually simpler pieces and those that can be:

Definition 3.2 (Atomic and compound propositions)
An atomic proposition is a proposition that is conceptually indivisible. A compound
proposition is a proposition that is built up out of conceptually simpler propositions.
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Here’s a simple example of the difference:

Example 3.3 (Atomic and compound propositions)
The University of Minnesota’s mascot is the Badger is an atomic proposition, because it is
not conceptually divisible into any simpler claim.

The University of Washington’s mascot is the Duck or the University of Oregon’s mascot
is the Duck is a compound proposition, because it is conceptually divisible into two
simpler claims—namely The University of Washington’s mascot is the Duck and The
University of Oregon’s mascot is the Duck.

Atomic propositions are also sometimes called Boolean variables; see Section 2.2.1. A
compound proposition that contains Boolean variables p1, . . . , pk is sometimes called a
Boolean expression or Boolean formula over p1, . . . , pk.

Example 3.4 (Password validity as a compound proposition)
A certain small college sends the following instructions to its users when they are
required to change their password:

Your password is valid only if it is at least 8 characters long, you have not previously
used it as your password, and it contains at least three different types of characters
(lowercase letters, uppercase letters, digits, non-alphanumeric characters).

This compound proposition involves seven different atomic propositions:

• p: the password is valid
• q: the password is at least 8 characters long
• r: the password has been used previously by you
• s: the password contains lowercase letters
• t: the password contains uppercase letters
• u: the password contains digits
• v: the password contains non-alphanumeric characters

The form of the compound proposition is “p, only if q and not r and at-least-three-
of {s, t, u, v} are true.” (Later we’ll see how to write this compound proposition in
standard logical notation; see Example 3.15.)

3.2.3 Logical Connectives
Logical connectives are the glue that creates the more complicated compound proposi-
tions from simpler propositions. Here are definitions of our first three of these logical
connectives—not, and, and or:

Definition 3.3 (Negation (not): ¬)
The proposition ¬p (“not p,” called the negation of the proposition p) is true when the
proposition p is false, and is false when p is true.
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Definition 3.4 (Conjunction (and): ∧)
The proposition p∧ q (“p and q,” the conjunction of the propositions p and q) is true when
both of the propositions p and q are true, and is false when one or both of p or q is false.

The prefix con-
means “together”
and dis- means
“apart.” (Junct
means “join.”) The
conjunction p ∧ q is
true when p and q
are true together;
the disjunction p∨ q
is true when p is
true “apart from”
q, or the other way
around.

To help keep the
symbols straight,
it may be helpful
to notice that the
symbol ∧ is the
angular version
of the symbol ∩
(intersection), while
the symbol ∨ is the
angular version
of the symbol ∪
(union). The set
S ∩ T is the set of all
elements contained
in S and T; the set
S ∪ T is the set of all
elements contained
in S or T.

Definition 3.5 (Disjunction (or): ∨)
The proposition p∨ q (“p or q,” the disjunction of the propositions p and q) is true when one
or both of the propositions p or q is true, and is false when both p and q are false.

In the conjunction p ∧ q, the propositions p and q are called conjuncts; in p ∨ q, they are
called disjuncts. Here’s a simple example:

Example 3.5 (Some simple compound propositions)
Let p denote the proposition Ohio State’s mascot is the Buckeye and let q denote the
proposition Michigan’s mascot is the Wolverine. Then:

• ¬q denotes the proposition Michigan’s mascot is not the Wolverine.
• p ∧ q denotes the proposition Ohio State’s mascot is the Buckeye, and Michigan’s mascot

is the Wolverine.
• p ∨ q denotes the proposition Ohio State’s mascot is the Buckeye, or Michigan’s mascot

is the Wolverine.

Here’s an example of translating some English statements that express compound
propositions into standard logical notation:

Example 3.6 (From English statements to compound propositions)
Problem: Translate each of the following statements into logical notation. (Name the

atomic propositions using appropriate Boolean variables.)
1. Carissa is majoring in computer science and studio art.
2. Either Dave took a formal logic class, or he is a quick learner.
3. Eli broke his hand and didn’t take the test as scheduled.
4. Fred knows Python or he has programmed in both C and Java.

Solution: Let’s first name the atomic propositions within these English statements:
p = Carissa is majoring in computer science.
q = Carissa is majoring in studio art.
r = Dave took a formal logic class.
s = Dave is a quick learner.

t = Eli broke his hand.
u = Eli took the test as scheduled.
v = Fred knows Python.
w = Fred has programmed in C.
x = Fred has programmed in Java.

We can now translate the four given statements as: (1) p∧ q; (2) r∨ s; (3) t∧¬u; and
(4) v ∨ (w∧ x).

Implication (if/then)
Another important logical connective is ⇒, which denotes implication. It expresses

a familiar idea from everyday life, though one that’s not quite captured by a single
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English word. Consider the sentence If you scratch my back, then I’ll scratch yours. It’s
easiest to think of this sentence as a promise: I’ve promised that I’ll scratch your back
as long as you scratch mine. I haven’t promised anything about what I’ll do if you fail
to scratch my back—I can abstain from back scratching, or I might generously scratch
your back anyway, but I haven’t guaranteed anything. (You’d justifiably call me a liar if
you scratched my back and I failed to scratch yours in return.) This kind of promise is
expressed as an implication in propositional logic: One initially con-

fusing aspect of
logical implica-
tion is that the
word “implies”
seems to hint at
something about
causation—but
p ⇒ q doesn’t ac-
tually say anything
about p causing q,
only that p being
true implies that q
is true (or, in other
words, p being true
lets us conclude that q
is true).

Definition 3.6 (Implication: ⇒)
The proposition p ⇒ q is true when the truth of p implies the truth of q. In other words,
p ⇒ q is true unless p is true and q is false.

In the implication p ⇒ q, the proposition p is called the antecedent or the hypothesis, and
the proposition q is called the consequent or the conclusion.

Here are a few examples of statements involving implication:

Example 3.7 (Some implications)
The following propositions are all true:

• 1 + 1 = 2 implies that 2 + 3 = 5. (“True implies True” is true.)
• 2 + 3 = 4 implies that 2 + 2 = 4. (“False implies True” is true.)
• 2 + 3 = 4 implies that 2 + 3 = 6. (“False implies False” is true.)

But the following proposition is false:

• 2 + 2 = 4 implies that 2 + 1 = 5. (“True implies False” is false.)

This last proposition is false because 2 + 2 = 4 is true, but 2 + 1 = 5 is false.

“p implies q”
“if p, then q”
“p only if q”
“q whenever p”

“q, if p”
“q is necessary for p”
“p is sufficient for q”

Figure 3.1: Some
ways of expressing
p ⇒ q in English.

There are many different ways to express the proposition p ⇒ q
in English, including all of those in Figure 3.1.

Here is an example of the same implication being stated in
English in many different ways:

Example 3.8 (Expressing implications in English)
According to United States law, people who can legally vote must be American citi-
zens, and they must also satisfy some other various conditions that vary from state
to state (for example, registering in advance or not being a felon). Thus the following
compound proposition is true:

you are a legal U.S. voter ⇒ you are an American citizen.

All of the following sentences express this proposition in English:
If you are a legal U.S. voter, then you are an American citizen.
You being a legal U.S. voter implies that you are an American citizen.
You are a legal U.S. voter only if you are an American citizen.
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You are an American citizen if you are a legal U.S. voter.
You are an American citizen whenever you are a legal U.S. voter.
You being an American citizen is necessary for you to be a legal U.S. voter.
You being a legal U.S. voter is sufficient for you to be an American citizen.

Most of these sentences are reasonably natural ways to express the stated implication,
though the last phrasing seems awkward. But it’s easier to understand if we slightly
rephrase it as “You being a legal U.S. voter is sufficient for one to conclude that you are an
American citizen.”

Here’s another example of restating implications:

Example 3.9 (More implications in English)
Consider the proposition

The nondisclosure agreement is valid︸ ︷︷ ︸
p

only if you signed it︸ ︷︷ ︸
q

.

(This statement is different from “if you signed, then the agreement is valid”: for
example, the agreement might not be valid because you’re legally a minor and thus
not legally allowed to sign away rights.) We can restate p ⇒ q as “if p then q”:

If the nondisclosure agreement is valid, then you signed it.

We can also restate this implication equivalently—and perhaps more intuitively—
using the so-called contrapositive ¬q ⇒ ¬p (see Example 3.21):

The nondisclosure agreement is invalid if you didn’t sign it.

“Exclusive or” and “if and only if”
The four logical connectives that we have defined so far (¬, ∨, ∧, and ⇒) are the

ones that are most frequently used, but we’ll define two other common connectives
too. The first is exclusive or: The connective ⊕ is

usually pronounced
like “ex ore” (a
former significant
other + some rock
with high precious-
metal content).

Definition 3.7 (Exclusive or: ⊕)
The proposition p⊕ q (“p exclusive or q” or, more briefly, “p xor q”) is true when one of the
propositions p or q is true, but not both. Thus p⊕ q is false when both p and q are true, and
when both p and q are false.

When we want to emphasize the distinction between ∨ and ⊕, we refer to ∨ as inclusive
or. This terminology highlights the fact that p ∨ q includes the possibility that both p
and q are true, while p ⊕ q excludes that possibility. Unfortunately, the word “or” in
English can mean either inclusive or exclusive or, depending on the context in which
it’s being used. When you see the word “or,” you’ll have to think carefully about which
meaning is intended.

Here’s an example of distinguishing inclusive and exclusive or:
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Example 3.10 (Inclusive versus exclusive or in English)
Problem: Translate these statements from a cover letter for a job into logical notation:

You may contact me by email or by phone. I am available for an on-site day-long
interview on October 8th in Minneapolis or Hong Kong.

Use the following Boolean variables:
p = you may contact me by phone
q = you may contact me by email
r = I am physically available for an interview in Minneapolis
s = I am physically available for an interview in Hong Kong

Solution: The “or” in “email or phone” is inclusive, because you could receive both an
email and a call. However, the “or” in “Minneapolis or Hong Kong” is exclusive,
because it’s not physically possible to be simultaneously present in Minneapolis
and Hong Kong. Thus a correct translation of these statements is (p∨ q) ∧ (r⊕ s).

We are now ready to define our last logical connective: Sometimes you’ll
see ⇔ abbreviated
in sentences as
“iff” as shorthand
for “if and only
if.” We’ll avoid
this notation in
this book, but you
should understand
it if you see it
elsewhere.

Definition 3.8 (If and only if: ⇔)
The proposition p ⇔ q (“p if and only if q”) is true when the propositions p or q have the
same truth value (both p and q are true, or both p and q are false), and false otherwise.

The reason that ⇔ is read as “if and only if” is that p ⇔ qmeans the same thing
as the compound proposition (p ⇒ q) ∧ (q ⇒ p). (We’ll prove this equivalence in
Example 3.23.) Furthermore, the propositions p ⇒ q and q ⇒ p can be rendered,
respectively, as “p only if q” and “p, if q.” Thus p ⇔ q expresses “p if q, and p only
if q”—or, more compactly, “p if and only if q.” (The connective ⇔ is also sometimes
called the biconditional, because an implication can also be called a conditional.)

Unfortunately, just like with “or,” the word “if” is ambiguous in English. Some-
times “if” is used to express an implication, and sometimes it’s used to express an
if-and-only-if definition. When you see the word “if” in a sentence, you’ll need to think
carefully about whether it means ⇒ or ⇔. Here’s an example:

Example 3.11 (“If” versus “if and only if” in English)
Problem: Think of a number between 10 and 1,000,000. Let

p := your number is prime.
q := your number is even.
r := your number is evenly divisible by an integer other than 1 and itself.

Now translate the following two sentences into logical notation:
1. If the number you’re thinking of is even, then it isn’t prime.
2. The number you’re thinking of isn’t prime if it’s evenly divisible by an integer

other than 1 and itself.

Solution: The “if” in (1) is an implication, and the “if” in (2) is “if and only if.” A
correct translation of these sentences is (1) q ⇒ ¬p; and (2) ¬p ⇔ r.
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3.2.4 Combining Logical Connectives

negation ¬p “not p” highest precedence
conjunction p∧ q “p and q”
disjunction p∨ q “p or q”
exclusive or p⊕ q “p xor q”
implication p ⇒ q “if p, then q” or “p implies q”
if and only if p ⇔ q “p if and only if q” lowest precedence

Figure 3.2: Sum-
mary of notation for
propositional logic.

The six standard logical connectives
that we’ve defined so far (¬, ∧, ∨,
⇒, ⊕, and ⇔) are summarized in
Figure 3.2. The logical connective ¬
is a unary operator, because it builds a
compound proposition from a single
simpler proposition. The other five connectives are binary operators, which build a
compound proposition from two simpler propositions. (We’ll encounter the full list of
binary logical connectives later; see Exercises 4.66–4.71.)

Taking it further: The unary-vs.-binary categorization of logical connectives based on how many
“arguments” they accept also occurs in other contexts—for example, arithmetic and programming. In
arithmetic, for example, one might distinguish between “unary minus” and “binary minus”: the former
denotes negation, as in −3; the latter subtraction, as in 2− 3.

In programming languages, the number of arguments that a function takes is called its arity. (The
arity of length is one; the arity of equals is two.) You will sometimes encounter variable arity functions
that can take a different number of arguments each time they’re invoked. Common examples include the
print functions in many languages—C’s printf and Python’s print, for example, can take any number
of arguments—or arithmetic in prefix languages like Scheme, where you can write an expression like
(+ 1 2 3 4) to denote 1 + 2 + 3 + 4 (= 10).

Order of operations
A full description of the syntax of a programming language always includes a ta- The word “prece-

dence” (pre before,
cede go) means
“what comes first,”
so precedence rules
tell us the order of
which the operators
“get to go.” For
example, consider
a proposition like
p∧ q ⇒ r. If ∧ “goes
first,” the proposi-
tion is (p ∧ q) ⇒ r;
if ⇒ “goes first,” it
means p ∧ (q ⇒ r).
Figure 3.2 says that
the former is the
correct interpreta-
tion.

ble of the precedence of operators, arranged from “binds the tightest” (highest prece-
dence) to “binds the loosest” (lowest precedence). These precedence rules tell us when
we have to include parentheses in an expression to make it mean what we want it
to mean, and when the parentheses are optional. In the same way, we’ll adopt some
standard conventions regarding the precedence of our logical connectives:

• Negation (¬) binds the tightest.
• After negation, there is a three-way tie among ∧, ∨, and ⊕. (We’ll always use paren-

theses in propositions containing more than one of these three operators, just as we
should in programs.)

• The trifecta (∧, ∨, and ⊕) is followed by⇒.
• ⇒ is followed finally by ⇔.

The horizontal lines in Figure 3.2 separate the logical connectives by their precedence,
so that operators closer to the top of the table have higher precedence. For example:

Example 3.12 (Precedence of logical connectives)
The propositions p ∨ ¬q and p∨ q ⇒ ¬r ⇔ pmean, respectively,

p∨ (¬q) and
(
(p∨ q) ⇒ (¬r)

)
⇔ p,

which we can see by simply applying the relevant precedence rules (“¬ goes first,
then ∨, then ⇒, then ⇔”).
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Taking it further: The precedence rules that we’ve described here match the precedence rules in most
programming languages. In Java, for example, the condition !p && q—that’s “not p and q” in Java
syntax—will be interpreted as (!p) && q, because not/¬/! binds tighter than and/∧/&&.

The precedence rules for operators tell us the order in which two different operators
are applied in an expression. For a sequence of applications of the same binary opera-
tor, we’ll use the convention that the operator associates to the left. For example, p∧ q ∧ r
will mean (p∧ q) ∧ r and not p∧ (q ∧ r).

Example 3.13 (Precedence of logical connectives)
Problem: Fully parenthesize each of the following propositions. (In other words, add

parentheses around each operator without changing the meaning.)
1. p∨ q ⇔ p
2. p⊕ p⊕ q⊕ q
3. ¬p ⇔ p ⇔ ¬(p ⇔ p)
4. p∧ ¬q ⇒ r ⇔ s
5. p ⇒ q ⇒ r ∧ s

Solution: Using the precedence rules from Figure 3.2 and left associativity, we get:
1. (p∨ q) ⇔ p
2. ((p⊕ p)⊕ q)⊕ q
3. ((¬p) ⇔ p) ⇔ (¬(p ⇔ p))
4. ((p∧ (¬q)) ⇒ r) ⇔ s
5. (p ⇒ q) ⇒ (r ∧ s)

The choice that logical operators associate to the left (instead of associating to the
right) won’t matter for most of the logical connectives anyway. For example, the propo-
sitions (p ∧ q) ∧ r and p∧ (q ∧ r) are true under exactly the same circumstances, as we’ll
see shortly. In fact, of the binary operators {∧,∨,⊕,⇒,⇔}, the only one for which the
order of application matters is implication. See Exercises 3.45–3.47.

Writing tip: Because
the order of appli-
cation does matter
for implication, it’s
considered good
style to include the
optional parenthe-
ses so that it’s clear
what you mean.

3.2.5 Truth Tables
In Section 3.2.3, we described the logical connectives ¬, ∧, ∨, ⇒, ⊕, and ⇔, but we
can more systematically define these connectives by using a truth table that collects the
value yielded by the logical connective under every truth assignment.

Definition 3.9 (Truth assignment)
A truth assignment for a proposition over variables p1, p2, . . . , pk is a function that assigns a
truth value to each pi.

For example, the function f where f (p) = T and f (q) = F is a truth assignment for the
proposition p ∨ ¬q. (Each “T” abbreviates a truth value of true; each “F” abbreviates a
truth value of false.)
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For any particular proposition and for any particular truth assignment f for that
proposition, we can evaluate the proposition under f to figure out the truth value of
the entire proposition. In the previous example, the proposition p ∨ ¬q is true under
the truth assignment with p = T and q = F (because T ∨ ¬F is T ∨ T, which is true). A
truth table displays a proposition’s truth value (evaluated in the way we just described)
under all truth assignments:

Definition 3.10 (Truth table)
A truth table for a proposition lists, for each possible truth assignment for that proposition
(with one truth assignment per row in the table), the truth value of the entire proposition.

For example, the truth table that defines ∧ is shown in Figure 3.3. A few words

p q p∧ q
T T T
T F F
F T F
F F F

Figure 3.3: The
truth table for ∧.

about this truth table are in order:

• Columns #1 and #2 correspond to the atomic propositions p and q. There is a row
in the table corresponding to each possible truth assignment for p ∧ q—that is, for
every pair of truth values for p and q. (So there are four rows: TT, TF, FT, and FF.)

• The third column corresponds to the compound proposition p ∧ q, and it has a T
only in the first row. That is, the truth value of p ∧ q is false unless both p and q are
true—just as Definition 3.4 said.

p ¬p
T F
F T

p q p ∧ q p∨ q p ⇒ q p⊕ q p ⇔ q
T T T T T F T
T F F T F T F
F T F T T T F
F F F F T F T

Figure 3.4: Truth
tables for the basic
logical connectives.

The truth tables for the six basic logical
connectives (negation, conjunction, disjunc-
tion, exclusive or, implication, and “if and
only if”) are shown in Figure 3.4. It’s worth
paying special attention to the column for
p ⇒ q: the only truth assignment under which p ⇒ q is false is when p is true and q is
false. False implies anything! Anything implies true! For example, both of the following
are true propositions:

If 2 + 3 = 4, then you will eat tofu for dinner. (if false, then anything)
If you are your own mother, then 2 + 3 = 5. (if anything, then true)

To emphasize the point, observe that the first statement is true even if you would never
eat tofu if it were the last so-called food on earth; the hypothesis “2 + 3 = 4” of the
proposition wasn’t true, so the truth of the proposition doesn’t depend on what your
dinner plans are.

For more complicated compound propositions, we can fill in a truth table by re-
peatedly applying the rules in Figure 3.4. For example, to find the truth table for
(p ⇒ q) ∧ (q ∨ p), we compute the truth tables for p ⇒ q and q ∨ p, and put a “T” in
the (p ⇒ q)∧ (q∨ p) column for precisely those rows in which the truth tables for p ⇒ q
and q ∨ p both had “T”s. Here’s a simple example, and a somewhat more complicated
one:

Example 3.14 (A small truth table)
Here is a truth table for the proposition (p ∧ q) ⇒ ¬q:
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p q p∧ q ¬q (p∧ q) ⇒ ¬q
T T T F F
T F F T T
F T F F T
F F F T T

This truth table shows that the given proposition (p ∧ q) ⇒ ¬q is true precisely when
at least one of p and q is false.

Example 3.15 (Three (or more) of four, formalized)
In Example 3.4 (on the validity of passwords), we had a sentence of the form

“p, only if q and not r and at-least-three-of {s, t, u, v} are true.”

Let’s translate this sentence into propositional logic. The tricky part will be translat-
ing “at least three of {s, t, u, v} are true.” There are many solutions, but one relatively
simple way to do it is to explicitly write out four cases, one corresponding to allowing
a different one of the four variables {s, t, u, v} to be false:

(s∧ t ∧ u) ∨ (s∧ t ∧ v)∨ (s∧ u∧ v) ∨ (t ∧ u ∧ v)

We can verify that we’ve gotten this proposition right with a (big!) truth table, shown
in Figure 3.5. Indeed, the five rows in which the last column has a “T” are exactly the
five rows in which there are three or four “T”s in the columns for s, t, u, and v.

To finish the translation, recall that “x only if y” means x ⇒ y, so the given sen-
tence can be translated as p ⇒ q∧ ¬r ∧ (the proposition above)—that is,

p ⇒ q∧ ¬r ∧
(
(s∧ t ∧ u) ∨ (s∧ t ∧ v) ∨ (s∧ u∧ v) ∨ (t∧ u ∧ v)

)
.

Figure 3.5: A
truth table for
Example 3.15.

s t u v s ∧ t ∧ u s ∧ t ∧ v s ∧ u ∧ v t ∧ u ∧ v
(s ∧ t ∧ u)
∨ (s∧ t ∧ v)
∨ (s∧ u ∧ v)
∨ (t ∧ u ∧ v)

T T T T T T T T T
T T T F T F F F T
T T F T F T F F T
T T F F F F F F F
T F T T F F T F T
T F T F F F F F F
T F F T F F F F F
T F F F F F F F F
F T T T F F F T T
F T T F F F F F F
F T F T F F F F F
F T F F F F F F F
F F T T F F F F F
F F T F F F F F F
F F F T F F F F F
F F F F F F F F F

Taking it further: It’s worth pondering
why there are five different rows of the
truth table in Figure 3.5 in which the last
column is true: there are four different
truth assignments corresponding to
exactly three of {s, t, u, v} being true
(stu, suv, stv, tuv), and there is one
truth assignment corresponding to all
four being true (stuv). In Chapter 9, on
counting, we’ll re-encounter this style of
question. (And, actually, precisely the
same reasoning as in this example will
allow us to prove something interesting
about error-correcting codes—see
Section 4.2.5.)
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Computer Science Connections

Natural Language Processing, Ambiguity, and Truth
Our main interest in this book is in developing (and understanding) precise

and unambiguous language to express mathematical notions; in this chap-
ter specifically, we’re thinking about the truth values of completely precise
statements. But thinking about the truth of ambiguous or ill-defined terms
is absolutely crucial to any computational system that’s designed to interact
with users via natural language. (A natural language is one like English or
French or Xhosa; these languages contrast with artificial languages like Java or
Python or, arguably, Esperanto or Klingon.)

Natural language processing (NLP) (or the roughly similar computational
linguistics) is the subfield of computer science that lies at the discipline’s inter-
face with linguistics.2 In NLP, we work to develop software systems that can

For more, you can look for a textbook on
NLP like
2 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.

interact with users in a natural language. A necessary step in an NLP system
is to take an utterance made by the human user and “understand it.” (“Under-
standing what a sentence means” is more or less the same as “understanding
the circumstances under which it is true”—which is fundamentally a question
of logic.)

One major reason that NLP is hard is that there is a tremendous amount

A: Do you prefer coffee or tea?
B: Do you prefer cream or sugar?
C: We ate cake with walnuts.
D: We ate cake with forks.

Figure 3.6: Examples of lexical (A and
B) and syntactic ambiguity (C and D).
The or of A/B can be either inclusive
or exclusive; simply answering “yes”
is a reasonable response to question
B, but a bizarre one to question A. The
with of C/D can either attach to the cake
or the eating; the sentences’ structures
are consistent with using walnuts
as an eating utensil in C, or the cake
containing forks as an ingredient in D.

of ambiguity in natural-language utterances. We can have lexical ambiguity, in
which two different words are spelled identically but have two different mean-
ings; we have to determine which word is meant in a sentence. Or there’s
syntactic ambiguity, in which a sentence’s structure can be interpreted very
differently. (See Figure 3.6.) But there are also subtleties about when a state-
ment is true, even if the meaning of each word and the sentence’s structure are
clear.

Consider, for example, designing and implementing a conversational

User: I want to fly from MSP to
BOS on 28 December.

System: Delta #1927 is a nonstop
flight from MSP to BOS on
Delta Airlines for $472 that
leaves at 8:45am.

User: Is there a slightly later
flight that isn’t too much more
expensive?

Figure 3.7: A sample dialogue. Suppose
that Delta #2931 is a second nonstop
flight from MSP to BOS that leaves at
10:33am and costs $529.

system designed to assist with travel planning. (Many airlines or train com-
panies have such systems.) Such a system might engage in a dialogue like the
one in Figure 3.7 with a human user. There’s no hard-and-fast rule for what
other flights should count as “slightly later” and “too much more expensive.”
This conversational system has to be able to decide the truth of statements
like Delta #2931 is slightly later than Delta #1927 and Delta #2931 isn’t too much
more expensive than Delta #1927, even though the “truth” of these statements
depends on heavy use of conversational context and pragmatic reasoning.
Of course, even though one cannot unambiguously determine whether these
sentences are true or false, they’re the kind of statement made continually in
natural language. So systems that process natural language must deal with
this issue with great frequency.

One approach for handling these statements whose truth value is ambigu-
ous is called fuzzy logic, in which each proposition has a truth value that is
a real number between 0 and 1. (So 10:33a is slightly later than 8:45a is “more
true” than 12:19p is slightly later than 8:45a—so the former might have a truth
value of 0.74, while the latter might have a truth value of 0.34. But 7:30a is
slightly later than 8:45a would have a truth value of 0.00, as 7:30a is unambigu-
ously not slightly later than 8:45a.)
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3.2.6 Exercises

What are the truth values of the following propositions?
int x = 202;

while (x > 2) {

x = x / 2;

}

Figure 3.8: Snippet
of C code. Note
that x/2 denotes
integer division; for
example, 7/2 = 3.

3.1 22 + 32 = 42
3.2 The number 202 is written 11010010 in binary.
3.3 After executing the C code fragment in Figure 3.8 (shown at right), the variable x has the value 1.

Consider the following atomic propositions:

p : x + y is valid Python
q : x * y is valid Python
r : x ** y is valid Python
s : x * y is a list
t : x + y is a list

u : x is a numeric value
v : y is a numeric value
w : x is a list
z : y is a list

Using these atomic propositions, translate the following (true!) statements about legal Python programs into logical
notation. (Note that these statements do not come close to fully characterizing the set of valid Python statements, for
several reasons: first, they’re about particular variables—x and y—rather than about generic variables. And, second,
they omit some important common-sense facts—for example, it’s not simultaneously possible to be both a list and a
numeric value. That is, for example, we have ¬v∨ ¬z.)
3.4 x ** y is valid Python if and only if x and y are both numeric values.
3.5 x + y is valid Python if and only if x and y are both numeric values, or they’re both lists.
3.6 x * y is valid Python if and only if x and y are both numeric values, or if one of x and y is a list
and the other is numeric.
3.7 x * y is a list if x * y is valid Python and x and y are not both numeric values.
3.8 if x + y is a list, then x * y is not a list.
3.9 x + y and x * y are both valid Python only if x is not a list.

3.10 True story: a 29-year-old friend of mine who does not have an advance care directive was asked
the following question on a form at a doctor’s office. What should she answer?

If you’re over 55 years old, do you have an advance care directive? Circle one: YES NO

In Example 3.15, we constructed a proposition corresponding to “at least three of {s, t, u, v} are true.” Generalize this
construction by building a proposition . . .
3.11 . . . expressing “at least 3 of {p1, . . . , pn} are true.”
3.12 . . . expressing “at least n− 1 of {p1, . . . , pn} are true.”

The identity of a binary operator ⋄ is a value i such that, for any x, the expressions {x, x ⋄ i, i ⋄ x} are all equivalent.
The zero of ⋄ is a value z such that, for any x, the expressions {z, x ⋄ z, z ⋄ x} are all equivalent. For an example from
arithmetic, the identity of + is 0, because x + 0 = 0 + x = x for any number x. And the zero of multiplication is 0,
because x · 0 = 0 · x = 0 for any number x. For each of the following, identify the identity or zero of the given logical
operator. Justify your answer. Some operators do not have an identity or a zero; if the given operator fails to have the
stated identity/zero, explain why it doesn’t exist.
3.13 What is the identity of ∨?
3.14 What is the identity of ∧?
3.15 What is the identity of ⇔?
3.16 What is the identity of ⊕?

3.17 What is the zero of ∨?
3.18 What is the zero of ∧?
3.19 What is the zero of ⇔?
3.20 What is the zero of ⊕?

Because ⇒ is not commutative (that is, because p ⇒ q and q ⇒ p mean different things), it is not too surprising that
⇒ has neither an identity nor a zero. But there are a pair of related definitions that apply to this type of operator:
3.21 The left identity of a binary operator ⋄ is a value iℓ such that, for any x, the expressions x and
iℓ ⋄ x are equivalent. The right identity of ⋄ is a value ir such that, for any x, the expressions x and x ⋄ ir
are equivalent. (Again, some operators may not have left or right identities.) What are the left and right
identities of ⇒ (if they exist)?
3.22 The left zero of a binary operator ⋄ is a value zℓ such that, for any x, the expressions zℓ and zℓ ⋄ x
are equivalent; similarly, the right zero is a value zr such that, for any x, the expressions zr and x ⋄ zr are
equivalent. (Again, some operators may not have left or right zeros.) What are the left and right zeros for ⇒
(if they exist)?
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In many programming languages, the Boolean values True and False are actually stored as the numerical values 1 and
0, respectively. In Python, for example, both 0 == False and 1 == True are True. Thus, despite appearances, we can
add or subtract or multiply Boolean values! Furthermore, in many languages (including Python), anything that is not
False (in other words, anything other than 0) is considered True for the purposes of conditionals. For example, in many
programming languages, including Python, code like if 2 print "yes" else print "no" will print “yes.”

Suppose that x and y are two Boolean variables in a programming language, like Python, where True and False
are 1 and 0, respectively—that is, the values of x and y are both 0 or 1. Each of the following code snippets includes a
conditional statement based on an arithmetic expression using x and y. For each, rewrite the given condition using the
standard notation of propositional logic.
3.23 if x * y ...

3.24 if x + y ...

3.25 if 1 - x ...

3.26 if (x * (1 - y)) + ((1 - x) * y) ...

We can use the common programming language features described in in the previous block of exercises to give a simple
programming solution to Exercises 3.11–3.12. Assume that {p1, . . . , pn} are all Boolean variables in Python—that is,
their values are all 0 or 1. Write a Python conditional expressing the condition that . . .
3.27 . . . at least 3 of {p1, . . . , pn} are true.
3.28 . . . at least n− 1 of {p1, . . . , pn} are true.

In addition to purely logical operations, computer circuitry has to be built to do simple arithmetic very quickly. Here
you’ll explore some pieces of using propositional logic and binary representation of integers to express arithmetic
operations. (It’s straightforward to convert your answers into circuits.)

Consider a number x ∈ {0, . . . , 15} represented as a 4-bit binary number, as shown in Figure 3.9. Denote by x0 the
least-significant bit of x, by x1 the next bit, and so forth. For example, for the number x = 12 (written 1100 in binary)
would have x0 = 0, x1 = 0, x2 = 1, and x3 = 1). For each of the following conditions, give a proposition over the Boolean
variables {x0 , x1, x2, x3} that expresses the stated condition. (Think of 0 as false and 1 as true.)

x3 x2 x1 x0
0 0 1 1
0 0 2 1+ + + = 3

x3 x2 x1 x0
1 1 0 0
8 4 0 0+ + + = 12

Figure 3.9:
Representing
x ∈ {0, . . . , 15}
using 4-bits.

3.29 x is greater than or equal to 8.
3.30 x is evenly divisible by 4.
3.31 x is evenly divisible by 5. (Hint: use a truth table, and then build a proposition from the table.)
3.32 x is an exact power of two.

3.33 Suppose that we have two 4-bit input integers x and y, represented as in Exercises 3.29–3.32. Give
a proposition over {x0, x1, x2, x3, y0, y1 , y2 , y3} that expresses the condition that x = y.
3.34 Given two 4-bit integers x and y as in the previous exercise, give a proposition over the Boolean
variables {x0 , x1 , x2 , x3 , y0, y1, y2, y3} that expresses the condition that x ≤ y.

3.35 Suppose that we have a 4-bit input integer x, represented by four Boolean variables {x0 , x1 , x2 , x3}
as in Exercises 3.29–3.32. Let y be the integer x + 1, represented again as a 4-bit value {y0, y1, y2, y3}. (For the
purposes of this question, treat 15 + 1 = 0—that is, we’re really defining y = (x + 1) mod 16.) For example, for
x = 11 (which is 1011 in binary), we have that y = 12 (which is 1100 in binary). For each i ∈ {0, 1, 2, 3}, give a
proposition over the Boolean variables {x0, x1, x2 , x3} that expresses the value of yi .

The remaining problems in this section ask you to build a program to compute various facts about a given proposition
ϕ. To make your life as easy as possible, you should consider a simple representation of ϕ, based on representing We’ll occasionally

use lowercase
Greek letters,
particularly ϕ
(“phi”) or ψ (“psi”),
to denote not-
necessarily-atomic
propositions.

any compound proposition as a list. In such a list, the first element will be the logical connective, and the remaining
elements will be the subpropositions. For example, the proposition p ⇒ (¬q) will be represented as

["implies", ["or", "p", "r"], ["not", "q"]]

Now, using this representation of propositions, write a program, in a programming language of your choice, to accom-
plish the following operations:
3.36 (programming required) Given a proposition ϕ, compute the set of all atomic propositions con-
tained within ϕ. The following recursive formulation may be helpful:

variables(p) := {p} variables(¬ϕ) := variables(ϕ)
variables(ϕ ⋄ψ) := variables(ϕ) ∪ variables(ψ) for any connective ⋄ ∈ {∧,∨,⇒,⇔,⊕, . . .}

3.37 (programming required) Given a proposition ϕ and a truth assignment for each variable in ϕ,
evaluate whether ϕ is true or false under this truth assignment.
3.38 (programming required) Given a proposition ϕ, compute the set of all truth assignments for the
variables in ϕ that make ϕ true. (One good approach: use your solution to Exercise 3.36 to compute all the
variables in ϕ, then build the full list of truth assignments for those variables, and then evaluate ϕ under
each of these truth assignments using your solution to Exercise 3.37.)
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3.3 Propositional Logic: Some Extensions
Against logic there is no armor like ignorance.

Laurence J. Peter (1919–1990)
With the definitions from Section 3.2 in hand, we turn to a few extensions: some

special types of propositions, and some special ways of representing propositions.

3.3.1 Tautology and Satisfiability
Several important types of propositions are defined in terms of their truth tables: those
that are always true (tautologies), sometimes true (satisfiable propositions), or never true
(unsatisfiable propositions). We will explore each of these types in turn.

Tautologies
We’ll start by considering propositions that are always true: Etymologically,

the word tautology
comes from taut
“same” (to + auto)
+ logy “word.”
Another meaning
for the word “tau-
tology” (in real life,
not just in logic) is
the unnecessary
repetition of an
idea: “a canine
dog.” (The ety-
mology and the
secondary street
meaning are not
totally removed
from the usage in
logic.)

Definition 3.11 (Tautology)
A proposition is a tautology if it is true under every truth assignment.

One reason that tautologies are important is that we can use them to reason about
logical statements, which can be particularly valuable when we’re trying to prove a
claim.

Examples 3.16 and 3.17 illustrate two important tautologies. The first of these tau-
tologies is the proposition p ∨ ¬p, which is called the law of the excluded middle: for any
proposition p, either p is true or p is false; there is nothing “in between.”

Example 3.16 (Law of the ExcludedMiddle)
Here is the truth table for the proposition p ∨ ¬p:

p ¬p p∨ ¬p
T F T
F T T

The third column is filled with “T”s, so p∨ ¬p is a tautology.

The second tautology is the proposition p ∧ (p ⇒ q) ⇒ q, called modus ponens: if we Modus ponens
rhymes with “goad
us phone-ins”;
literally, it means
“the mood that
affirms” in Latin.

know both that (a) p is true and that (b) the truth of p implies the truth of q, then we
can conclude that q is true.

Example 3.17 (Modus Ponens)
Here is the truth table for p ∧ (p ⇒ q) ⇒ q (with a few extra columns of “scratch
work,” for each of the constituent pieces of the desired final proposition):

p q p ⇒ q p ∧ (p ⇒ q) p∧ (p ⇒ q) ⇒ q
T T T T T
T F F F T
F T T F T
F F T F T
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There are only “T”s in the last column of this truth table, which establishes that
modus ponens is a tautology.

(p ⇒ q)∧ p ⇒ q Modus Ponens
(p ⇒ q)∧ ¬q ⇒ ¬p Modus Tollens
p∨ ¬p Law of the Excluded Middle
p ⇔ ¬¬p Double Negation
p ⇔ p
p ⇒ p∨ q
p∧ q ⇒ p
(p∨ q) ∧ ¬p ⇒ q
(p ⇒ q)∧ (¬p ⇒ q) ⇒ q
(p ⇒ q)∧ (q ⇒ r) ⇒ (p ⇒ r)
(p ⇒ q)∧ (p ⇒ r) ⇔ p ⇒ q ∧ r
(p ⇒ q)∨ (p ⇒ r) ⇔ p ⇒ q ∨ r
p∧ (q ∨ r) ⇔ (p∧ q) ∨ (p ∧ r)
p ⇒ (q ⇒ r) ⇔ p ∧ q ⇒ r

Figure 3.10: Some
tautologies.

Figure 3.10 contains a number of tautologies
that you may find interesting and occasionally
helpful. (Exercises 3.60–3.72 ask you to build
truth tables to verify that these propositions
really are tautologies.)

One terminological note from Figure 3.10:
modus tollens is the proposition (p ⇒ q) ∧ ¬q ⇒
¬p, and it’s the counterpoint to modus ponens: if
we know both that (a) the truth of p implies the
truth of q and that (b) q is not true, then we can
conclude that p cannot be true either. (Modus
tollens means “the mood that denies” in Latin.)

Satisfiable and unsatisfiable propositions
We now turn to propositions that are sometimes true, and those propositions that

are never true:

Definition 3.12 (Satisfiable propositions)
A proposition is satisfiable if it is true under at least one truth assignment.

If f is a truth assignment under which a proposition is true, then we say that the
proposition is satisfied by f .

Definition 3.13 (Unsatisfiable propositions/contradictions)
A proposition is unsatisfiable if it is not satisfiable. Such a proposition is also called a
contradiction.

Thus a proposition is satisfiable if it is true under at least one truth assignment, and
unsatisfiable if it is false under every truth assignment. (And it’s a tautology if it is
true under every truth assignment.) Here are some examples:

Example 3.18 (Contradiction of p ⇔ q and p⊕ q)
Here is the truth table for (p ⇔ q) ∧ (p⊕ q):

p q p ⇔ q p⊕ q (p ⇔ q)∧ (p⊕ q)
T T T F F
T F F T F
F T F T F
F F T F F

Because the column of the truth table corresponding to the given proposition has no
“T”s in it, the proposition (p ⇔ q) ∧ (p⊕ q) is unsatisfiable.
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Though it might not have been immediately apparent when they were defined, the
logical connectives ⊕ and ⇔ demand precisely opposite things of their arguments:
the proposition p⊕ q is true when p and q have different truth values, while p ⇔ q is
true when p and q have the same truth values. Because p and q cannot simultaneously
have the same and different truth values, the conjunction (p ⇔ q) ∧ (p ⊕ q) is a
contradiction.

Example 3.19 (Demanding satisfaction)
Problem: Is the proposition p ∨ q ⇒ ¬p∧ ¬q satisfiable?

Solution: We’ll answer the question by building a truth table for the given proposi-
tion:

p q p∨ q ¬p ¬q ¬p∧ ¬q p∨ q ⇒ ¬p∧ ¬q
T T T F F F F
T F T F T F F
F T T T F F F
F F F T T T T

Because there is at least one “T” in the last column in the truth table, the proposi-
tion is satisfiable. Specifically, this proposition is satisfied by the truth assignment
p = False, q = False. (Under this truth assignment, the hypothesis p ∨ q is false;
because false implies anything, the entire implication is true.)

Let ϕ be any proposition. Then ϕ is a tautology exactly when ¬ϕ is unsatisfiable: ϕ As we said in
Section 3.2.6,
we occasionally
denote generic
propositions by
lowercase Greek
letters, particularly
ϕ (“phi”) or ψ
(“psi”).

is a tautology when the truth table for ϕ is all “T”s, which happens exactly when the
truth table for ¬ϕ is all “F”s. And that’s precisely the definition of ¬ϕ being unsatisfi-
able!

Taking it further: While satisfiability seems like a pretty precise technical definition that wouldn’t mat-
ter all that much, the satisfiability problem—given a proposition ϕ, determine whether ϕ is satisfiable—
turns out to be at the heart of the biggest open question in computer science today. If you figure out how
to solve the satisfiability problem efficiently (or prove that it’s impossible to solve efficiently), then you’ll
be the most famous computer scientist of the century. See the discussion on p. 326.

3.3.2 Logical Equivalence
We’ll now turn to a special type of pairs of propositions. When two propositions
“mean the same thing” (that is, they are true under precisely the same circumstances),
they are called logically equivalent:

Definition 3.14 (Logical equivalence)
Two propositions ϕ and ψ are logically equivalent, written ϕ ≡ ψ, if they have exactly
identical truth tables (in other words, their truth values are the same under every truth
assignment).

To state it differently: propositions ϕ and ψ are logically equivalent whenever ϕ ⇔ ψ is
a tautology. Here’s a simple example of logical equivalence:
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Example 3.20 (¬(p∧ q) ≡ (p∧ q) ⇒ ¬q)
In Example 3.14, we found that (p ∧ q) ⇒ ¬q is true except when p and q are both
true. Thus ¬(p∧ q) is logically equivalent to (p∧ q) ⇒ ¬q, as this truth table shows:

p q (p ∧ q) ⇒ ¬q ¬(p∧ q)
T T F F
T F T T
F T T T
F F T T

Writing tip: Now
that we have a
reasonable amount
of experience
in writing truth
tables, we will
permit ourselves
to skip columns
when they’re both
obvious and not
central to the point
of a particular
example. When
you’re writing
anything—whether
as a food critic or a
Shakespeare scholar
or a computer
scientist—you
should always think
about the intended
audience, and
how much detail
is appropriate for
them.

Implication, converse, contrapositive, inverse, and mutual implication
We’ll now turn to an important question of logical equivalence that involves the

proposition p ⇒ q and three other implications derived from it:

Definition 3.15 (Converse, Contrapositive, and Inverse)
Consider an implication p ⇒ q. Then:

• The converse of p ⇒ q is the proposition q ⇒ p.
• The contrapositive of p ⇒ q is the proposition ¬q ⇒ ¬p.
• The inverse of p ⇒ q is the proposition ¬p ⇒ ¬q.

proposition converse contrapositive inverse
p q p ⇒ q q ⇒ p ¬q ⇒ ¬p ¬p ⇒ ¬q
T T T T T T
T F F T F T
F T T F T F
F F T T T T

Figure 3.11: The
truth table for an
implication and
its contrapositive,
converse, and
inverse.

These three new implications de-
rived from the original implication
p ⇒ q—particularly the converse
and the contrapositive—will arise
frequently. Let’s compare the three
new implications to the original in
light of logical equivalence:

Example 3.21 (Implications, contrapositives, converses, inverses)
Problem: Consider the implication p ⇒ q. Which of the converse, contrapositive, and

inverse of p ⇒ q are logically equivalent to the original proposition p ⇒ q?

Solution: To answer this question, let’s build the truth table; see Figure 3.11. Thus the
proposition p ⇒ q is logically equivalent to its contrapositive ¬q ⇒ ¬p, but not to
its inverse or its converse.

Here’s a real-world example to make these results more intuitive: Thanks to Jeff
Ondich for Exam-
ple 3.22.Example 3.22 (Contrapositives, converses, and inverses)

Consider the following (true!) proposition, of the form p ⇒ q:
If you were President of the U.S. in 2006︸ ︷︷ ︸

p

, then your name is George︸ ︷︷ ︸
q

.

The contrapositive of this proposition is ¬q ⇒ ¬p, which is also true:
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If your name isn’t George, then you weren’t President of the U.S. in 2006.

But the converse q ⇒ p and the inverse ¬p ⇒ ¬q are both blatantly false:
If your name is George, then you were President of the U.S. in 2006.
If you weren’t President of the U.S. in 2006, then your name isn’t George.

Consider, for example, George Clooney, Saint George, George Lucas, and Curious
George—all named George, and none the President in 2006.

For emphasis, let’s summarize the results from Example 3.21. Any implication p ⇒ q
is logically equivalent to its contrapositive ¬q ⇒ ¬p, but it is not logically equivalent to
its converse q ⇒ p or its inverse ¬p ⇒ ¬q. You might notice, though, that the inverse of
p ⇒ q is the contrapositive of the converse of p ⇒ q (!), so the inverse and the converse
are logically equivalent to each other.

Here’s another example of the concepts of tautology and satisfiability, as they relate
to implications and converses:

Example 3.23 (Mutual implication)
Problem: Consider the conjunction of the implication p ⇒ q and its converse: in other

words, consider (p ⇒ q) ∧ (q ⇒ p). Is this proposition a tautology? Satisfiable?
Unsatisfiable? Is there a simpler proposition to which it’s logically equivalent?

Solution: We can answer this question with a truth table:
p q p ⇒ q q ⇒ p (p ⇒ q) ∧ (q ⇒ p)
T T T T T
T F F T F
F T T F F
F F T T T

Because there is a “T” in its column, (p ⇒ q) ∧ (q ⇒ p) is satisfiable (and thus
isn’t a contradiction). But that column does contain an “F” as well, and therefore
(p ⇒ q) ∧ (q ⇒ p) is not a tautology.

Notice that the truth table for (p ⇒ q) ∧ (q ⇒ p) is identical to the truth table for
p ⇔ q. (See Figure 3.4.) Thus p ⇔ q and (p ⇒ q) ∧ (q ⇒ p) are logically equivalent.
(And ⇔ is called mutual implication for this reason: p and q imply each other.)

Some other logically equivalent statements
Figure 3.12 contains a large collection of logical equivalences. These equivalences

may use some unfamiliar terminology, which we’ll define here. Informally, an operator
is commutative if the order of its arguments doesn’t matter; an operator is associative
if the way we parenthesize successive applications doesn’t matter; and an operator
is idempotent if applying it to the same argument twice gives that argument back. (In Latin: idem “same”

+ potent “strength.”addition to these definitions, there are two other frequently discussed concepts: the
identity and the zero of the operator; logical equivalences involving identities and zeros
were left to you, in Exercises 3.13–3.22.) For each equivalence in Figure 3.12, it’s worth
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Commutativity p∨ q ≡ q ∨ p
p∧ q ≡ q ∧ p
p⊕ q ≡ q⊕ p
p ⇔ q ≡ q ⇔ p

Associativity p∨ (q ∨ r) ≡ (p∨ q) ∨ r
p∧ (q ∧ r) ≡ (p∧ q) ∧ r
p⊕ (q⊕ r) ≡ (p⊕ q)⊕ r

p ⇔ (q ⇔ r) ≡ (p ⇔ q) ⇔ r
Idempotence p∨ p ≡ p

p∧ p ≡ p

Distribution of ∧ over ∨ p∧ (q∨ r) ≡ (p∧ q) ∨ (p∧ r)
Distribution of ∨ over ∧ p∨ (q∧ r) ≡ (p∨ q) ∧ (p∨ r)

Contrapositive p ⇒ q ≡ ¬q ⇒ ¬p
p ⇒ q ≡ ¬p∨ q

p ⇒ (q ⇒ r) ≡ p∧ q ⇒ r
p ⇔ q ≡ ¬p ⇔ ¬q

Mutual Implication (p ⇒ q) ∧ (q ⇒ p) ≡ p ⇔ q
De Morgan’s Laws ¬(p∧ q) ≡ ¬p∨ ¬q

¬(p∨ q) ≡ ¬p∧ ¬q
Figure 3.12: Some
logically equivalent
propositions.

De Morgan’s Laws
are named after
Augustus De
Morgan, a 19th-
century British
mathematician.

taking a few minutes to think about why the two propositions are logically equivalent.
See also Exercises 3.73–3.82.

Taking it further: There are at least two ways in which the types of logical equivalences shown in Fig-
ure 3.12 play an important role in programming. (See the discussion on p. 327.) First, most modern
languages have a feature called short-circuit evaluation of logical expressions—they evaluate conjunc-
tions and disjunctions from left to right, and stop as soon as the truth value of the logical expression is
known—and programmers can exploit this feature to make their code cleaner or more efficient. Second,
in compiled languages, an optimizing compiler can make use of logical equivalences to simplify the
machine code that ends up being executed.

3.3.3 Representing Propositions: Circuits and Normal Forms
Now that we’ve established the core concepts of propositional logic, we’ll turn to some
bigger and more applied questions. We’ll spend the rest of this section exploring two
specific ways of representing propositions: circuits, the wires and connections from
which physical computers are built; and two normal forms, in which the structure of
propositions is restricted in a particular way.

The approach we’re taking with normal forms is a commonly used idea to make
reasoning about some language L easier: we define a subset S of L, with two goals:
(1) any statement in L is equivalent to some statement in S; and (2) S is “simple” in
some way. Then we can consider any statement from the “full” language L, which we
can then “translate” into a simple-but-equivalent statement of S. Defining this subset
and its accompanying translation will make it easier to accomplish some task for all
expressions in L, while still making it easy to write statements clearly.

Taking it further: The idea of translating all propositions into a particular form has a natural analogue
in designing and implementing programming languages. For example, every for loop can be expressed
as a while loop instead, but it would be very annoying to program in a language that doesn’t have for
loops. A nice compromise is to allow for loops, but behind the scenes to translate each for loop into a
while loop. This compromise makes the language easier for the “user” programmer to use (for loops
exist!) and also makes the job of the programmer of the compiler/interpreter easier (she can worry
exclusively about implementing and optimizing while loops!).

In programming languages, this translation is captured by the notion of syntactic sugar. (The phrase
is meant to suggest that the addition of for to the language is a bonus for the programmer—“sugar on
top,” maybe—that adds to the syntax of the language.) The programming language Scheme is perhaps
the pinnacle of syntactic sugar; the core language is almost unbelievably simple. Here’s one illustration:
(and x y) (Scheme for “x ∧ y”) is syntactic sugar for (if x y #f) (that’s “if x then y else false”). So a
Scheme programmer can use and, but there’s no “real” and that has to be handled by the interpreter.

Circuits
We’ll introduce the idea of circuits by using the proposition (p ∧ ¬q) ∨ (¬p∧ q) as an
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example. (Note, by the way, that this proposition is logically equivalent to p⊕ q.)
∨

∧

q¬

p

∧

¬

q

p

Figure 3.13: A
tree-based view of
(p ∧ ¬q) ∨ (¬p∧ q).

Observe that the stated proposition is a disjunction of two smaller proposi-
tions, p ∧ ¬q and ¬p ∧ q. Similarly, p ∧ ¬q is a conjunction of two even simpler
propositions, namely p and ¬q. A representation of a proposition called a tree
continues to break down every compound proposition embedded within it.
(We’ll talk about trees in detail in Chapter 11.) The tree for (p ∧ ¬q) ∨ (¬p ∧ q)
is shown in Figure 3.13. The tree-based view isn’t much of a change from our
usual notation (p ∧ ¬q) ∨ (¬p ∧ q); all we’ve done is use the parentheses and order-of-
operation rules to organize the logical connectives. But this representation is closely
related to a very important way of viewing logical propositions: circuits.

Figure 3.14 shows the same proposition redrawn as a collection of wires and gates.
Wires carry a truth value from one physical location to another; gates are physical
implementations of logical connectives. We can think of truth values “flowing in” as

p

q

∧
∧¬

¬
∨

Figure 3.14: A
circuit-based view.

inputs to the left side of each gate, and
a truth value “flowing out” as output
from the right side of the gate. (The
only substantive difference between
Figures 3.13 and 3.14—aside from
which way is up—is whether the two
p inputs come from the same wire, and
likewise whether the two q inputs do.)

Example 3.24 (Using and and not for or)
Problem: Build a circuit for p ∨ q using only ∧ and ¬ gates.

Solution: We’ll use one of De Morgan’s Laws, which says that p∨ q ≡ ¬(¬p∧ ¬q):

p

q

¬

¬
∧ ¬

This basic idea—of replacing one logical connective by another one (or by multiple
other ones)—is a crucial part of the construction of computers themselves; we’ll return
to this idea in Section 4.4.1.

Conjunctive and Disjunctive Normal Forms
In the rest of this section, we’ll consider a way to simplify propositions: conjunctive

and disjunctive normal forms, which constrain propositions to have a particular format.
To define these restricted types of propositions, we need a basic definition: a literal is a
Boolean variable (a.k.a. an atomic proposition) or the negation of a Boolean variable.
(So p and ¬p are both literals.)
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Definition 3.16 (Conjunctive normal form)
A proposition is in conjunctive normal form (CNF) if it is the conjunction of one or more
clauses, where each clause is the disjunction of one or more literals.

Definition 3.17 (Disjunctive normal form)
A proposition is in disjunctive normal form (DNF) if it is the disjunction of one or more
clauses, where each clause is the conjunction of one or more literals.

Less formally, a proposition in conjunctive normal form is “the and of a bunch of ors,”
and a proposition in disjunctive normal form is “the or of a bunch of ands.”

Taking it further: In computer architecture and digital electronics, people usually refer to a proposition
in CNF as being a product of sums, and a proposition in DNF as being a sum of products. (There is a deep
way of thinking about formal logic based on ∧ as multiplication, ∨ as addition, 0 as False, and 1 as True;
see Exercises 3.23–3.26.)

Here is a simple example of both CNF and DNF:

Example 3.25 (Simple propositions in CNF and DNF)
The proposition (¬p ∨ q ∨ r) ∧ (¬q ∨ ¬r) ∧ (r) is in conjunctive normal form. It has
three clauses: ¬p∨ q ∨ r and ¬q∨ ¬r and r.

The proposition (¬p ∧ q ∧ r) ∨ (¬q ∧ ¬r) ∨ (r) is in disjunctive normal form, again
with three clauses: ¬p∧ q∧ r and ¬q ∧ ¬r and r.

While conjunctive and disjunctive normal forms seem like heavy restrictions on the
format of propositions, it turns out that every proposition is logically equivalent to a
CNF proposition and to a DNF proposition:

Theorem 3.1 (All propositions are expressible in CNF)
For any proposition ϕ, there is a proposition ϕcnf over the same Boolean variables and in
conjunctive normal form such that ϕ ≡ ϕcnf.

Theorem 3.2 (All propositions are expressible in DNF)
For any proposition ϕ, there is a proposition ψdnf over the same Boolean variables and in
disjunctive normal form such that ϕ ≡ ψdnf.

These two theorems are perhaps the first results that we’ve encountered that are un-
Problem-solving tip:
A good strategy
when you’re trying
to prove a not-at-all-
obvious claim is to
test out some small
examples, and then
try to start to figure
a general pattern.

expected, or at least unintuitive. There’s no particular reason for it to be clear that
they’re true—let alone how we might prove them. But we can, and we will: we’ll prove
both theorems in Section 4.4.1 and again in Section 5.4.3, after we’ve introduced some
relevant proof techniques. But, for now, here are a few examples of translating propo-
sitions into DNF/CNF.
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Example 3.26 (Translating basic connectives into DNF)
Problem: Give propositions in disjunctive normal form that are logically equivalent to

each of the following:
1. p∨ q
2. p∧ q
3. p ⇒ q
4. p ⇔ q

Solution: 1 & 2. These questions are boring: both propositions are already in DNF,
with 2 clauses (p and q) and 1 clause (p∧ q), respectively.

3. Figure 3.12 tells us that p ⇒ q ≡ ¬p∨ q, and ¬p ∨ q is in DNF.
4. The proposition p ⇔ q is true when p and q are either both true or both false,

and false otherwise. So we can rewrite p ⇔ q as (p ∧ q) ∨ (¬p ∧ ¬q). We can
check that we’ve gotten this proposition right with a truth table:

p q p ∧ q ¬p∧ ¬q (p∧ q) ∨ (¬p∧ ¬q) p ⇔ q
T T T F T T
T F F F F F
F T F F F F
F F F T T T

And here’s the task of translating basic logical connectives into CNF:

Example 3.27 (Translating basic connectives into CNF)
Problem: Give propositions in conjunctive normal form that are logically equivalent

to each of the following:
1. p ⇒ q
2. p ⇔ q
3. p⊕ q
(Note that, as with DNF, both p ∨ q and p ∧ q are already in CNF.)

Solution: 1. As above, we know that p ⇒ q ≡ ¬p∨ q, and ¬p ∨ q is also in CNF.
2. We can rewrite p ⇔ q as follows:

p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p) mutual implication (Example 3.23)

≡ (¬p∨ q) ∧ (¬q∨ p) x ⇒ y ≡ ¬x ∨ y (Figure 3.12), used twice

The proposition (¬p∨ q) ∧ (¬q∨ p) is in CNF.
3. Because p⊕ q is true as long as one of {p, q} is true and one of {p, q} is false, it’s

easy to verify via truth table that p⊕ q ≡ (p ∨ q) ∧ (¬p∨ ¬q), which is in CNF.

We’ve only given some examples of converting a (simple) proposition into a new
proposition, logically equivalent to the original, that’s in either CNF or DNF. We will
figure out how to generalize this technique to any proposition in Section 4.4.1.
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Computer Science Connections

Computational Complexity, Satisfiability, and $1,000,000
Complexity theory is the subfield of computer science devoted to under-

standing the resources—time and memory, usually—necessary to solve partic-
ular problems. It’s the subject of a great deal of fascinating current research in
theoretical computer science.3 Here is a central problem of complexity theory,

You can read more about complexity
theory in general, and the P-versus-NP
question addressed here in particular, in
most books on algorithms or the theory
of computing. Some excellent places to
read more are:
3 Thomas H. Cormen, Charles E. Leis-
ersen, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009; Jon Kleinberg
and Éva Tardos. Algorithm Design.
Addison–Wesley, 2006; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.

the satisfiability problem:
Given: A Boolean formula ϕ over variables p1, p2, . . . , pn.
Output: Is ϕ satisfiable?
The satisfiability problem is pretty simple to solve. In fact, we’ve implicitly
described an algorithm for this problem already:
• construct the truth table for the n-variable proposition ϕ; and
• check to see whether there are any “T”s in ϕ’s column of the table.
But this algorithm is not very fast, because the truth table for ϕ has lots and
lots of rows—2n rows, to be precise. (We’ve already seen this for n = 1, for
negation, and n = 2, for all the binary connectives, with 21 = 2 and 22 = 4 rows
each; in Chapter 9, we’ll address this counting issue formally.) And then even
a moderate value of nmeans that this algorithm will not terminate in your
lifetime; 2300 exceeds the number of particles in the known universe.

So, it’s clear that there is an algorithm that solves the SAT problem. What’s
not clear is whether there is a substantially more efficient algorithm to solve
the SAT problem. It’s so unclear, in fact, that nobody knows the answer,
and this question is one of the biggest open problems in computer science
and mathematics today. (Arguably, it’s the biggest.) The Clay Mathematics
Institute will even give a $1,000,000 prize to anyone who solves it.

Why is this problem so important? The reason is that, in a precise technical
sense, SAT is just as hard as a slew of other problems that have a plethora of
unspeakably useful applications: the traveling salesman problem, protein
folding, optimally packing the trunk of a car with suitcases. This slew is a
class of computational problems known as NP (“nondeterministic polynomial
time”), for which it is easy to “verify” correct answers. In the context of SAT,
that means that whenever you’ve got a satisfiable proposition ϕ, it’s very easy
for you to (efficiently) convince me that ϕ is satisfiable. Here’s how: you’ll
simply tell me a truth assignment under which ϕ evaluates to true. And I
can make sure that you didn’t try to fool me by plugging and chugging: I
substitute your truth assignment in for every variable, and then I make sure
that the final truth value of ϕ is indeed True.

One of the most important results in theoretical computer science in the
20th century—that’s saying something for a field that was founded in the 20th
century!—is the Cook–Levin Theorem:4 if one can solve SAT efficiently, then one can 4 Stephen Cook. The complexity of

theorem proving procedures. In
Proceedings of the Third Annual ACM
Symposium on Theory of Computing,
pages 151–158, 1971; and Leonid Levin.
Universal search problems. Problems of
Information Transmission, 9(3):265–266,
1973. In Russian.

solve any problem in NP efficiently. The major open question is what’s known as
the P-versus-NP question. A problem that’s in P is easy to solve from scratch.
A problem that’s in NP is easy to verify (in the way described above). So the
question is: does P = NP? Is verifying an answer to a problem no easier than
solving the problem from scratch? (It seems intuitively “clear” that the answer
is no—but nobody has been able to prove it!)
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Computer Science Connections

Short-Circuit Evaluation, Optimization, and Modern Compilers
The logical equivalences in Figure 3.12 may seem far removed from “real”

programming, but logical equivalences are actually central in modern pro-
gramming. Here are two ways in which they play an important role: if (2 > 3 && x + y < 9) {

...

} else {

...

}

Figure 3.15: A snippet of Java code. In
Java, && denotes ∧ and || denotes ∨.
The second conjunct of the if condition
will actually never be evaluated, because
2 > 3 is false, and False ∧ anything ≡
False.

Short-circuit evaluation: In most modern programming languages, a logical
expression involving ands and ors will only be evaluated until the truth
value of the expression can be determined. For an example in Java, see
Figure 3.15. Like most modern languages, Java evaluates an ∧ expression
from left to right and stops as soon as it finds a false conjunct. Similarly,
Java evaluates an ∨ expression from left to right and stops as soon as
it finds a true disjunct, because True ∨ anything ≡ True. This style of
evaluation is called short-circuit evaluation.
Two slick ways in which programmers can take advantage of short-circuit

1 if (x == 0

2 || (x-1) / x > 0.5) {

3 ...

4 }

5

6 if (simpleOrOftenFalse(x)

7 && complexOrOftenTrue(x)) {

8 ...

9 }

Figure 3.16: Two handy ways to rely on
short-circuit evaluation.

evaluation are shown in Figure 3.16.
• Lines 1–4 use short-circuit evaluation to avoid deeply nested if state-

ments to handle exceptional cases. When x = 0, evaluating the second
disjunct would cause a divide-by-zero error—but the second disjunct
isn’t evaluated when x = 0 because the first disjunct was true!

• Lines 6–9 use short-circuit evaluation to make code faster. If the sec-
ond conjunct typically takes much longer to evaluate (or if it is much
more frequently true) than the first conjunct, then careful ordering of
conjuncts avoids a long and usually fruitless computation.

Compile-time optimization: For a program written in a compiled language like
C, the source code is translated into machine-readable form by the compiler.
But this translation is not verbatim; instead, the compiler streamlines your
code (when it can!) to make it run faster.
One of the simplest types of compiler optimizations is constant folding: if
some of the values in an arithmetic or logical expression are constants—
known to the compiler at “compile time,” and thus unchanged at “run
time”—then the compiler can “fold” those constants together. Using the
rules of logical or arithmetic equivalence broadens the types of code that
can be folded in this way. For example, in C, when you write an assign-
ment statement like y = x + 2 + 3, most compilers will translate it into
y = x + 5. But what about z = 7 * x * 8? A modern compiler will op-
timize it into z = x * 56, using the commutativity of multiplication.
Because the compiler can reorder the multiplicands without affecting
the value, and this reordering allows the 7 and 8 to be folded into 56, the
compiler does the reordering and the folding.
An example using logical equivalences is shown in Figure 3.17. Because

if (p || !p) { /* "p or not p" */

x = 51;

} else {

x = 63;

}

x = 51;

Figure 3.17: Two snippets of C code.
When this code is compiled on a mod-
ern optimizing compiler (gcc 4.3.4, with
optimization turned on), the machine
code that is produced is exactly identical
for both snippets.

p ∨ ¬p is a tautology—the law of the excluded middle—no matter what the
value of p, the “then” clause is executed, not the “else” clause. Thus the
compiler doesn’t even have to waste time checking whether p is true or
false, and this optimization can be applied.
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3.3.4 Exercises
The operators ∧ and ∨ are idempotent (see Figure 3.12)—that is, p ∧ p ≡ p ∨ p ≡ p. But⇒, ⊕, and ⇔ are not
idempotent. Simplify—that is, give as-simple-as-possible propositions that are logically equivalent to—the following:
3.39 p ⇒ p 3.40 p⊕ p 3.41 p ⇔ p

Consider the proposition p ⇒ ¬p ⇒ p ⇒ q. Add parentheses to this proposition so that the resulting proposition . . .
3.42 . . . is logically equivalent to True (that is, the result is a tautology).
3.43 . . . is logically equivalent to q.
3.44 Give as simple as possible a proposition logically equivalent to the (unparenthesized) original.

Unlike the binary connectives {∧,∨,⊕,⇔}, implication is not associative. In other words, p ⇒ (q ⇒ r) and
(p ⇒ q) ⇒ r are not logically equivalent. The next few exercises explore the non-associativity of ⇒.
3.45 Prove that implication is not associative by giving a truth assignment in which p ⇒ (q ⇒ r) and
(p ⇒ q) ⇒ r have different truth values.
3.46 Consider the propositions p ⇒ (q ⇒ q) and (p ⇒ q) ⇒ q. One of these is a tautology; one of them
is not. Which is which? Prove your answer.
3.47 Consider the propositions p ⇒ (p ⇒ q) and (p ⇒ p) ⇒ q. Is either one a tautology? Satisfiable?
Unsatisfiable? What is the simplest proposition to which each is logically equivalent?

On an exam, I once asked students to write a proposition logically equivalent to p⊕ q using only the logical connectives
⇒, ¬, and ∧. Here are some of the students’ answers. Which ones are right?
3.48 ¬(p∧ q) ⇒ (¬p∧ ¬q)
3.49 (p ⇒ ¬q)∧ (q ⇒ ¬p)
3.50 (¬p ⇒ q)∧ ¬(p∧ q)
3.51 ¬

[(p∧ ¬q ⇒ ¬p∧ q)∧ (¬p∧ q ⇒ p∧ ¬q)]

3.52 Write a proposition logically equivalent to p⊕ q using only the logical connectives⇒, ¬, and ∨.

The following code uses nested conditionals, or compound propositions as conditions. Simplify each as much as possi-
ble. (For example, if p ⇒ q, it’s a waste of time to test whether q holds in a block where p is known to be true.)
3.53

if (x > 20

or (x <= 20 and y < 0))

then foo(x,y)

else bar(x,y)

3.54
if (y >= 0

or y <= x

or (x - y) * y >= 0)

then foo(x,y)

else bar(x,y)

3.55
if (x % 12 == 0):

then if not (x % 4 == 0):

then foo(x)

else bar(x)

else if (x == 17):

then baz(x)

else quz(x)

(Note that x % k == 0 is true when x mod k = 0, also
known as when k | x.)

Simplify the following propositions as much as possible.
3.56 (¬p ⇒ q)∧ (q ∧ p ⇒ ¬p)
3.57 (p ⇒ ¬p) ⇒ ((q ⇒ (p ⇒ p)) ⇒ p)

3.58 (p ⇒ p) ⇒ (¬p ⇒ ¬p) ∧ q

3.59 Is the following claim true or false? Prove your answer.
Claim: Every proposition over the single variable p is either logically equivalent to p or it is logically equiva-

lent to ¬p.

Show using truth tables that these propositions from Figure 3.10 are tautologies:
3.60 (p ⇒ q) ∧ ¬q ⇒ ¬p (Modus Tollens)
3.61 p ⇒ p∨ q
3.62 p∧ q ⇒ p
3.63 (p∨ q) ∧ ¬p ⇒ q
3.64 (p ⇒ q) ∧ (¬p ⇒ q) ⇒ q

3.65 (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)
3.66 (p ⇒ q) ∧ (p ⇒ r) ⇔ p ⇒ q ∧ r
3.67 (p ⇒ q) ∨ (p ⇒ r) ⇔ p ⇒ q ∨ r
3.68 p∧ (q ∨ r) ⇔ (p∧ q) ∨ (p∧ r)
3.69 p ⇒ (q ⇒ r) ⇔ p∧ q ⇒ r
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Show that the following propositions are tautologies:
3.70 p∨ (p∧ q) ⇔ p
3.71 p∧ (p∨ q) ⇔ p

3.72 p⊕ q ⇒ p∨ q

Prove De Morgan’s Laws:
3.73 ¬(p∧ q) ≡ ¬p∨ ¬q 3.74 ¬(p∨ q) ≡ ¬p∧ ¬q

Show the following logical equivalences regarding associativity using truth tables:
3.75 p∨ (q∨ r) ≡ (p∨ q) ∨ r
3.76 p∧ (q∧ r) ≡ (p∧ q) ∧ r

3.77 p⊕ (q⊕ r) ≡ (p⊕ q)⊕ r
3.78 p ⇔ (q ⇔ r) ≡ (p ⇔ q) ⇔ r

Show using truth tables that the following logical equivalences hold:
3.79 p ⇒ q ≡ ¬p∨ q
3.80 p ⇒ (q ⇒ r) ≡ p∧ q ⇒ r

3.81 p ⇔ q ≡ ¬p ⇔ ¬q
3.82 ¬(p ⇒ q) ≡ p ∧ ¬q

3.83 On p. 327, we discussed the use of tautologies in optimizing compilers. In particular, these
compilers will perform the following optimization, transforming the first block of code into the second:

if (p || !p) { /* "p or not p" */
x = 51;

} else {
x = 63;

}

x = 51;

The compiler performs this transformation because p∨ ¬p is a tautology—no matter what the truth value of
p, the proposition p ∨ ¬p is true. But there are situations in which this code translation actually changes the
behavior of the program, if p can be an arbitrary expression (rather than just a Boolean variable)! Describe such
a situation. (Hint: why do (some) people watch auto racing?)

p
q
r

unknown ≤ 3-gate circuit

Figure 3.18: A
circuit with at most
3 gates.

The unknown circuit in Figure 3.18 takes three inputs {p, q, r}, and either
turns on a light bulb (output of the circuit = true) or leaves it off (output =
false). For each of the following, draw a circuit—using at most three ∧, ∨,
and ¬ gates—that is consistent with the listed behavior. The light’s status is
unknown for unlisted inputs. (If multiple circuits are consistent with the given
behavior, draw any one them.)
3.84 The light is on when the true inputs are {q} or {r}. The light is off when the true inputs are {p}
or {p, q} or {p, q, r}.
3.85 The light is on when the true inputs are {p, q} or {p, r}. The light is off when the true inputs are
{p} or {q} or {r}.
3.86 The light is off when the true inputs are {p} or {q} or {r} or {p, q, r}.
3.87 The light is off when the true inputs are {p, q} or {p, r} or {q, r} or {p, q, r}.

3.88 Consider a simplified class of circuits like those from Exercises 3.84–3.87: there are two inputs
{p, q} and at most two gates, each of which is ∧, ∨, or ¬. There are a total of 24 = 16 distinct propositions
over inputs {p, q}: four different input configurations, each of which can turn the light on or leave it off.
Which, if any, of these 16 propositions cannot be expressed using up to two {∧,∨,¬} gates?

3.89 (programming required) Consider the class of circuits from Exercises 3.84–3.87: inputs {p, q, r}, and
at most three gates chosen from {∧,∨,¬}. There are a total of 28 = 256 distinct propositions over inputs
{p, q, r}: eight different input configurations, each of which can turn the light on or leave it off. Write a
program to determine how many of these 256 propositions can be represented by a circuit of this type. (If
you design it well, your program will let you check your answers to Exercises 3.84–3.88.)

3.90 Consider a set S = {p, q, r, s, t} of Boolean variables. Let ϕ = p⊕ q⊕ r ⊕ s ⊕ t. Describe briefly
the conditions under which ϕ is true. Use English and, if appropriate, standard (nonlogical) mathematical
notation. (Hint: look at the symbol ⊕ itself. What’s p + q + r + s + t, treating true as 1 and false as 0 as in Exercises
3.23–3.26?)
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1 for y = 1 ... height:
2 for x = 1 ... width:
3 if P[x,y] is more white than black:
4 error = "white" - P[x,y]
5 P[x,y] = "white"
6
7 if x > 1:
8 if x < width and not (y < height):

9 add 7
16 · error to P[x+1,y] (E)

10 else if x < width and y < height:
11 add 5

16 · error to P[x,y+1] (S)

12 add 3
16 · error to P[x+1,y+1] (SE)

13 add 1
16 · error to P[x-1,y+1] (SW)

14 add 7
16 · error to P[x+1,y] (E)

15 else if y < height
16 and not (x < width):

17 add 5
16 · error to P[x,y+1] (S)

18 add 1
16 · error to P[x-1,y+1] (SW)

19 else:
20 do nothing
21 else:
22 if x < width and not (y < height):

23 add 7
16 · error to P[x+1,y] (E)

24 else if x < width and y < height:
25 add 5

16 · error to P[x,y+1] (S)

26 add 3
16 · error to P[x+1,y+1] (SE)

27 add 7
16 · error to P[x+1,y] (E)

28 else if y < height
29 and not (x < width):

30 add 5
16 · error to P[x,y+1] (S)

31 else:
32 do nothing
33
34 else: # P[x,y] is closer to "black"
35 error = "black" - P[x,y]
36 P[x,y] = "black"
37
38 if x > 1:
39 if x < width and not (y < height):

40 add 7
16 · error to P[x+1,y] (E)

41 else if x < width and y < height:
42 add 5

16 · error to P[x,y+1] (S)

43 add 3
16 · error to P[x+1,y+1] (SE)

44 add 1
16 · error to P[x-1,y+1] (SW)

45 add 7
16 · error to P[x+1,y] (E)

46 else if y < height
47 and not (x < width):

48 add 5
16 · error to P[x,y+1] (S)

49 add 1
16 · error to P[x-1,y+1] (SW)

50 else:
51 do nothing
52 else:
53 if x < width and not (y < height):

54 add 7
16 · error to P[x+1,y] (E)

55 else if x < width and y < height:
56 add 5

16 · error to P[x,y+1] (S)

57 add 3
16 · error to P[x+1,y+1] (SE)

58 add 7
16 · error to P[x+1,y] (E)

59 else if y < height
60 and not (x < width):

61 add 5
16 · error to P[x,y+1] (S)

62 else:
63 do nothing

Figure 3.19: Some dithering code.

3.91 Dithering is a technique for converting grayscale images to black-and-
white images (for printed media like newspapers). The classic dithering algorithm
proceeds as follows. For every pixel in the image, going from top to bottom
(“north to south”), and from left to right (“west to east”):
• “Round” the current pixel to black or white. (If it’s closer to black, make it

black; if it’s closer to white, make it white.)
• This alteration to the current pixel has created “rounding error” x (in other

words, we have added x > 0 “whiteness units” by making it white, or x < 0
“whiteness units” by making it black). We compensate for this adding a total
of −x “whiteness units,” distributed among the neighboring pixels to the
“east” (add −7x/16 to the eastern neighboring pixel) “southwest” (−3x/16),
“south” (−5x/16) and “southeast” (−x/16). If any of these neighboring pixels
don’t exist (because the current pixel is on the border of the image), simply
ignore the corresponding fraction of −x (and don’t add it anywhere).

I assigned a dithering exercise in an introductory CS class, and I got, more or
less, the code in Figure 3.19 from one student. This code is correct, but it is very
repetitious. Reorganize this code so that it’s not so repetitive. In particular, rewrite
lines 7–63 ensuring that each “distribute the error” line (9, 11, 12, and 13) appears
only once if your solution.

Recall Definition 3.16: a proposition ϕ is in conjunctive normal form (CNF) if ϕ is
the conjunction of one or more clauses, where each clause is the disjunction of one or
more literals, and where a literal is an atomic proposition or its negation. Further, recall
Definition 3.17: ϕ is in disjunctive normal form (DNF) if ϕ is the disjunction of one or
more clauses, where each clause is the conjunction of one or more literals.

Give a proposition in disjunctive normal form that’s logically equivalent to . . .
3.92 ¬(p∧ q) ⇒ r
3.93 p∧ (q∨ r) ⇒ (q ∧ r)
3.94 p∨ ¬(q ⇔ p∧ r)
3.95 p⊕ (¬p ⇒ (q ⇒ r)∧ ¬r)
Give a proposition in conjunctive normal form that’s logically equivalent to . . .
3.96 ¬(p∧ q) ⇒ r
3.97 p∧ (q ⇒ (r ⇒ q⊕ r))
3.98 (p ⇒ q) ⇒ (q ⇒ r ∧ p)
3.99 p ⇔ (q ∨ r ∨ ¬p)

A CNF proposition ϕ is in 3CNF if each clause contains exactly three distinct literals.
(Note that p and ¬p are distinct literals.) In terms of the number of clauses, what’s the
smallest 3CNF formula . . .
3.100 . . . that’s a tautology?
3.101 . . . that’s not satisfiable?

Consider the set of 3CNF propositions over the variables {p, q, r} for which no clause
appears more than once. (Exercises 3.102–3.104 turn out to be boring without the restric-
tion of no repeated clauses; we could repeat the same clause as many times as we please:
(p ∨ q ∨ r) ∧ (p ∨ q ∨ r) ∧ (p ∨ q ∨ r) · · · .) Two clauses that contain precisely the same
literals (in any order) do not count as distinct. (But recall that a single clause can contain
a variable in both negated and unnegated form.) In terms of the number of clauses, what’s
the largest 3-variable distinct-clause 3CNF proposition . . .
3.102 . . . at all (with no further restrictions)?
3.103 . . . that’s a tautology?
3.104 . . . that’s satisfiable?

A proposition ϕ is in 3DNF if it is the disjunction of one or more clauses, each of which is
the conjunction of exactly three distinct literals. In terms of the number of clauses, what’s
the smallest 3DNF formula . . .
3.105 . . . that’s a tautology?
3.106 . . . that’s not satisfiable?
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3.4 An Introduction to Predicate Logic
But the fact that some geniuses were laughed at does
not imply that all who are laughed at are geniuses.
They laughed at Columbus, they laughed at Fulton,
they laughed at the Wright brothers. But they also
laughed at Bozo the Clown.

Carl Sagan (1934–1996)
Broca’s Brain: Reflections on the Romance of Science (1979)

Propositional logic, which we have been discussing thus far, gives us formal nota-
tion to encode Boolean expressions. But these expressions are relatively simple, a sort
of “unstructured programming” style of logic. Predicate logic is a more general type of
logic that allows us to write function-like logical expressions called predicates, and to
express a broader range of notions than in propositional logic.

3.4.1 Predicates
Informally, a predicate is a property that a particular entity might or might not have;
for example, being a vowel is a property that some letters do have (A, E, . . .) and some
letters do not have (B, C, . . .). A predicate isn’t the kind of thing that’s true or false, so
predicates are different from propositions; rather, a predicate is like a “proposition
with blanks” waiting to be filled in. For example:

Example 3.28 (Some predicates)
• “The integer is prime.”
• “The string is a palindrome.”
• “The person costarred in a movie with Kevin Bacon.”
• “The string is alphabetically after the string .”
• “The integer evenly divides the integer .”

Once the blanks of a predicate are filled in, the resulting expression is a proposition.
Here are some examples of propositions—some true, some false—derived from the
predicates in Example 3.28:

Example 3.29 (Some propositions derived from Example 3.28)
• “The integer 57 is prime.”
• “The string TENET is a palindrome.”
• “The person Sean Connery costarred in a movie with Kevin Bacon.”
• “The string PYTHON is alphabetically after the string PYTHAGOREAN.”
• “The integer 17 evenly divides the integer 42.”

We can now give a formal definition of predicates:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



332 CHAPTER 3. LOGIC

Definition 3.18 (Predicate)
A predicate P is a Boolean-valued function—that is, P is a function P : U → {True, False}
for a set U. The set U is called the universe or the domain of discourse, and we say that P
is a predicate over U.

When the universe U is clear from context, we will allow ourselves to be sloppy with
notation by leaving U implicit.

Although we didn’t use the name at the time, we’ve already encountered predicates,
in Chapter 2. Definition 2.18 introduced the notation {x ∈ U : P(x)} to denote the set
of those objects x ∈ U for which P is true. The set abstraction notation “selects” the
elements of U for which the predicate P is true.

Example 3.30 (Some example predicates)
Here are a few more sample predicates based on arithmetic:

1. isPrime(n): the positive integer n is a prime number.
2. isPowerOf (n, k): the integer n is an exact power of k: n = ki for some i ∈ Z≥0.
3. onlyPowersOfTwo(S): every element of the set S is a power of two.
4. Q(n, a, b): positive integer n satisfies n = a + b, and integers a and b are both prime.
5. sumOfTwoPrimes(n): positive integer n is equal to the sum of two prime numbers.

(To reiterate Definition 3.18, the isPrime predicate, for example, is a function isPrime :
Z>0 → {True, False}.)

Deriving propositions from predicates
Again, by plugging particular values into the predicates from Example 3.30, we get

propositions, each of which has a truth value:

Example 3.31 (Propositions derived from predicates)
Using the predicates in Example 3.30, let’s figure out the truth values of the proposi-
tions isPrime(261), isPrime(262),Q(8, 3, 5), and Q(9, 3, 6). For each, we’ll simply plug
the given arguments into the definition of the predicate and figure out the truth
value of the resulting proposition.

• A little arithmetic shows that 261 = 3 · 87; thus isPrime(261) = False.
• Similarly, we have 262 = 2 · 131, so isPrime(262) = False.
• To compute the truth value of Q(8, 3, 5), we simply plug n = 8, a = 3, and b = 5 into

the definition of Q(n, a, b). The proposition Q(8, 3, 5) requires that the positive integer
8 satisfies 8 = 3 + 5, and the integers 3 and 5 are both prime. All of the requirements are
met, so Q(8, 3, 5) = True.

• On the other hand, Q(9, 3, 6) = False because Q(9, 3, 6) requires that 9 = 3 + 6, and
that the integers 3 and 6 are both prime. But 6 isn’t prime.
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Just like the propositional logical connectives, each predicate takes a fixed number of
arguments. So a predicate might be unary (taking one argument, like the predicate
isPrime); or binary (taking two arguments, like isPowerOf ); or ternary (taking three
arguments, like Q from Example 3.30); and so forth. Here are a few more examples:

Example 3.32 (More propositions derived from predicates)
Problem: Using the predicates in Example 3.30, find the truth values of these proposi-

tions:
1. sumOfTwoPrimes(17) and sumOfTwoPrimes(34)
2. isPowerOf (16, 2) and isPowerOf (2, 16)
3. onlyPowersOfTwo({1, 2, 8, 128})

Solution: As before, we just plug the given arguments into the definition:
1. sumOfTwoPrimes(17) = False: the only way to get an odd number n by adding

two prime numbers is for one of those prime numbers to be 2—but 17− 2 = 15,
and 15 isn’t prime. But sumOfTwoPrimes(34) = True, because 34 = 17 + 17, and 17
is prime. (And the other 17 is prime, too.)

2. isPowerOf (16, 2) = True because 24 = 16 (and the exponent 4 is an integer), but
isPowerOf (2, 16) = False because 161/4 = 2 (and 1/4 is not an integer).

3. onlyPowersOfTwo({1, 2, 8, 128}) = True because every element of {1, 2, 8, 128} is a
power of two: {1, 2, 8, 128} = {20, 21, 23, 27}.

These brief examples may already be enough to begin to give you a sense of the power
of logical abstraction that predicates grant us: we can now consider the same logical
“condition” applied to two different “arguments.” In a sense, propositional logic is
like programming without functions; letting ourselves use predicates allows us to
write two related propositions using related notation, and to reason simultaneously
about multiple propositions—just like writing a function in Java allows you to think
simultaneously about the same function applied to different arguments.

Taking it further: Predicates give a convenient way of representing the state of play of multiplayer
games like Tic-Tac-Toe, checkers, and chess. The basic idea is to define a predicate P(B) that expresses
“Player 1 will win from board position B if both players play optimally.” For more on this idea, and
on the application of logic (both predicate and propositional) to playing these kinds of games, see the
discussion on p. 344.

3.4.2 Quantifiers
We’ve seen that we can form a proposition from a predicate by applying that predicate
to a particular argument. But we can also form a proposition from a predicate using
quantifiers, which allow us to formalize statements like every Java program contains at
least four for loops (false!) or there is a proposition that cannot be expressed using only the
connectives ∧ and ∨ (true! See Exercise 4.71).

These types of statements are expressed by the two standard quantifiers, the univer-
sal (“every”) and existential (“some”) quantifiers (see Figure 3.20):
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∀x ∈ S : P(x) “for all”
(universal quantifier)

true if P(x) is true for every x ∈ S.

∃x ∈ S : P(x) “there exists”
(existential quantifier)

true if P(x) is true for at least one x ∈ S.

Figure 3.20: Sum-
mary of notation for
predicate logic.

Definition 3.19 (Universal quantifier (“for all”): ∀)
Let P be a predicate over the universe S. The proposition ∀x ∈ S : P(x) (“for all x in S, P(x)”)
is true if, for every possible x ∈ S, P(x) is true.

Definition 3.20 (Existential quantifier (“there exists”): ∃)
Let P be a predicate over the universe S. The proposition ∃x ∈ S : P(x) (“there exists an x in
S such that P(x)”) is true if, for at least one possible x ∈ S, we have that P(x) is true.

Here’s an example of two simple numerical propositions using these quantifiers:

The for all notation
is ∀, an upside-
down ‘A’ as in “all”;
the exists notation
is ∃, a backward
‘E’ as in “exists.”
(Annoyingly, they
had to be flipped in
different directions:
a backward ’A’ is
still an ’A,’ and an
upside-down ’E’ is
still an ’E.’)

Example 3.33 (Simple propositions using quantifiers)
Problem: What are the truth values of the following two propositions?

1. ∀n ∈ Z≥2 : isPrime(n)
2. ∃n ∈ Z≥2 : isPrime(n)

Solution: 1. False. This proposition says “every integer n ≥ 2 is prime.” This state-
ment is false because, for example, the integer 32 is greater than or equal to 2
and is not prime.

2. True. The proposition says “there exists an integer n ≥ 2 that is prime.” This
statement is true because, for example, the integer 31 (which is greater than or
equal to 2) is prime.

isPrime(n): n ∈ Z>0 is a
prime number.

isPowerOf (n, k): n ∈ Z is an
exact power of k.

onlyPowersOfTwo(S): every
element of S is a power
of two.

Q(n, a, b): n ∈ Z>0 satisfies
n = a + b, and a, b ∈ Z are
both prime.

sumOfTwoPrimes(n):
n ∈ Z>0 is equal to the
sum of two prime
numbers.

Figure 3.21: Re-
minder of the
predicates from
Example 3.30.

In addition, we can make
precise many intuitive
statements using quanti-
fiers. For example, we can
use quantifiers to formal-
ize the predicates from
Example 3.30. (See Figure 3.21 for a reminder.)

Example 3.34 (Some example predicates, formalized)
isPrime(n): An integer n ∈ Z>0 is prime if and only if n ≥ 2 and the only integers

that evenly divide n are 1 and n itself. Thus we are really expressing a condition on
every candidate divisor d: either d ∈ {1, n}, or d doesn’t evenly divide n. Using the
“divides” notation from Definition 2.10, we can formalize isPrime(n) as

n ≥ 2∧
[
∀d ∈ Z≥1 : (d | n ⇒ d = 1 ∨ d = n)

]
.

isPowerOf (n, k): We can formalize this predicate as ∃i ∈ Z≥0 : n = ki.
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onlyPowersOfTwo(S): Because isPowerOf (n, 2) expresses the condition that n is a
power of two, we can formalize this predicate as ∀x ∈ S : isPowerOf (x, 2).

Q(n, a, b): Formalizing Q actually doesn’t require a quantifier at all; we can simply
write Q(n, a, b) as (n = a + b) ∧ isPrime(a) ∧ isPrime(b).

sumOfTwoPrimes(n): This predicate requires that there exist prime numbers a and b
that sum to n. Given our definition of Q, we can write sumOfTwoPrimes(n) as

∃〈a, b〉 ∈ Z × Z : Q(n, a, b).

(“There exists a pair of integers 〈a, b〉 such that Q(n, a, b).”) Or we could write
sumOfTwoPrimes(n) as ∃a ∈ Z : [∃b ∈ Z : Q(n, a, b)], by nesting one quantifier
within the other. (See Section 3.5.)

Here’s one further example, regarding the prefix relationship between two strings:

Example 3.35 (Prefixes, formalized)
A binary string x ∈ {0, 1}k is a prefix of the binary string y ∈ {0, 1}n, for n ≥ k, if y is x
with some extra bits added on at the end. For example, 01 and 0110 are both prefixes
of 01101010, but 1 is not a prefix of 01101010. If we write |x| and |y| to denote the
length of x and y, respectively, then we can formalize isPrefixOf (x, y) as

|x| ≤ |y| ∧
[
∀i ∈ {i ∈ Z : 1 ≤ i ≤ |x|} : xi = yi

]
.

In other words, y must be no shorter than x, and the first |x| characters of y must
equal their corresponding characters in x.

Quantifiers as loops
1: for x in S:
2: if not P(x) then
3: return False
4: return True

(a) A loop corresponding to ∀x ∈ S : P(x).

1: for x in S:
2: if Q(x) then
3: return True
4: return False

(b) A loop corresponding to ∃x ∈ S : Q(x).

Figure 3.22: Two
for loops that
return the value of
∀x ∈ S : P(x) and
∃x ∈ S : Q(x).

One useful way of thinking about these quantifiers is by
analogy to loops in programming. If we ever encounter an
x ∈ S for which ¬P(x) = True, then we immediately know
that ∀x ∈ S : P(x) is false. Similarly, any x ∈ S for which
Q(x) = True is enough to demonstrate that ∃x ∈ S : Q(x)
is true. But if we “loop through” all candidate values of x
and fail to encounter an x with ¬P(x) or Q(x), we know that
∀x ∈ S : P(x) is true or ∃x ∈ S : Q(x) is false. By this analogy,
we might think of the two standard quantifiers as executing
the programs in Figure 3.22(a) for ∀, and Figure 3.22(b) for ∃.

Another intuitive and useful way to think about these quantifiers is as a supersized
version of ∧ and ∨:

∀x ∈ {x1, x2, . . . , xn} : P(x) ≡ P(x1) ∧ P(x2) ∧ · · · ∧ P(xn)
∃x ∈ {x1, x2, . . . , xn} : P(x) ≡ P(x1) ∨ P(x2) ∨ · · · ∨ P(xn)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



336 CHAPTER 3. LOGIC

The first of these propositions is true only if every one of the P(xi) terms is true; the
second is true if at least one of the P(xi) terms is true.

There is one way in which these analogies are loose, though: just as for ∑ (summa-
tion) and ∏ (product) notation (from Section 2.2.7), the loop analogy only makes sense
when the domain of discourse is finite! The Figure 3.22(a) “program” for a true propo-
sition ∀x ∈ Z : P(x) would have to complete an infinite number of iterations before
returning True. But the intuition may still be helpful.

Precedence and parenthesization
As in propositional logic, we’ll adopt standard conventions regarding order of op-

erations so that we don’t overdose on parentheses. We treat the quantifiers ∀ and ∃ as
binding tighter than the propositional logical connectives. Thus

∀x ∈ S : P(x) ⇒ ∃y ∈ S : P(y)
will be understood to mean

[
∀x ∈ S : P(x)

]
⇒

[
∃y ∈ S : P(y)

]
.

To express the other reading (which involves nested quantifiers; see Section 3.5), we
can use parentheses explicitly, by writing ∀x ∈ S : [P(x) ⇒ ∃y ∈ S : P(y)].

Free and bound variables
Consider the variables x and y in the expressions

3 | x and ∀y ∈ Z : 3 | y.
Understanding the first of these expressions requires knowledge of what x means,
whereas the second is a self-contained statement that can be understood without any
outside knowledge. The variable x is called a free or unbound variable: its value is not
fixed by the expression. In contrast, the variable y is a bound variable: its value is de-
fined within the expression itself. We say that the quantifier binds the variable y, and
the scope or body of the quantifier is the part of the expression in which it has bound
y. (We’ve encountered bound variables before; they arise whenever a variable name
is assigned a value within an expression. For example, the variable i is bound in the
arithmetic expression ∑10

i=1 i2, as is the variable n in
{
n ∈ Z : |n| ≤ |n2|

}
.)

A single expression can contain both free and bound variables: for example, the
expression ∃y ∈ Z≥0 : x ≥ y contains a bound variable y and a free variable x. Here’s
another example:

Example 3.36 (Free and bound variables)
Problem: Which variables are free in the following expression?

[
∀x ∈ Z : x2 ≥ y

]
∧
[
∀z ∈ Z : y = z∨ zy = 1

]

Solution: The variable y doesn’t appear as the variable bound by either of the quan-
tifiers in this expression, so y is a free variable. Both x and z are bound by the
universal quantifiers. (Incidentally, this expression is true if and only if y = 0.)
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To test whether a particular variable x is free or bound in an expression, we can
(consistently) replace x by a different name in that expression. If the meaning stays the
same, then x is bound; if the meaning changes, then x is free. For example:

Example 3.37 (Testing for free and bound variables)
Consider the following pairs of propositions:

∃x ∈ S : x > 251 and ∃y ∈ S : y > 251 (A)
x ≥ 42x and y ≥ 42y (B)

The expressions in (A) express precisely the same condition, namely: some element of S
is greater than 251. Thus, the variables x and y in these two expressions are bound.

But the expressions in (B) mean different things, in the sense that we can construct
a context in which these two statements have different truth values (for example,
x = 3 and y = −2). The first expression states a condition on the value of x, and the
latter states a condition on the value of y. So x is a free variable in “x ≥ 42x.”

Taking it further: The free-versus-bound-variable distinction is also something that may be familiar
from programming, at least in some programming languages. There are some interesting issues in the
design and implementation of programming languages that center on how free variables in a function
definition, for example, get their values. See the discussion on p. 345.

An expression of predicate logic that contains no free variables is called fully quan-
tified. For expressions that are not fully quantified, we adopt a standard convention
that any unbound variables in a stated claim are implicitly universally quantified. For
example, consider these claims:
Claim A: If x ≥ 1, then x2 ≤ x3.
Claim B: For all x ∈ R, if x ≥ 1, then x2 ≤ x3.
When we write a (true) claim like Claim A, we will implicitly interpret it to mean
Claim B. (Note that Claim B also explicitly notes R as the domain of discourse, which
was left implicit in Claim A.)

3.4.3 Theorem and Proof in Predicate Logic
Recall that a tautology is a proposition that is always true—in other words, it is true
no matter what each Boolean variable p in the proposition “means” (that is, whether
p is true or false). In this section, we will be interested in the corresponding notion
of always-true statements of predicate logic, which are called theorems. A statement
of predicate logic is “always true” when it’s true no matter what its predicates mean.
(Formally, the “meaning” of a predicate P is the set of elements of the universe U for
which the predicate is true—that is, {x ∈ U : P(x)}.)

Definition 3.21 (Theorems in predicate logic)
A fully quantified expression of predicate logic is a theorem if and only if it is true for every
possible meaning of each of its predicates.
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Analogously, two fully quantified expressions are logically equivalent if, for every possi-
ble meaning of their predicates, the two expressions have the same truth values.

We’ll begin with a simple example of a theorem and a nontheorem:

Example 3.38 (A theorem of predicate logic)
Let S be any set. The following claim is true regardless of what the predicate P denotes:

∀x ∈ S :
[
P(x)∨ ¬P(x)

]
.

Indeed, this claim simply says that every x ∈ S either makes P(x) true or P(x) false.
And that assertion is true if the predicate P(x) is “x ≥ 42” or “x has red hair” or
“x prefers programming in Python to playing Parcheesi”—indeed, it’s true for any
predicate P.

Example 3.39 (A nontheorem)
Let’s show that the following proposition is not a theorem:

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : ¬P(x)

]
.

A theorem must be true regardless of P’s meaning, so we can establish that this
proposition isn’t a theorem by giving an example predicate that makes it false. Here’s
one: let P be isPrime (where S is Z). Observe that ∀x ∈ Z : isPrime(x) is false because
isPrime(4) = False; and ∀x ∈ Z : ¬isPrime(x) is false because ¬isPrime(5) = False. Thus
the given proposition is false when P is isPrime, and so it is not a theorem.

Note the crucial difference between Example 3.38, which states that every element of
S either makes P true or makes P false, and Example 3.39, which states that either every
element of S makes P true, or every element of S makes P false. (Intuitively, it’s the difference
between “Every letter is either a vowel or a consonant” and “Every letter is a vowel or
every letter is a consonant.” The former is true; the latter is false.)

Example 3.39 establishes that the proposition [∀x ∈ S : P(x)]∨ [∀x ∈ S : ¬P(x)] isn’t
true for every meaning of the predicate P, but it may be true for somemeanings. For
example, if P(x) is the predicate x2 ≥ 0 and S is the set R, then this disjunction is true
(because ∀x ∈ R : x2 ≥ 0 is true).

The challenge of proofs in predicate logic
The remainder of this section states some theorems of predicate logic, along with an

initial discussion of how we might prove that they’re theorems. (A proof of a statement
is simply a convincing argument that the statement is a theorem.) Much of the rest of
the book will be devoted to developing and writing proofs of theorems like these, and
Chapter 4 will be devoted exclusively to some techniques and strategies for proofs.
(This section will preview some of the ideas we’ll see there.) Some theorems of pred-
icate logic are summarized in Figure 3.23; we’ll prove a few of them here, and you’ll
return to some of the others in the exercises.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.



3.4. AN INTRODUCTION TO PREDICATE LOGIC 339

∀x ∈ S :
[
P(x) ∨ ¬P(x)

]

¬
[
∀x ∈ S : P(x)

]
⇔
[
∃x ∈ S : ¬P(x)

]
De Morgan’s Laws (quantified form)

¬
[
∃x ∈ S : P(x)

]
⇔
[
∀x ∈ S : ¬P(x)

]

[
∀x ∈ S : P(x)

]
⇒
[
∃x ∈ S : P(x)

]
if the set S is nonempty

∀x ∈ ∅ : P(x) Vacuous quantification
¬∃x ∈ ∅ : P(x)

∃x ∈ S :
[
P(x) ∨Q(x)

]
⇔

[
∃x ∈ S : P(x)

]
∨
[
∃x ∈ S : Q(x)

]

∀x ∈ S :
[
P(x) ∧Q(x)

]
⇔

[
∀x ∈ S : P(x)

]
∧
[
∀x ∈ S : Q(x)

]

∃x ∈ S :
[
P(x) ∧Q(x)

]
⇒

[
∃x ∈ S : P(x)

]
∧
[
∃x ∈ S : Q(x)

]

∀x ∈ S :
[
P(x) ∨Q(x)

]
⇐

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : Q(x)

]

[
∀x ∈ S : P(x) ⇒ Q(x)

]
∧
[
∀x ∈ S : P(x)

]
⇒
[
∀x ∈ S : Q(x)

]

[
∀x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∀x ∈ S : P(x) ⇒ Q(x)

]

[
∃x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∃x ∈ S : P(x)∧Q(x)

]

ϕ ∧
[
∃x ∈ S : P(x)

]
⇔
[
∃x ∈ S : ϕ∧ P(x)

]
if x does not appear as a free variable in ϕ

ϕ ∨
[
∀x ∈ S : P(x)

]
⇔
[
∀x ∈ S : ϕ∨ P(x)

]
if x does not appear as a free variable in ϕ

Figure 3.23: A few
theorems involving
quantification.

While predicate logic allows us to express claims that we couldn’t state without
quantifiers, that extra expressiveness comes with a cost! For a quantifier-free proposi-
tion (like all propositions in Sections 3.2–3.3), there is a straightforward—if tedious—
algorithm to decide whether a given proposition is a tautology: first, build a truth
table for the proposition; and, second, check to make sure that the proposition is true
in every row. It turns out that the analogous question for predicate logic is much more
difficult—in fact, impossible to solve in general: there’s no algorithm that’s guaranteed
to figure out whether a given fully quantified expression is a theorem! Demonstrating
that a statement in predicate logic is a theorem will require you to think in a way that
demonstrating that a statement in propositional logic is a tautology did not.

Taking it further: See the discussion on p. 346 for more about the fact that there’s no algorithm guaran-
teed to determine whether a given proposition is a theorem. The absence of such an algorithm sounds
like bad news; it means that proving predicate-logic statements is harder, because you can’t just plug-
and-chug into a simple algorithm to figure out whether a given statement is actually always true. But
this fact is also precisely the reason that creativity plays a crucial role in proofs and in theoretical com-
puter science more generally—and why, arguably, proving things can be fun! (For me, this difference is
exactly why I find Sudoku less interesting than crossword puzzles: when there’s no algorithm to solve a
problem, we have to embrace the creative challenge in attacking it.)

3.4.4 A Few Examples of Theorems and Proofs
In the rest of this section, we will see a few further theorems of predicate logic, with
proofs. As we’ve said, there’s no formulaic approach to prove these theorems; we’ll
need to employ a variety of strategies in this endeavor.
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Negating quantifiers: a first example
Suppose that your egomaniacal, overconfident partner from Intro CS wanders into

the lab and says For any array A that you give me, partner, my implementation of insertion
sort correctly sorts A. You know, though, that your partner is wrong. (You spot a bug
in his egomaniacal code.) What would that mean? Well, you might reply, gently but
firmly: There’s an array A for which your implementation of insertion sort does not correctly
sort A. The equivalence that you’re using is a theorem of predicate logic:

Example 3.40 (Negating universal quantifiers)
Let’s prove the equivalence you’re using to debunk your partner’s claim:

¬
[
∀x ∈ S : P(x)

]
⇔
[
∃x ∈ S : ¬P(x)

]
.

Perhaps the easiest way to view this claim is as a quantified version of the tautology
¬(p∧ q) ⇔ ¬p∨ ¬q, which was one of De Morgan’s Laws from propositional logic. If
we think of ∀x ∈ S : P(x) as P(x1)∧ P(x2) ∧ P(x3) ∧ · · · , then

¬
[
∀x ∈ S : P(x)

] ∼∼∼ ¬
[
P(x1) ∧ P(x2)∧ P(x3) ∧ · · ·

]

≡ [¬P(x1) ∨ ¬P(x2) ∨ ¬P(x3) ∨ · · · ]

∼∼∼ ∃x ∈ S : ¬P(x),

where the second line follows by the propositional version of De Morgan’s Laws.
There is something slightly more subtle to our claim because the set S might be
infinite, but the idea is identical. If there’s an a ∈ S such that P(a) = False, then
∃x ∈ S : ¬P(x) is true (because a is an example) and ∀x ∈ S : P(x) is false (because a
is a counterexample). And if every a ∈ S has P(a) = True, then ∃x ∈ S : ¬P(x) is false
and ∀x ∈ S : P(x) is true.

The analogous claim for the negation of ∃x ∈ S : P(x) is also a theorem:

Example 3.41 (Negating existential quantifiers)
Let’s prove that this claim is a theorem, too:

¬[∃x ∈ S : P(x)]⇔ [∀x ∈ S : ¬P(x)].

To see that this claim is true for an arbitrary predicate P, we start with the claim
from Example 3.40, but using the predicate Q(x) := ¬P(x). (Note that Q is also a
predicate—so Example 3.40 holds for Q too!) Thus we know that

¬[∀x ∈ S : Q(x)]⇔ [∃x ∈ S : ¬Q(x)],

and, because p ⇔ q ≡ ¬p ⇔ ¬q, we therefore also know that
[∀x ∈ S : Q(x)]⇔ ¬[∃x ∈ S : ¬Q(x)].
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But Q(x) is just ¬P(x) and ¬Q(x) is just P(x), by definition of Q, and so we have
[
∀x ∈ S : ¬P(x)

]
⇔ ¬

[
∃x ∈ S : P(x)

]
.

Thus we’ve now shown that the desired claim is true for any predicate P, so it is a
theorem.

All implies some: a proof of an implication
The entirety of Chapter 4 is devoted to proofs and proof techniques; there’s lots

more there about how to approach proving or disproving new claims. But here we’ll
preview a particularly useful proof strategy for proving an implication, and use it to
establish another theorem of predicate logic. Here’s the method of proof:

Definition 3.22 (Proof by assuming the antecedent)
Suppose that we must prove an implication ϕ⇒ ψ. Because the only way for ϕ⇒ ψ to fail
to be true is for ϕ to be true and ψ to be false, to prove that the implication ϕ ⇒ ψ is always
true, we will rule out the one scenario in which it wouldn’t be. Specifically, we assume that ϕ
is true, and then prove that ψ must be true too, under this assumption.

(Recall from the truth table of ⇒ that the only way for the implication ϕ ⇒ ψ to be
false is when ϕ is true but ψ is false. Also recall that the proposition ϕ is called the
antecedent of the implication ϕ ⇒ ψ; hence this proof technique is called assuming
the antecedent.) Here are two examples of proofs that use this technique, one from
propositional logic and one from arithmetic:

• Let’s prove that p ⇒ p ∨ q is a tautology: we assume that the antecedent p is true,
and we must prove that the consequent p ∨ q is true too. But that’s obvious, because
p is true (by our assumption), and True∨ q ≡ True.

• Let’s prove that if x is a perfect square, then 4x is a perfect square: assume that x is a
perfect square, that is, assume that x = k2 for an integer k. Then 4x = 4k2 = (2k)2 is a
perfect square too, because 2k is also an integer.

Finally, here’s a theorem of predicate logic that we can prove using this technique:

Problem-solving
tip: When you’re
facing a statement
that contains a lot
of mathematical
notation, try to
understand it by
rephrasing it as an
English sentence.
Restating the
assertion from
Example 3.42 in
English makes it
pretty obvious that
it’s true: if everyone
in S satisfies P—
and there’s actually
someone in S—then
of course someone in
S satisfies P!

Example 3.42 (If everybody’s doing it, then somebody’s doing it)
Consider the following proposition, for an arbitrary nonempty set S:

[
∀x ∈ S : P(x)

]
⇒

[
∃x ∈ S : P(x)

]
.

We’ll prove this claim by assuming the antecedent. Specifically, we assume
∀x ∈ S : P(x), and we need to prove that ∃x ∈ S : P(x).

Because the set S is nonempty, we know that there’s at least one element a ∈ S. By
our assumption, we know that P(a) is true. But because P(a) is true, then it’s immedi-
ately apparent that ∃x ∈ S : P(x) is true too—because we can just pick x := a.
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Vacuous quantification
Consider the proposition All even prime numbers greater than 12 have a 3 as their last

digit. Write P to denote the set of all even prime numbers greater than 12; formalized,
then, this claim can be written as ∀n ∈ P : n mod 10 = 3. Is this claim true or false?
It has to be true! The point is that P actually contains no elements (there are no even
prime numbers other than 2, because an even number is by definition divisible by 2).
Thus this claim says: for every n ∈ ∅, something-or-other is true of n. But there is no n
in ∅, so the claim has to be true! The general statement of the theorem is

∀x ∈ ∅ : P(x).

Quantification over the empty set is called vacuous quantification; this proposition is
said to be vacuously true.

Here’s another way to see that ∀x ∈ ∅ : P(x) is a theorem, using the De Morgan–like
view of quantification. The negation of ∀x ∈ ∅ : P(x) is ∃x ∈ ∅ : ¬P(x), but there
never exists any element x ∈ ∅, let alone an element x ∈ ∅ such that ¬P(x). Thus
∃x ∈ ∅ : ¬P(x) is false, and therefore its negation ¬∃x ∈ ∅ : ¬P(x), which is equivalent
to ∀x ∈ ∅ : P(x), is true.

Disjunctions and quantifiers
Here’s one last example, where we’ll figure out when the “or” of two quantified

statements can be expressed as one single quantified statement:

Problem-solving
tip: In thinking
about a question
like whether (A)
from Example 3.43
is a theorem, it’s
often useful to
get intuition by
plugging in a few
sample values for S,
P, and Q.

Example 3.43 (Disjunctions and quantifiers)
Consider the following two propositions, for an arbitrary set S:

∀x ∈ S :
[
P(x)∨Q(x)

]
⇔

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : Q(x)

]
(A)

∃x ∈ S :
[
P(x)∨Q(x)

]
⇔

[
∃x ∈ S : P(x)

]
∨
[
∃x ∈ S : Q(x)

]
(B)

Problem: Is either (A) or (B) a theorem? Prove your answers.

Solution: Claim (B) is a theorem. To prove it, we’ll show that the left-hand side
implies the right-hand side, and vice versa. (That is, we’re proving p ⇔ q
by proving both p ⇒ q and q ⇒ p, which is a legitimate proof because
p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p).) Both proofs will use the technique of assuming
the antecedent.
• First, suppose that ∃x ∈ S : [P(x)∨ Q(x)] is true. Then there is some particular

x∗ ∈ S for which either P(x∗) or Q(x∗). But in either case, we’re done: if P(x∗)
then ∃x ∈ S : P(x)—in particular, x∗ satisfies the condition; if Q(x∗) then
∃x ∈ S : Q(x).

• Conversely, suppose that [∃x ∈ S : P(x)] ∨ [∃x ∈ S : Q(x)] is true. Thus either
there’s an x∗ ∈ S such that P(x∗) or an x∗ ∈ S such that Q(x∗). That x∗ suffices to
make the left-hand side true.
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On the other hand, (A) is not a theorem, for much the same reason as in Exam-
ple 3.39. (In fact, if Q(x) := ¬P(x), then Examples 3.38 and 3.39 precisely show
that (A) is not a theorem.) The set Z and the predicates isOdd and isEven make (A)
false: the left-hand side is true (“all integers are either even or odd”) but the right-
hand side is false (“either (i) all integers are even, or (ii) all integers are odd”).

Although (A) from this example is not a theorem, one direction of it is; we’ll prove this
implication as another example:

Example 3.44 (Disjunction, quantifiers, and one-way implications)
The ⇐ direction of (A) from Example 3.43 is a theorem:

∀x ∈ S :
[
P(x)∨Q(x)

]
⇐

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : Q(x)

]
.

To convince yourself of this claim, observe that if P(x) is true for an arbitrary x ∈ S,
then it’s certainly true that P(x)∨Q(x) is true for an arbitrary x ∈ S too. And if Q(x) is
true for every x ∈ S, then, similarly, P(x)∨Q(x) is true for every x ∈ S.

To prove this claim, we assume the antecedent [∀x ∈ S : P(x)]∨ [∀x ∈ S : Q(x)].
Thus either [∀x ∈ S : P(x)] or [∀x ∈ S : Q(x)], and, in either case, we’ve argued that
P(x)∨Q(x) is true for all x ∈ S.

You’ll have a chance to consider a number of other theorems of predicate logic in the
exercises, including the ∧-analogy to Examples 3.43–3.44 (in Exercises 3.130–3.131).
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Computer Science Connections

Game Trees, Logic, and Winning Tic-Tac(-Toe)
In 1997, Deep Blue, a chess-playing program developed by IBM,5 beat the 5 Murray Campbell, A. Joseph Hoane

Jr., and Feng-hsiung Hsu. Deep Blue.
Artificial Intelligence, 134:57–83, 2002.

chess Grandmaster Garry Kasparov in a six-match series. This event was a
turning point in the public perception of computation and artificial intelli-
gence; it was the first time that a computer had outperformed the best humans
at something that most people tended to identify as a “human endeavor.”
Ten years later, a research group developed a program called Chinook, a per-
fect checkers-playing system: from any game position arising in its games,
Chinook chooses the best possible legal move.6

6 Jonathan Schaeffer, Neil Burch, Yngvi
Bjornsson, Akihiro Kishimoto, Martin
Muller, Rob Lake, Paul Lu, and Steve
Sutphen. Checkers is solved. Science,
317(5844):1518–1522, 14 September 2007.

While chess and checkers are very complicated games, the basic ideas
of playing them—ideas based on logic—are shared with simpler games.
Consider Tic-Tac, a 2-by-2 version of Tic-Tac-Toe. Two players, O and X, make

Thanks to Jon Kleinberg for suggesting
this game.

alternate moves, starting with O; a player wins by occupying a complete row
or column. Diagonals don’t count, and if the board is filled without O or
X winning, then the game is a draw. Note that—unless O is tremendously
dull—Owill win the game, but we will use a game tree (Figure 3.24), which
represents all possible moves, to systematize this reasoning.

Here’s the basic idea. Define P(B) to be the predicate

|
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O |
|

| O
|

|
O |

|
| O

X | O
|

| O
X |

| O
| X

X | O
O |

X | O
| O

O | O
X |

| O
X | O

O | O
| X

| O
O | X

X | O
O | X

X | O
O | X

Figure 3.24: 25% of the Tic-Tac game
tree. (The missing 75% is rotated, but
otherwise identical.)

P(B) := “Player O wins under optimal play starting from board B.”

For example, P( X |
O | O

) = True because O has already won; and P( O | X
X | O

) = False
because it’s a draw. The answer to the question “does O win Tic-Tac if both
players play optimally?” is the truth value of P( |

|
). If it’s O’s turn in board

B, then P(B) is true if and only if there exists a possible move for O leading to
a board B′ in which P(B′); if it’s X’s turn, then P(B) is true if and only if every
possible move made by X leads to a board B′ in which P(B′). So

P( | O
|

) = P( X | O
|

) ∧ P( | O
X |

) ∧ P( | O
| X

)
and P( |

|
) = P( O |

|
) ∨ P( | O

|
) ∨ P( |

O |
) ∨ P( |

| O
).

The game tree, labeled appropriately, is shown in Figure 3.25. If we view the
truth values from the leaves as “bubbling up” from the bottom of the tree,
then a board B gets assigned the truth value True if and only if Player O can
guarantee a win from the board B.

Some serious complications arise in writing a program to play more com-
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∨
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∧ ∧ ∧ ∧

∧ ∧T T T T

F F
Figure 3.25: The game tree, with each
win for O labeled by T, each loss/draw
by F, ∨ if it’s Player O’s turn, and ∧ if it’s
Player X’s turn.

plicated games like checkers or chess. Here are just a few of the issues that
one must confront in building a system like Deep Blue or Chinook:7

For more on game trees and algorithms
for exploring large search spaces, see a
good artificial intelligence (AI) text like
7 Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

• There are ≈ 500,000,000,000,000,000,000 different checkers positions—and
≈ 1040 chess positions!—so we can’t afford to represent them all. (Luckily,
we can choose moves so most positions are never reached.)

• Approximately one bit per trillion is written incorrectly merely in copying
data on current hard disk technologies. So a program constructing a massive
structure like the checkers game tree must “check its work.”

• For a game as big as chess, we can’t afford to compute all the way to the
bottom of the tree; instead, we estimate the quality of each position after
computing a handful of layers deep in the game tree.
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Computer Science Connections

Nonlocal Variables and Lexical vs. Dynamic Scoping
In a function f written in a programming language—say, C or Python—we

can use several different types of variables that store values:
• local variables, whose values are defined completely within the body of f;
• parameters, inputs to f whose value is specified when f is invoked;
• nonlocal variables, which get their value from other contexts. The most

common type of these “other” variables is a global variable, which persists
throughout the execution of the entire program.
For an example function (written in C and Python as illustrative examples)

int addB(int a) {

return a + b;

}

def addB(a):

return a + b

Figure 3.26: A function addB written
in C and analogous function addB

written in Python. Here addB takes
one (integer) parameter a, accesses a
nonlocal variable b, and returns a + b.

that uses both a parameter and a nonlocal variable, see Figure 3.26. In the
body of this function, the variable a is a bound variable; specifically, it is bound
when the function is invoked with an actual parameter. But the variable b is
unbound. (Just as with a quantified expression, an unbound variable is one for
which the meaning of the function could change if we replaced that variable
with a different name. If we changed the a to an x in both lines 1 and 2, then
the function would behave identically, but if we changed the b to a y, then the
function would behave differently.)

In this function, the variable b has to somehow get a value from some-
where if we are going to be able to invoke the function addB without causing
an error. Often b will be a global variable, but it is also possible in Python or
C (with appropriate compiler settings) to nest function definitions—just as
quantifiers can be nested. (See Section 3.5.)

One fundamental issue in the design and implementation in programming
languages is illustrated in Figure 3.27.8 Suppose x is an unbound variable in

For more about lexical versus dynamic
scope, and other related issues, see a
textbook on programming languages.
(One of the other interesting issues
is that there are actually multiple
paradigms for passing parameters to a
function; we’re discussing call-by-value
parameter passing, which probably is
the most common.) Some good books
on programming languages include
8 Michael L. Scott. Programming Lan-
guage Pragmatics. Morgan Kaufmann
Publishers, 3rd edition, 2009; and
Kenneth C. Louden and Kenneth A.
Lambert. Programming Languages: Prin-
ciples and Practices. Course Technology,
3rd edition, 2011.

the definition of a function f. Generally, programming languages either use
lexical scope, where x’s value is found by looking “outward” where f is defined;
or dynamic scope, where x’s value is found by looking where f is called. Almost
all modern programming languages use lexical scope, though macros in C
and other languages use dynamic scope. While we’re generally used to lexical
scope and therefore it feels more intuitive, there are some circumstances in
which macros can be tremendously useful and convenient.
int b = 17;

int addB(int a) { return a + b; }

/* a FUNCTION in C finds values for unbound */

/* variables in the *defining* environment */

int test() {

int b = 128;

return addB(3);

}

test(3); /* returns 20 */

int b = 17;

#define addB(a) a + b

/* a MACRO in C finds values for unbound */

/* variables in the *calling* environment */

int test() {

int b = 128;

return addB(3);

}

test(3); /* returns 131 */

Figure 3.27: Two C snippets defining
addB, where the nonlocal variable b gets
its value from different places.
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Computer Science Connections

Gödel’s Incompleteness Theorem
Given a fully quantified proposition ϕ, is ϕ a theorem? This apparently simple

question drove the development of some of the most profound and mind-
numbing results of the last hundred years. In the early 20th century, there was
great interest in the “formalist program,” advanced especially by the German
mathematician David Hilbert. The formalist approach aimed to turn all of
mathematical reasoning into a machine: one could feed in a mathematical
statement ϕ as input, turn a hypothetical crank, and the machine would spit
out a proof or disproof of ϕ as output. But this program was shattered by two
closely related results—two of the greatest intellectual achievements of the
20th century.

The first blow to the formalist program was the proof by Kurt Gödel, in
1931, of what became known as Gödel’s Incompleteness Theorem. Gödel’s in-
completeness theorem is based on the following two important and desirable
properties of logical systems:
• A logical system is consistent if only true statements can be proven. (In

other words, if there is a proof of ϕ in the system, then ϕ is true.)
• A logical system is complete if every true statement can be proven. (In other

words, if ϕ is true, then there is a proof of ϕ in the system.)
Gödel’s Incompleteness Theorem is the following troubling result:

Theorem 3.3 (Gödel’s (First) Incompleteness Theorem)
Any sufficiently powerful logical system is either inconsistent or incomplete.

(Here “sufficiently powerful” just means “capable of expressing multiplica-
tion”; predicate logic as described here is certainly “sufficiently powerful.”)

If the system is inconsistent, then there is a false statement ϕ that can be
proven (which means that anything can be proven, as false implies anything!).
And if the system is incomplete, then there is a true statement ϕ that cannot
be proven. Gödel’s proof proceeds by constructing a self-referential logical
expression ϕ that means “ϕ is not provable.” (So if ϕ is true, then the system
is incomplete; and if ϕ is false, then the system is inconsistent.)

The second strike against the formalist program was the proof of the un-
decidability of the halting problem, shown independently by Alan Turing and
Alonzo Church in the 1930s. We can think of the halting problem as asking
the following question: given a function f written in Python and an input x,
does running f (x) get stuck in an infinite loop? (Or does it eventually termi-
nate?) The undecidability of this problemmeans that there is no algorithm that
solves the halting problem. A corollary of this result is that our problem—given
a fully quantified proposition ϕ, is ϕ a theorem?—is also undecidable. We’ll
discuss uncomputability in more detail in Chapter 4.

Undecidability, incompleteness, and their profound consequences are the
focus of a number of excellent textbooks on the theory of computation9—and

See, for example:
9 Dexter Kozen. Automata and Com-
putability. Springer, 1997; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.

also Douglas Hofstadter’s fascinating masterpiece Gödel, Escher, Bach,10 which
10 Douglas Hofstadter. Gödel, Escher,
Bach: An Eternal Golden Braid. Vintage,
1980.is all-but-required reading for computer scientists.
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3.4.5 Exercises

paradigm typing scope
C imperative weak lexical
C++ object-oriented weak lexical
Java object-oriented strong lexical
LATEX scripting weak dynamic
ML functional strong lexical
Pascal imperative strong lexical
Perl scripting weak either
Scheme functional weak either

Figure 3.28: Some
programming
languages.

Figure 3.28 lists some well-known programming languages, with some characteristics.
Using these characteristics, define a predicate that’s true for each of the following lists
of languages, and false for every other language in the table. For example, the predicate
P(x) = “x has strong typing and x is not functional” makes P(Pascal) and P(Java) true,
and makes P(x) false for every x ∈ {C, C++, LATEX, ML, Perl, Scheme}.
3.107 Java
3.108 ML, Perl
3.109 Pascal, Scheme, Perl
3.110 LATEX, Java, C++, Perl
3.111 C, Pascal, ML, C++, LATEX, Scheme, Perl

Examples 3.4 and 3.15 construct a proposition corresponding to “the password contains at least three of four character
types (digits, lowercase letters, uppercase letters, other).” In that example, we took “the password contains at least
one digit” (and its analogues for the other character types) as an atomic proposition. But we could give a lower-level
characterization of valid passwords. Let isDigit, isLower, and isUpper be predicates that are true of single characters
of the appropriate type. Use standard arithmetic notation and these predicates to formalize the following conditions on a
password x = 〈x1, . . . , xn〉, where xi is the ith character in the password:
3.112 x is at least 8 characters long.
3.113 x contains at least one lowercase letter.
3.114 x contains at least one non-alphanumeric character. (Remember that isDigit, isLower, and isUpper
are the only predicates available!)

3.115 (Inspired by a letter to the editor in The New Yorker by Alexander George from 24 December 2007.) Steve
Martin, the great comedian, reports in Born Standing Up: A Comic’s Life that, inspired by Lewis Carroll, he
started closing his shows with the following line.11 (It got big laughs.) 11 Steve Martin.

Born Standing Up: A
Comic’s Life. Simon
& Schuster, 2008.

I’m not going home tonight; I’m going to Bananaland, a place where only two things are true, only two things:
One, all chairs are green; and two, no chairs are green.

Steve Martin describes the joke as a contradiction—but, in fact, these two true things are not contradictory!
Describe how it is possible for both “all chairs in Bananaland are green” and “no chairs in Bananaland are
green” to be simultaneously true.

As a rough approximation, we can think of a database as a two-dimensional table, where rows correspond to individual
entities, and columns correspond to fields (data about those entities). A database query defines a predicate Q(x) that
consists of tests of the values from various columns, joined by the basic logical connectives. The database system then
returns a list of rows/entities for which the predicate is true. We can think of this type of database access as involving
predicates: in response to query Q, the system returns the list of all rows x for which Q(x) is true.

name GPA CS? home · · ·
Alice 4.0 yes Alaska · · ·
Bob 3.14 yes Bermuda · · ·
Charlie 3.54 no California · · ·
Dave 3.8 yes Delaware · · ·

...

Figure 3.29: A
sample database.

See Figure 3.29 for an example; here, to find a list of all students with grade point
averages over 3.4 who have taken at least one CS course if and only if they’re from Hawaii,
we could query GPA(x) ≥ 3.4 ∧ (CS?(x) = yes ⇔ home(x) = Hawaii) . For this
database, this query would return Charlie (and not Alice, Bob, or Dave).

Each of the following predicates Q(x) uses tests on particular columns in x’s row. For
each, give a logically equivalent predicate in which each column’s name appears at
most once. You may also use the symbols {True, False,∧,∨,¬,⇒} as many times as
you please. Use a truth table to prove that your answer is logically equivalent to the given
predicate.
3.116 [age(x) < 18] ∨ (¬[age(x) < 18] ∧ [gpa(x) ≥ 3.0)]
3.117 cs(x) ⇒ ¬(hawaii(x) ⇒ (hawaii(x) ∧ cs(x)))
3.118 (hasMajor(x) ∧ ¬junior(x) ∧ oncampus(x)) ∨ (hasMajor(x) ∧ ¬junior(x) ∧ ¬oncampus(x))

∨ (hasMajor(x) ∧ junior(x) ∧ ¬oncampus(x))

3.119 Following the last few exercises, you might begin to think that any query can be rewritten with-
out duplication. Can it? Consider a unary predicate that is built up from the predicates P(x) and Q(x) and
the propositional symbols {True, False,∧,∨,¬,⇒}. Decide whether the following claim is true or false, and
prove your answer:
Claim: Every such predicate is logically equivalent to a predicate that uses only the following symbols: (i)

{True, False,∧,∨,¬,⇒}, all of which can be used as many times as you please; and (ii) the predicates
{P(x),Q(x)}, which can appear only one time each.
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Modern web search engines allow users to specify Boolean conditions in their queries. For example, “social OR net-
works” will return only web pages containing either the word “social” or the word “networks.” You can view a query
as a predicate Q; the search engine returns (in some order) the list of all pages p for which Q(p) is true. Consider the
following queries:
A: “java AND program AND NOT computer”
B: “(computer OR algorithm) AND java”
C: “java AND NOT (computer OR algorithm OR program)”
Give an example of a web page—or a sentence—that would be returned . . .
3.120 . . . by query A but not by B or C.
3.121 . . . by query B but not by A or C.

3.122 . . . by query C but not by A or B.

3.123 Prove or disprove: ∀n ∈ Z : isPrime(n) ⇒ n
2 /∈ Z.

3.124 Translate this Groucho Marx quote into logical notation: It isn’t necessary to have relatives in Kansas
City in order to be unhappy. Let P(x) be “x has relatives in Kansas City” and Q(x) be “x is unhappy,” and view
the statement as implicitly making a claim that a particular kind of person exists.

Write an English sentence that expresses the logical negation of each given sentence. (Don’t just say “It is not the case
that ...”; give a genuine negation.) Some of the given sentences are ambiguous in their meaning; if so, describe all of the
interpretations of the sentence that you can find, then choose one and give its negation.
3.125 Every entry in the array A is positive.
3.126 Every decent programming language denotes block structure with parentheses or braces.
3.127 There exists an odd number that is evenly divisible by a different odd number.
3.128 There is a point in Minnesota that is farther than ten miles from a lake.
3.129 Every sorting algorithm takes at least n log n steps on some n-element input array.

In Examples 3.43 and 3.44, we proved that
∃x ∈ S :

[
P(x)∨Q(x)

]
⇔

[
∃x ∈ S : P(x)

]
∨
[
∃x ∈ S : Q(x)

]

∀x ∈ S :
[
P(x)∨Q(x)

]
⇐

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : Q(x)

]

are theorems. Argue that the following ∧-analogies to these statements are also theorems:
3.130 ∃x ∈ S :

[
P(x)∧Q(x)

]
⇒

[
∃x ∈ S : P(x)

]
∧
[
∃x ∈ S : Q(x)

]

3.131 ∀x ∈ S :
[
P(x)∧Q(x)

]
⇔

[
∀x ∈ S : P(x)

]
∧
[
∀x ∈ S : Q(x)

]

Explain why the following are theorems of predicate logic:
3.132

[
∀x ∈ S : P(x) ⇒ Q(x)

]
∧
[
∀x ∈ S : P(x)

]
⇒
[
∀x ∈ S : Q(x)

]

3.133
[
∀x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∀x ∈ S : P(x) ⇒ Q(x)

]

3.134
[
∃x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∃x ∈ S : P(x) ∧Q(x)

]

Explain why the following propositions are theorems of predicate logic, assuming that x does not appear as a free
variable in the expression ϕ (and assuming that S is nonempty):
3.135 ϕ⇔

[
∀x ∈ S : ϕ

]

3.136 ϕ ∨
[
∀x ∈ S : P(x)

]
⇔
[
∀x ∈ S : ϕ ∨ P(x)

]

3.137 ϕ ∧
[
∃x ∈ S : P(x)

]
⇔
[
∃x ∈ S : ϕ ∧ P(x)

]

3.138
(
ϕ⇒

[
∃x ∈ S : P(x)

])
⇔
[
∃x ∈ S : ϕ⇒ P(x)

]

3.139
([

∃x ∈ S : P(x)
]
⇒ ϕ

)
⇔
[
∀x ∈ S : P(x) ⇒ ϕ

]

3.140 Give an example of a predicate P, a nonempty set S, and an expression ϕ containing x as a free
variable such that the proposition from Exercise 3.136 is false. Because x has to get its meaning from some-
where, we will imagine a universal quantifier for x wrapped around the entire expression. Specifically, give
an example of P, ϕ, and S for which

∀x ∈ S :
[
ϕ ∨ [∀x ∈ S : P(x)]

]
is not logically equivalent to ∀x ∈ S :

[[∀x ∈ S : ϕ ∨ P(x)]
]
.
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3.5 Predicate Logic: Nested Quantifiers
Everybody hates me because I’m so universally liked.

Peter De Vries (1910–1993)

Just as we can place one loop inside another in a program, we can place one quanti-
fied statement inside another in predicate logic. In fact, the most interesting quantified
statements almost always involve more than one quantifier. (For example: during every
semester, there’s a computer science class that every student on campus can take.) In formal
notation, such a statement typically involves nested quantifiers—that is, multiple quanti-
fiers in which one quantifier appears inside the scope of another.

We’ve encountered statements involving nested quantification before, although
so far we’ve discussed them using English rather than mathematical notation. The
definition of a partition of a set (Definition 2.30) or of an onto function (Definition 2.49)
are two examples. (To make the latter definition’s quantifiers more explicit: an onto
function f : A → B is one where, for every element of B, there’s an element of A such
that f (a) = b: that is, ∀b ∈ B : [∃a ∈ A : f (a) = b].) Here are two other examples:

Example 3.45 (No unmatched elements in an array)
Let’s express the condition that every element of an array A[1 . . .n] is a “double”—
that is, appears at least twice in A. (For example, the array [3, 2, 1, 1, 4, 4, 2, 3, 1] sat-
isfies this condition.) This condition requires that, for every index i, there exists an-
other index j such that A[i] = A[j]. We can express the requirement as follows:

∀i ∈ {1, 2, . . . , n} :
[
∃j ∈ {1, 2, . . . , n} : i 6= j ∧A[i] = A[j]

]
.

“Sorting alphabet-
ically” is usually
called lexicographic
ordering in com-
puter science. This
ordering reflects the
way that words are
listed in the dictio-
nary (also known as
the lexicon).

Example 3.46 (Alphabetically later)
Let’s formalize the predicate “The string is alphabetically after the string ”
from Example 3.28. For two letters a, b ∈ {A, B, . . . , Z}, write a < b if a is earlier in
the alphabet than b; we’ll use this ordering on letters to define an ordering on strings.
Let x and y be strings over {A, B, . . . , Z}. There are two ways for x to be alphabetically
later than y:

• y is a (proper) prefix of x. (See Example 3.35.) For example, FORTRAN is after FORT.
• x and y share an initial prefix of identical letters, and the first i for which xi 6= yi

has xi later in the alphabet than yi. For example, PASTOR comes after PASCAL.

Formally, then, x ∈ {A, B, . . . , Z}n is alphabetically after y ∈ {A, B, . . . , Z}m if
[
m < n ∧ [∀j ∈ {1, 2 . . . ,m} : xj = yj]

]
y is a proper prefix of x . . .

∨
[
∃i ∈ {1, . . . , min(n,m)} : xi > yi ∧ [∀j ∈ {1, 2 . . . , i− 1} : xi = yi]

]

. . . or x1,...,i−1 = y1,...,i−1 and xi > yi .
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Here is one more example of a statement that we’ve already seen—Goldbach’s
conjecture—that implicitly involves nested quantifiers; we’ll formalize it in predicate
logic. (Part of the point of this example is to illustrate how complex even some ap- Writing tip: Just as

with nested loops
in programs, the
deeper the nesting
of quantifiers,
the harder an
expression is
for a reader to
follow. Using well-
chosen predicates
(like isPrime, for
example) in a
logical statement
can make it much
easier to read—
just like using
well-chosen (and
well-named)
functions makes
your software easier
to read!

parently simple concepts are; there’s a good deal of complexity hidden in words like
“even” and “prime,” which at this point seem pretty intuitive!)

Example 3.47 (Goldbach’s Conjecture)
Problem: Recall Goldbach’s conjecture, from Example 3.1:

Every even integer greater than 2 can be written as the sum of two prime numbers.
Formalize this proposition using nested quantifiers.

Solution: Using the sumOfTwoPrimes predicate from Example 3.34, we can write this
statement as either of the following:

∀n ∈ {n ∈ Z : n > 2 ∧ 2 | n} : sumOfTwoPrimes(n) (A)
∀n ∈ Z :

[
n > 2 ∧ 2 | n ⇒ sumOfTwoPrimes(n)

]
(B)

In (B), we quantify over all integers, but the implication n > 2 ∧ 2 | n ⇒
sumOfTwoPrimes(n) is trivially true for an integer n that’s not even or not greater
than 2, because false implies anything! Thus the only instantiations of the quanti-
fier in which the implication has any “meat” is for even integers greater than 2. As
such, these two formulations are equivalent. (See Exercise 3.133.) Expanding the
definition of sumOfTwoPrimes(n) from Example 3.34, we can also rewrite (B) as

[
∀n ∈ Z : n > 2 ∧ 2 | n ⇒
∃p ∈ Z : ∃q ∈ Z : [isPrime(p)∧ isPrime(q) ∧ n = p + q]

]
(C)

We’ve also already seen that the predicate isPrime implicitly contains quantifiers too
(“for all potential divisors d, it is not the case that d evenly divides p”)—and, for that
matter, so does the “evenly divides” predicate |. In Exercises 3.178, 3.179, and 3.180,
you’ll show how to rewrite Goldbach’s Conjecture in a few different ways, including
using yet further layers of nested quantifiers.

3.5.1 Order of Quantification
In expressions that involve nested quantifiers, the order of the quantifiers matters! As
a frivolous example, take the title of the 1947 hit song “Everybody Loves Somebody”
(sung by Dean Martin). There are two plausible interpretations of the title:

∀x : ∃y : x loves y and ∃y : ∀x : x loves y.

The former is the more natural reading; it says that every person x has someone that
he or she loves, but each different x can love a different person. (As in: “every child
loves his or her mother.”) The latter says that there is one single person loved by every
x. (As in: “Everybody loves Raymond.”) These claims are different!
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Taking it further: Disambiguating the order of quantification in English sentences is one of the most
daunting challenges in natural language processing (NLP) systems. (See p. 314.) Compare Every student
received a diploma and Every student heard a commencement address: there are, surely, many diplomas and
only one address, but building a software system that understands that fact is tremendously challenging!
There are many other vexing types of ambiguity in NLP systems, too. A classic example of ambiguity
in natural language is the sentence I saw the man with the telescope. Is the man holding a telescope? Or
did I use one to see him? Human listeners are able to use pragmatic knowledge about the world to
disambiguate, but doing so properly in an NLP system is very difficult.

(a) ∀r : ∀c : P(r, c),
or, equivalently,
∀c : ∀r : P(r, c)

(b) ∃r : ∃c : P(r, c),
or, equivalently,
∃c : ∃r : P(r, c)

(c) ∀c : ∃r : P(r, c)

(d) ∀r : ∃c : P(r, c) (e) ∃r : ∀c : P(r, c) (f) ∃c : ∀r : P(r, c)

Figure 3.30: An
illustration of order
of quantification.
Let r index a row
of the grid, and let
c index a column.
If P(r, c) is true in
each filled cell, then
the corresponding
proposition is true.

Figure 3.30 shows a visual repre-
sentation of the importance of this
order of quantification. Compare
Figure 3.30(d) and Figure 3.30(f), for
example: ∀r : ∃c : P(r, c) is true
if every row has at least one col-
umn with a filled cell in it, whereas
∃c : ∀r : P(r, c) requires that there be
a single column so that every row has
that column’s cell filled. The propo-
sition ∃c : ∀r : P(r, c) is not true in
Figure 3.30(d)—though the propo-
sition ∀r : ∃c : P(r, c) is true in both
Figure 3.30(d) and Figure 3.30(f).

Here’s a mathematical example
that illustrates the difference even more precisely.

Example 3.48 (The largest real number)
Problem: One of the following propositions is true; the other is false. Which is which?

∃y ∈ R : ∀x ∈ R : x < y (A)
∀x ∈ R : ∃y ∈ R : x < y (B)

Solution: Translating these propositions into English helps resolve this question.
(A) says that there is a real number y for which the following property holds:
every real number is less than y. (“There is a largest real number.”) But there
isn’t a largest real number! So (A) is false. (If someone tells you that y∗ satisfies
∀x ∈ R : x < y∗, then you can convince him he’s wrong by choosing x = y∗ + 1.)
On the other hand, (B) says that, for every real number x, there is a real number
greater than x. And that’s true: for any x ∈ R, the number x + 1 is greater than x.

In fact, (B) is nearly the negation of (A). (Before you read through the deriva-
tion, can you figure out why we had to say “nearly” in the last sentence?)

≡¬
[
∃y ∈ R : ∀x ∈ R : x < y

]
negation of (A)

≡ ∀y ∈ R : ¬[∀x ∈ R : x < y] De Morgan’s Laws (quantified form)

≡ ∀y ∈ R : ∃x ∈ R : ¬(x < y) De Morgan’s Laws (quantified form)

≡ ∀y ∈ R : ∃x ∈ R : y ≤ x ¬(x < y) ⇔ y ≤ x

≡ ∀x ∈ R : ∃y ∈ R : x ≤ y. renaming the bound variables
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So (B) and the negation of (A) are almost—but not quite—identical: the latter has a
≤ where the former has a <. But both (B) and ¬(A) are theorems!

Although the order of quantifiers does matter when universal and existential quan-
tifiers both appear in a proposition, the order of consecutive universal quantifiers
doesn’t matter, nor does the order of consecutive existential quantifiers. (Using our
previously defined terminology—see Figure 3.12—these quantifiers are commutative.)
Thus the following statements are theorems of predicate logic:

∀x ∈ S : ∀y ∈ T : P(x, y) ⇔ ∀y ∈ T : ∀x ∈ S : P(x, y) (∗)
∃x ∈ S : ∃y ∈ T : P(x, y) ⇔ ∃y ∈ T : ∃x ∈ S : P(x, y) (∗∗)

The point is simply that the left- and right-hand sides of (∗) are both true if and only
if P(x, y) is true for every pair 〈x, y〉 ∈ S × T, and the left- and right-hand sides of
(∗∗) are both true if and only if P(x, y) holds for at least one pair 〈x, y〉 ∈ S× T. See
Figure 3.30(a) and Figure 3.30(b): both sides of (∗) require that all the cells be filled and
both sides of (∗∗) require that at least one cell be filled. Because of these equivalences,
as notational shorthand we’ll sometimes write ∀x, y ∈ S : P(x, y) instead of writing
∀x ∈ S : ∀y ∈ S : P(x, y). We’ll use ∃x, y ∈ S : P(x, y) analogously.

Nested quantification and nested loops
Just as it can be helpful to think of a quantifier in terms of a corresponding loop,

it can be helpful to think of nested quantifiers in terms of nested loops. And a use-
ful way to think about the importance of the order of quantification is through the
way in which changing the order of nested loops changes what they compute. In Ex-
ercises 3.191–3.196, you’ll get a chance to do some translations between quantified
statements and nested loops.

1: for j = 1 to m:
2: for i = 1 to n:
3: if A[i, j] then
4: return True
5: return False

1: for i = 1 to n:
2: for j = 1 to m:
3: if A[i, j] then
4: return True
5: return False

Figure 3.31:
Two nested for
loops that re-
turn the value of
∃i : ∃j : A[i, j] ≡
∃j : ∃i : A[i, j], by
looping in row-
or column-major
orders.

Here’s one example about how thinking
about the nested-loop analogy for nested
quantifiers can be helpful. Imagine writing a
nested loop to examine every element of a 2-
dimensional array. As long as iterations don’t
depend on each other, it doesn’t matter whether we proceed through the array in row-
major order (“for each row, look at all columns’ entries”) or column-major order (“for each
column, look at all rows’ entries”). Figure 3.31 illustrates a loop-based view of the log-
ical equivalence expressed by (∗∗), above: both code segments always have the same
return value. (The graphical view is that both check every cell of the “grid” of possible
inputs to A, as in Figure 3.30(b), just in different orders.)

3.5.2 Negating Nested Quantifiers
Recall the rules for negating quantifiers found earlier in the chapter:

¬∀x ∈ S : P(x) ⇔ ∃x ∈ S : ¬P(x)
¬∃x ∈ S : P(x) ⇔ ∀x ∈ S : ¬P(x)
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Informally, these theorems say that “everybody is P is false” is equivalent to “somebody
isn’t P”; and, similarly, “somebody is P is false” is equivalent to “everybody isn’t P.”

(a) ∃r : ∃c : P(r, c) (b) ¬(∃r : ∃c : P(r, c)) (c) ∀r : ∀c : ¬P(r, c))

Figure 3.32: Negat-
ing nested quanti-
fiers: what it means
for (a) a filled cell
to exist; (b) it not to
be the case that a
filled cell exists; and
(c) that every cell is
unfilled.

Here we will consider negating a
sequence of nested quantifiers. Negat-
ing nested quantifiers proceeds in
precisely the same way as negating
a single quantifier, just acting on one
quantifier at a time. (We already saw
this idea in Example 3.48, where we
repeatedly applied these quantified
versions of De Morgan’s Laws to a sequence of nested quantifiers.) For example:

Example 3.49 (No cell is filled ≡ every cell is empty)
Observe that ∃r : ∃c : P(r, c) is true if any r and c makes P(r, c) true—that is, visually,
that any cell in the grid in Figure 3.32(a) is filled. For ∃r : ∃c : P(r, c) to be false
(Figure 3.32(b)), then we need:

¬(∃r : ∃c : P(r, c)) ≡ ∀r : ¬(∃c : P(r, c)) ≡ ∀r : ∀c : ¬P(r, c).

That is, P(r, c) is false for every r and c—that is, visually, every cell in the grid is unfilled
(Figure 3.32(c)). Similarly,

¬∃r : ∀c : P(r, c) ≡ ∀r : ¬∀c : P(r, c) ≡ ∀r : ∃c : ¬P(r, c).

Thus ¬∃r : ∀c : P(r, c) expresses that it’s not the case that there’s a row with all columns
filled; using the above equivalence, we can rephrase the condition as every row has at
least one unfilled column.

Example 3.50 (Triple negations)
Here’s an example of negating a sequence of triply nested quantifiers:

¬∃x : ∀y : ∃z : P(x, y, z) ≡ ∀x : ¬∀y : ∃z : P(x, y, z)
≡ ∀x : ∃y : ¬∃z : P(x, y, z)
≡ ∀x : ∃y : ∀z : ¬P(x, y, z).

Here’s a last example, which requires translation from English into logical notation:

Example 3.51 (Negating nested quantifiers)
Problem: Negate the following sentence:

For every iPhone user, there’s an iPhone app that every one of that user’s iPhone-using friends
has downloaded.

Solution: First, let’s reason about how the given statement would be false: there
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would be some iPhone user—we’ll call him Steve—such that, for every iPhone
app, Steve has a friend who didn’t download that app.

Write U and A for the sets of iPhone users and apps, respectively. In
(pseudo)logical notation, the original claim looks like

∀u ∈ U : ∃a ∈ A : ∀v ∈ U :
[
(u, v friends) ⇒ (v downloaded a)

]
.

To negate this statement, we apply the quantified De Morgan’s laws, once per
quantifier:

≡¬∀u ∈ U : ∃a ∈ A : ∀v ∈ U : [(u, v friends) ⇒ (v downloaded a)]
≡ ∃u ∈ U : ¬∃a ∈ A : ∀v ∈ U : [(u, v friends) ⇒ (v downloaded a)]
≡ ∃u ∈ U : ∀a ∈ A : ¬∀v ∈ U : [(u, v friends) ⇒ (v downloaded a)]
≡ ∃u ∈ U : ∀a ∈ A : ∃v ∈ U : ¬[(u, v friends) ⇒ (v downloaded a)].

Using ¬(p ⇒ q) ≡ p∧ ¬q (Exercise 3.82), we can further write this expression as:

≡ ∃u ∈ U : ∀a ∈ A : ∃v ∈ U : [(u, v friends) ∧ ¬(v downloaded a)].

This last proposition, translated into English, matches the informal description
above as to why the original claim would be false: there’s some person such that, for
every app, that person has a friend who hasn’t downloaded that app.

3.5.3 Two New Ways of Considering Nested Quantifiers
We’ll close this section with two different but useful ways to think about nested quan-
tification. As a running example, consider the following (true!) proposition

∀x ∈ Z : ∃y ∈ Z : x = y + 1, (†)

which says that the number that’s one less than every integer is an integer too. We’ll
discuss two ways of thinking about propositions like (†) with nested quantifiers: as
a “game with a demon” in which you battle against an all-knowing demon to try to
make the innermost quantifier’s body true;12 and as a single quantifier whose body is

Thanks to Dexter
Kozen for teaching
me this way of
thinking of nested
quantifiers. See:
12 Dexter Kozen.
Automata and
Computability.
Springer, 1997.

a predicate, but a predicate that just happens to be expressed using quantifiers.

Nested quantifiers as demon games
One way to think about any proposition involving nested quantifiers is as a “game”

played between you and a demon. Here are the rules of the game:

• Your goal is to make the innermost statement—x = y + 1 for our running example
(†)—turn out to be true; the demon’s goal is to make that statement false.

• Every “for all” quantifier in the expression is a choice that the demon makes; every
“there exists” quantifier in the expression is a choice that you get to make. (That
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is, in the expression ∀a ∈ S : · · · , the demon chooses a particular value of a ∈ S,
and the game continues in the “· · · ” part of the expression. And in the expression
∃b ∈ S : · · · , you choose a particular value of b ∈ S, and, again, the game continues
in the “· · · ” part.)

• Your choices and the demon’s choices are made in the left-to-right order (from the
outside in) of the quantifiers.

• You win the game—in other words, the proposition in question is true—if, no mat-
ter how cleverly the demon plays, you make the innermost statement true.

Here are two examples of viewing quantified statement as demon games, one for a
true statement and one for a false statement:

Example 3.52 (Showing that (†) is true)
We’ll use a “game with the demon” to argue that ∀x ∈ Z : ∃y ∈ Z : x = y + 1 is true.

1. The outermost quantifier is ∀, so the demon picks a value for x ∈ Z.
2. Now you get to pick a value y ∈ Z. A good choice for you is y := x− 1.
3. Because you chose y = x− 1, indeed x = y + 1. You win!

(For example, if the demon picks 16, you pick 15. If the demon picks −19, you pick
−20. And so forth.) No matter what the demon picks, your strategy will make you
win—and therefore (†) is true!

By contrast, consider (†) with the order of quantification reversed:

Example 3.53 (A losing demon game)
Consider playing a demon game for the proposition

∃y ∈ Z : ∀x ∈ Z : x = y + 1.

Unfortunately, the ∃ is first, which means that you have to make the first move. But
when you pick a number y, the demon then gets to pick an x—and there are an infini-
tude of x values that the demon can choose so that x 6= y + 1. (You pick 42? The de-
mon picks 666. You pick 17? The demon picks 666. You pick 665? The demon picks
616.) Therefore you can’t guarantee that you win the game, so we haven’t established
this claim.

By the way, you could win a demon game to prove the negation of the claim in Exam-
ple 3.53:

¬(the claim from Example 3.53) ≡ ∀y ∈ Z : ∃x ∈ Z : x 6= y + 1.

First, the demon picks some unknown y ∈ Z. Then you have to pick an x ∈ Z such
that x 6= y + 1—but that’s easy: for any y the demon picks, you pick x = y. You win!
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Nested quantifiers as single quantifiers
In our running example—∀x ∈ Z : ∃y ∈ Z : x = y + 1—what kind of thing is

the underlined piece of the expression? It can’t be a proposition, because x is a free
variable in it. But once we plug in a value for x, the expression becomes true or false.
In other words, the expression ∃y ∈ Z : x− 1 = y is itself a (unary) predicate: once we
are given a value of x, we can compute the truth value of the expression. Similarly, the
expression x− 1 = y is also a predicate—but a binary predicate, taking both an x and y
as arguments. Let’s define two predicates:
• P(x, y) denotes the predicate x− 1 = y.
• hasIntPredecessor(x) denotes the predicate ∃y ∈ Z : x− 1 = y.
Using this notation, we can write (†) as

∀x ∈ Z :

hasIntPredecessor(x)︷ ︸︸ ︷

∃y ∈ Z :
P(x,y)︷ ︸︸ ︷

x− 1 = y ≡ ∀x ∈ Z : ∃y ∈ Z : P(x, y)
≡ ∀x ∈ Z : hasIntPredecessor(x). (‡)

One implication of this view is that negating nested quantifiers is really just the same
as negating non-nested quantifiers. For example:

Example 3.54 (Negating nested quantifiers)
We can view the negation of (†), as written in (‡), as follows:

¬(†) ≡ ¬∀x ∈ Z : hasIntPredecessor(x)
≡ ∃x ∈ Z : ¬hasIntPredecessor(x).

And, re-expanding the definition of hasIntPredecessor and again applying the quanti-
fied De Morgan’s Law, we have that

¬hasIntPredecessor(x) ≡ ¬∃y ∈ Z : P(x, y)
≡ ∀y ∈ Z : ¬P(x, y)
≡ ∀y ∈ Z : x− 1 6= y.

Together, these two negations show

¬(†) ≡ ∃x ∈ Z : ¬hasIntPredecessor(x)
≡ ∃x ∈ Z : ∀y ∈ Z : ¬P(x, y)
≡ ∃x ∈ Z : ∀y ∈ Z : x− 1 6= y.

Taking it further: This view of nested quantifiers as a single quantifier whose body just happens to
express its condition using quantifiers has a close analogy with writing a particular kind of function
in a programming language. If we look at a two-argument function in the right light, we can see it as a
function that takes one argument and returns a function that takes one argument. This approach is called
Currying; see p. 357 for some discussion.
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Computer Science Connections

Currying
Consider a binary predicate P(x, y), as used in a quantified expression like

∀y : ∀x : P(x, y). As we discussed, we can think of this expression as first
plugging in a value for y, which then yields a unary predicate ∀x : P(x, y)
which then takes the argument x.

There’s an interesting parallel between this view of nested quantifiers and

fun sum a b = a + b; (* ML *)

def sum(a,b): # Python
return a + b

(define sum ; Scheme
(lambda (a b)

(+ a b)))

Figure 3.33: Implementations of
sum(a, b) = a + b in three languages.

a way of writing functions in some programming languages. For concreteness,
let’s think about a very simple function that takes two arguments and returns
their sum. Figure 3.33 shows implementations of this function in three dif-
ferent programming languages: ML, Python, and Scheme. A few notes about
syntax:
• For ML: fun is a keyword that says we’re defining a function; sum is the

name of it; a b is the list of arguments; and that function is defined to
return the value of a + b.

• For Scheme: (lambda args body) denotes the function that takes ar-
guments args and returns the value of the function body body. Ap-
plying the function f to arguments arg1, arg2, . . . , argN is expressed as
(f arg1 arg2 ... argN). For example, (+ 1 2) has the value 3.

We can then use the function sum to actually add numbers; see Figure 3.34.
But now suppose that we wanted to write a new function that takes one

sum 2 3; (* returns 5 *)
sum 99 12; (* returns 111 *)

sum(2,3) # returns 5
sum(99,12) # returns 111

(sum 2 3) ; returns 5
(sum 99 12) ; returns 111

Figure 3.34: Using sum in all three
languages.

argument and adds 3 to it. Can we make use of the sum function to do so?
(The analogy to predicates is that taking a two-argument predicate and ap-
plying it to one argument gives one-argument predicate; here we’re trying
to take a two-argument function in a programming language and apply it to
one argument to yield a one-argument function.) It turns out that creating the
“add 3” function using sum is very easy in ML: we simply apply sum to one
argument, and the result is a function that “still wants” one more argument.
See Figure 3.35.

A function like sum in ML, which takes its multiple arguments “one at a

(* define a "value" add3 as sum
applied to 3, making add3 a
1-argument function *)

val add3 = sum 3;

add3 0; (* returns 3 *)
add3 108; (* returns 111 *)
add3 199; (* returns 202 *)

Figure 3.35: Applying sum to one of two
arguments in ML, and then applying the
resulting function to a second argument.

time,” is said to be Curried—in honor of Haskell Curry, a 20th-century Ameri-
can logician. (The programming language Haskell is also named in his honor.)
Thinking about Curried functions is a classical topic in the study of the struc-
ture of programming languages.13 While writing Curried functions is almost For more, see the classic text

13 Harold Abelson and Gerald Jay Suss-
man with Julie Sussman. Structure and
Interpretation of Computer Programs. MIT
Press/McGraw-Hill, 2nd edition, 1996.

automatic in ML, one can also write Curried functions in other programming
languages, too. Examples of a Curried version of sum in Python and Scheme
are in Figure 3.36; it’s even possible to write Curried functions in C or Java,
though it’s much less natural than in ML/Python/Scheme.

def sum(a):
def sumA(b):

return a + b
return sumA

sum(3)(2) # returns 5
add3 = sum(3)
add3(2) # returns 5

(define sum ;; define sum as
(lambda (a) ;; the function taking argument a and returning

(lambda (b) (+ a b))) ;; [the function taking argument b and returning a+b]

((sum 3) 2) ;; returns 5
(define add3 (sum 3))
(add3 2) ;; returns 5

Figure 3.36: Python/Scheme Currying.
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3.5.4 Exercises

Let F denote the set of all functions f : R → R taking real numbers as input and producing real numbers as output.
(For one example, plusone(x) = x + 1 is a function plusone : R → R, so plusone ∈ F.) Are the following propositions
true or false? Justify your answers, including a description of the function(s) if they exist.
3.141 ∀c ∈ R : [∃f ∈ F : f (0) = c]

3.142 ∃f ∈ F : [∀c ∈ R : f (0) = c]
3.143 ∀c ∈ R : [∃f ∈ F : f (c) = 0]

3.144 ∃f ∈ F : [∀c ∈ R : f (c) = 0]

Under many operating systems, users can schedule a task to be run at a specified time in the future. In Unix-like
operating systems, this type of scheduled job is called a cron job. (For example, a backup might run nightly at 2:00am, Greek: chron-

“time.”and a scratch drive might be emptied out weekly on Friday night at 11:50pm.)
Let T = {1, 2, . . . , tmax} be a set of times (measured in minutes, let’s say), and let J be a set of jobs. Let scheduledAt

be a predicate so that scheduledAt(j, t) is true if and only if job j is scheduled at time t. (Assume that jobs do not last
more than one minute.) Formalize the following conditions using only standard quantifiers, arithmetic operators,
logical connectives, and the scheduledAt predicate.
3.145 There is never more than one job scheduled at the same time.
3.146 Every job is scheduled at least once.
3.147 Job A is never run twice within two minutes.
3.148 Job B is run at least three times.
3.149 Job C is run at most twice.
3.150 Job D is run sometime after the last time that Job E is run.
3.151 Job F is run at least once between consecutive executions of Job G.
3.152 Job H is run at most once between consecutive executions of Job I.

Let P[1 . . .n, 1 . . .m] be a 2-dimensional array of the pixels of a black-and-white image: for every x and y, the value of
P[x, y] = 0 if the 〈x, y〉th pixel is black, and P[x, y] = 1 if it’s white. Translate these statements into predicate logic:
3.153 Every pixel in the image is black.
3.154 There is at least one white pixel.
3.155 Every row has at least one white pixel.
3.156 There are never two consecutive white pixels in the same column.

Figure 3.37: A
sample American
crossword puzzle.

A standard American crossword puzzle is a 15-by-15 grid, which can be represented as a two-dimensional 15-
by-15 array G, where G[i, j] = True if and only if the cell in the ith row and jth column is “open” (a.k.a. unfilled,
a.k.a. not a black square). Maximal contiguous horizontal or vertical sequences of two or more open squares are
called words. For any i ≤ 0, i > 15, j ≤ 0, or j > 15, treat G[i, j] = False.

Taking it further: The assumption that the 〈i, j〉th cell of G is False except when 1 ≤ i, j ≤ 15 can be re-
expressed as us pretending that our real grid is surrounded by black squares. In CS, this style of structure is
called a sentinel, wherein we introduce boundary values to avoid having to write out verbose special cases.

There are certain customs that G must obey to be a standard American puzzle. (See Figure 3.37, for example.)
Rewrite the informally stated conditions that follow as fully formal definitions.
3.157 no unchecked letters: every open cell appears in both a down word and an across word.
3.158 no two-letter words: every word has length at least 3.
3.159 rotational symmetry: if the entire grid is rotated by 180◦ , then the rotated grid is identical to
the original grid.
3.160 overall interlock: for any two open squares, there is a path of open squares that connects the
first to the second. (That is, we can get from here to there through words.) Your answer should formally
define a predicate P(i, j, x, y) that is true exactly when there exists is a path from 〈i, j〉 to 〈x, y〉: “there
exists a sequence of open squares starting with 〈i, j〉 such that . . .”.)

3.161 Definition 2.30 defines a partition of a set S as a set {A1,A2, . . . ,Ak} of sets such that (i) A1,A2 , . . . ,Ak
are all nonempty; (ii) A1 ∪ A2 ∪ · · · ∪Ak = S; and (iii) for any distinct i, j ∈ {1, . . . , k}, the sets Ai and Aj are
disjoint. Formalize this definition using nested quantifiers and basic set notation.

3.162 Consider the “maximum” problem: given an array of numbers, return the maximum element of
that array. Complete the formal specification for this problem by finishing the specification under “output”:
Input: An array A[1 . . .n], where each A[i] ∈ Z.
Output: An integer x ∈ Z such that . . .
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Let T = {1, . . . , 12} × {0, 1, . . . , 59} denote the set of numbers that can be displayed on a digital clock in twelve-hour
mode. (A clock actually displays a colon between the two numbers.) We can think of a clock as a function c : T → T, so
that when the real time is t ∈ T, then the clock displays the time c(t). (For example, if fastby7 runs seven minutes fast,
then fastby7(12:00) = 12:07.)

For several of these questions, it may be helpful to make use of the function add : T × Z≥0 → T so that add(t, x)
denotes the time that’s x minutes later than t. See Exercise 2.243.
Formalize each of the following predicates using only the standard quantifiers and equality symbols.
3.163 A clock is right if it always displays the correct time. Formalize the predicate right.
3.164 A clock keeps time if there’s some fixed offset by which it is always off from being right. (For
example, fastby7 above correctly keeps time.) Formalize the predicate keepsTime.
3.165 A clock is close enough if it always displays a time that’s within two minutes of the correct time.
Formalize the predicate closeEnough.
3.166 A clock is broken if there’s some fixed time that it always displays, regardless of the real time.
Formalize the predicate broken.
3.167 “Even a broken clock is right twice a day,” they say. (They mean: “even a broken clock displays
the correct time at least once per T.”) Formalize the adage and prove it true.

A classic topic of study for computational biologists is genomic distance measures: given two genomes, we’d like to
report a single number that represents how different those two genomes are. These distance computations are useful in,
for example, reconstructing the evolutionary tree of a collection of species.

Consider two genomes A and B of bacterium. Let’s label the n genes that appear in A’s chromosome, in order, as
πA = 1, 2, . . . ,n. The same genes appear in a different order in B—say, in the order πB = r1, r2, . . . rn. A particular
model of genomic distance will define a specific way in which this list of numbers can mutate; the question at hand is to
find the minimum-length sequence of these mutations that are necessary to explain the difference between the orders πA
and πB. One type of biologically motivated mutation is the prefix reversal—in which some prefix of πB is reversed, as
in 〈3, 2, 1, 4, 5〉 → 〈1, 2, 3, 4, 5〉. It turns out that this model is exactly the pancake-flipping problem, the subject of
the lone academic paper with Bill Gates as an author.14 (See Figure 3.38.)

14 W. H. Gates and
C. H. Papadim-
itriou. Bounds for
sorting by prefix
reversals. Dis-
crete Mathematics,
27:47–57, 1979.

foo(a) Two pancake-flipping instances. Given a stack of pancakes, with radii labeled from top to bottom, we
must sort the pile by radius. We sort with a sequence of flips: turn the top k pancakes upside down, for
some k, and replace them (inverted) on top of the remaining pancakes. The left instance is 〈4, 3, 2, 1, 5〉;
the right is 〈5, 4, 3, 1, 2〉. They require 1 and 2 flips, respectively, to solve (as shown).

1 2
3

4567
8 9

a b c

1 2
3

4567
8 9

a b c

(b) A biological view. Think of a chromosome as a sequence of genes. If, in the course of cell activity,
one end of the chromosome comes in contact with a point in the middle of the chromosome, a loop
forms. If the loop untangles itself “the other way around,” the effect is to reverse the order of the genes
in that loop. This transformation effects a prefix reversal on those genes. Here 123456789abc becomes
987654321abc.

Figure 3.38: The
pancake-flipping
problem, and
its biological
significance.

Suppose that you are given a stack of pancake radii r1, r2, . . . , rn, arranged from top to bottom, where {r1, r2, . . . , rn} =
{1, 2, . . . , n} (but not necessarily in order). Write down a fully quantified logical expression that expresses the condi-
tion that . . .
3.168 . . . the given pancakes are sorted.
3.169 . . . the given pancakes can be sorted with exactly one flip (see Figure 3.38).
3.170 . . . the given pancakes can be sorted with exactly two flips. (Hint: writing a program to verify that
your indices aren’t off by one is a very good idea!)

Let P be a set of people, and let T be a set of times. Let friends(x, y) be a predicate denoting that x ∈ P and y ∈ P are
friends. Let bought(x, t) be a predicate denoting that x ∈ P bought an iPad at time t ∈ T.
3.171 Formalize this statement in predicate logic: “Everyone who bought an iPad has a friend who
bought one previously.”
3.172 Is the claim from Exercise 3.171 true (in the real world)? Justify your answer.
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In programming, an assertion is a logical statement that announces (“asserts”) a condition ϕ that the programmer
believes to be true. For example, a programmer who is about to access the 202nd element of an array A might assert that
length(A) ≥ 202 before accessing this element. When an executing program in languages like C and Java reaches an
assert statement, the program aborts if the condition in the statement isn’t true.

foo(A[1...n]):

last = 0

for index = 1 ... n-1:

if A[index] > A[index+1]:

last = index

assert(last >= 1 and last <= n-1)

swap A[last], A[last+1]

bar(A[1...n]):

total = A[1]

i = 1

for i = 2 ... n-1:

if A[i+1] > A[i]:

total = total + A[i]

assert(total > A[1])

return total

baz(A[1...n]):

for start = 1 ... n-1:

min = start

for i = start+1 ... n:

assert(start == 1

or A[i] > A[start-1])

if A[min] > A[i]:

min = i

swap A[start], A[min]

Figure 3.39: Some
functions using
assert statements.

For the following, give a nonempty input array A that would cause the stated
assertion from Figure 3.39 to fail (that is, for the asserted condition to be false).
3.173 foo

3.174 bar

3.175 baz

Taking it further: Using assertions can be an extremely valuable way of doc-
umenting and debugging programs, particularly because liberally including
assertions will allow the revelation of unexpected data values much earlier in the
execution of a program. And these languages have a global toggle that allows
the testing of assertions to be turned off, so once the programmer is satisfied
that the program is working properly, she doesn’t have to worry about any
running-time overhead for these checks.

While the quantifiers ∀ and ∃ are by far the most common, there are some other quanti-
fiers that are sometimes used. For each of the following quantifiers, write an expression
that is logically equivalent to the given statement that uses only the quantifiers ∀ and ∃;
standard propositional logic notation (∧,¬,∨,⇒); standard equality/inequality notation
(=,≥,≤,<,>); and the predicate P in the question.
3.176 Write an equivalent expression to ∃! x ∈ Z : P(x) (“there exists a
unique x ∈ Z such that P(x)”), which is true when there is one and only one
value of x in the set Z such that P(x) is true.
3.177 Write an equivalent expression to ∃∞ x ∈ Z : P(x) (“there exist
infinitely many x ∈ Z such that P(x)”), which is true when there are infinitely
many different values of x ∈ Z such that P(x) is true.

Here are two formulations of Goldbach’s conjecture (see Example 3.47):

∀n ∈ Z : [ n > 2 ∧ 2 | n ⇒ (∃p ∈ Z : ∃q ∈ Z : [isPrime(p) ∧ isPrime(q) ∧ n = p + q]) ]

∀n ∈ Z : ∃p ∈ Z : ∃q ∈ Z : [ n ≤ 2 ∨ 2 6 | n ∨
[isPrime(p) ∧ isPrime(q) ∧ n = p + q] ] .

3.178 Prove that these two formulations of Goldbach’s conjecture are logically equivalent.
3.179 Rewrite Goldbach’s conjecture without using isPrime—that is, using only quantifiers, the | predi-
cate, and standard arithmetic (+, ·, ≥, etc.).
3.180 Even the | predicate implicitly involves a quantifier: p | q is equivalent to ∃k ∈ Z : p · k = q. Rewrite
Goldbach’s conjecture without using the | predicate either—that is, use only quantifiers and standard
arithmetic symbols (+, ·, ≥, etc.).

3.181 (programming required) As we discussed, the truth value of Goldbach’s conjecture is currently
unknown. As of April 2012, the conjecture has been verified for all even integers from 4 up to 4 × 1018 ,
through a massive distributed computation effort led by Tomás Oliveira e Silva. Write a program to test
Goldbach’s conjecture, in a programming language of your choice, for even integers up to 10,000.

Most real-world English utterances are ambiguous—that is, there are multiple possible interpretations of the given
sentence. A particularly common type of ambiguity involves order of quantification. For each of the following
English sentences, find as many different logical readings based on order of quantification as you can. Write down those
interpretations using pseudological notation, and also write a sentence that expresses each meaning unambiguously.
3.182 A computer crashes every day.
3.183 Every prime number except 2 is divisible by an odd integer greater than 1.
3.184 Every student takes a class every term.
3.185 Every submitted program failed on a case submitted by a student.

3.186 You should have found two different logical interpretations in Exercise 3.183. One of these inter-
pretations is a theorem, and one of them is not. Decide which is which, and prove your answers.
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Let S be an arbitrary nonempty set and let P be an arbitrary binary predicate. Decide whether the following statements
are always true (for any P and S), or whether they can be false. Prove your answers.
3.187

[
∃y ∈ S : ∀x ∈ S : P(x, y)]⇒ [

∀x ∈ S : ∃y ∈ S : P(x, y)]

3.188 [∀x ∈ S : ∃y ∈ S : P(x, y)]⇒ [∃y ∈ S : ∀x ∈ S : P(x, y)]

Consider any unary predicate P(x) over a nonempty set S. It turns out that both of the following propositions are
theorems of propositional logic. Prove them both.
3.189 ∀x ∈ S :

[
P(x) ⇒ (

∃y ∈ S : P(y))
]

3.190 ∃x ∈ S :
[
P(x) ⇒ (

∀y ∈ S : P(y))
]

The following blocks of code use nested loops to compute some fact about a predicate P. For each, write a fully quantified
statement of predicate logic whose truth value matches the value returned by the given code. (Assume that S is a finite
universe.)
3.191
for x in S:

for y in S:

flag = False

if P(x) or P(y):

flag = True

if flag:

return True

return False

3.192
for x in S:

flag = False

for y in S:

if not P(x,y):

flag = True

if flag:

return True

return False

3.193
for x in S:

flag = True

for y in S:

if not P(x,y):

flag = False

if flag:

return True

return False

3.194
for x in S:

flag = False

for y in S:

if not P(x,y):

flag = True

if not flag:

return False

return True

3.195
for x in S:

for y in S:

if P(x,y):

return False

return True

3.196
flag = False

for x in S:

for y in S:

if P(x,y):

flag = True

return flag

3.197 As we’ve discussed, there is no algorithm that can decide whether a given fully quantified propo-
sition ϕ is a theorem of predicate logic. But there are several specific types of fully quantified propositions
for which we can decide whether a given statement is a theorem. Here you’ll show that, when quantification
is only over a finite set, it is possible to give an algorithm to determine whether ϕ is a theorem. Suppose that
you are given a fully quantified proposition ϕ, where the domain for every quantifier is a finite set—say
S = {0, 1}. Describe an algorithm that is guaranteed to figure out whether ϕ is a theorem.
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3.6 Chapter at a Glance

Propositional Logic

negation ¬p “not p”
disjunction (inclusive: “p, q, or both”) p∨ q “p or q”
conjunction p∧ q “p and q”
implication p ⇒ q “if p, then q” or “p implies q”
equivalence p ⇔ q “p if and only if q”
exclusive or (“p or q, but not both”) p⊕ q “p xor q”

Figure 3.40: Logical
connectives.

A proposition is the kind of thing
that is either true or false. An
atomic proposition (or Boolean
variable) is a conceptually indi-
visible proposition. A compound
proposition (or Boolean formula)
is one built up using a logical connective and one or more simpler propositions. The
most common logical connectives are the ones shown in Figure 3.40. A proposition
that contains the atomic propositions p1, . . . , pk is sometimes called a Boolean formula
over p1, . . . , pk or a Boolean expression over p1, . . . , pk.

p ¬p
T F
F T

p q p∧ q p∨ q
T T T T
T F F T
F T F T
F F F F

p q p ⇒ q
T T T
T F F
F T T
F F T

p q p⊕ q p ⇔ q
T T F T
T F T F
F T T F
F F F T

Figure 3.41: Truth
tables for the basic
logical connectives.

The truth value of a proposition is its truth or falsity. (The truth value of a
Boolean formula over p1, . . . , pk is determined only by the truth values of each
of p1, . . . , pk.) Each logical connective is defined by how the truth value of
the compound proposition formed using that connective relates to the truth
values of the constituent propositions. A truth table defines a connective by
listing, for each possible assignment of truth values for the constituent propo-
sitions, the truth value of the entire compound proposition. See Figure 3.41.
Observe that the proposition p ⇒ q is true if, whenever p is true, q is too. So
the only situation in which p ⇒ q is false is when p is true and q is false. False
implies anything! Anything implies true!

Consider a Boolean formula over variables p1, . . . , pk. A truth assignment
is a setting to true or false for each variable. (So a truth assignment corre-
sponds to a row of the truth table for the proposition.) A truth assignment
satisfies the proposition if, when the values from the truth assignment are
plugged in, the proposition is true. A Boolean formula is a tautology if every
truth assignment satisfies it; it’s satisfiable if some truth assignment satisfies
it; and it’s unsatisfiable or a contradiction if no truth assignment does. Two
Boolean propositions are logically equivalent if they’re satisfied by exactly the
same truth assignments (that is, they have identical truth tables).

Consider an implication p ⇒ q. The antecedent or hypothesis of the implication is
p; the consequent or conclusion of the implication is q. The converse of the implication
p ⇒ q is the implication q ⇒ p. The contrapositive is the implication ¬q ⇒ ¬p. Any im-
plication is logically equivalent to its contrapositive. But an implication is not logically
equivalent to its converse!

A literal is a Boolean variable or the negation of a Boolean variable. A proposition is
in conjunctive normal form (CNF) if it is the conjunction (and) of a collection of clauses,
where a clause is a disjunction (or) of a collection of literals. A proposition is in disjunc-
tive normal form (DNF) if it is the disjunction of a collection of clauses, where a clause
is a conjunction of a collection of literals. Every proposition is logically equivalent to a
proposition that is in CNF, and to another that is in DNF.
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Predicate Logic
A predicate is a statement containing some number of variables that has a truth value
once values are plugged in for those variables. (Alternatively, a predicate is a Boolean-
valued function.) Once particular values for these variables are plugged in, the result-
ing expression is a proposition. A proposition can also be formed from a predicate
through quantifiers:

• The universal quantifier ∀ (“for all”): the proposition ∀x ∈ U : P(x) is true if, for every
x ∈ U, we have that P(x) is true.

• The existential quantifier ∃ (“there exists”): the proposition ∃x ∈ U : P(x) is true if, for
at least one x ∈ U, we have that P(x) is true.

The set U is called the universe or domain of discourse. When the universe is clear from
context, it may be omitted from the notation.

In the expression [∀x : ] or [∃x : ], the scope or body of the quantifier is the un-
derlined blank, and the variable x is bound by the quantifier. A free or unbound variable
is one that is not bound by any quantifier. A fully quantified expression is one with no
free variables.

A theorem of predicate logic is a fully quantified expression that is true for all possi-
ble meanings of the predicates in it. Two expressions are logically equivalent if they are
true under precisely the same set of meanings for their predicates. (Alternatively, two
expressions ϕ and ψ are logically equivalent if ϕ ⇔ ψ is a theorem.) Two useful theo-
rems of predicate logic are De Morgan’s laws: ¬∀x ∈ S : P(x) ⇔ ∃x ∈ S : ¬P(x) and
¬∃x ∈ S : P(x) ⇔ ∀x ∈ S : ¬P(x).

There is no general algorithm that can test whether any given expression is a theo-
rem. If we wish to prove that an implication ϕ ⇒ ψ is an theorem, we can do so with a
proof by assuming the antecedent: to prove that the implication ϕ ⇒ ψ is always true, we
will rule out the one scenario in which it wouldn’t be; specifically, we assume that ϕ is
true, and then prove that ψ must be true too, under this assumption.

A vacuously quantified statement is one in which the domain of discourse is the
empty set. The vacuous universal quantification ∀x ∈ ∅ : P(x) is a theorem; the
vacuous existential quantification ∃x ∈ ∅ : P(x) is always false.

Quantifiers are nested if one quantifier is inside the scope of another quantifier.
Nested quantifiers work in precisely the same way as single quantifiers, applied in
sequence. A proposition involving nested quantifier like ∀x ∈ S : ∃y ∈ T : R(x, y)
is true if, for every choice of x, there is some choice of y (which can depend on the
choice of x) for which R(x, y) is true. Order of quantification matters in general; the
expressions ∀x : ∃y : R(x, y) and ∃y : ∀x : R(x, y) are not logically equivalent.
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Key Terms and Results

Key Terms
Propositional Logic
• proposition
• truth value
• atomic and compound propositions
• logical connectives:

– negation (¬)
– conjunction (∧)
– disjunction (∨)
– implication (⇒)
– exclusive or (⊕)
– if and only if (⇔)

• truth assignments and truth tables
• tautology
• satisfiability/unsatisfiability
• logical equivalence
• antecedent and consequent
• converse, contrapositive, and inverse
• conjunctive normal form (CNF)
• disjunctive normal form (DNF)

Predicate Logic
• predicate
• quantifiers:

– universal quantifier (∀)
– existential quantifier (∃)

• free and bound variables
• fully quantified expression
• theorems of predicate logic
• logical equivalence in predicate logic
• proof by assuming the antecedent
• vacuous quantification
• nested quantifiers

Key Results
Propositional Logic
1. We can build a truth table for any proposition by re-

peatedly applying the definitions of each of the logical
connectives, as shown in Figure 3.4.

2. Two propositions ϕ and ψ are logically equivalent if and
only if ϕ ⇔ ψ is a tautology.

3. An implication p ⇒ q is logically equivalent to its contra-
positive ¬q ⇒ ¬p, but not to its converse q ⇒ p.

4. There are many important propositional tautologies
and logical equivalences, some of which are shown in
Figures 3.10 and 3.12.

5. We can show that propositions are logically equivalent by
showing that every row of their truth tables are the same.

6. Every proposition is logically equivalent to one that is
in disjunctive normal form (DNF) and to one that is in
conjunctive normal form (CNF).

Predicate Logic
1. We can build a proposition from a predicate P(x) by plug-

ging in a particular value for x, or by quantifying over x
as in ∀x : P(x) or ∃x : P(x).

2. Unlike with propositional logic, there is no algorithm
that is guaranteed to determine whether a given fully
quantified predicate-logic expression is a theorem.

3. There are many important predicate-logic theorems,
some of which are shown in Figure 3.23.

4. The statements ¬∀x : P(x) and ∃x : ¬P(x) are logically
equivalent. So are ¬∃x : P(x) and ∀x : ¬P(x).

5. We can think of nested quantifiers as a sequence of single
quantifiers, or as “games with a demon.”
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