
2
Basic Data Types

In which our heroes equip themselves for the journey ahead, by taking on
the basic provisions that they will need along the road.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

202 CHAPTER 2. BASIC DATA TYPES

2.1 Why You Might Care
It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859–1930),
A Scandal in Bohemia (1892)

This chapter will introduce concepts, terminology, and notation related to the most
common data types that recur throughout this book, and throughout computer sci-
ence. These basic entities—the Booleans (True and False), numbers (integers, rationals,
and reals), sets, sequences, functions—are also the basic data types we use in modern
programming languages. Essentially every common primitive data type in programs
appears on this list: a Boolean, an integer (or an int), a real number (or a float), and
a string (an ordered sequence of characters). Ordered sequences of other elements are
usually called arrays or lists. If you’ve taken a course on data structures, you’ve proba-
bly worked on several implementations of sets that allow you to insert an element into
an unordered collection and to test whether a particular object is a “member” of the
collection. And functions that map a given input to a corresponding output are the
basic building blocks of programs.

Virtually every interesting computer science application uses these basic data types
extensively. Cryptography, which is devoted to the secure storage and transmission
of information in such a way that a malicious third party cannot decipher that infor-
mation, is typically based directly on integers, particularly large prime numbers. A
ubiquitous task in machine learning is to “cluster” a set of entities into a collection of
nonoverlapping subsets so that two entities in the same subset are similar and two en-
tities in different subsets are dissimilar. In information retrieval, where we might seek
to find the document from a large collection that is most relevant to a given query, it
is common to represent each document by a vector (a sequence of numbers) based on
the words used in the document, and to find the most relevant documents by identify-
ing which ones “point in the same direction” as the query’s vector. And functions are
everywhere in CS, from data structures like hash tables to the routing that’s done for
every packet of information on the internet.

In this chapter, we’ll describe these basic entities and some standard notation that’s
associated with them. Some closely related topics will appear later in the book, as
well. Chapter 7, on number theory, will discuss some subtler properties of the inte-
gers, particularly divisibility and prime numbers. Chapter 8 will discuss relations,
a generalization of functions. But, really, every chapter of this book is related to this
chapter: our whole enterprise will involve building complex objects out of these simple
ones (and, to be ready to understand the more complex objects, we have to understand
the simple pieces first). And before we launch into the sea of applications, we need
to establish some basic shared language. Much of the basic material in this chapter
may be familiar, but regardless of whether you have seen it before, it is important and
standard content with which it is important to be comfortable.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 203

2.2 Booleans, Numbers, and Arithmetic
Everything you can imagine is real.

Pablo Picasso (1881–1973)

We start with the most basic types of data: Boolean values (True and False), integers
(. . . ,−2,−1, 0, 1, 2, . . .), rational numbers (fractions with integers as numerators and de-
nominators), and real numbers (including the integers and all the numbers in between
them). The rest of this section will then introduce some basic numerical operations:
absolute values and rounding, exponentiation and logarithms, summations and prod-
ucts. Figure 2.1 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False
The most basic unit of data is the bit: a single piece of information, which either takes
on the value 0 or the value 1. Every piece of stored data in a digital computer is stored
as a sequence of bits. (See Section 2.4 for a formal definition of sequences.)

We’ll view bits from several different perspectives: 1 and 0, on and off, yes and no,
True and False. Bits viewed under the last of these perspectives have a special name,
the Booleans: Booleans are

named after George
Boole (1815–
1864), a British
mathematician,
who was the first
person to think
about True as 1 and
False as 0.

Definition 2.1 (Booleans)
A Boolean value is either True or False.

The Booleans are the central object of study of Chapter 3, on logic. In fact, they are
in a sense the central object of study of this entire book: simply, we are interested in
making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals
We’ll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2 (Integers, Reals, and Rationals)
• The integers, denoted by Z, are those numbers with no fractional part: 0, the positive

integers (1, 2, . . .), and the negative integers (−1,−2,−3, . . .).

• The real numbers, denoted by R, are those numbers that can be (approximately)
represented by decimal numbers; informally, the reals include all integers and all numbers
“between” any two integers.

• The rational numbers, denoted by Q, are those real numbers that can be represented as a
ratio n

m of two integers n and m, where n is called the numerator and m 6= 0 is called the
denominator. A real number that is not rational is called an irrational number.

Here are a few examples of each of these types of numbers:

The superficially
unintuitive notation
for the integers,
the symbol Z, is a
stylized “Z” that
was chosen because
of the German
word Zahlen, which
means “numbers.”
The name rationals
comes from the
word ratio; the
symbol Q comes
from its synonym
quotient. (Besides,
the symbol R was
already taken by
the reals, so the
rationals got stuck
with their second
choice.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

204 CHAPTER 2. BASIC DATA TYPES

Booleans True and False
Z integers (. . . ,−3,−2,−1, 0, 1, 2, 3, . . .)
Q rational numbers
R real numbers
[a, b] those real numbers x where a ≤ x ≤ b
(a, b) those real numbers x where a < x < b
[a, b) those real numbers x where a ≤ x < b
(a, b] those real numbers x where a < x ≤ b
|x| absolute value of x: |x| := −x if x < 0; |x| := x if x ≥ 0
⌊x⌋ floor of x: x rounded down to the nearest integer
⌈x⌉ ceiling of x: x rounded up to the nearest integer
bn bmultiplied by itself n times
b1/n, or n√b a number y such that yn = b (where y ≥ 0 if possible), if one exists
bm/n (b1/n)m
logb x logarithm: logb x is the value y such that by = x, if one exists
n mod k modulo: n mod k := the remainder when dividing n by k
k | n k (evenly) divides n
∑ summation: ∑n

i=1 xi := x1 + x2 + · · · + xn
∏ product: ∏n

i=1 xi := x1 · x2 · · · · · xn

Figure 2.1: Sum-
mary of the basic
mathematical nota-
tion introduced in
Section 2.2.

Example 2.1 (Integers, reals, and rationals)
The following are all examples of integers: 1, 42, 0, and −17.

All of the following are real numbers: 1, 99.44, the ratio of the circumference
of a circle to its diameter π ≈ 3.141592653 · · · , and the so-called golden ratio
φ = (1 +

√
5)/2 ≈ 1.61803 · · · .

Examples of rational numbers include 3
2 , 9

5 , 16
4 , and 4

1 . (In Chapter 8, we’ll talk
about the familiar notion of the equivalence of two rational numbers like 1

2 and 2
4 ,

or like 16
4 and 4

1 , based on common divisors. See Example 8.36.) Of the example real
numbers above, both 1 and 99.44 are rational numbers; we can write them as 1

1 and
4972
50 , for example. Both π and φ are irrational.

Here are a few useful points relating these three types of numbers:

• All integers are rational numbers (with denominator equal to 1).
• All rational numbers are real numbers.
• But not all rational numbers are integers and not all real numbers are rational: for

example, 3
2 is not an integer, and

√
2 is not rational. (We’ll prove that

√
2 is not

rational in Example 4.21.)

Taking it further: Definition 2.2 specifies Z, Q, and R somewhat informally. To be completely rigor-
ous, one can define the nonnegative integers as the smallest collection of numbers such that: (i) 0 is an
integer; and (ii) if x is an integer, then x + 1 is also an integer. See Section 5.4.1. (Of course, for even this
definition to make sense, we’d need to give a rigorous definition of the number zero and a rigorous def-
inition of the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define
the rationals as ratios of integers. But formally defining the real numbers is surprisingly challenging; it
was a major enterprise of mathematics in the late 1800s, and is often the focus of a first course in analysis
in an undergraduate mathematics curriculum.

Virtually every programming language supports both integers (usually known as ints) and real
numbers (usually known as floats); see p. 217 for some discussion of the way that these basic numerical
types are implemented in real computers. (Rational numbers are much less frequently implemented as
basic data types in programming languages, though there are some exceptions, like Scheme.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 205

In addition to the basic symbols that we’ve introduced to represent the integers, the
rationals, and the reals (Z, Q, and R), we will also introduce special notation for some
specific subsets of these numbers. We will write Z≥0 and Z≤0 to denote the nonnega-
tive integers (0, 1, 2, . . .) and nonpositive integers (0,−1,−2, . . .), respectively. Generally,
when we write Z with a superscripted condition, we mean all those integers for which
the stated condition is true. For example, Z 6=1 denotes all integers aside from 1. Sim-
ilarly, we write R>0 to denote the positive real numbers (every real number x > 0).
Other conditions in the superscript of R are analogous.

0 1 2 3 4 5
(a) The interval (1, 4)

0 1 2 3 4 5
(b) The interval [1, 4]

0 1 2 3 4 5
(c) The interval [1, 4)

0 1 2 3 4 5
(d) The interval (1, 4]

Figure 2.2: Number
lines representing
real numbers
between 1 and 4,
with 1 included in
the range in (b, c),
and 4 included in
the range in (b, d).

We’ll also use standard notation for intervals of real numbers, denoting all real
numbers between two specified values. There are two variants of this notation, which
allow “between two specified values” to either include or exclude those specified val-
ues. We use round parentheses to mean “exclude the endpoint” and square brackets
to mean “include the endpoint” when we denote a range:

• (a, b) denotes those real numbers x for which a < x < b.
• [a, b] denotes those real numbers x for which a ≤ x ≤ b.
• (a, b] denotes those real numbers x for which a < x ≤ b.
• [a, b) denotes those real numbers x for which a ≤ x < b.

Sometimes (a, b) and [a, b] are, respectively, called the open interval and closed inter-
val between a and b. These four types of intervals are also sometimes denoted via
a number line, with open and closed circles denoting open and closed intervals; see
Figure 2.2 for an example. For two real numbers x and y, we will use the standard
notation “x ≈ y” to denote that x is approximately equal to y. This notation is defined
informally, because what counts as “close enough” to be approximately equal will
depend heavily on context.

2.2.3 Absolute Value, Floor, and Ceiling
In the remaining subsections of Section 2.2, we will give definitions of some standard
arithmetic operations that involve the numbers we just defined. We’ll start in this
subsection with three operations on a real number: absolute value, floor, and ceiling.

The absolute value of a real number x, written |x|, denotes how far x is from 0, disre-
garding the sign of x (that is, disregarding whether x is positive or negative):

Definition 2.3 (Absolute Value)
The absolute value of a real number x is |x| :=




x if x ≥ 0
−x otherwise.

For example, |42.42| = 42.42 and | − 128| = 128. (Definition 2.3 uses standard notation
for defining “by cases”: the value of |x| is x when x ≥ 0, and the value of |x| is −x
otherwise—that is, when x < 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which
are called the floor and ceiling of x, respectively:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

206 CHAPTER 2. BASIC DATA TYPES

Definition 2.4 (Floor and ceiling)
The floor of a real number x, written ⌊x⌋, denotes the largest integer that is less than or equal
to x. The ceiling of a real number x, written ⌈x⌉, denotes the smallest integer that is greater
than or equal to x.

Note that Definition 2.4 defines the floor and ceiling of negative numbers, too; the
definition doesn’t care whether x is greater than or less than 0.

Here are a few examples of floor and ceiling:

Example 2.2 (Floor and ceiling)
We have ⌊

√
2⌋ = ⌊1.4142 · · ·⌋ = 1, ⌊2π⌋ = ⌊6.28318 · · ·⌋ = 6, and ⌊3⌋ = 3. For ceilings,

we have ⌈
√
2⌉ = 2, ⌈2π⌉ = 7, and ⌈3⌉ = 3.

For negative numbers, ⌊−
√
2⌋ = ⌊−1.4142 · · ·⌋ = −2, and ⌈−

√
2⌉ = −1.

−2 −1 0 1 2 3

Figure 2.3: The floor
and ceiling of −

√
2,√

2, and 3.

The number line may give an intuitive way to think about floor and ceiling: ⌊x⌋ de-
notes the first integer that we encounter moving left in the number line starting at
x; ⌈x⌉ denotes the first integer that we encounter moving right from x. (And x itself
counts for both definitions.) See Figure 2.3.

2.2.4 Exponentiation
We next consider raising a number to an exponent or power.

Definition 2.5 (Raising a number to an integer power)
For a real number b and a nonnegative integer n, the number bn denotes the result of
multiplying b by itself n times:

b0 := 1 and, for n ≥ 1, bn := b · b · · · b︸ ︷︷ ︸
n times

.

The number b is called the base and the integer n is called the exponent.

For example, 20 = 1, 22 = 2 · 2 = 4, 25 = 2 · 2 · 2 · 2 · 2 = 32, and 52 = 5 · 5 = 25.
Note again that b0 = 1 for any base b, including b = 0. (The case of 00 is tricky: one is

tempted to say both “0 to the anything is 0” and “anything to the 0 is 1.” But, of course,
these two statements are inconsistent. For us, the latter trumps the former, and 00 = 1,
as in Definition 2.5.)

Raising a base to nonintegral exponents
Consider the expression bx for an exponent x > 0 that is not an integer. (It’s all too

easy to have done this calculation by typing numbers into a calculator without actually
thinking about what the expression actually means!) Here’s the definition of bm/n

when the exponent m
n is a rational number:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 207

Definition 2.6 (Raising a number to a positive rational power)
For any real number b and for any positive integers m and n 6= 0:

• b1/n denotes the number y such that yn = b. The value b1/n is called the nth root of b, and
it can also be denoted by n√b. If there are two values y such that yn = b, then by b1/n we
mean the number y ≥ 0 such that yn = b. If there are no such values y, then we’ll treat
b1/n as undefined.

• bm/n denotes the mth power of b1/n: that is, bm/n := (b1/n)m.

Here are a few examples:

Example 2.3 (Some fractional exponents)
• 161/2 is the value y such that y2 = 16, so 161/2 = 4 (because 42 = 16). Similarly,

161/4 = 2 because 24 = 16.

• The value of 51/2 is roughly 2.2360679774, because 2.23606797742 ≈ 5. (But note
that this value of 51/2 is only an approximation, because actually 2.23606797742 =
4.99999999955372691076 6= 5.)

• As the definition implies, there may be more than one y such that yn = b. For
example, consider 41/2. We need a number y such that y2 = 4—and either y = 2 or
y = −2 satisfies this condition. By the definition, if there are positive and negative
values of y satisfying the requirement, we choose the positive one. So 41/2 = 2.

• For (−8)1/3, we need a value y such that y3 = −8. No y ≥ 0 satisfies this condition,
but y = −2 does. Thus (−8)1/3 = −2.

• For (−8)1/2, we need a value y such that y2 = −8. No y ≥ 0 satisfies this condition,
and no y ≤ 0 does either. Thus we will treat (−8)1/2 as undefined.

Taking it further: Definition 2.6 presents difficulties if we try to compute, say,
√
−1: the definition tells

us that we need to find a number y such that y2 = −1. But y2 ≥ 0 if y ≤ 0 and if y ≥ 0, so no real number
y satisfies the requirement y2 = −1. To handle this situation, one can define the imaginary numbers,
specifically by defining i :=

√
−1. (The name “real” to describe real numbers was chosen to contrast with

the imaginary numbers.)
We will not be concerned with imaginary numbers in this book, although—perhaps surprisingly—

there are some very natural computational problems in which imaginary numbers are fundamental
parts of the best algorithms solving them, such as in signal processing and speech processing (transcrib-
ing English words from a raw audio stream) or even quickly multiplying large numbers together.

When we write
√
bwithout explicitly indicating which root is intended, then we

are talking about the square root of b. In other words,
√
b := 2√b denotes the y such that

y2 = b. An integer n is called a perfect square if √n is an integer.

Definition 2.7 (Raising a number to a negative power)
When the exponent x is negative, then bx is defined as 1

b−x .

For example, 2−4 = 1
24 = 1

16 and 25−3/2 = 1
253/2 = 1

(251/2)3 = 1
53 = 1

125 .

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

208 CHAPTER 2. BASIC DATA TYPES

23 = 8
231/10 = 8.5741 · · ·

2314/100 = 8.8815 · · ·
23141/1000 = 8.8213 · · ·

231415/10000 = 8.8244 · · ·
2314159/100000 = 8.8249 · · ·

...

Figure 2.4: Ap-
proximating 2π .

For an irrational exponent x, the value of bx is approximated arbitrarily
closely by choosing a rational number m

n sufficiently close to x and computing
the value of bm/n.

Taking it further: A fully rigorous treatment of irrational powers requires a formal definition
of the real numbers and an (ε, δ)-style proof as in calculus; we will omit the details as they are
tangential to our purposes in this book. The basic idea is to choose a rational number m/n that
approximates x to within a small error—for example, approximate r by the first k digits of its
decimal expansion (which can be written as m/10k)—and approximate bx by bm/n. For example, 2π
is approximated by the sequence shown in Figure 2.4; the value of 2π is the limit of this sequence
of approximations.

While essentially every modern programming language supports exponentiation—including
positive, fractional, and negative powers—in some form, often in a separate math library, the actual
behind-the-scenes computation is rather complicated. See p. 218 for some discussion of the underlying
steps that are done to compute a quantity like √x.

Here are a few useful facts about exponentiation:

Theorem 2.1 (Properties of exponentials)
For any real numbers a and b, and for any rational numbers x and y:

b0 = 1 (2.1.1)
b1 = b (2.1.2)

bx+y = bx · by (2.1.3)
(bx)y = bxy (2.1.4)
(ab)x = ax · bx (2.1.5)

These properties follow fairly straightforwardly from the definition of exponentiation.
(The properties of Theorem 2.1 carry over to irrational exponents, though the proofs
are less straightforward.)

2.2.5 Logarithms
The logarithm (or log) is the inverse operation to exponentiation: the value of an expo-

Problem-solving
tip: I have found
many CS students
scared, and scarred,
by logs. The fear
appears to me to
result from students
attempting to
memorize facts about
logs without trying
to think about
what theymean.
Mentally translating
between logs and
exponentials can
help make these
properties more
intuitive and can
help make them
make sense. Often
the intuition of
a property of
exponentials
is reasonably
straightforward to
grasp.

nential by is the result of multiplying a number b by itself y times, while the value of a
logarithm logb x is the number of times we must multiply b by itself to get x.

Definition 2.8 (Logarithm)
For a positive real number b 6= 1 and a real number x > 0, the logarithm base b of x, written
logb x, is the real number y such that by = x.

Here are a few simple examples:

Example 2.4 (Some logs)
• The quantity log3 81 is the power to which we must raise 3 to get 81—and thus

log3 81 = 4, because 34 = 3 · 3 · 3 · 3 = 81.
• Similarly, log4 16 = 2, because 42 = 16.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 209

• Because 2 =
√
4 = 41/2, we have log4 2 = 0.5.

• 1280 = 1, so log128 1 = 0.
• 21.5849625 = 2.999999998≈ 3, so log2 3 ≈ 1.5849625.

200 400 600 800 1000

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Figure 2.5: A graph
of log10 x.

For any base b, note that logb x does get larger as the value of x
increases, but it gets larger very slowly. Figure 2.5 illustrates the
slow rate of growth of log10 x as x grows.

For a real number x ≤ 0 and any base b, the expression logb x is
undefined. For example, the value of log2(−4) would be the num-
ber y such that 2y = −4—but 2y can never be negative. Similarly,
logarithms base 1 are undefined: log1 2 would be the number y
such that 1y = 2—but 1y = 1 for every value of y.

Logarithms show up frequently in the analysis of data structures and algorithms,
including a number that we will discuss in this book. Several facts about logarithms
will be useful in these analyses, and are also useful in other settings. Here are a few:

Theorem 2.2 (Properties of logarithms)
For any real numbers b > 1, c > 1, x > 0, and y > 0, the following properties hold:

logb 1 = 0 (2.2.1)
logb b = 1 (2.2.2)

logb xy = logb x + logb y log of a product (2.2.3)
logb x

y = logb x− logb y log of a quotient (2.2.4)

logb xy = y logb x (2.2.5)

logb x = logc x
logc b

“change of base” formula (2.2.6)

These properties generally follow directly from the analogous properties of exponen-
tials in Theorem 2.1. You’ll explore some properties of logarithms (including many of
the properties from Theorem 2.2) in the exercises.

We will make use of one standard piece of notational shorthand: often the expres-
sion log x is written without an explicit base. When computer scientists write the ex-
pression log x, we mean log2 x. One other base is commonly used in logarithms: the
natural logarithm ln x denotes loge x, where e ≈ 2.718281828 · · · is defined from calculus
as e := limn→∞(1 + 1

n)n.

Throughout this
book (and through-
out computer
science), the as-
sumed base of
log x is 2. (Some
computer scien-
tists write lg x to
denote log2 x; we’ll
simply write log x.)
But be aware that
mathematicians or
engineers may treat
the default base to
be e or 10.

2.2.6 Moduli and Division
So far, we’ve discussed multiplying numbers (repeatedly, to compute exponentials); in
this subsection, we turn to the division of one number by another. When we consider
dividing two integers—64 by 5, for example—there are several useful values to con-
sider: regular-old division (645 = 12.8), what’s sometimes called integer division giving

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

210 CHAPTER 2. BASIC DATA TYPES

“the whole part” of the fraction (⌊ 645 ⌋ = 12), and the remainder giving “the leftover
part” of the fraction (the difference between 64 and 12 · 5, namely 64− 60 = 4).

We will return to these notions of division in great detail in Chapter 7, but we’ll
begin here with the formal definitions for the notions related to remainders:

Definition 2.9 (Modulus (remainder))
For any integers k > 0 and n, the integer n mod k is the remainder when we divide n by k.
Using the “floor” notation from Section 2.2.3, the value n mod k is defined as
n mod k := n− k ·

⌊ n
k
⌋
.

Here are examples of the value of a few integers mod 3:

Example 2.5 (Three values mod 3)
• 8 mod 3 = 2, because 8 is 2 more than a multiple of 3, namely 6. (Or because⌊

8
3
⌋
= ⌊2.6666 · · ·⌋ = 2, and 8− 2 · 3 = 8− 6 = 2.)

• 28 mod 3 = 1, as
⌊
28
3
⌋
= 9, and 28− 9 · 3 = 28− 27 = 1.

• 48 mod 3 = 0, because
⌊
48
3
⌋
= ⌊16⌋ = 16, and 48− 16 · 3 = 0.

Taking it further: In many programming languages, the / operator performs integer division when
its arguments are both integers, and performs “real” division when either argument is a floating point
number. So the expression 64 / 5will yield 12, but 64.0 / 5 and 64 / 5.0 and 64.0 / 5.0 will all
yield 12.8. In this book, though, we will always mean “real” division when we write x/y or x

y .
The n mod k operation is a standard one in programming languages—it’s written as n % k in many

languages, including Java, Python, and C/C++, for example.

In Definition 2.9, we allowed n to be a negative integer, which may stretch your
intuition about remainders a bit. Here’s an example of this case of the definition:

Example 2.6 (A negative integer mod 5)
We’ll compute −3 mod 5 simply by following the definition of mod from Defini-
tion 2.9:

−3 mod 5 = (−3)− 5 ·
⌊−3

5

⌋
= (−3)− 5 · (−1) = (−3) + 5 = 2.

Viewed from an appropriate perspective, this calculation should actually be very
intuitive: the value r = n mod k gives the amount r by which n exceeds its closest
multiple of k. (And −3 is 2 more than a multiple of 5, namely −5, so −3 mod 5 = 2.)

Notice that the value of n mod k is always at least 0 and at most k− 1, for any n and
any k > 0; the remainder when dividing by k can never be k or more. At one of these
extreme points, when n

k has zero remainder, then we say that k (evenly) divides n:

Definition 2.10 (Integer k (evenly) divides integer n)
For any integers k > 0 and n, we say that k divides n, written k | n, if n

k is an integer. Notice
that k | n is equivalent to n mod k = 0.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 211

Here’s a simple example:

Example 2.7 (What 5 divides)
Because 5 · ⌊ 105 ⌋ = 5 · 2 = 10 = 10, we know 5 | 10. But 5 · ⌊ 95⌋ = 5 · 1 = 5 6= 9, so 5 6 | 9.

By rearranging the floor-based definition from Definition 2.9 when n mod k = 0, we
can see that the condition k | n is also equivalent to the condition k · ⌊ nk

⌋ = n.

Some special numbers: evens, odds, primes, composites
A few special types of integers are defined in terms of their divisibility—specifically

based on whether they are divisible by 2 (evens and odds), or whether they are divisible
by any other integer except for 1 (primes and composites).

Definition 2.11 (Even, odd, and parity)
A nonnegative integer n is even if n mod 2 = 0, and n is odd if n mod 2 = 1. The parity of
n is its “oddness” or “evenness.”

For example, we have 17 mod 2 = 1 and 42 mod 2 = 0, so 17 is odd and 42 is even.
Taking it further: If we view 0 as False and 1 as True (see Section 2.2.1), then the value n mod 2 can be
interpreted as a Boolean value. In fact, there’s a deeper connection between arithmetic and the Booleans
than might be readily apparent. The “exclusive or” of two Boolean values p and q (which we will en-
counter in Section 3.2.3) is denoted p⊕ q, and the expression p⊕ q is true when one but not both of p and
q is true. The exclusive or is sometimes referred to as the parity function, because p + q is odd (viewing p
and q as numerical values, 0 or 1) exactly when p⊕ q is true (viewing p and q as Boolean values, False or
True).

Definition 2.12 (Prime and composite numbers)
A positive integer n > 1 is prime if the only positive integers that evenly divide n are 1 and n
itself. A positive integer n > 1 is composite if it is not prime.

Notice that the definition of prime numbers does not include 0 and 1, and neither does
the definition of composite numbers: in other words, 0 and 1 are neither composite nor
prime. Here are a few examples of prime and composite numbers:

Example 2.8 (Prime numbers)
Problem: Is 77 prime? What about 7?

Solution: 77 is not prime, because it is evenly divisible by 7. In other words, because
77 mod 7 = 0 (and the integer 7 that evenly divides 77 is neither 1 nor 77 itself), 77
is composite.

On the other hand, 7 is prime. Convincing yourself that something is prime
is harder than convincing yourself that something is not prime, but we can see it
by trying all the possible divisors, namely every positive integer except 1 and 7:
7 mod 2 = 1 and 7 mod 3 = 1 and 7 mod 4 = 3 and 7 mod 5 = 2 and 7 mod 6 = 1,
and furthermore 7 mod d = 7 for any d ≥ 8. None of these remainders is zero, so 7
is prime.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

212 CHAPTER 2. BASIC DATA TYPES

Example 2.9 (Small primes and composites)
The first ten prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. The first ten composite
numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18.

Chapter 7 is devoted to the properties of modular arithmetic, prime numbers, and the
like. These quantities have deep and important connections to cryptography, error-
correcting codes, and other applications that we’ll explore later.

2.2.7 Summations and Products
There is one final piece of notation related to numbers that we need to introduce: a
simple way of expressing the sum or product of a collection of numbers. We’ll start with
the compact summation notation that allows us to express the result of adding many
numbers:

Definition 2.13 (Summation notation)
Let x1, x2, . . . , xn be a sequence of n numbers. We write ∑n

i=1 xi (usually read as “the sum for i
equals 1 to n of xi”) to denote the sum of the xis:

n
∑
i=1

xi := x1 + x2 + · · · + xn.

The variable i is called the index of summation or the index variable.
Note that ∑0

i=1 xi = 0: when you add nothing together, you end up with zero.

Here are a few very simple examples:

Example 2.10 (Some simple summations)
Let a1 = 2, a2 = 4, a3 = 8, and a4 = 16, and let b1 = 1, b2 = 2, b3 = 3, and b4 = 4. Then

4
∑
i=1

ai = a1 + a2 + a3 + a4 = 2 + 4 + 8 + 16 = 30
4
∑
i=1

bi = b1 + b2 + b3 + b4 = 1 + 2 + 3 + 4 = 10

1: result := 0
2: for i := 1, 2, . . . , n
3: result := result + xi
4: return result

Figure 2.6: A for
loop that returns
the value of ∑n

i=1 xi .

We can interpret this summation notation as if it expressed a for loop, as shown
in Figure 2.6. The for loop interpretation might help make the “empty sum” more
intuitive: the value of ∑0

i=1 xi = 0 is simply 0 because result is set to 0 in line 1, and it
never changes, because n = 0 (and therefore line 3 is never executed).

In general, instead of just adding xi in the ith term of the sum, we can add any ex-
pression involving the index of summation. (We can also start the index of summation
at a value other than 1: to denote the sum xj + xj+1 + · · · + xn, we write ∑n

i=j xi.) Here are
a few examples:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 213

Example 2.11 (Some sums)
Let a1 = 2, a2 = 4, a3 = 8, and a4 = 16. Then

∑4
i=1 ai = 2 + 4 + 8 + 16 = 30

∑4
i=1(ai + 1) = (2 + 1) + (4 + 1) + (8 + 1) + (16 + 1) = 34

∑4
i=1 i = 1 + 2 + 3 + 4 = 10

Example 2.12 (Some more sums)
Problem: As above, let a1 = 2, a2 = 4, a3 = 8, and a4 = 16. What are the values of the

following expressions?
1. ∑4

i=1 i2 2. ∑4
i=2 i2 3. ∑4

i=1(ai + i2) 4. ∑4
i=1 5

Solution: Here are the values of these sums:

1. ∑4
i=1 i2 = 12 + 22 + 32 + 42 = 30

2. ∑4
i=2 i2 = 22 + 32 + 42 = 29

3. ∑4
i=1(ai + i2) = (2 + 12) + (4 + 22) + (8 + 32) + (16 + 42) = 60

4. ∑4
i=1 5 = 5 + 5 + 5 + 5 = 20

Two special types of summations arise frequently enough to have special names. A
geometric series is ∑n

i=1 α
i for some real number α; an arithmetic series is ∑n

i=1 i · α for a
real number α. See Section 5.2.2 for more on these types of summations.

We will very occasionally consider an infinite sequence of numbers x1, x2, . . . , xi, . . .;
we may write ∑∞

i=1 xi to denote the infinite sum of these numbers.

Example 2.13 (An infinite sum)
Define xi := 1/2i, so that x1 = 1/2, x2 = 1/4, x3 = 1/8, and so forth. We can write
∑∞

i=1 xi to denote 1/2 + 1/4 + 1/8 + 1/16 + · · · . The value of this summation is 1: each
term takes the sum halfway closer to 1.

While the for loop in Figure 2.6 would run forever if we tried to apply it to an infinite
summation, the idea remains precisely the same: we successively add the value of
each term to the result variable. (We will discuss this type of infinite sum in detail in
Section 5.2.2, too.)

Reindexing summations
Just as in a for loop, the “name” of the index variable in a summation doesn’t mat-

ter, as long as it’s used consistently. For example, both ∑5
i=1 ai and ∑5

j=1 aj denote the
value of a1 + a2 + a3 + a4 + a5.

We can also rewrite a summation by reindexing it (also known as using a change of
index or a change of variable), by adjusting both the limits of the sum (lower and upper)
and what’s being summed while ensuring that, overall, exactly the same things are
being added together.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

214 CHAPTER 2. BASIC DATA TYPES

Example 2.14 (Shifting by two)
The sums ∑n

i=3 i and ∑n−2
j=1 (j + 2) are equal, because both express 3 + 4 + 5 + · · · + n. (We

have applied the substitution j := i− 2 to get from the first summation to the second.)

Example 2.15 (Counting backward)
The following two summations have the same value:

n
∑
i=0

(n− i) and
n
∑
j=0

j.

We can produce one from the other by substituting j := n− i, so that i = 0, 1, . . . , n
corresponds to j = n− 0, n− 1, . . . , n− n (or, more simply, to j = n, n− 1, . . . , 0).

Reindexing can be surprisingly helpful when we’re confronted by ungainly summa-
tions; doing so can often turn the given summation into something more familiar.

Nested sums
We can sum any expression that depends on the index variable—including sum-

mations. These summations are called double summations or, more generally, nested
summations. Just as with nested loops in programs, the key is to read “from the inside
out” in simplifying a summation. Here are two examples:

Example 2.16 (A double sum)
Let’s compute ∑6

i=1
[
∑i

j=1 5
]
.

Observe that, for any fixed value of i ≥ 0, the value of ∑i
j=1 5 is just 5i, because we

are summing i different copies of the number 5. Therefore

6
∑
i=1

[
i

∑
j=1

5
]
=

6
∑
i=1

5i = 5 + 10 + 15 + 20 + 25 + 30 = 105.

Example 2.17 (A slightly more complicated double sum)
Problem: What is ∑6

i=1
[
∑i

j=1 j
]
?

Solution: Observe that the inner sum (∑i
j=1 j) has the following value, for each

1 ≤ i ≤ 6:

• ∑1
j=1 j = 1

• ∑2
j=1 j = 1 + 2 = 3

• ∑3
j=1 j = 1 + 2 + 3 = 6

• ∑4
j=1 j = 1 + 2 + 3 + 4 = 10

• ∑5
j=1 j = 1 + 2 + 3 + 4 + 5 = 15

• ∑6
j=1 j = 1 + 2 + 3 + 4 + 5 + 6 = 21

Thus ∑6
i=1 ∑i

j=1 j = 1 + 3 + 6 + 10 + 15 + 21 = 56.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 215

1 2 3 4
1 7 5 6 5
2 5 5 1 7
3 3 5 8 3

(a) A small table with some
arbitrarily chosen numbers.

j = 1 2 3 4 5 6 7 8
i = 1 −1 −1 −2 −2 −3 −3 −4 −4

2 1 1 2 2 3 3 4 4
3 −1 −1 −2 −2 −3 −3 −4 −4
4 1 1 2 2 3 3 4 4
5 −1 −1 −2 −2 −3 −3 −4 −4
6 1 1 2 2 3 3 4 4
7 −1 −1 −2 −2 −3 −3 −4 −4
8 1 1 2 2 3 3 4 4

(b) The terms of ∑n
i=1 ∑n

j=1
((−1)i · ⌈ j

2 ⌉
),

for n = 8.

Figure 2.7: Two
tables whose
elements we’ll sum
“row-wise” and
“column-wise.”

When you’re programming and need
to write two nested loops, it sometimes
ends up being easier to write the loops
with one variable in the outer loop
rather than the other variable. Sim-
ilarly, it may turn out to be easier to
think about a nested sum by revers-
ing the summation—that is, swapping
which variable is the “outer” summa-
tion and which is the “inner.” If we have
any sequence ai,j of numbers indexed by two variables i and j, then ∑n

i=1 ∑n
j=1 ai,j and

∑n
j=1 ∑n

i=1 ai,j have precisely the same value.
Here are two examples of reversing the order of a double summation, for the tables

shown in Figure 2.7:

Problem-solving tip:
When you’re look-
ing at a complicated
double summation,
try reversing it; it
may be much easier
to analyze the other
way around.

Example 2.18 (A simple sum)
Consider the table in Figure 2.7(a). Write ai,j to denote the element in the ith row and
jth column of the table. Then the sum of elements in the table is, by summing the
row-sums,

3
∑
i=1

[
4
∑
j=1

ai,j
]
=

3
∑
i=1

the sum of elements in row i = 23 + 18 + 19 = 60.

And, by summing the column-sums, the sum of elements in the table is also

4
∑
j=1

[
3
∑
i=1

ai,j
]
=

4
∑
j=1

the sum of elements in column j = 15 + 15 + 15 + 15 = 60.

Example 2.19 (A double sum, reversed)
Problem: Let n = 8. What is the value of the following sum?

n
∑
i=1

n
∑
j=1

[
(−1)i ·

⌈ j
2
⌉]

Solution: We are computing the sum of all the values contained in the table in Fig-
ure 2.7(b). The hardway to add up all of these values is by computing the row
sums, and then adding them all up. (The given equation expresses this hard way.)
The easier way is reverse the summation, and to instead compute

n
∑
j=1

n
∑
i=1

[
(−1)i ·

⌈ j
2
⌉]

.

For any value of j, observe that ∑n
i=1(−1)i · ⌈ j

2⌉ is actually zero! (This value is just
(⌈ j

2⌉)n2 + (−⌈ j
2⌉)n2 .) In other words, every column sum in the table is zero. Thus

the value of the entire summation is ∑n
j=1 0, which is just 0.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

216 CHAPTER 2. BASIC DATA TYPES

Note that computing the sum from Example 2.19 when n = 100 or n = 100,000 remains
just as easy if we use the column-based approach: as long as n is an even number,
every column sum is 0, and thus the entire summation is 0. (The row-based approach
is ever-more painful to use as n gets large.)

Here’s one more example—another view of the double sum ∑6
i=1 ∑i

j=1 j from Exam-
ple 2.17—where reversing the summation makes the calculation simpler:

1 2 3 4 5 6
1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3 4 5
6 1 2 3 4 5 6

Figure 2.8: The
terms of ∑6

i=1 ∑i
j=1 j.

We seek the sum
of all entries in the
table.

Example 2.20 (A double sum, redone)
The value of ∑6

i=1 ∑i
j=1 j is the sum of all the numbers in the table in Figure 2.8. We

solved Example 2.17 by first computing ∑i
j=1 j, which is the sum of the numbers in the

ith row. We then summed these values over the six different values of i to get 56.
Alternatively, we can compute the desired sum by looking at columns instead of

rows. The sum of the table’s elements is also ∑6
j=1
[
∑6

i=j j
]
, where ∑6

i=j j is the sum of
the numbers in the jth column. Because there are a total of (7 − j) terms in ∑6

i=j j, the
sum of the numbers in the jth column is precisely j · (7 − j). (For example, the 4th
column’s sum is 4 · (7− 4) = 4 · 3 = 12.) Thus the overall summation can be written as

6
∑
i=1

i
∑
j=1

j =
6
∑
j=1

[
j · (7− j)

]
= (1 · 6) + (2 · 5) + (3 · 4) + (4 · 3) + (5 · 2) + (6 · 1)

= 6 + 10 + 12 + 12 + 10 + 6 = 56.

Products
The ∑ notation allows us to express repeated addition of a sequence of numbers;

there is analogous notation to represent repeatedmultiplication of numbers, too:

The summation and
product notation
have a secret
mnemonic to help
you remember
what each means:
“Σ” is the Greek
letter Sigma, which
starts with the same
letter as the word
sum. And “Π” is
the Greek letter Pi,
which starts with
the same letter as
the word product.

Definition 2.14 (Product notation)
Let x1, x2, . . . , xn be a sequence of n numbers. We write ∏n

i=1 xi (usually read as “the product
for i equals 1 to n of xi”) to denote the product of the xis:

n
∏
i=1

xi := x1 · x2 · · · · · xn.

1: result := 1
2: for i := 1, 2, . . . , n
3: result := result · xi
4: return result

Figure 2.9: A for
loop that returns
the value of ∏n

i=1 xi .

There are direct analogues between the notions regarding ∑ and corresponding
notions for ∏: the for loop interpretation (Figure 2.9), infinite products, reindexing,
and nested products. One slight difference worthy of note: the value of ∏0

i=1 xi is 1;
when we multiply by nothing, we’re multiplying by one.

Example 2.21 (Some products)
Here are a few simple products:

∏4
i=1 i = 1 · 2 · 3 · 4 = 24

∏4
i=0 i = 0 · 1 · 2 · 3 · 4 = 0

∏4
i=1 i2 = 12 · 22 · 32 · 42 = 576

∏4
i=1 5 = 5 · 5 · 5 · 5 = 625

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 217

Computer Science Connections

Integers and ints, Reals and floats
Every modern programming language has types that correspond to the

integers and the real numbers, often called something like int (short for
“integer”) and float (short for floating-point number; more about this name
and the floating point representation is below).

In most programming languages, though, these types differ from Z and
R in important ways. Every piece of data stored on a computer is stored
as a sequence of bits, and typically the bit sequence storing a number has
some fixed length. For example, an int stored using 7 bits can range from
0000000 (the number 0 represented in binary) to 1111111 (the number 27 − 1 =
127 represented in binary). Typically, the first bit in an int’s representation
is reserved as the sign bit (set to True for a negative number and False for
a positive number), and the remaining bits store the value of the number.
(See Figure 2.10.) Thus there’s a bound on the largest int, depending on the
number of bits used to represent ints in a particular programming language:
32,767 in Pascal (= 215 − 1, using 16 bits per int: 1 sign bit and 15 data bits),
and 2,147,483,647 in Java (= 231 − 1; 32 bits, of which 1 is a sign bit). Similar
constraints apply to the set of real numbers representable as a float.

A crucial point about Z and R is that they are infinite: there is no small-

sign bit
data bits

0 0 1 1 0 0 1 1
+ 0 32 16 0 0 2 1+ + + + + + = 51

0 1 0 1 0 1 0 0
+ 64 0 16 0 4 0 0+ + + + + + = 84

Figure 2.10: The integers 51 and 84,
represented in binary as 8-bit signed
integers.

est integer, there’s no biggest real number, and there isn’t even a biggest real
number that is smaller than 1. In almost every programming language, how-
ever, there is a smallest int, a biggest float, and a biggest float that’s smaller
than 1: after all, there are only finitely many possible floats (perhaps 264
different values), and one of these 264 values is the smallest float.

The finite nature of these programming language data types can cause
some subtle bugs in programs. There are issues related to integer overflow if we
try to store “too large” an integer: for example, when we compute 32767 + 1
in Pascal, the result is −32768. And there are bugs related to underflow if we
try to store “too small” a floating-point number: for example, if we compute
(0.0000000001)33 in Python, the result is 0.0. (But (0.0000000001)32 is, correctly,
10−320.) Similarly, there are also rounding errors implicit in floating point
representations of numbers: because there are only finitely many different
floats, the infinitely many real numbers cannot all be stored exactly. For
example, when I type 0.0006 - 0.0004 == 0.0002 into a Python interpreter, I
get False as output. (That’s because, according to Python, 0.0006 - 0.0004 is
0.00019999999999999993, not 0.0002.)

The name float originates with a clever idea that’s used to mitigate (though
not solve) the issues above: we allow the decimal point to “float” in the repre-
sentation of different numbers. Consider decimal numbers like

x = 0.001
y = 1929192919291929192919291929192919291929192919291929.5.

If, say, we represent these numbers using a total of 64 bits, most of the 64 bits
representing x are devoted to the part after decimal point, whereas most of the
64 bits representing y are devoted to the part before the decimal point.1

You can learn more about the details
of how numerical values are stored on
computers in a course on computer
architecture. In addition to the floating-
point standard, other interesting details
include 2’s complement storage of inte-
gers, which allows a single representa-
tion of positive and negative integers so
that addition “just works” the same way,
even with a sign bit. You can learn more
about this material in a good computer
architecture textbook, such as
1 David A. Patterson and John L. Hen-
nessy. Computer Organization and Design:
the Hardware/Software Interface. Morgan
Kaufmann, 4th edition, 2008.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

218 CHAPTER 2. BASIC DATA TYPES

Computer Science Connections

Computing Square Roots, and Not Computing Square Roots
Programs can make use of numerical operations in surprisingly com-

plex ways. Many programmers just happily use these numerical operations
without thinking about how they’re implemented—but a little knowledge of
what’s happening behind the scenes can actually help speed up our programs.
Computer hardware can directly and efficiently execute basic arithmetic op-
erations like addition and multiplication and division, but more complex
operations may require many of these basic operations.

Consider the task of computing √x, given an input value x, for example.
The basic idea is to use some kind of iterative improvement algorithm: we
start with a guess y0 of the value of

√x, and then update our guess to a new
guess y1 (by observing in some way whether y0 was too big or too small). We
continue to improve our guess until we’ve reached a value y such that y2 is
“close enough” to x. (We can specify the tolerance of the algorithm—that is,
how close counts as “close enough.”)

A simple implementation of this idea is called Heron’s method, named af-

Input: A positive real number x.
Output: A real number y such that

y2 ≈ x.
1: Let y0 be arbitrary, and let i := 0.
2: while (yi)2 is too far from x:
3: let yi+1 := yi+ x

yi
2 and i := i + 1

4: return yi

For example, here’s the computation of
the square root of x = 42, using x

2 as the
initial guess:

i yi
0 21
1 11.5
2 7.576086956 · · ·
3 6.559922961 · · ·
4 6.481218587 · · ·
5 6.480740716 · · ·
6 6.480740698 · · ·

Figure 2.11: Heron’s method for com-
puting square roots, and an example.

ter the 1st-century Greek mathematician Heron of Alexandria and shown
in Figure 2.11. It relies on the nonobvious fact that the average of y and x

y is
closer to √x than y was. (Unless y is exactly equal to √x, of course; in that
case, the new guess is identical to the old guess: the average of √x and x√x
is still √x.) Almost two millennia later, Isaac Newton developed a general
technique for computing values of numerical expressions involving exponen-
tials, among other things. This technique, known as Newton’s method, involves
calculus—specifically, using derivatives to figure out how far to move from
a current guess yi in making the next guess yi+1. Like Heron’s method, New-
ton’s method is an example of a technique in scientific computing, the subfield
of computer science devoted to efficient computation of numerical values,
often for the purposes of simulating a complex system.2 Many interesting questions and tech-

niques are used in scientific computing;
one outstanding, and classic, reference
for some of this material is the book
2 William Press, Saul Teukolsky, William
Vetterling, and Brian Flannery. Nu-
merical Recipes: The Art of Scientific
Computing. Cambridge University Press,
3rd edition, 2007.

Work in scientific computing has improved the efficiency of numerical
computation. But even better is to be aware of the fact that operations like
square roots require significant computation “under the hood,” and to avoid
them when possible. To take one particular example, consider applying a blur
filter to an image: replace each pixel p by the average of all pixels within a
radius-r circle centered at p in the original image. To compute the blurred ver-
sion of a particular pixel p, we might look at every pixel q within ±r rows or
columns and compute whether p and q are within distance r. (See Figure 2.12.)
There are two natural ways to compute whether the two pixels p and q are
within distance r:
1. the “obvious” way: test whether

√
(px + qx)2 + (py + qy)2 ≤ r.

2. the “other” way: test whether (px + qx)2 + (py + qy)2 ≤ r2.
While there is no important mathematical difference between these two for-
mulas (we’ve simply squared both sides in the “other” way), there is a com-
putational difference. Because square roots are expensive to compute, it turns
out that in my Python implementation of a blur filter, using the “other” way
was about 12% faster than using the “obvious” way.

p

Figure 2.12: Implementing a blur filter.
We wish to average all pixels within the
circle to compute the new pixel p.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 219

2.2.8 Exercises
What are the smallest and largest integers that are . . .
2.1 . . . in the interval (111, 202)? 2.2 . . . in the interval [111, 202)?
2.3 . . . in the interval (17, 42) but not in the interval (39, 99]?
2.4 . . . in the interval [17, 42] but not in the interval [39, 99)?

Explain your answers to the following questions.
2.5 If x and y are integers, is x + y necessarily an integer?
2.6 If x and y are rational numbers, is x + y necessarily rational?
2.7 If x and y are irrational numbers, is x + y necessarily irrational?

What is the value of each of the following expressions?
2.8 ⌊2.5⌋ + ⌈3.75⌉ 2.9 ⌊3.14159⌋ · ⌈0.87853⌉ 2.10 (⌊3.14159⌋)⌈3.14159⌉

2.11 Most programming languages provide two different functions called floor and truncate to trim
real numbers to integers. In these languages, floor(x) is defined exactly as we defined ⌊x⌋, and trunc(x)
is defined to simply delete any digits that appear after the decimal point in writing x. So trunc(3.14159) =
3 .14159 = 3. Explain why programming languages have both floor and trunc—that is, explain under what
circumstances floor(x) and trunc(x) give different values.

Using floor, ceiling, and standard arithmetic notation, give an expression for a real number x . . .
2.12 . . . rounded to the nearest integer. (“Round up” for a number that’s exactly between two integers—
for example, 7.5 rounds to 8.)
2.13 . . . rounded to the nearest 0.1.
2.14 . . . rounded to the nearest 10−k , for an arbitrary number k of digits after the decimal point.
2.15 . . . truncated to k digits after the decimal point—that is, leaving off the (k + 1)st digit and beyond.
(For example, 3.1415926 truncated with 3 digits is 3.141, and truncated with 4 digits is 3.1415.)

Taking it further: Many programming languages provide a facility for displaying formatted output,
particularly numbers, in the style of Example 2.15. For example, printf("%.3f", x) says to “print
(formatted)” the value of x with only 3 digits after the decimal point. (The “f” of “printf” stands for
formatted; the “f” of "%.3f" stands for float.) This style of printf command appears in many languages:
C, Java, Python, and others.

2.16 For what value(s) of x in the interval [2, 3] is x− ⌊x⌋+⌈x⌉
2 the largest?

2.17 For what value(s) of x in the interval [2, 3] is x− ⌊x⌋+⌈x⌉
2 the smallest?

Let x be a real number. Rewrite each of the following as simply as possible:
2.18 ⌊⌊x⌋⌋ 2.19 ⌈⌈x⌉⌉ 2.20 ⌊⌈x⌉⌋ 2.21 ⌈⌊x⌋⌉

2.22 Are |⌊x⌋| and ⌊|x|⌋ always equal? Explain.
2.23 Are 1 + ⌊x⌋ and ⌊1 + x⌋ always equal? Explain.
2.24 Are ⌊x⌋ + ⌊y⌋ and ⌊x + y⌋ always equal? Explain.
2.25 Let x be a real number. Describe (in English) what 1 + ⌊x⌋ − ⌈x⌉ represents. Explain.

2.26 In performing a binary search for x in a sorted n-element array A[1 . . . n] (see Figure 6.17(a)), the
first thing we do is to compare the value of x and the value of A [⌊ 1+n

2 ⌋
]. Assume that all elements of A are

distinct. How many elements of A are less than A [⌊ 1+n
2 ⌋
]? How many are greater? Write your answers as

simply as possible.

2.27 Which is bigger, 310 or 103?

What is the value of each of the following expressions?
2.28 48
2.29 (1/4)8

2.30 (−4)8
2.31 (−4)9

2.32 2561/4
2.33 81/4

2.34 83/4
2.35 (−9)1/4

What is the value of each of the following expressions?
2.36 log2 8 2.37 log2(1/8) 2.38 log8 2 2.39 log1/8 2

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

220 CHAPTER 2. BASIC DATA TYPES

2.40 Which is bigger, log10 17 or log17 10?

Each of the following statements are general properties of logarithms (from Theorem 2.2), for any real numbers b, c > 1
and x, y > 0. Using the definition of logarithms and the properties of exponentials from Theorem 2.1, justify each of
these properties.
2.41 logb 1 = 0
2.42 logb b = 1
2.43 logb xy = y logb x

2.44 logb xy = logb x + logb y
2.45 logb x = logc x

logc b

Using the properties from Theorem 2.2 that you just proved, and the fact that logb x = logb y exactly when x = y (for
any base b > 1), justify the following additional properties of logarithms:
2.46 For any real numbers b > 1 and x > 0, we have that b[logb x] = x.
2.47 For any real numbers b > 1 and a, n > 0, we have that n[logb a] = a[logb n].
2.48 Prove (2.2.4) from Theorem 2.2: for any b > 1 and x, y > 0, we have that logb x

y = logb x− logb y.

2.49 Using notation defined in this chapter, define the “hyperceiling” ⌈n⌉ of a positive integer n, where
⌈n⌉ is the smallest exact power of two that is greater than or equal to n. (That is, ⌈n⌉ denotes the smallest
value of 2k where 2k ≥ n and k is a nonnegative integer.)

2.50 Similar to the last exercise: when writing down an integer n on paper using standard decimal
notation, we need enough columns for all the digits of n (and perhaps one additional column for a “−” if
n < 0). Write down an expression indicating how many columns we need to represent n. (Hint: use the case
notation introduced in Definition 2.3, and be sure that your expression is well defined—that is, it doesn’t “generate any
errors”—for all integers n.)

What are the values of the following expressions?
2.51 202 mod 2
2.52 202 mod 3
2.53 202 mod 10

2.54 −202 mod 10
2.55 17 mod 42
2.56 42 mod 17

2.57 17 mod 17
2.58 −42 mod 17
2.59 −42 mod 42

>>> 3 % 5

3

>>> -3 % 5

2

>>> 3 % -5

-2

>>> -3 % -5

-3

Figure 2.13:
Python’s imple-
mentation of %
(“mod”). (The
value of the expres-
sion written after
>>> is shown on the
next line.)

2.60 Observe the Python behavior of the % operator (the Python notation for mod) that’s shown in
Figure 2.13. The first two lines (3 mod 5 = 3 and −3 mod 5 = 2) are completely consistent with the definition
that we gave for mod (Definition 2.9), including its use for n mod k when n is negative (as in Example 2.6).
But we haven’t defined what n mod k means for k < 0. Propose a formal definition of % in Python that’s
consistent with Figure 2.13.

What is the smallest positive integer n that has the following characteristics?
2.61 n mod 2 = 0, n mod 3 = 0, and n mod 5 = 0
2.62 n mod 2 = 1, n mod 3 = 1, and n mod 5 = 1
2.63 n mod 2 = 0, n mod 3 = 1, and n mod 5 = 0
2.64 n mod 3 = 2, n mod 5 = 3, and n mod 7 = 5
2.65 n mod 2 = 1, n mod 3 = 2, n mod 5 = 3, and n mod 7 = 4

2.66 (programming required) Write a program to determine whether a given positive integer n is prime
by testing all possible divisors between 2 and n− 1. Use your program to find all prime numbers less than
202.

2.67 (programming required) A perfect number is a positive integer n that has the following property: n
is equal to the sum of all positive integers k < n that evenly divide n. For example, 6 is a perfect number,
because 1, 2, and 3 are the positive integers less than 6 that evenly divide 6—and 6 = 1 + 2 + 3. Write a
program that finds the four smallest perfect numbers.

2.68 (programming required) Write a program to find all integers between 1 and 1000 that are evenly
divisible by exactly three different integers.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 221

Compute the values of the following summations and products.
2.69 ∑6

i=1 6
2.70 ∑6

i=1 i2
2.71 ∑6

i=1 22i
2.72 ∑6

i=1 i · 2i
2.73 ∑6

i=1(i + 2i)

2.74 ∏6
i=1 6

2.75 ∏6
i=1 i2

2.76 ∏6
i=1 22i

2.77 ∏6
i=1 i · 2i

2.78 ∏6
i=1(i + 2i)

Compute the values of the following nested summations.
2.79 ∑6

i=1 ∑6
j=1(i · j)

2.80 ∑6
i=1 ∑6

j=i(i · j)
2.81 ∑6

i=1 ∑i
j=1(i · j)

2.82 ∑8
i=1 ∑8

j=i i
2.83 ∑8

i=1 ∑8
j=i j

2.84 ∑8
i=1 ∑8

j=i(i + j)
2.85 ∑4

i=1 ∑4
j=i(ji)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

222 CHAPTER 2. BASIC DATA TYPES

2.3 Sets: Unordered Collections
History is a set of lies agreed upon.

Napoleon Bonaparte (1769–1821)

Section 2.2 introduced the primitive types of objects that we’ll use throughout the
book. We turn now to collections of objects, analogous to lists and arrays in program-
ming languages. We start in this section with sets, in which objects are collected with-
out respect to order or repetition. (Section 2.4 will address sequences, which are collec-
tions of objects in which order and repetition domatter.) The definitions and notation
related to sets are summarized in Figure 2.14.

Definition 2.15 (Sets)
A set is an unordered collection of objects.

Here are a few simple examples: Sets are typi-
cally denoted by
uppercase let-
ters (generically
S,T,U,A,B, . . .), of-
ten by a mnemonic
letter: S for a set of
students,D for a
set of documents,
etc. As we saw,
the common sets
from mathematics
defined in Sec-
tion 2.2.2 are often
written using a
“blackboard bold”
font: Z, R, and Q.

Example 2.22 (Some sets)
Here are three sets: the set of bits {0, 1}, the set of prime numbers {2, 3, 5, 7, 11, . . .},
and the set of basic arithmetic operators {+,−, ·, /}. (We’ve written these sets using
standard notation by listing the objects in the set between curly braces { and }.)

Set membership—that is, the question is the object x one of the objects in the collection S?, for
a particular object x and a particular set S—is the central notion for sets:

Definition 2.16 (Set membership)
For a set S and an object x, the expression x ∈ S is true when x is one of the objects contained
in the set S. When x ∈ S, we say that x is an element or member of S or, more simply, that x
is in S.

The expression x /∈ S is the negation of the expression x ∈ S: that is, x /∈ S is true
whenever x is not an element of S (and thus whenever x ∈ S is false).

Example 2.23 (Some set memberships)
The integer 0 is an element of the set of bits, and + is in the set of basic arithmetic
operators. But 1 is not an element of the set of prime numbers, and 8 is not in the set
of bits.

A second key concept about a set is its cardinality, or size:

Definition 2.17 (Set cardinality)
The cardinality of a set S, denoted by |S|, is the number of distinct elements in S.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 223

set membership x ∈ S x is one of the elements of S
cardinality |S| the number of distinct elements in the set S
set enumeration {x1, x2, . . . , xk} the set containing elements x1 , x2 , . . . , xk
set abstraction {x ∈ U : P(x)} the set containing all x ∈ U for which P(x) is true;

U is the “universe” of candidate elements
empty set {} or ∅ the set containing no elements
complement ∼S := {x ∈ U : x /∈ S} the set of all elements in the universe U that aren’t in S;

U may be left implicit if it’s obvious from context
union S ∪ T := {x : x ∈ S or x ∈ T} the set of all elements in either S or T (or both)
intersection S ∩ T := {x : x ∈ S and x ∈ T} the set of all elements in both S and T
set difference S− T := {x : x ∈ S and x /∈ T} the set of all elements in S but not in T
set equality S = T every x ∈ S is also in T, and every x ∈ T is also in S
subset S ⊆ T every x ∈ S is also in T
proper subset S ⊂ T S ⊆ T but S 6= T
superset S ⊇ T every x ∈ T is also in S
proper superset S ⊃ T S ⊇ T but S 6= T
power set P(S) the set of all subsets of S

Figure 2.14: A
summary of set
notation.Example 2.24 (Some set sizes)

The cardinality of the set of bits is 2, because there are two distinct elements of that
set (namely 0 and 1).

The cardinality of the set S of prime numbers between 10 and 20 is |S| = 4: the four
elements of S are 11, 13, 17, and 19.

Chapter 9 is devoted entirely to the apparently trivial problem of counting—given a
(possibly convoluted) description of a set S, find |S|—which turns out to have some
interesting and useful applications, and isn’t as easy as it seems.

Taking it further: In this book, we will be concerned almost exclusively with the cardinality of finite sets,
but one can also ask questions about the cardinality of sets like Z or R that contain an infinite number
of distinct elements. For example, it’s possible to prove that |Z| = |Z≥0|, which is a pretty amazing
result: there are as many nonnegative integers as there are integers! (And that’s true despite the fact that
every nonnegative integer is an integer!) But it’s also possible to prove that |Z| 6= |R|: . . . but there are
more real numbers than integers! More amazingly, one can use similar ideas to prove that there are fewer
computer programs than there are problems to solve, and that therefore there are some problems that
are not solved by any computer program. This idea is the central focus of the study of computability and
uncomputability. See Section 4.4.4 and the discussion on p. 937.

2.3.1 Building Sets from Scratch
There are two standard ways to specify a set “from scratch”: by simply listing each of
the elements of the set, or by defining the set as the collection of objects for which a
particular logical condition is true.

Set definition via exhaustive enumeration
A set can be specified using an exhaustive listing its elements—that is, by writing a

complete list of its elements inside the curly braces { and }. Here are a few examples:

Example 2.25 (Some exhaustively enumerated sets)
• The set of even prime numbers is {2}.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

224 CHAPTER 2. BASIC DATA TYPES

• The set of prime numbers between 10 and 20 is {11, 13, 17, 19}.
• The set of 2-digit perfect squares is {81, 64, 25, 16, 36, 49}.
• The set of bits is {0, 1}.
• The set of Turing Award winners between 1984 and 1987 inclusive is

{Niklaus Wirth, Richard Karp, John Hopcroft, Robert Tarjan, John Cocke}.

Taking it further: The Turing Award is the most prestigious award given in computer science—the “No-
bel Prize of CS,” it’s sometimes called. Niklaus Wirth developed a number of programming languages,
including Pascal. Richard Karp made major contributions to the study of computational complexity,
in particular with respect to the understanding of NP-Completeness. John Hopcroft and Robert Tar-
jan made massive early contributions in designing and analyzing algorithms and data structures for
problems. John Cocke was a leader in compilers and computer architecture and is often credited with
inventing the RISC architecture, which changed the way that computer chips and their corresponding
instruction sets were designed.

Recall that a set is an unordered collection, and thus the order in which the elements
are listed doesn’t matter when specifying a set via exhaustive enumeration. Any repe-
tition in the listed elements is also unimportant. For example:

Example 2.26 (The same set, three ways)
The set {2 + 2, 2 · 2, 2/2, 2− 2} is precisely identical to the set {0, 1, 4}, both of
which are precisely identical to {4, 0, 1}. Also note that |{2 + 2, 2 · 2, 2/2, 2− 2}| = 3;
despite there being four entries in the list of elements, there are only three distinct
objects in the set.

It’s important to remember that the integer 2 and the set {2} are two entirely different
kinds of things. For example, note that 2 ∈ {2}, but that {2} /∈ {2}; the lone element in
{2} is the number two, not the set containing the number two.

Set definition via set abstraction
Instead of explicitly listing all of a set’s elements, we can also define a set in terms of

a condition that is true for the elements of the set and that’s false for every object that
is not an element of the set. Defining a set this way uses set abstraction notation:

The colon in the
notation for set
abstraction is read
as “such that,” so
the set in Definition
2.18 would be read
“the set of all x in U
such that P of x.”

Definition 2.18 (Set Abstraction)
Let U be a set of possible elements, called the universe. Let P(x) be a condition (also called a
predicate) that, for every x ∈ U, is either true or false. Then

{x ∈ U : P(x)}

denotes the set of all objects x ∈ U for which P(x) is true.

That is, for any candidate element y ∈ U, the element y is in the set {x ∈ U : P(x)}
when P(y) = True, and y /∈ {x ∈ U : P(x)}when P(y) = False. (A fully proper version of
Definition 2.18 requires functions, described in Section 2.5.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 225

Example 2.27 (Most of Example 2.25, redone)
• The set of even prime numbers is {x ∈ Z>1 : x is prime and x is even} .
• The set of 2-digit perfect squares is {n ∈ Z : √n ∈ Z and 10 ≤ n ≤ 99} .
• The set of bits is {b ∈ Z : b2 = b}.

For this set abstraction notation to meaningfully define a set S, we must specify the
universe U of candidates from which the elements of S are drawn. We will permit
ourselves to be sloppy in our notation, and when the universe U is clear from context
we will allow ourselves the liberty of writing {x : P(x)} instead of {x ∈ U : P(x)}.3

For more on these
and other para-
doxes, see
3 R. M. Sainsbury.
Paradoxes. Cam-
bridge University
Press, 3rd edition,
2009.

Taking it further: The notational sloppiness of omitting the universe in set abstraction will be a
convenience for us, and it will not cause us any trouble—but it turns out that one must be careful! In
certain strange scenarios when defining sets, there are subtle but troubling paradoxes that arise if we
allow the universe to be anything at all. The key problem can be seen in Russell’s paradox, named after
the British philosopher/mathematician Bertrand Russell; Russell’s discovery of this paradox revealed an
inconsistency in the commonly accepted foundations of mathematics in the early 20th century.

Here is a brief sketch of Russell’s Paradox. Let X denote the set of all sets that do not contain them-
selves: that is, let X := {S : S /∈ S}. For example, {2} ∈ X because {2} /∈ {2}, and R ∈ X because R is not
a real number, so R /∈ R. On the other hand, if we let T∗ denote the set of all sets, then T∗ /∈ X: because
T∗ is a set, and T∗ contains all sets, then T∗ ∈ T∗ and therefore T∗ /∈ X.

Here’s the problem: is X ∈ X? Suppose that X ∈ X: then X ∈ {S : S /∈ S} by the definition of X, and
thus X /∈ X. But suppose that X /∈ X; then, by the definition of X, we have X ∈ X. So if X ∈ X then
X /∈ X, and if X /∈ X then X ∈ X—but that’s absurd!

One standard way to escape this paradox is to say that the set X cannot be defined—because, to be
able to define a set using set abstraction, we need to start from a defined universe of candidate elements.
(And the set T∗ cannot be defined either.) The Liar’s Paradox, dating back about 3000 years, is a simi-
lar paradox: is “this sentence is false” true (nope!) or false (nope!)? In both Russell’s Paradox and the
Liar’s Paradox, the fundamental issue relates to self-reference; many other mind-twisting paradoxes are
generated through self-reference, too.3

Definition 2.18 lets us write {x ∈ U : P(x)} to denote the set containing exactly those
elements x of U for which P(x) is True. We will extend this notation to allow ourselves
to write more complicated expressions to the left of the colon, as in the following ex-
ample:

Example 2.28 (2-digit perfect squares, again)
We can write the set of 2-digit perfect squares as {x2 : x ∈ Z and 10 ≤ x2 ≤ 99} or as{x2 : x ∈ {4, 5, 6, 7, 8, 9}

} = {42, 52, 62, 72, 82, 92}.

To properly define this extended form of the set-abstraction notation, we again need
the idea of functions, which are defined in Section 2.5.1. See Definition 2.47 for a proper
definition of this extended notation.

Taking it further: Almost all modern programming languages support the use of lists to store a collec-
tion of objects. While these lists store ordered collections, there are some very close parallels between
these lists and sets. In fact, the ways we’ve described building sets have very close connections to ideas
in certain programming languages like Scheme and Python; see p. 233 for some discussion.

The empty set
One particularly useful set—despite its simplicity—is the empty set, also sometimes

called the null set:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

226 CHAPTER 2. BASIC DATA TYPES

Definition 2.19 (The empty set∅)
The empty set, denoted {} or ∅, is the set that contains no elements.

The definition of the empty set as {} is an exhaustive listing of all of the elements of
the set—though, because there aren’t any elements, there are no elements in the list.

Alternatively, we could have used the set abstraction notation to define the empty
set, as∅ := {x : False}. This definition may seem initially confusing, but it’s in fact a
direct application of Definition 2.18: the condition P for this set is P(x) = False (that
is: for every object x, the value of P(x) is False), and we’ve defined ∅ to contain every
object y such that P(y) = True. But there isn’t any object y such that P(y) = True—
because P(y) is always false—and thus there’s no y ∈ {x : P(x)}.

Notice that, because there are zero elements in ∅, its cardinality is zero: in other
words, |∅| = 0. One other special type of set is defined based on its cardinality; a sin-
gleton set is a set S that contains exactly one element—that is, a set S such that |S| = 1.

2.3.2 Building Sets from Other Sets
There are a number of ways to create new sets from two given sets A and B. We will
define these operations formally, but it is sometimes more intuitive to look at a more
visual representation of sets called a Venn diagram, which are drawings that represent

Venn diagrams
are named after
the 19th-century
British logician/
philosopher John
Venn.

sets as circular “blobs” that contain points (elements), enclosed in a rectangle that
denotes the universe.

Example 2.29 (Venn diagram of odds and primes)
Let U := {1, 2, . . . , 10}. Let P := {2, 3, 5, 7} denote the set of primes in U, and let
O := {1, 3, 5, 7, 9} denote the set of odd numbers in U.

A Venn diagram illustrating these sets is shown in Figure 2.15: 3, 5, and 7 are
elements of both P and O; 2 is in P but not O; 1 and 9 are in O but not P; and 4, 6, and
8 are in neither P nor O.

We will now define four standard ways of building a new set in terms of one or two

U
P O

3
5
7

2 1
9

4
6
8

Figure 2.15: A Venn
diagram for the set
O of odd numbers
and the set P of
prime numbers
between 1 and 9.existing sets: complement, union, intersection, and set difference.

Definition 2.20 (Set complement)
The complement of a set A with respect to the universe U, written ∼A (or sometimes A), is
the set of all elements not contained within A. Formally, ∼A := {x ∈ U : x /∈ A} . (When the
universe is obvious from context, we will leave it implicit.)

Figure 2.16 shows a Venn diagram illustrating the complement of A.
For example, if the universe is {1, 2, . . . , 10}, then ∼{1, 2, 3} = {4, 5, 6, 7, 8, 9, 10} and

U

A

Figure 2.16: The
complement of a
set A. The shaded
region represents
the set ∼Awith
respect to the
universe U.

∼{3, 4, 5, 6} = {1, 2, 7, 8, 9, 10}.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 227

Definition 2.21 (Set union)
The union of two sets A and B, denoted A∪ B, is the set of all elements in either A or B (or
both). Formally, A∪ B := {x : x ∈ A or x ∈ B} . Analogously to summation and product
notation (∑ and ∏), we will sometimes write ⋃n

i=1 Si to denote S1 ∪ S2 ∪ · · · ∪ Sn.

Figure 2.17 shows a Venn diagram illustrating the union of A and B.
For example, {1, 2, 3} ∪ {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}.

A B

Figure 2.17: The
union A ∪ B of two
sets A and B.

Definition 2.22 (Set intersection)
The intersection of two sets A and B, denoted A∩ B, is the set of all elements in both A and
B. Formally, A∩ B := {x : x ∈ A and x ∈ B} . We will sometimes write ⋂n

i=1 Si to denote
S1 ∩ S2 ∩ · · · ∩ Sn.

Figure 2.18 shows a Venn diagram illustrating A∩ B.
For example, {1, 2, 3} ∩ {3, 4, 5, 6} = {3}.

A B

Figure 2.18: The
intersection A ∩ B of
sets A and B.

Definition 2.23 (Set difference)
The difference of two sets A and B, denoted A− B, is the set of all elements contained in the
set A but not in the set B. Formally, A− B := {x : x ∈ A and x /∈ B} . (Some people write
A \B instead of A− B to denote set difference.)

Figure 2.19 shows a Venn diagram illustrating the set difference of A and B. Note that
A− B and B − A are different sets; both are illustrated in Figure 2.19. For example,
{1, 2, 3} − {3, 4, 5, 6} = {1, 2} and {3, 4, 5, 6}− {1, 2, 3} = {4, 5, 6}.

In more complicated expressions that use more than one of these set operators, the

A B

A B

Figure 2.19: The
difference of two
sets A and B. The
shaded region
in the first panel
represents the set
A − B, and the
shaded region in
the second panel
represents B−A.

∼ operator “binds tightest”—that is, in an expression like ∼S ∪ T, we mean (∼S) ∪ T
and not ∼(S ∪ T). We use parentheses to specify the order of operations among ∩, ∪,
and −. Here’s a slightly more complicated example that combines set operations:

Example 2.30 (Combining odds and primes)
Problem: As in Example 2.29, define U := {1, 2, . . . , 10}, the set P := {2, 3, 5, 7} of

primes in U, and the set O := {1, 3, 5, 7, 9} of odd numbers in U. What are the
following sets?
1. P∩∼O
2. ∼(P∪O)
3. ∼P−∼O

Solution: For each part, we simply plug in the definitions:
1. The set P ∩∼O is the set of all prime numbers that are also not odd.

P∩∼O = {2, 3, 5, 7}∩ ∼ {1, 3, 5, 7, 9}
= {2, 3, 5, 7}∩ {2, 4, 6, 8, 10}
= {2} .

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

228 CHAPTER 2. BASIC DATA TYPES

2. The set ∼(P ∪O) consists of everything that is not an element of P ∪O—that is,
∼(P ∪O) contains only nonprime even numbers.

∼(P ∪O) = ∼({2, 3, 5, 7}∪ {1, 3, 5, 7, 9})
= ∼ {1, 2, 3, 5, 7, 9}
= {4, 6, 8, 10} .

3. The set ∼P −∼O consists of all elements of ∼P except those that are elements
of ∼O—in other words, all nonprime numbers that aren’t nonodd, or, more
simply stated, all nonprime odd numbers:

∼P−∼O = ∼{2, 3, 5, 7}−∼ {1, 3, 5, 7, 9}
= {1, 4, 6, 8, 9, 10}− {2, 4, 6, 8, 10}
= {1, 9} .

A B

C
(a) (B ∪ C)−A

A B

C
(b) (A− B) ∩C

A B

C
(c) A ∩ (B ∪ C)

Figure 2.20: Some
three-set Venn
diagrams.

Of course, we can also combine more than two sets in
expressions using these set operators—for example,
A ∪ B ∪ C denotes the set {x : x ∈ A or x ∈ B or x ∈ C}.
We can use Venn diagrams to visualize set operations
that involve more than two sets; see Figure 2.20 for a few
examples.

Arithmetic operations on sets
We’ll end this subsection with a few pieces of notation that allow us to perform

mathematical operations on the elements of a set. In Section 2.2.7, we introduced
summation and product notation, so that we could write

n
∑
i=1

xi and
n

∏
i=1

xi

to represent x1 + x2 + · · · + xn and x1 · x2 · · · · · xn. We will also sometimes wish to
represent the sum or product of the elements of a particular set (instead of a sequence
of values like x1, x2, . . . , xn). It will also sometimes be handy to refer to the smallest or
largest element in a set.

Definition 2.24 (Sum, product, minimum, and maximum of a set)
Let S be a set. Then the expressions

∑
x∈S

x, ∏
x∈S

x, min
x∈S

x, and max
x∈S

x

respectively denote the sum of the elements of S, the product of the elements of S, the smallest
element in S, and the largest element in S.

For example, for the set S := {1, 2, 4, 8}, we have that the sum of the elements of S is

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 229

∑x∈S x = 15; the product of the elements of S is ∏x∈S x = 64; the minimum of S is
minx∈S x = 1; and the maximum of S is maxx∈S x = 8.

2.3.3 Comparing Sets
In the same way that two numbers x and y can be compared (we can ask questions
like: does x = y? is x ≤ y? is x ≥ y?), we can also compare two sets A and B. Here, we
will define the analogous notions of comparison for sets. We’ll begin by defining what
it means for two sets to be equal:

Definition 2.25 (Set equality)
Two sets A and B are equal, denoted A = B, if A and B have exactly the same elements. (In
other words, sets A and B are not equal if there’s an element x ∈ A but x /∈ B, or if there’s an
element y ∈ B but y /∈ A.)

This definition formalizes the idea that order and repetition don’t matter in sets: for
example, the sets {4, 4} and {4} are equal because there is no element x ∈ {4, 4}where
x /∈ {4} and there is no element y ∈ {4} where y /∈ {4, 4}. This definition also implies
that the empty set is unique: any set containing no elements is identical to ∅.

Taking it further: Definition 2.25 is sometimes called the axiom of extensionality. (All of mathematics,
including a completely rigorous definition of the integers and all of arithmetic, can be built up from
a small number of axioms about sets, including this one.) The point is that the only way to compare
two sets is by their “externally observable” properties. For example, the following two sets are exactly
the same set: {x : x > 10 is an even prime number}, and {y : y is a country with a 128-letter name}.
(Namely, both of these sets are ∅.)

The other common type of comparison between two sets A and B is the subset rela-
tionship, which expresses that every element of A is also an element of B:

Definition 2.26 (Subset)
A set A is a subset of a set B, written A ⊆ B, if every x ∈ A is also an element of B. (In other
words, A ⊆ B is equivalent to A− B = {}.)

For example, {1, 3, 5} ⊆ {1, 2, 3, 4, 5}, because 1 ∈ {1, 2, 3, 4, 5} and 3 ∈ {1, 2, 3, 4, 5}
and 5 ∈ {1, 2, 3, 4, 5}.

Notice that {} ⊆ S for any set S: it’s impossible for there to be an x ∈ {} that
satisfies x /∈ S, because there is no element x ∈ {} in the first place—and if there’s no
x ∈ {} at all, then there’s certainly no x ∈ {} such that x /∈ S.

Definition 2.27 (Proper subset)
A set A is a proper subset of a set B, written A ⊂ B, if A ⊆ B and A 6= B. In other words,
A ⊂ B whenever A ⊆ B but B 6⊆ A.

For example, let A := {1, 2, 3}. Then A ⊆ {1, 2, 3, 4} and A ⊆ {1, 2, 3} and A ⊂ {1, 2, 3, 4},
but A is not a proper subset of {1, 2, 3}.

When A ⊂ B or A ⊆ B, we refer to A as the (possibly proper) subset of B; we can
also call B the (possibly proper) superset of A:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

230 CHAPTER 2. BASIC DATA TYPES

Definition 2.28 (Superset and proper superset)
Let A be a set. A set B is a superset of A, written B ⊇ A, if A ⊆ B. The set B is a proper
superset of A, written B ⊃ A, if A ⊂ B.

Figure 2.21 illustrates subsets, proper subsets, supersets, and proper supersets. Here’s
an example involving these relationships:

B
A

Figure 2.21: Two
sets satisfying
A ⊆ B and, equiv-
alently, B ⊇ A.
The sets satisfy
A ⊂ B (and B ⊃ A)
if there’s at least
one element in
the darker shaded
region, and they
satisfy A = B if
there’s no element
in that region.

Example 2.31 (Subsets and supersets)
Problem: Let A := {3, 4, 5} and B := {4, 5, 6}. Identify a set C satisfying the following

conditions, or state that the requirement is impossible to achieve and explain why.
1. A ⊆ C and C ⊇ B
2. A ⊇ C and C ⊆ B
3. A ⊇ C and C ⊇ B

Solution: The first two conditions are achievable, but the third isn’t.
1. Let C := {3, 4, 5, 6}; both A and B are (proper) subsets of this set.
2. We can choose C := {4, 5}, because {4, 5} ⊆ A and {4, 5} ⊆ B.
3. It’s impossible to satisfy {3, 4, 5} ⊇ C and C ⊇ {4, 5, 6} simultaneously. If 6 ∈ C

then we don’t have {3, 4, 5} ⊇ C, but if 6 /∈ C we don’t have C ⊇ {4, 5, 6}. We
can’t have 6 ∈ C and we can’t have 6 /∈ C, so we’re stuck with an impossibility.

We’ll end the section with one last piece of terminology. Two sets A and B are called
disjoint if they have no elements in common:

Definition 2.29 (Disjoint sets)
Two sets A and B are disjoint if there is no x ∈ A where x ∈ B—in other words, if
A∩ B = {}.

For example, the sets {1, 2, 3} and {4, 5, 6} are disjoint because {1, 2, 3} ∩ {4, 5, 6} = {},
but the sets {2, 3, 5, 7} and {2, 4, 6, 8} are not disjoint because 2 is an element of both.
See Figure 2.22 for a diagram of two disjoint sets.

BA

Figure 2.22: Disjoint
sets A and B.

2.3.4 Sets of Sets
Just as we can have a list of lists in a programming language like Scheme or Java, we
can also consider a set that has sets as its elements. (After all, sets are just collections of
objects, and one kind of object that can be collected is a set itself.)

Example 2.32 (Set of sets of numbers)
The set A := {Z,R,Q} of the sets defined in Section 2.2.2 is itself a set. This set has
cardinality |A| = 3, because A has three distinct elements—namely Z and R and
Q. (Of course, all three of these elements of A are themselves sets, and each of these
three elements of A has infinite cardinality.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 231

Example 2.33 (A set of smaller sets)
Consider the set B := {{} , {1, 2, 3}}. Note that |B| = 2: B has two elements, namely {}
and {1, 2, 3}. Therefore {} ∈ B because {} is one of the two elements of B. How-
ever 1 /∈ B, because 1 is not one of the two elements of B—that is, 1 6= {} and
1 6= {1, 2, 3}—although 1 is an element of one of the two elements of B.

There are two important types of sets of sets that we will define in the remainder of
this section, both derived from a base set S.

Partitions
The first interesting use of a set of sets is to form a partition of S into a set of disjoint

subsets whose union is precisely S.

Definition 2.30 (Partition)
A partition of a set S is a set {A1,A2, . . . ,Ak} of nonempty sets A1,A2, . . . ,Ak, for some
k ≥ 1, such that:

• A1 ∪A2 ∪ · · · ∪Ak = S; and
• for any distinct i, j ∈ {1, . . . , k}, the sets Ai and Aj are disjoint.

A useful way of thinking about a partition of a set S is that we’ve divided S up into
several (nonoverlapping) subcategories. See Figure 2.23 for an illustration of a partition
of a set S. Here’s an example of one set partitioned many different ways:

(a) The set S.

(b) S partitioned
into 5 subsets.

Figure 2.23: A
visualization of
partitioning a set
S into disjoint
nonempty subsets
whose union equals
S itself.

Example 2.34 (Several partitions of the same set)
Consider the set S := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Here are some different ways to parti-
tion S:

{{1, 3, 5, 7, 9} , {2, 4, 6, 8, 10}} (evens and odds)
{{1, 2, 3, 4, 5, 6, 7, 8, 9} , {10}} (one- and two-digit numbers)
{{1, 4, 7, 10} , {2, 5, 8} , {3, 6, 9}} (x mod 3 = 0 and = 1 and = 2)
{{1} , {2} , {3} , {4} , {5} , {6} , {7} , {8} , {9} , {10}} (all separate)
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}} (all together)

In each case, each of the 10 numbers from S is in one, and only one, of the listed sets
(and no elements not in S appear in any of the listed sets).

It’s worth noting that the last two ways of partitioning S in Example 2.34 genuinely
are partitions. For the partition {{1} , {2} , {3} , {4} , {5} , {6} , {7} , {8} , {9} , {10}},
we have k = 10 different disjoint sets whose union is precisely S. For the partition
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, we have k = 1: there’s only one “subcategory” in the par-
titioning, and every x ∈ S is indeed contained in one (the only one!) of these “subcat-
egories.” (And no two distinct subcategories overlap, because there aren’t even two
distinct subcategories at all!)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

232 CHAPTER 2. BASIC DATA TYPES

Taking it further: One way to helpfully organize a massive set S of data—for example, students or
restaurants or web pages—is to partition S into small clusters. The idea is that two elements in the same
cluster will be “similar,” and two entities in different clusters will be “dissimilar.” (So students might be
clustered by their majors or dorms; restaurants might be clustered by their cuisine or geography; and
web pages might be clustered based on the set of words that appear in them.) For more about clustering,
see the discussion on p. 234.

Power sets
Our second important type of a set of sets is the power set of a set S, which is the set

of all subsets of S:

Definition 2.31 (Power set)
The power set of a set S, written P(S), denotes the set of all subsets of S: that is, a set A is
an element of P(A) precisely if A ⊆ S. In other words, P(S) := {A : A ⊆ S}.

Here are some simple examples, and one example that’s a bit more complicated:

The power set of S
is also occasionally
denoted by 2S, in
part because—
as we’ll see in
Chapter 9—|P(S)|
is 2|S|. The name
“power set” also
comes from this
fact: the cardinality
of P(S) is 2 to the
power of |S|.

Example 2.35 (Some small power sets)
Here are the power sets of {0}, {0, 1}, and {0, 1, 2}:

P({0}) = {{} , {0}}
P({0, 1}) = {{} , {0} , {1} , {0, 1}}

P({0, 1, 2}) = {{} , {0} , {1} , {2} , {0, 1} , {0, 2} , {1, 2} , {0, 1, 2}}

A quick check for the second of these examples: there are four elements in P({0, 1}):
the empty set, two singleton sets {0} and {1}, and the two-element set {0, 1} itself,
because {0, 1} ⊆ {0, 1} is a subset of itself.

Example 2.36 (P(P({0, 1})))
The power set of the power set of {0, 1} is

P(P({0, 1}))
= P({ {} , {0} , {1} , {0, 1}

})

=





{}
, 1 set with 0 elements

{
{}
} , { {0}

} , { {1}
} , { {0, 1}

} , 4 sets with 1 element
{
{} , {0}

} , { {} , {1}
} , { {} , {0, 1}

} , 6 sets with 2 elements{
{0} , {1}

} , { {0} , {0, 1}
} , { {1} , {0, 1}

} ,
{
{0} , {1} , {0, 1}

} , { {} , {1} , {0, 1}
} , 4 sets with 3 elements{

{} , {0} , {0, 1}
}
,
{
{} , {0} , {1}

}
,

{
{} , {0} , {1} , {0, 1}

}
1 set with 4 elements





.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 233

Computer Science Connections

Set Building in Languages
Programming languages like Python, Scheme, or ML make heavy use of

lists and also allow higher-order functions (functions that take other functions
as parameters); if you have experience programming in these languages,
the set-construction notions from Section 2.3.1 may seem familiar. These
mechanisms for building sets in mathematical notation closely parallel built-in
functionality for building lists in programs in these languages:
• build a list from scratch by writing out its elements.
• build a list from an existing list using the function filter, which takes two

parameters (a list U, corresponding to the universe, and a function P) and
returns a new list containing all x ∈ U for which P(x) is true.

• build a list from an existing list using the function map, which takes two
parameters (a list U and a function f) and returns a new list containing f(x)
for every element x of U.

Unlike sets, the map function can
cause repetitions in the stored list:
map(square,L)where L contains both
2 and −2 will lead to 4 being present
twice. (Some languages, including
Python, also have syntax for sets in-
stead of lists, creating an unordered,
duplicate-free collection of elements.)

Python has filter and map built in; some versions of Scheme have filter and
map either built in or in a standard library. In Python, there’s even an explicit
list comprehension syntax to create a list without using filter or map, which
even more closely parallels the set-abstraction notation from Definitions 2.18
and 2.47. Here are some examples:

In set notation: In Python: In Scheme:

L = {1, 2, 4, 8, 16}
M = {x ∈ L : x < 10}
N = {x ∈ L : x is even}
O = {x2 : x ∈ L}
P = {x2 : x ∈ L and x is even}
Q = {x ∈ L : False}

def even(x): return x % 2 == 0
def square(x): return x**2
def false(x): return False

L = [1,2,4,8,16]
M = [x for x in L if x < 10]
N = filter(even, L)
O = map(square, L)
P = [square(x) for x in L if even(x)]
Q = [x for x in L if false(x)]

(define even?
(lambda (x) (= (modulo x 2) 0)))

(define square (lambda (x) (* x x)))
(define false? (lambda (x) #f))

(define L (list 1 2 4 8 16))
;;; no simple Scheme is analogous to M in Python
(define N (filter even? L))
(define O (map square L))
(define P (map square (filter even? L)))
(define Q (filter false? L))

L = {1, 2, 4, 8, 16}
M = {1, 2, 4, 8}
N = {2, 4, 8, 16}
O = {1, 4, 16, 64, 256}
P = {4, 16, 64, 256}
Q = {}

>>> L
[1, 2, 4, 8, 16]
>>> M
[1, 2, 4, 8]
>>> N
[2, 4, 8, 16]
>>> O
[1, 4, 16, 64, 256]
>>> P
[4, 16, 64, 256]
>>> Q
[]

> L
(1 2 4 8 16)

> N
(2 4 8 16)
> O
(1 4 16 64 256)
> P
(4 16 64 256)
> Q
()

While the technical details are a bit different, the basic idea underlying map

forms half of a programming model called MapReduce that’s become increas-
ingly popular for processing very large datasets.4 MapReduce is a distributed- 4 Jeffrey Dean and Sanjay Ghemawat.

MapReduce: simplified data processing
on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

computing framework that processes data using two user-specified functions:
a “map” function that’s applied to every element of the dataset, and a “re-
duce” function that collects together the outputs of the map function. Imple-
mentations of MapReduce allow these computations to occur in parallel, on a
cluster of machines, vastly speeding processing time.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

234 CHAPTER 2. BASIC DATA TYPES

Computer Science Connections

Clustering
Partitioning a set is a task that arises frequently in various applications,

usually with a goal like clustering a large collection of data points. The goal
is that elements placed into the same cluster should be “very similar,” and
elements in different clusters should be “not very similar.”5 Why might we You can read more about clustering, and

clustering algorithms, in a data-mining
book like
5 Jure Leskovec, Anand Rajaraman,
and Jeff Ullman. Mining of Massive
Datasets. Cambridge University Press,
2nd edition, 2014.

want to perform clustering on a data set? For example, we might try to cluster
a set N of news articles into “topics” C1,C2, . . . ,Ck , where any two articles
x, y that are both in the same cluster Ci are similar (say, with respect to the
words contained within them), but if x ∈ Ci and y ∈ Cj 6=i then x and y are
not very similar. Or we might try to cluster the people in a social network
into communities, so that a person in community c has a large fraction of her
friends who are also in community c. Understanding these clusters—and
understanding what properties of a data point “cause” it to be in one cluster
rather than another—can help reveal the structure of a large data set, and can
also be useful in building a system to react to new data. Or we might want to
use clusters for anomaly detection: given a large data set—for example, of user
behavior on a computer system, or the trajectory of a car on a highway—we
might be able to identify those data points that do not seem to be part of a
normal pattern. These data points may be the result of suspicious behavior
that’s worth further investigation (or that might trigger a warning to the
driver of the car that he or she has strayed from a lane).

Here’s one (vastly simplified) example application for clustering: speech Figure 2.24: A spectrogram generated by
Praat of me pronouncing the sentence “I
prefer agglomerative clustering.” There
are essentially no acoustic correlates
to the divisions between words, which
is one reason speech recognition is so
difficult.

processing. Software systems that interact with users as they speak in natu-
ral language—that is, as they talk in English—have developed with rapidly
increasing quality over the last decade. Speech recognition—taking an audio
input, and identifying what English word is being spoken from the acoustic
properties of the audio signal—turns out to be a very challenging problem.
Figure 2.24 illustrates some of the reasons for the difficulty, showing a spec-
trogram generated by the Praat software tool.6 In a spectrogram, the x-axis is 6 Paul Boersma and David Weenink.

Praat: doing phonetics by computer.
http://www.praat.org, 2012. Version
5.3.22.

time, and the y-axis is frequency; a darkly shaded frequency f at time t shows
that the speech at time t had an intense component at frequency f . But we
can partition a training set of many speakers saying a collection of common
words into subsets based on which word was spoken, and then use the av-
erage acoustic properties of the utterances to guess which word was spoken.
Figure 2.25 shows the frequencies of the two lowest formants—frequencies of
very high intensity—in the utterances of a half-dozen college students pro-
nouncing the words bat and beat. First, the formants’ frequencies are shown
unclustered; second, they are shown partitioned by the pronounced word.
The centroid of each cluster (the center of mass of the points) can serve as a
prototypical version of each word’s acoustics.

“bat”

“beat”
Figure 2.25: The frequencies of the
first two formants in utterances by six
speakers saying the words beat and bat.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.3. SETS: UNORDERED COLLECTIONS 235

2.3.5 Exercises

Let H := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f} denote the set of hexadecimal digits.
2.86 Is 6 ∈ H?
2.87 Is h ∈ H?

2.88 Is a70e ∈ H?
2.89 What is |H|?

Let S := {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 · 0, 0 · 1, 1 · 0, 1 · 1} be the set of results of adding any two bits together or
multiplying any two bits together.
2.90 Which of 0, 1, 2, and 3 are elements of S? 2.91 What is |S|?

Let T := {n ∈ Z : 0 ≤ n ≤ 20 and n mod 2 = n mod 3}. Let H := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f} and
S := {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 · 0, 0 · 1, 1 · 0, 1 · 1}, as in the previous blocks of exercises.
2.92 Identify at least one element of H that is not an element of T.
2.93 Identify at least one element of T that is not an element of H.
2.94 Identify at least one element of T that is not an element of S.
2.95 Identify at least one element of S that is not an element of T.
2.96 What is |T|?

Rewrite the following sets by exhaustively listing their elements:
2.97 {n ∈ Z : 0 ≤ n ≤ 20 and n mod 5 = n mod 7}
2.98 {n ∈ Z : 10 ≤ n ≤ 30 and n mod 5 = n mod 7}

Let A := {1, 3, 4, 5, 7, 8, 9} and let B := {0, 4, 5, 9}. What are the following sets?
2.99 A ∩ B
2.100 A ∪ B

2.101 A− B
2.102 B−A

Assume the universe is the set U := {0, 1, 2, . . . , 9}. Define C := {0, 3, 6, 9}, and let A := {1, 3, 4, 5, 7, 8, 9} and
B := {0, 4, 5, 9} as before. What are the following sets?
2.103 ∼B
2.104 A ∪∼C

2.105 ∼C−∼B
2.106 C−∼C

2.107 ∼(C−∼A)

A B

A B

Figure 2.26: In
general, the sets
A− B and B−A are
different.

2.108 In general, A− B and B− A do not denote the same set. (See Figure 2.26.) But your friends Evan
and Yasmin wander by and tell you the following. Let E denote the set of CS homework questions that Evan
has not yet solved. Let Y denote the set of CS homework questions that Yasmin has not yet solved. Evan and
Yasmin claim that E− Y = Y − E. Is this possible? If so, under what circumstances? If not, why not? Justify
your answer.

Let D and E be arbitrary sets. For each set given below, indicate which of the following statements is true:
• the given set must be a subset of D (for every choice of D and E);
• the given set may be a subset of D (for certain choices of D and E); or
• the given set cannot be a subset of D (for any choice of D and E).
If you answer “must” or “cannot,” justify your answer (1–2 sentences). If you answer “may,” identify an example
D1,E1 for which the given set is a subset of D1, and an example D2,E2 for which the given set is not a subset of D2.
2.109 D∪ E
2.110 D∩ E

2.111 D− E
2.112 E−D

2.113 ∼D

Let F := {1, 2, 4, 8}, let G := {1, 3, 9}, and let H := {0, 5, 6, 7}. Let U := {0, 1, 2, . . . , 9} be the universe. Which of the
following pairs of sets are disjoint?
2.114 F and G
2.115 G and ∼F

2.116 F ∩G and H
2.117 H and ∼H

Let S and T be two sets, with n = |S| and m = |T|. For each of the following sets, state the smallest cardinality that the
given set can have. Give examples of the minimum-sized sets for each part. (You should give a family of examples—
that is, describe a smallest-possible set for any values of n and m.)
2.118 S ∪ T 2.119 S ∩ T 2.120 S− T
Repeat the last three exercises for the largest set: for two sets S and T with n = |S| and m = |T|, state the largest
cardinality that the given set can have. Give a family of examples of the largest-possible sets for each part.
2.121 S ∪ T 2.122 S ∩ T 2.123 S− T

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

236 CHAPTER 2. BASIC DATA TYPES

In a variety of CS applications, it’s useful to be able to compute the similarity of two sets A and B. (More about one of
these applications, collaborative filtering, below.) There are a number of different ideas of how to measure set similarity,
all based on the intuition that the larger |A ∩ B| is, the more similar the sets A and B are. Here are two basic measures
of set similarity that are sometimes used:
• the cardinality measure: the similarity of A and B is |A∩ B|.
• the Jaccard coefficient:7 the similarity of A and B is |A∩B|

|A∪B| .

The Jaccard coeffi-
cient is named after
the Swiss botanist
Paul Jaccard, from
around the turn of
the 20th century,
who was interested
in how similar
or different the
distributions of
various plants were
in different regions.
7 P. Jaccard. Dis-
tribution de la
flore alpine dans le
bassin des dranses
et dans quelques
régions voisines.
Bulletin de la So-
ciété Vaudoise des
Sciences Naturelles,
37:241–272, 1901.

2.124 Let A := {chocolate, hazelnut, cheese}; B := {chocolate, cheese, cardamom, cherries}; and
C := {chocolate}. Compute the similarities of each pair of these sets using the cardinality measure.
2.125 Repeat the previous exercise for the Jaccard coefficient.
Suppose we have a collection of sets A1,A2, . . . ,An. Consider the following claim:

Claim: Suppose that the set Av is the most similar set to the set Au in this collection (aside from Au itself).
Then Au is necessarily the set that is most similar to Av (aside from Av itself).

2.126 Decide whether you think this claim is true for the cardinality measure of set similarity, and
justify your answer. (That is, argue why it must be true, or give an example showing that it’s false.)
2.127 Repeat the previous exercise for the Jaccard coefficient.

Taking it further: A collaborative filtering system, or recommender system, seeks to suggest new products
to a user u on the basis of the similarity of u’s past behavior to the past behavior of other users in the
system. Collaborative filtering systems are mainstays of many popular commercial online sites (like
Amazon or Netflix, for example). One common approach to collaborative filtering is the following. Let
U denote the set of users of the system, and for each user u ∈ U, define the set Su of products that u has
purchased. To make a product recommendation to a user u ∈ U:
(i) Identify the user v ∈ U − {u} such that Sv is the set “most similar” to Su.
(ii) Recommend the products in Sv − Su to user u (if any exist).
This approach is called nearest-neighbor collaborative filtering, because the v found in step (i) is the other
person closest to u. The measure of set similarity used in step (i) is all that’s left to decide, and either car-
dinality or the Jaccard coefficient are reasonable choices. The idea behind the Jaccard coefficient is that
the fraction of agreement matters more than the total amount of agreement: a {Cat’s Cradle,Catch 22}
purchaser is more similar to a {Slaughterhouse Five, Cat’s Cradle} purchaser than someone who bought
every book Amazon sells.

For each of the following claims, decide whether you think the statement is true for all sets of integers A,B,C. If it’s true
for every A,B,C, then explain why. (A Venn diagram may be helpful.) If it’s not true for every A,B,C, then provide an
example for which it does not hold.
2.128 A ∩ B = ∼(∼A ∪∼B)
2.129 A ∪ B = ∼(∼A ∩∼B)

2.130 (A− B)∪ (B−C) = (A ∪ B)−C
2.131 (B−A) ∩ (C−A) = (B∩ C)−A

2.132 List all of the different ways to partition the set {1, 2, 3}.

Al
ice

Bo
b

Ch
arl

ie

Da
vid

Ev
e

Fr
an
k

Alice 0.0 1.7 1.2 0.8 7.2 2.9
Bob 1.7 0.0 4.3 1.1 4.3 3.4

Charlie 1.2 4.3 0.0 7.8 5.2 1.3
David 0.8 1.1 7.8 0.0 2.1 1.9
Eve 7.2 4.3 5.2 2.1 0.0 1.9

Frank 2.9 3.4 1.3 1.9 1.9 0.0
Figure 2.27: Some
distances between
people.

Consider the table of distances shown in Figure 2.27 for a set P = {Alice, . . . , Frank} of
people. Suppose we partition P into subsets S1, . . . ,Sk . Define the intracluster distance
as the largest distance between two people who are in the same cluster:

max
i

[
max
x,y∈Si

distance between x and y
]
.

Define the intercluster distance as the smallest distance between two people who are in
different clusters:

min
i,j 6=i

[
min

x∈Si,y∈Sj
distance between x and y

]
.

In each of the following questions, partition P into . . .
2.133 . . . 3 or fewer subsets so that the intracluster distance is ≤ 2.0.
2.134 . . . subsets S1, . . . , Sk so the intracluster distance is as small as possible. (You choose k.)
2.135 . . . subsets S1, . . . , Sk so the intercluster distance is as large as possible. (Again, you choose k.)

2.136 Define S := {1, 2, . . . , 100}. LetW := {x ∈ S : x mod 2 = 0}, H := {x ∈ S : x mod 3 = 0}, and
O := S−H −W. Is {W,H,O} a partition of S?

What is the power set of each of the following sets?
2.137 {1, a} 2.138 {1} 2.139 {} 2.140 P(1)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 237

2.4 Sequences, Vectors, and Matrices: Ordered Collections
Watch out for the fellow who talks about putting
things in order! Putting things in order always means
getting other people under your control.

Denis Diderot (1713–1784)
Supplément au voyage de Bougainville (1796)

In Section 2.3, we introduced sets—collections of objects in which the order of those
objects doesn’t matter. In many circumstances, though, order doesmatter: if a Java
method takes two parameters, then swapping the order of those parameters will usu-
ally change what the method does; if there’s an interesting site at longitude x and lati-
tude y, then showing up at longitude y and latitude x won’t do. In this section, we turn
to ordered collections of objects, called sequences. A summary of the notation related to
sequences is given in Figure 2.29.

Definition 2.32 (Sequence, list, and tuple)
A sequence—also known as a list or tuple—is an ordered collection of objects, typically
called components or entries. When the number of objects in the collection is 2, 3, 4, or n,
the sequence is called an (ordered) pair, triple, quadruple, or, n-tuple, respectively.

We’ll write a sequence inside angle brackets, as in 〈Northfield,Minnesota〉 or 〈0, 1〉.
(Some people use parentheses instead of angle brackets, as in (128, 128, 0) instead of
〈128, 128, 0〉.) For two sets A and B, we frequently will refer to the set of ordered pairs
whose two elements, in order, come from A and B:

The Cartesian prod-
uct is named after
René Descartes, the
17th-century French
philosopher/
mathematician.
(The English ad-
jectival form uses
only the cartes part
of his last name
Descartes.)

Definition 2.33 (Cartesian product)
The Cartesian product of two sets A and B, denoted A× B, is the set

A× B = {〈a, b〉 : a ∈ A and b ∈ B}

containing all ordered pairs where the first component comes from A and the second from B.

For example, {0, 1} × {2, 3} is the set {〈0, 2〉, 〈0, 3〉, 〈1, 2〉, 〈1, 3〉}. We can also view any
particular cell in a 2-dimensional grid—like a cell in a spreadsheet, or a square on a
chess board—as a sequence:

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2.28: The
squares of a chess
board, written
using Algebraic
notation.

Example 2.37 (Chess positions)
A chess board is an 8-by-8 grid. Chess players use what’s called “Algebraic nota-
tion” to refer to the columns (which they call files) using the letters a through h, and
they refer to the rows (which they call ranks) using the numbers 1 through 8. (See
Figure 2.28.)

Thus the square containing the white queen Q is 〈d, 1〉; the full set of squares of
the chess board is {a, b, c, d, e, f, g, h}× {1, 2, 3, 4, 5, 6, 7, 8} ; and the squares containing
knights—the N pieces (both white and black)—are {〈b, 1〉, 〈g, 1〉, 〈b, 8〉, 〈g, 8〉}. The
set of squares with knights could also be written as {b, g} × {1, 8}.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

238 CHAPTER 2. BASIC DATA TYPES

sequence/ordered tuple 〈a1, a2 , . . . , an〉
Cartesian product A× B := {〈a, b〉 : a ∈ A and b ∈ B}
the set of all n-element sequences of S Sn := S× S× · · · × S (n times)
vector x ∈ Rn

vector length, for x ∈ Rn ‖x‖ :=
√

∑n
i=1 x2i

vector addition, for vectors x, y ∈ Rn x + y := 〈x1 + y1, x2 + y2, . . . , xn + yn〉
scalar product, for a ∈ R and x ∈ Rn ax := 〈a · x1, a · x2, . . . , a · xn〉
dot product, for vectors x, y ∈ Rn x • y := ∑n

i=1 xi · yi
matrix M ∈ Rn×m

identity matrix a matrix I ∈ Rn×n where I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




scalar multiplication, for α ∈ R andM ∈ Rn×m a matrix N ∈ Rn×m where Ni,j := α ·Mi,j
matrix addition, for M,M′ ∈ Rn×m a matrix N ∈ Rn×m where Ni,j := Mi,j +M′

i,j
matrix multiplication, for A ∈ Rn×m and B ∈ Rm×p a matrix M ∈ Rn×p where Mi,j = ∑m

k=1 Ai,kBk,j
matrix inverse, for M ∈ Rn×n a matrix M−1 ∈ Rn×n where MM−1 = I (if any such M−1 exists)

Figure 2.29: A sum-
mary of notation for
sequences, vectors,
and matrices.

Here’s another example, about color representation on computers:

violet 〈128, 0, 128〉
indigo 〈74, 0, 130〉
blue 〈0, 0, 255〉
green 〈0, 255, 0〉
yellow 〈255, 255, 0〉
orange 〈255, 128, 0〉
red 〈255, 0, 0〉

Figure 2.30: A
few RGB values of
colors.

Example 2.38 (RGB color values)
The RGB color space represents colors as ordered triples, where each component is
an element of {0, 1, . . . , 255}. RGB stands for red–green–blue; the three components
of a color c, respectively, represent how red, how green, and how blue the color c is.
Formally, a color c is an element of {0, 1, . . . , 255} × {0, 1, . . . , 255}× {0, 1, . . . , 255}.

The order of these components matters; for example, the color 〈0, 0, 255〉 is pure
blue, while the color 〈255, 0, 0〉 is pure red. See Figure 2.30 for a few examples.

Taking it further: An annoying pedantic point: we are being sloppy with notation in Example 2.38;
we only defined the Cartesian product for two sets, so when we write S × S × S we “must” mean
either S × (S × S) or (S × S) × S. We’re going to ignore this issue, and simply write statements like
〈0, 1, 1〉 ∈ {0, 1} × {0, 1} × {0, 1}—even though we ought to instead be writing statements like
〈0, 〈1, 1〉〉 ∈ {0, 1} × ({0, 1} × {0, 1}). (A similar shorthand shows up in programming languages
like Scheme, where pairing—“cons”ing—a single element 3 with a list (2 1) yields the three-element list
(3 2 1), rather than the two-element pair (3 . (2 1)), where the second element is a two-element list.)

Beyond the “obvious” sequences like Examples 2.37 and 2.38, we’ve also already
seen some definitions that don’t seem to involve sequences, but implicitly are about
ordered tuples of values. One example is the rational numbers (see Section 2.2.2):

Example 2.39 (Rational numbers as sequences)
We can define the rational numbers (also known as fractions) as the set Q := Z × Z>0.
Under this view, a rational number would be represented as a pair 〈n, d〉 ∈ Z × Z>0,
with a numerator n and a denominator d.

For example, the fractions 1
2 and 202

808 would be represented as 〈1, 2〉 and 〈202, 808〉,
respectively. (To flesh out the details of this representation, we also have to consider
reducing fractions to lowest terms, to establish the equivalence of fractions like 〈2, 4〉
and 〈1, 2〉. In Example 8.36, we’ll formalize this equivalence.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 239

We will often consider sequences of elements that are all drawn from the same set,
and there is special notation for such a sequence:

Definition 2.34 (Sequences of elements from the same set)
For a set S and a positive integer n, we write Sn to denote

Sn := S× S× . . .× S︸ ︷︷ ︸
n times

.

-4
-3
-2
-1
0
1
2
3
4

〈1, 3〉

〈3, 1〉

〈−3,−2〉

Figure 2.31: Three
points in R2. The
first component
represents the x-
axis (horizontal)
position; the second
component rep-
resents the y-axis
(vertical) position.

Thus Sn denotes the set of all sequences of length n where each component of the
sequence is an element the set S. For example, the RGB values from Example 2.38
are elements of {0, 1, . . . , 255}3, and {0, 1}3 denotes the set

{〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉} .

This notation also lets us write R × R, called the Cartesian plane, as R2—the way
you might have written it in a high school algebra class. (See Figure 2.31.)

Taking it further: René Descartes, the namesake of the Cartesian product and the Cartesian plane, was
a major contributor in mathematics, particularly geometry. But Descartes is probably most famous as
a philosopher, for the cogito ergo sum (“I think therefore I am”) argument, in which Descartes—after
adopting a highly skeptical view about all claims, even apparently obviously true ones—attempts to
argue that he himself must exist.

In certain contexts, sequences of elements from the same set (as in Definition 2.34)
are called strings. For a set Σ, called an alphabet, a string over Σ is an element of Σn for
some nonnegative integer n. (In other words, a string is any element of ⋃n∈Z≥0 Σn.)
The length of a string x ∈ Σn is n. For example, the set of 5-letter words in English
is a subset of {A, B, . . . , Z}5. We allow strings to have length zero: for any alphabet
Σ, there is only one sequence of elements from Σ of length 0, called the empty string;
it’s denoted by ε, and for any alphabet Σ, we have Σ0 := {ε}. When writing strings,
it is customary to omit the punctuation (angle brackets and commas), so we write
ABRACADABRA ∈ {A, B, . . . , Z}11 and 11010011 ∈ {0, 1}8.

2.4.1 Vectors
As we’ve already seen, we can create sequences of many types of things: we can view
sequences of letters as strings (like ABRACADABRA ∈ {A, B, . . . , Z}11), or sequences of
three integers between 0 and 255 as colors (like 〈119, 136, 153〉 ∈ {0, 1, . . . , 255}3, offi-
cially called “light slate gray”). Perhaps the most pervasive type of sequence, though,
is a sequence of real numbers, called a vector.

Taking it further: Vectors are used in a tremendous variety of computational contexts: computer
graphics (representing the line-of-sight from the viewer’s eye to an object in a scene), machine learning
(a feature vector describing which characteristics a particular object has, which can be used in trying to
classify that object as satisfying a condition or failing to satisfy a condition), among many others. The
discussion on p. 248 describes the vector-space model for representing a document d as a vector whose
components correspond to the number of times each word appears in d.

Vectors and matrices (the topics of this and the next subsection) are the main focus of a math course
in linear algebra. In these subsections, we’re only mentioning a few highlights of vectors and matrices;
you can find much more in any good textbook on linear algebra.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

240 CHAPTER 2. BASIC DATA TYPES

Definition 2.35 (Vector)
A vector (or n-vector) x is a sequence x ∈ Rn, for some positive integer n. For a vector
x ∈ Rn and for any index i ∈ {1, 2, . . . , n}, we write xi to denote the ith component of x.

For example, 〈0, 1〉, 〈1, 0〉, and 〈 1√
2 ,

1√
2 〉 are all vectors in R2. For the vector x :=

A warning for C or
Java or Python (or
. . .) programmers:
notice that our vec-
tors’ components
are indexed starting
at one, not zero. For
a vector x ∈ Rn,
the expression xi is
meaningless unless
i ∈ {1, 2, . . . ,n}. In
particular, the ex-
pression x0 doesn’t
mean anything.

〈1/2,
√
3/2〉, we have x1 = 1/2 and x2 =

√
3/2.

Vectors are sometimes contrasted with scalars, which are just numbers: that is, a
scalar is an element of R. Vectors are also sometimes written in square brackets, so
we may see an n-vector x written as x = [x1, x2, . . . , xn]. We may encounter vectors in
which the components are a restricted kind of number—for example, integers or bits.
Elements of {0, 1}n are often called bit vectors or bitstrings.

Here’s an example of using vectors to compute distances between points:

2 3 4 5 6 7 8 9 10
32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

2 3 4 5 6 7 8 9 10
32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

? ?

Figure 2.32: Illustra-
tions of Manhattan
train stations. In
the second panel,
the dark shaded
points are closer (in
walking distance)
to 〈4, 42〉 than to
〈8, 33〉. The white
shaded points are
closer to 〈8, 33〉 than
to 〈4, 42〉.

Example 2.40 (Train stations in Manhattan)
Problem: Let’s (very roughly!) represent a location in Manhattan as a vector—

specifically, as a point 〈x, y〉 ∈ R2 representing the intersection of xth Avenue
and yth Street. Define the walking distance between points p and q in Manhattan as
|p1 − q1| + |p2 − q2|: the number of east–west blocks between p and q plus the num-
ber of north–south blocks between p and q. (Note that walking distance is different
from the straight-line distance between the points!)
1. The two major train stations in Manhattan are Penn Station, located at s :=

〈8, 33〉, and Grand Central Station, located at g := 〈4, 42〉. What’s the walking
distance between Penn Station and Grand Central?

2. Describe the set of all points that are closer (in walking distance) to Penn Sta-
tion than to Grand Central.

Solution: 1. The distance between s = 〈8, 33〉 and g = 〈4, 42〉 is |s1 − g1| + |s2 − g2| =
|8− 4| + |33− 42| = 4 + 9 = 13.

2. Let’s compute some points that are equidistant to the two stations. (Those
points are on the boundary of the region of points closer to g and the region
of points closer to s.) For example, a point 〈4, y〉 has distances |42 − y| and
4 + |y− 33| to the stations; these distances are both equal to 6.5 when y = 35.5.
More generally, let’s think about a point whose x-coordinate falls between 4 and
8. For any offset 0 ≤ δ ≤ 4, the distance between the point 〈4 + δ, y〉 and the two
stations are δ + |42− y| and 4− δ + |y− 33|. These two values are both equal to
6.5 when y = 35.5 + δ. (For example, when δ = 4, then y = 39.5.) Thus the points
〈4 + 0, 35.5 + 0〉 = 〈4, 35.5〉 and 〈4 + 4, 35.5 + 4〉 = 〈8, 39.5〉 are both equidistant to s
and g, as are all points on the line segment between them. (See Figure 2.32.)
The remaining cases of the analysis—figuring out which points with x-
coordinate less than 4 or greater than 8 are closer to s or g (the regions marked
with “?” in Figure 2.32)—are left to you in Exercises 2.184 and 2.185.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 241

Taking it further: The measure of walking distance between points that we used in Example 2.40 is
used surprisingly commonly in computer science applications—and, appropriately enough, it’s actually
named after Manhattan. TheManhattan distance between two points p, q ∈ Rn is defined as ∑n

i=1 |pi − qi|.
(We’re summing the number of “blocks” of difference in each of the n dimensions; we take the absolute
value of the difference in each component because we care about the difference in each dimension rather
than which point has the higher value in that component.)

Here’s one more useful definition about vectors:

Definition 2.36 (Vector length)
The length of a vector x ∈ Rn is defined as ‖x‖ :=

√
∑n

i=1(xi)2.

For example, ‖〈2, 8〉‖ =
√
22 + 82 =

√
4 + 64 =

√
68 ≈ 8.246. If we draw a vector x ∈ R2

in the Cartesian plane, then ‖x‖ denotes the length of the line from 〈0, 0〉 to x. (See
Figure 2.33.) A vector x ∈ Rn is called a unit vector if ‖x‖ = 1.

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
〈1, 9〉

√ 82

〈−3,−5〉

√ 34

Figure 2.33:
Two vector
lengths: ‖〈1, 9〉‖
is
√
1 + 81 =

√
82,

and ‖〈−3,−5〉‖ is√
9 + 25 =

√
34.

Vector arithmetic
We will now define basic arithmetic for vectors: vector addition, which is performed

component-wise (adding the corresponding elements of the two vectors), and two
forms of multiplication—one for multiplying a vector by a scalar (also component-
wise) and one for multiplying two vectors together. We’ll start with addition:

Definition 2.37 (Vector addition)
The sum of two vectors x, y ∈ Rn, written x + y, is a vector z ∈ Rn, where for every index
i ∈ {1, 2, . . . , n} we have zi := xi + yi. (Note that the sum of two vectors with different sizes is
meaningless.)

For example, 〈1.1, 2.2, 3.3〉+ 〈2, 0, 2〉 = 〈3.1, 2.2, 5.3〉.
The first type of multiplication for vectors is scalar multiplication, when we multiply

a vector by a real number. As with vector addition, scalar multiplication acts on each
component independently, by rescaling each component by the same factor:

Definition 2.38 (Scalar product)
Given a vector x ∈ Rn and a real number α ∈ R, the scalar product αx is a vector z ∈ Rn,
where zi := αxi for every index i ∈ {1, 2, . . . , n}.

For example, we have 3 · 〈1, 2, 3〉 = 〈3, 6, 9〉. Similarly −1.5 · 〈1,−1〉 = 〈−1.5, 1.5〉 and
0 · 〈1, 2, 3, 5, 8〉 = 〈0, 0, 0, 0, 0〉.

The second type of vector multiplication, the dot product, takes two vectors as input
and multiplies them together to produce a single scalar as output: As with vector

addition, the
dimensions of the
vectors in a dot
product have to
match up: if x ∈ Rn

and y ∈ Rm are
vectors where
n 6= m, then x • y is
meaningless.

Definition 2.39 (Dot product)
Given two vectors x, y ∈ Rn, the dot product of x and y, denoted x • y, is given by summing
the products of the corresponding components:

x • y =
n
∑
i=1

xi · yi.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

242 CHAPTER 2. BASIC DATA TYPES

For example, 〈1, 2, 3〉 • 〈4, 5, 6〉 = 1 · 4 + 2 · 5 + 3 · 6 = 4 + 10 + 18 = 32.
Intuitively, the dot product of two vectors measures the extent to which they point

in the “same direction.” Here’s an example with a few unit vectors:

-1 0 1
-1

0

1 a

b
c

d

Figure 2.34: Four
unit vectors.

Example 2.41 (Dot products of unit vectors)
Consider the unit vectors a := 〈0, 1〉, b := 〈1, 0〉, c := 〈1/

√
2, 1/

√
2〉, and d := 〈0,−1〉.

(See Figure 2.34.) Here is the dot product of c with each of these vectors:

c • a
= c1 · a1 + c2 · a2
= 1√

2 · 0 +
1√
2 · 1

= 1√
2 .

c • b
= c1 · b1 + c2 · b2
= 1√

2 · 1 +
1√
2 · 0

= 1√
2 .

c • c
= c1 · c1 + c2 · c2
= 1√

2 ·
1√
2 +

1√
2 ·

1√
2

= 1
2 + 1

2 = 1.

c • d
= c1 · d1 + c2 · d2
= 1√

2 · 0 +
1√
2 · −1

= − 1√
2 .

Here are two examples using dot products for simple applications:

Example 2.42 (Common classes)
Let C := 〈CS1, CS2, . . . , CS8〉 denote the list of all courses offered by a (somewhat
narrowly focused) university. For a particular student, let the bit vector u represent
the courses taken by that student, so that ui := 1 if the student has taken course ci
(and ui := 0 otherwise). For example, a student who’s taken only CS1 and CS8 would
be represented by x := 〈1, 0, 0, 0, 0, 0, 0, 1〉, and a student who’s taken everything
except CS3 would be represented by y := 〈1, 1, 0, 1, 1, 1, 1, 1〉.

The dot product of two student vectors represents the number of common courses
that they’ve taken. For example, the number of common classes taken by x and y is

x • y =
8
∑
i=1

xiyi = 1 · 1 + 0 · 1 + 0 · 0 + 0 · 1 + 0 · 1 + 0 · 1 + 0 · 1 + 1 · 1

= 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 2.

Specifically, the two common courses taken by x and y are CS1 and CS8.

Example 2.43 (GPAs)
Let g ∈ Rn be an n-vector where gi denotes the grade (measured on the grade point
scale) that you got in the ith class that you’ve taken in your college career. Let c ∈ Rn

be an n-vector where ci denotes the number of credit hours for the ith class you took
in your college career. Then your grade point average (GPA) is given by g•c

∑n
i=1 ci

.
For example, suppose your school gives grade points on the scale 4.0 = A, 3.7 = A-,

3.3 = B+, 3.0 = B, etc. Suppose you took CS 111 (6 credits), CS 201 (6 credits), and
Mbira Lessons (4 credits), and got grades of B+, A-, and B, respectively. Then
g = 〈3.3, 3.7, 3.0〉 and c = 〈6, 6, 4〉, and your GPA is given by

g • c
∑3

i=1 ci
= 3.3 · 6 + 3.7 · 6 + 3.0 · 4

6 + 6 + 4 = 19.8 + 22.2 + 12.0
16 = 54

16 = 3.375.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 243

2.4.2 Matrices



M1,1 M1,2 . . . M1,m
M2,1 M2,2 . . . M2,m
...

...
. . .

...
Mn,1 Mn,2 . . . Mn,m




Figure 2.35: A
matrix M.

If a vector is analogous to an array of numbers, then a matrix is analogous to
a two-dimensional array of numbers:

Definition 2.40 (Matrix)
An n-by-mmatrix M is a two-dimensional table of real numbers containing n
rows and m columns. The 〈i, j〉th entry of the matrix appears in the ith row and jth
column, and we denote that entry by Mi,j, as shown in Figure 2.35. Such a matrix M is an
element of Rn×m, and we refer to M as having size or dimension n-by-m.

Here are a few very small example matrices: The plural of matrix
is matrices (which
rhymes with the
word “cheese”).Example 2.44 (Three matrices)

Here are three matrices. (The 〈2, 1〉st entry is circled in each.)

A =
[

3 1 4
9 7 2

]
B =




5 3
4 8
6 9


 I =




1 0 0
0 1 0
0 0 1


 .

In these examples, A is a 2-by-3 matrix, B is a 3-by-2 matrix, and I is a 3-by-3 matrix.

One can think of a two-dimensional array in a programming language as a one-
dimensional array of one-dimensional arrays. Similarly, if you prefer, you can think of




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




(a) A matrix. (b) A bitmapped image.

Figure 2.36: A
matrix representing
a black-and-white
bitmapped image,
and the image.

an n-by-mmatrix as a
sequence of n vectors,
all of which are ele-
ments of Rm. This view
of an n-by-mmatrix is
as an element of (Rn)m.
One simple application
of matrices is as an easy
way to represent images:

Example 2.45 (Bitmaps)
A black-and-white image can be represented as a matrix with all entries in {0, 1}:
each 1 entry represents white in the corresponding pixel; each 0 represents black. For
example, the matrix in Figure 2.36(a) could represent the image in Figure 2.36(b).

Taking it further: The picture shown in Figure 2.36 is a simple black-and-white image, but we can use
the same basic structure for grayscale or color images. Instead of just an integer in {0, 1} as each entry
in the matrix, a grayscale pixel could be represented using a real number in [0, 1]—or, more practically, a
number in { 0

255 , 1
255 , . . . , 255255}. For color images, each entry would be an RGB triple (see Example 2.38).

These matrix-based representations of an image are often called bitmaps. Bitmaps are highly in-
efficient ways of storing images; most computer graphics file formats use much cleverer (and more
space-efficient) representations.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

244 CHAPTER 2. BASIC DATA TYPES

Here are few other examples of the pervasive applications of matrices in computer science. A term–
document matrix can be used to represent a collection of documents: the entryMd,k of the matrix M stores
the number of times that keyword k appears in document d. An adjacency matrix (see Chapter 11) can
represent the page-to-page hyperlinks of the web in a matrix M, where Mi,j = 1 if web page i has a
hyperlink to web page j (and Mi,j = 0 otherwise). A rotation matrix can be used in computer graphics to
re-render a scene from a different perspective; see p. 249 for some discussion.

AmatrixM ∈ Rm×n is called square if m = n. For a square matrixM ∈ Rn×n, we may
say that the size of M is n (rather than saying that its size is n-by-n). A square matrix
M is called symmetric if, for all indices i, j ∈ {1, 2, . . . , n}, we haveMi,j = Mj,i. The main
diagonal of a square matrix M ∈ Rn×n is the sequence consisting of the entries Mi,i for
i = 1, 2, . . . , n. For example:




1 2 3
4 5 6
7 8 9




Figure 2.37: A
matrix M with the
entries of the main
diagonal circled.

Example 2.46 (Main diagonal)
Consider the 3-by-3 square matrix M shown in Figure 2.37. The main diagonal of M
is 〈M1,1,M2,2,M3,3〉 = 〈1, 5, 9〉.

One special square matrix that will arise frequently is the identity matrix, which has
ones on the main diagonal and zeros everywhere else (see Figure 2.38):

Definition 2.41 (Identity matrix)
The n-by-n identity matrix is the matrix I ∈ Rn×n whose entries satisfy

Ii,j =
{

1 if i = j
0 if i 6= j.

Note that there is a different n-by-n identity matrix for every n ≥ 1:




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




Figure 2.38: The
identity matrix I.

Example 2.47 (The smallest identity matrices)
Here are the identity matrices of size up to 5:

[
1
] [

1 0
0 1

] 

1 0 0
0 1 0
0 0 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




As with vectors, we will need to define the basic arithmetic operations of addition
and multiplication for matrices. Just as with vectors, adding two n-by-mmatrices or
multiplying a matrix by a scalar is done component by component.

Definition 2.42 (Matrix addition and scalar multiplication)
Given two matrices M,M′ ∈ Rn×m and a real number α ∈ R:

• The product αM is a matrix N ∈ Rn×m where Ni,j := αMi,j for all indices
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 245

• The sum M +M′ is a matrix N ∈ Rn×m where Ni,j := Mi,j +M′
i,j for all indices

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}.

Again, just as with vectors, adding two matrices that are not the same size is meaning-
less. Here are some small examples:

Example 2.48 (Simple matrix arithmetic)
Consider the following matrices:

A :=



0 2 2
2 0 2
2 2 0


 B :=



1 2 3
0 0 6
0 0 4


 I :=



1 0 0
0 1 0
0 0 1




Then we have:

A + B =



1 4 5
2 0 8
2 2 4


 4B =



4 8 12
0 0 24
0 0 16




A + 3I =



3 2 2
2 3 2
2 2 3


 A− 3I =



−3 2 2
2 −3 2
2 2 −3




Matrix multiplication
Multiplying matrices is a bit more complicated than the other vector/matrix op-

erations that we’ve seen so far. The product of two matrices is a matrix, rather than a
single number: the entry in the ith row and jth column of AB is derived from the ith
row of A and the j column of B. More precisely:

Definition 2.43 (Matrix multiplication)
The product AB of two matrices A ∈ Rn×m and B ∈ Rm×p is an n-by-p matrix M ∈ Rn×p

whose entries are, for any i ∈ {1, 2, . . .n} and j ∈ {1, 2, . . . , p},

Mi,j :=
m
∑
k=1

Ai,kBk,j.

As usual, if the dimensions of the matrices A and B don’t match—if the number of
columns in A is different from the number of rows in B—then AB is undefined.

Example 2.49 (Multiplying some small matrices)
Let’s compute the product of a sample 2-by-3 matrix and a 3-by-2 matrix:

[
1 2 3
4 5 6

]
·



7 8
1 3
9 0




A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

246 CHAPTER 2. BASIC DATA TYPES

Note that, by definition, the result will be a 2-by-2 matrix. Let’s compute its entries:
[
1 2 3
4 5 6

]
·



7 8
1 3
9 0


 =

[
1 · 7 + 2 · 1 + 3 · 9 1 · 8 + 2 · 3 + 3 · 0
4 · 7 + 5 · 1 + 6 · 9 4 · 8 + 5 · 3 + 6 · 0

]

=
[
7 + 2 + 27 8 + 6 + 0
28 + 5 + 54 32 + 15 + 0

]

=
[
36 14
87 47

]
.

For example, the 14 in 〈row #1, column #2〉 of the result was calculated by succes-
sively multiplying the first matrix’s first row 〈1, 2, 3〉 by the second matrix’s second
column 〈8, 3, 0〉. Alternatively, here’s a visual representation of this multiplication:


 1 2 3

4 5 6


 ·




7 8
1 3
9 0


 =




36 14

87 47





 1 2 3

4 5 6


 ·




7 8
1 3
9 0


 =




36 14

87 47





 1 2 3

4 5 6


 ·




7 8
1 3
9 0


 =




36 14

87 47





 1 2 3

4 5 6


 ·




7 8
1 3
9 0


 =




36 14

87 47


 .

More compactly, we could write matrix multiplication using the dot product from
Definition 2.39: for two matrices A ∈ Rn×m and B ∈ Rm×p, the 〈i, j〉th entry of AB is
the value of Ai,(1...m) • B(1...m),j.

Problem-solving tip:
To help keep matrix
multiplication
straight, it may
be helpful to
compute the 〈i, j〉th
entry of AB by
simultaneously
tracing the ith row
of A with the index
finger of your left
hand, and the jth
column of B with
the index finger of
your right hand.
Multiply the two
numbers that you’re
pointing at, and
add the result to a
running tally; when
you’ve traced the
whole row/column,
the running tally is
(AB)i,j .Be careful: matrix multiplication is not commutative—that is, for matrices A and

B, the values AB and BA are generally different! (This asymmetry is unlike numeri-
cal multiplication: for x, y ∈ R, it is always the case that xy = yx.) In fact, because
the number of columns of Amust match the number of rows of B for AB to even be
meaningful, it’s possible for BA to be meaningless or a different size from AB.

Example 2.50 (Multiplying the other way around)
If we multiply the matrices from Example 2.49 in the other order, we get



7 8
1 3
9 0


 ·
[
1 2 3
4 5 6

]
=



39 54 69
13 17 21
9 18 27




This matrix differs from the result in Example 2.49—it’s not even the same size!

You’ll show in the exercises that, for any n-by-mmatrix A, the result of multiplying A
by the identity matrix I yields A itself: that is, AI = A. You’ll also explore the inverse of
a matrix A: that is, the matrix A−1 such that AA−1 = I (if any such A−1 exists).

Here’s another example of using matrices, and matrix multiplication, to combine
different types of information:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 247

Example 2.51 (Programming language knowledge)
Problem: Let A be an n-by-mmatrix where Ai,j = 1 if student i has taken class j (and

Ai,j = 0 otherwise). Let B be an m-by-pmatrix where Bj,k = 1 if class j uses pro-
gramming language k (and Bj,k = 0 otherwise). What does the matrix AB repre-
sent?

Solution: First, note that the resulting matrix AB has n rows and p columns; that is,
its size is (number of students)-by-(number of languages). For a student i and a
programming language k, we have by definition that

(AB)i,k =
m
∑
j=1

Ai,jBj,k

=
m
∑
j=1

[{
1 if student i took class j and j uses language k
0 otherwise

]

because 0 · 0 = 0 · 1 = 1 · 0 = 0, so the only terms of the sum that are 1 occur
when both Ai,j (“student i took class j?”) and Bj,k (“class j uses language k?”) are
true (that is, 1). Thus (AB)i,k denotes the number of classes that use language k that
student i took.

Example 2.52 (A concrete example of Example 2.51)
Concretely, consider these 3 students, 5 courses, and 7 programming languages:

A :=




in
tro

da
ta

str
uc
tu
res

or
g/a

rch

pr
og

lan
gs

the
or
yo

fc
om

p

Alice 0 1 1 1 1
Bob 1 1 0 1 0

Charlie 1 0 0 0 1


 B :=




Pe
rl

Py
tho

n

C Jav
a

As
sem

bly

C+
+

Sc
he
me

intro 0 1 0 0 0 0 0
data struct 0 1 0 1 0 0 0

org/arch 0 0 1 0 1 0 0
prog lang 0 1 1 1 1 1 1

theory of comp 0 0 0 0 0 0 0




.

For these matrices, we have

AB =




Pe
rl

Py
tho

n

C Jav
a

As
sem

bly

C+
+

Sc
he
me

Alice 0 2 2 2 2 1 1
Bob 0 3 1 2 1 1 1

Charlie 0 1 0 0 0 0 0


.

(For example, the Alice/C cell is computed by 〈0, 1, 1, 1, 1〉 • 〈0, 0, 1, 1, 0〉—the dot
product of Alice’s row of A with C’s column of B—which has the value

0 · 0 + 1 · 0 + 1 · 1 + 1 · 1 + 1 · 0 = 2.
This entry reflects the fact that Alice has taken two classes that use C: organization/
architecture and programming languages.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

248 CHAPTER 2. BASIC DATA TYPES

Computer Science Connections

The Vector Space Model
Here’s a classic application of vectors, taken from information retrieval, the

subfield of computer science devoted to searching for information relevant to
a given query in large datasets. We start with a large corpus of documents—for
example, transcripts of all email messages that you’ve sent in your entire life.
(The word corpus comes from the Latin for “body”; it simply means a body
of texts.) Tasks involving the corpus might include clustering the documents
into subcollections (“which of my email messages are spam?”), or finding the
stored documents most similar to a given query (“find me the 10 emails most
relevant to ‘good restaurants in Chicago’ in my archives”).

The vector space model is a standard approach to representing text docu-
ments for the purposes of information retrieval. We choose a list of n terms
that might appear in a document. We then represent a document d as an n-
vector x of integers, where xi is the number of times that the ith term appears
in the document d. See Figure 2.39 for an example.

Because documents that are about similar topics tend to contain similar

d1 Three is one of the loneliest
numbers.

d2 A one and a two and a one,
two, three.

d3 One, two, buckle my shoe.
↓

d1 [1, 0, 1]
d2 [2, 2, 1]
d3 [1, 1, 0]

(a) Three documents translated
into vectors using the keywords
‘one’, ‘two’, and ‘three’.

‘one’

‘two’

‘three’

b
d1

b d2b
d3

(b) A plot of the three documents in R3

Figure 2.39: An example from the
vector-space model.

vocabulary, we can judge the similarity of documents d and d′ based on “how
similar” their corresponding vectors x and x′ are:
• A first stab at measuring similarity between x and x′ is to compute the dot

product x • x′; this approach counts the number of times any word in d
appears in d′. (And if a word appears twice in d, then each appearance in d′
counts twice for the dot product.)

• This first approach has an issue in that it favors longer documents: a docu-
ment that lists all the words in the dictionary would correspond to a vector
[1, 1, 1, 1, 1, . . .]—which would therefore have a large dot product with all
documents in the corpus. To compensate for the fact that longer documents
have more words, we normalize these vectors so that they have the same
length, by using x/‖x‖ and x′/‖x′‖ to represent the documents. It turns
out that the dot product of the normalized vectors computes the cosine of
the angle between these representations of the documents.

• This second approach suffers from counting common occurrences of the
word the and the word normalize as equally indicative of the similarity
of documents. Information retrieval systems apply different weights to
different terms in measuring similarity; one common approach is called
term frequency–inverse document frequency (TFIDF), which downweights
terms that appear in many documents in the corpus.

It’s worth noting that real information retrieval systems are usually quite a lot
more complicated than we’ve discussed so far. For example, a document that
talks about sofas would be judged to be completely unrelated to a document
that talks about couches, which seems like a naïve judgement. Handling syn-
onyms requires a more complicated approach, often based around analyzing
the term–document matrix that simultaneously represents the entire corpus.
(For example, if documents that discuss sofas use very similar other words to
documents that discuss couches—like change and cushion and nap—then we
might be able to infer something about sofas and couches.)8

For much more on information retrieval,
see the excellent text
8 Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cam-
bridge University Press, 2008.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 249

Computer Science Connections

Rotation Matrices
When an image is rendered (drawn) using computer graphics, we typically

proceed by transforming a 3-dimensional representation of a scene, a model
of the world, into a 2-dimensional image fit for a screen. The scene is typically
represented by a collection of points in R3, each defining a vertex of a poly-
gon. The camera (the eye from which the scene is viewed) is another point in
R3, with an orientation describing the direction of view. We then project the
polygons’ points into R2. This computation is done using matrix multiplica-
tions, by taking into account the position and direction of view of the camera,
and the position of the given point. While a full account of this rendering al-
gorithm isn’t too difficult, we’ll stick with a simpler problem that still includes
the interesting matrix computations.9 We’ll instead consider the rotation of a

You can learn more about way that the
full-scale computer graphics algorithms
work in a textbook like
9 John F. Hughes, Andries van Dam,
Morgan McGuire, David F. Sklar,
James D. Foley, Steven K. Feiner, and
Kurt Akeley. Computer Graphics: Princi-
ples and Practice. Addison-Wesley, 3rd
edition, 2013.

set of points in R2 by an angle θ. (The full-scale problem requires thinking
about the angle of view with two parameters, akin to “azimuth” and “ele-
vation” in orienteering: the direction θ in the horizontal plane and the angle
ϕ away from a straight horizontal view.) Suppose that we have a scene that
consists of a collection of points in R2. As an example, Figure 2.40 shows a
collection of hand-collected points in R2 that represent the borders of the state
of Nevada.

Suppose that we wish to rotate a point 〈x, y〉 by an angle θ around the point

Figure 2.40: The 10 points in R2 repre-
senting the boundaries of Nevada.

〈0, 0〉. You should be able to convince yourself with a drawing that we can ro-
tate a point 〈x, 0〉 around the point 〈0, 0〉 by moving it to 〈x cos θ, x sin θ〉. More
generally, the point 〈x, y〉 becomes the point 〈x cos θ− y sin θ, x sin θ + y cos θ〉
when it’s rotated.

Suppose we wish to rotate the points 〈x1, y1〉, . . . , 〈xn, yn〉 by angle θ. Write
a matrix with the ith column corresponding to the ith point, and perform
matrix multiplication as follows:
[
cos θ − sin θ

sin θ cos θ

] [
x1 x2 · · · xn
y1 y2 · · · yn

]
=
[
x1 cos θ− y1 sin θ x2 cos θ− y2 sin θ · · · xn cos θ− yn sin θ

x1 sin θ + y1 cos θ x2 sin θ + y2 cos θ · · · xn sin θ + yn cos θ

]

(The matrix R =
[
cos θ − sin θ

sin θ cos θ

]
is called a rotation matrix.)

The result is that we have rotated an entire collection of points—arranged
in the 2-by-nmatrix M—by multiplyingM by this rotation matrix. In other
words, RM is a 2-by-nmatrix of the rotated points. See Figure 2.41.

Figure 2.41: Nevada, as above and
rotated by three different angles.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

250 CHAPTER 2. BASIC DATA TYPES

2.4.3 Exercises
2.141 What is {1, 2, 3} × {1, 4, 16}?
2.142 What is {1, 4, 16} × {1, 2, 3}?

2.143 What is {1} × {1} × {1}?
2.144 What is {1, 2} × {2, 3} × {1, 4, 16}?

2.145 Suppose A× B = {〈1, 1〉, 〈2, 1〉}. What are A and B?

Let S := {1, 2, 3, 4, 5, 6, 7, 8}, and let T be an unknown set. From the following, what can you conclude about T? Be as
precise as possible: if you can list the elements of T exhaustively, do so; if you can’t, identify any elements that you can
conclude must be (or must not be) in T.
2.146 |S× T| = 16 and 〈1, 2〉, 〈3, 4〉 ∈ S× T
2.147 S× T = ∅

2.148 (S× T) ∩ (T × S) = {〈3, 3〉}
2.149 S× T = T × S

Recall that Algebraic notation denotes the squares of the chess board as {a, b, c, d, e, f ,g, h} × {1, 2, 3, 4, 5, 6, 7, 8},
as in Figure 2.42. For each of the following questions, identify sets S and T such that the set of cells containing the
designated pieces can be described as S× T. 8 rmblkans

7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2.42: The
squares of a chess
board, written
using Algebraic
notation.

2.150 the white rooks (R)
2.151 the bishops (B, white or black)

2.152 the pawns (p, white or black)
2.153 no pieces at all

Write out the elements of the following sets.
2.154 {0, 1, 2}3 2.155 {A, B} × {C, D}2 × {E} 2.156 ⋃3

i=1 {0, 1}i

Let Σ := {A, B, . . . , Z} denote the English alphabet. Using notation from this chapter, give an expression that denotes
each of the following sets. It may be useful to recall that Σk denotes the set of strings consisting of a sequence of k
elements from Σ, so Σ0 contains the unique string of length 0 (called the empty string, and typically denoted by ε—or
by "" in most programming languages).
2.157 The set of 8-letter strings.
2.158 The set of 5-letter strings that do not contain any vowels {A, E, I, O, U}.
2.159 The set of 6-letter strings that do not contain more than one vowel. (So GRITTY, QWERTY, and
BRRRRR are fine; but EEEEEE, THREAT, STRENGTHS, and A are not.)
2.160 The set of 6-letter strings that contain at most one type of vowel—multiple uses of the same vowel
are fine, but no two different vowels can appear. (So BANANA, RHYTHM, and BOOBOO are fine; ESCAPE and STRAIN

are not.)

Recall that the length of a vector x ∈ Rn is given by ‖x‖ =
√

∑n
i=1 x2i . Considering the vectors a := 〈1, 3〉, b := 〈2,−2〉,

c := 〈4, 0〉, and d := 〈−3,−1〉, state the values of each of the following:
2.161 ‖a‖
2.162 ‖b‖
2.163 ‖c‖

2.164 a + b
2.165 3d
2.166 2a + c− 3b

2.167 ‖a‖ + ‖c‖ and ‖a+ c‖
2.168 ‖a‖ + ‖b‖ and ‖a+ b‖
2.169 3‖d‖ and ‖3d‖

2.170 Explain why, for an arbitrary vector x ∈ Rn and an arbitrary scalar a ∈ R, ‖ax‖ = a‖x‖.
2.171 For any two vectors x, y ∈ Rn, we have ‖x‖ + ‖y‖ ≥ ‖x + y‖. Under precisely what circumstances
do we have ‖x‖ + ‖y‖ = ‖x + y‖ for x, y ∈ Rn? Explain briefly.

Still considering the same vectors a := 〈1, 3〉, b := 〈2,−2〉, c := 〈4, 0〉, and d := 〈−3,−1〉, what are the following?
2.172 a • b 2.173 a • d 2.174 c • c
Recall that the Manhattan distance between vectors x, y ∈ Rn is defined as ∑n

i=1 |xi − yi |. The Euclidean distance
between two vectors x, y ∈ Rn is

√
∑n

i=1(xi − yi)2.What is the Manhattan/Euclidean distances between the following
pairs of vectors?
2.175 a and b 2.176 a and d 2.177 b and c

Suppose that the Manhattan distance between two vectors x, y ∈ R2 is 1. Justify your answers:
2.178 What’s the largest possible Euclidean distance between x and y?
2.179 What’s the smallest possible Euclidean distance between x and y?
2.180 What’s the smallest possible Euclidean distance between x and y if x, y ∈ Rn (not just n = 2)?

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 2.43: The
plane.

Consider Figure 2.43, and sketch the following sets:
2.181

{x ∈ R2 : the Euclidean distance between x and 〈0, 0〉 is at most 2}.
2.182

{x ∈ R2 : the Manhattan distance between x and 〈0, 0〉 is at most 2}.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.4. SEQUENCES, VECTORS, ANDMATRICES: ORDERED COLLECTIONS 251

2 3 4 5 6 7 8 9 10
32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

(a) The unscaled version.
2 3 4 5 6 7 8 9 10

32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

(b) The scaled version.

Figure 2.44: Man-
hattan train sta-
tions.

In Example 2.40, we considered two train stations located at
points s := 〈8, 33〉 and g := 〈4, 42〉. (See Figure 2.44(a).)
In that example, we showed that, for an offset δ ∈ [0, 4],
the Manhattan distance between the point 〈4 + δ, y〉 and s
is smaller than the Manhattan distance between the point
〈4 + δ, y〉 and g when y < 35.5 + δ.
2.183 Show that the point 〈16, 40〉 is closer to one
station under Manhattan distance, and to the other
under Euclidean distance.
Let δ ≥ 0. Under Manhattan distance, describe the values of y
for which the following point is closer to s than to g:
2.184 〈8 + δ, y〉
2.185 〈4− δ, y〉

2.186 In the real-world island of Manhattan, the east–west blocks are roughly twice the length of the
north–south blocks. As such, the more accurate picture of distances in the city is shown in Figure 2.44(b).
Assuming it takes 1.5 minutes to walk a north–south (up–down) block and 3 minutes to walk an east–west
(left–right) block, give a formula for the walking distance between 〈x, y〉 and Penn Station, at s := 〈8, 33〉.

A Voronoi diagram—named after the 20th-century Russian mathematician Georgy Voronoy—is a decomposi-
tion of the plane R2 into regions based on a given set S of points. The region “belonging” to a point x ∈ S is{y ∈ R2 : d(x, y) ≤ minz∈S d(z, y)

}, where d(·, ·) denotes Euclidean distance—in other words, the region “belong-
ing” to point x is that portion of the plane that’s closer to x than any other point in S.
2.187 Compute the Voronoi diagram of the set of points {〈0, 0〉, 〈4, 5〉, 〈3, 1〉}. That is, compute:
• the set of points y ∈ R2 that are closer to 〈0, 0〉 than 〈4, 5〉 or 〈3, 1〉 under Euclidean distance;
• the set of points y ∈ R2 that are closer to 〈4, 5〉 than 〈0, 0〉 or 〈3, 1〉 under Euclidean distance; and
• the set of points y ∈ R2 that are closer to 〈3, 1〉 than 〈0, 0〉 or 〈4, 5〉 under Euclidean distance.
2.188 Compute the Voronoi diagram of the set of points {〈2, 2〉, 〈8, 1〉, 〈5, 8〉}.
2.189 Compute the Voronoi diagram of the set of points {〈0, 7〉, 〈3, 3〉, 〈8, 1〉}.
2.190 (programming required) Write a program that takes three points as input and produces a represen-
tation of the Voronoi diagram of those three points as output. 10

10 Mark de Berg,
Marc van Krev-
eld, Mark Over-
mars, and Otfried
Schwarzkopf. Com-
putational Geometry.
Springer-Verlag,
2nd edition, 2000.

Taking it further: Voronoi diagrams are used frequently in computational geometry, among other areas
of computer science. (For example, a coffee-shop chain might like to build a mobile app that is able to
quickly answer the question What store is closest to me right now? for any customer at any time. Voronoi
diagrams can allow precomputation of these answers.)

Given any set S of n points, it’s reasonably straightforward to compute (an inefficient representation
of) the Voronoi diagram of those points by computing the line that’s equidistant between each pair of
points, as you saw in the last few exercises. But there are cleverer ways of computing Voronoi diagrams
more efficiently; see a good textbook on computational geometry for more.10

Consider the following matrix:

M =




3 9 2
0 9 8
6 2 0
7 5 5
7 2 4
1 6 7




2.191 What size is M?
2.192 What is M3,1?

2.193 List every 〈i, j〉 such thatMi,j = 7.
2.194 What is 3M?

Considering the following matrices, what are the values of the given expressions (if they’re defined)?

A =


0 8 0
9 6 0
2 3 3


 B =



5 8
7 5
3 2


 C =



7 2 7
3 5 6
1 2 5


 D =

[3 1
0 8

]
E =

[8 4
3 2

]
F =

[1 2 9
5 4 0

]

(If the given quantity is undefined, say so—and say why.)
2.195 A +C
2.196 B + F
2.197 D + E

2.198 A+A
2.199 −2D
2.200 0.5F

2.201 AB
2.202 AC
2.203 AF

2.204 BC
2.205 DE
2.206 ED

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

252 CHAPTER 2. BASIC DATA TYPES

Consider the matrices

A =


1 0 0
1 0 0
1 1 0


 and B =



0 0 0
0 1 0
1 1 1


 .

2.207 What is 0.25A + 0.75B? 2.208 What is 0.5A + 0.5B?
2.209 Identify two other matrices C and Dwith the same average—that is, such that {A,B} 6= {C,D} but
0.5A + 0.5B = 0.5C + 0.5D.

Figure 2.45: Clubs
to hearts (0%, 20%,
40%, 60%, 80%, and
100%).

2.210 (programming required) A common computer graphics effect in the spirit of the last few exercises
is morphing one image into another—that is, slowly changing the first image into the second. There are
sophisticated techniques for this task, but a simple form can be achieved just by averaging. Given two
n-by-m images represented by matrices A and B—say grayscale images, with each entry in [0, 1]—we can
produce a “weighted average” of the images as λA + (1− λ)B, for a parameter λ ∈ [0, 1]. See Figure 2.45.

Write a program, in a programming language of your choice, that takes three inputs—an image A, an
image B, and a weight λ ∈ [0, 1]—and produces a new image λA + (1 − λ)B. (You’ll need to research an
image-processing library to use in your program.)

2.211 Let A be an m-by-nmatrix. Let I be the n-by-n identity matrix. Explain why the matrix AI is
identical to the matrix A.

If M is an n-by-n matrix, then the product of M with itself is also an n-by-n matrix. We write matrix powers in the
normal way that we defined powers of integers (or of the Cartesian product of sets): Mk = M ·M · · ·M, multiplied k
times. (M0 is the n-by-n identity matrix I.) What are the following? (Hint: M2k = (Mk)2.)
2.212

[2 3
1 1

]3
2.213

[1 1
1 0

]2
2.214

[1 1
1 0

]4
2.215

[1 1
1 0

]9

Taking it further: The Fibonacci numbers are defined recursively as the sequence f1 := 1, f2 := 1, and
fn := fn−1 + fn−2 for n ≥ 3. The first several Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, As we’ll see in Exer-
cises 5.56 and 6.99, there’s a very fast algorithm to compute the nth Fibonacci number based on computing the nth
power of the matrix from Exercises 2.213–2.215.

Let A by an n-by-n matrix. The inverse of A, denoted A−1, is also an n-by-n matrix, with the property that AA−1 = I.
There’s a general algorithm that one can develop to invert matrices, but in the next few exercises you’ll calculate
inverses of some small matrices by hand.

2.216 Note that
[1 1
2 1

]
·
[x y
z w

]
=
[x + z y +w
2x + z 2y +w

]
. Thus

[1 1
2 1

]−1
is the matrix

[x y
z w

]
, where the

following four conditions hold: x + z = 1 and y +w = 0 and 2x + z = 0 and 2y +w = 1. Find the values of x, y,
w, and z that satisfy these four conditions.
Using the same approach as the last exercise, find the inverse of the following matrices:
2.217

[1 2
3 4

]
2.218

[0 1
1 0

]
2.219

[1 0
0 1

]

2.220 Not all matrices have inverses—for example,
[1 1
1 1

]
doesn’t have an inverse. Explain why not.

An error-correcting code (see Section 4.2) is a method for redundantly encoding information so that the information
can still be retrieved even in the face of some errors in transmission/storage. The Hamming code is a particular error-
correcting code for 4-bit chunks of information. The Hamming code can be described using matrix multiplication:
given amessage m ∈ {0, 1}4, we encode m as mG mod 2, where

G =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 .

(Here you should interpret the “mod 2” as describing an operation to each element of the output vector.) For example,
[1, 1, 1, 1] ·G = [1, 1, 1, 1, 3, 3, 3], so we’d encode [1, 1, 1, 1] as [1, 1, 1, 1, 3, 3, 3] mod 2 = [1, 1, 1, 1, 1, 1, 1]. What is the
Hamming code encoding of the following messages?
2.221 [0, 0, 0, 0] 2.222 [0, 1, 1, 0] 2.223 [1, 0, 0, 1]

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 253

2.5 Functions
There is no passion like that of a functionary for his
function.

Georges Clemenceau (1841–1929)
A function transforms an input value into an output value; that is, a function f takes

an argument or parameter x, and returns a value f (x). Functions are familiar from both
algebra and from programming. In algebra, we frequently encounter mathematical
functions like f (x) = x + 6, which means that, for example, we have f (3) = 9 and
f (4) = 10. In programming, we often write or invoke functions that use an algorithm to
transform an input into an output, like a function sort—so that sort(〈3, 1, 4, 1, 5, 9〉) =
〈1, 1, 3, 4, 5, 9〉, for example.

In this section, we will give formal definitions of functions and of some terminol-
ogy related to functions, and also discuss a few special types of functions. (Functions
themselves are a special case of relations, and we will revisit the definition of functions
in Chapter 8 when we discuss relations.)

2.5.1 Basic Definitions
We start with the definition of a function itself:

Definition 2.44 (Function)
Let A and B be sets. A function f from A to B, written f : A → B, assigns to each input
value a ∈ A a unique output value b ∈ B; the unique value b assigned to a is denoted by f (a).
We sometimes say that f maps a to f (a).

Note that A and B are allowed to be the same set; for example, a function might have
inputs and outputs that are both elements of Z.

Here are two simple examples. First, we define a function not for Boolean inputs

x not(x)
True False
False True

Figure 2.46: The
function not.

that maps True to False, and False to True:

Example 2.53 (Not function)
The function not : {True, False} → {True, False} can be defined with the table in
Figure 2.46. Given an input x, we find the output value not(x) by locating x in the
first column of the table and reading the value in that row’s second column. Thus
not(True) = False and not(False) = True.

As another simple example, we can also define a function square that returns its input
multiplied by itself:

Example 2.54 (Square function)
The function square : R → R can be defined as square(x) := x2: for any input x ∈ R,
the output is the real number x2. Thus, for example, square(8) = 64, because the
function square assigns the output 82 = 64 to the input 8.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

254 CHAPTER 2. BASIC DATA TYPES

Note, too, that a function f : A → Bmight have a set A of inputs that are pairs; for
example, the function that takes two numbers and returns their average is the function
average : R × R → R, where average(〈x, y〉) := (x + y)/2. (We interpret R × R → R as
(R × R) → R.) When there is no danger of confusion, we drop the angle brackets and
simply write, for example, average(3, 2) instead of average(〈3, 2〉).

As we’ve already seen in Examples 2.53 and 2.54, the rule by which a function as-
signs an output to a given input can be specified either symbolically—typically via an
algebraic expression—or exhaustively, by giving a table describing the input/output
relationship. The table-based definition only makes sense when the set of possible
inputs is finite; otherwise the table would have to be infinitely large. (And it’s only
practical to define a function with a table if the set of possible inputs is pretty small!)

Here’s an example of specifying the same function in two different ways, once sym-
bolically and once using a table:

Example 2.55 (Doubling function)
Let’s define the function double that doubles its input value, for any input in
{0, 1, . . . , 7}. (That is, we are defining a function double : {0, 1, . . . , 7} → Z.)

We can write double symbolically by defining

double(x) := 2 · x.

To define double using a table, we specify the output corresponding to every one of
the 8 possible inputs, as shown in Figure 2.47.

The functions that we’ve discussed so far are all fairly simple, but even simple func-

x double(x)
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14

Figure 2.47: The
double function,
specified using a
table.tions can have some valuable applications. Here’s an example of another simple func-

tion that can be used in compressing images so that they take up less space:

Example 2.56 (Reducing the colorspace of an image)
The pixels in a grayscale image are all elements of {0, 1, . . . , 255}. To reduce the space
requirements for a large image, we can consider a form of lossy compression (that is,
compression that loses some amount of data) by replacing each pixel with one chosen
from a smaller list of candidate colors. That is, instead of having 256 different shades
of gray, we might have 128 or 64 or even fewer shades.

Define quantize : {0, 1, . . . , 255} → {0, 1, . . . , 255} as follows:

quantize(n) :=





26 if 0 ≤ n ≤ 51
78 if 52 ≤ n ≤ 103
130 if 104 ≤ n ≤ 155
182 if 156 ≤ n ≤ 207
234 if 208 ≤ n ≤ 255.

We can apply quantize to every pixel in a grayscale image, and then use a much
smaller number of bits per pixel in storing the resulting image. See Figure 2.48 for
an example.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 255

(a) The function
quantize. (b) An image of a house. (c) The same image, compressed to use

only 5 shades of gray using the quantize
function.

Figure 2.48: A
visual repre-
sentation of the
color-mapping
function (each input
color in the left
column is assigned
the corresponding
color in the right
column), applied to
an example image.
In PNG format, the
file for the second
image takes up less
than 14% of the
space consumed by
the first image.

Taking it further: A byte is a sequence of 8 bits. Using 8 bits, we can represent the numbers from
00000000 to 11111111—that is, from 0 to 255. Thus a pixel with {0, 1, . . . , 255} as possible grayscale
values in an image requires one byte of storage for each pixel. If we don’t do something cleverer, a mod-
erately sized 2048-by-1536 image (the size of an iPad) requires over 3 megabytes even if it’s grayscale.
(A color image requires three times that amount of space.) Techniques similar to the compression func-
tion from Example 2.56 are used in a variety of CS applications—including, for example, in automatic
speech recognition, where each sample from a sound stream is stored using one of only, say, 256 different
possible values instead of a floating-point number, which requires much more space.

Domain and codomain
The domain and codomain of a function are its sets of possible inputs and outputs:

Definition 2.45 (Domain/codomain)
For a function f : A → B, the set A is called the domain of the function f : A → B, and the
set B is called the codomain of the function f : A → B.

Let’s identify the domain and codomain from the previous examples of this section:

Example 2.57 (Some domains and codomains)
For the functions from Examples 2.53–2.56, we have:

function domain codomain
not (Example 2.53) {True, False} {True, False}
square (Example 2.54) R R

double (Example 2.55) {0, 1, . . . , 7} Z

quantize (Example 2.56) {0, 1, . . . , 255} {0, 1, . . . , 255}
Note that for three of these functions, the domain and codomain are actually the
same set; for the function double : {0, 1, . . . , 7} → Z, they’re different.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

256 CHAPTER 2. BASIC DATA TYPES

When the domain and codomain are clear from context (or they are unimportant for
the purposes of a discussion), then they may be left unwritten.

Taking it further: This possibility of implicitly representing the domain and codomain of a function
is also present in code. Some programming languages (like Java) require the programmer to explicitly
write out the types of the inputs and outputs of a function; in some (like Python), the input and output
types are left implicit. In Java, for example, one would write an isPrime function with the explicit
declaration that the input is an integer (int) and the output is a Boolean (boolean). In Python, one would
write the function without any explicit type information.

boolean isPrime(int n) {

/* code to check primality of n */

}

def isPrime(n):

code to check primality of n

But regardless of whether they’re written out or left implicit, these functions do have a domain (the set of
valid inputs) and a codomain (the set of possible outputs).

Range/Image
For a function f : A → B, the set A (the domain) is the set of all possible inputs, and

the set B (the codomain) is the set of all possible outputs. But not all of the possible
outputs are necessarily actually achieved: in other words, there may be an element
b ∈ B for which there’s no a ∈ Awith f (a) = b. For example, we defined square : R → R

in Example 2.54, but there is no real number x such that square(x) = −1. The range or
image defines the set of actually achieved outputs:

Definition 2.46 (Range/image)
The range or image of a function f : A → B is the set of all b ∈ B such that f (a) = b for some
a ∈ A. Using the notation of Section 2.3, the range of f is the set

{y ∈ B : there exists at least one x ∈ A such that f (x) = y} .

We’ll start with the four functions defined earlier in this section:

Example 2.58 (Some ranges)
For the functions from Examples 2.53–2.56, we have:

function range
not (Example 2.53) {True, False}
square (Example 2.54) R≥0

double (Example 2.55) {0, 2, 4, 6, 8, 10, 12, 14}
quantize (Example 2.56) {26, 78, 130, 182, 234}

For not, double, and quantize, the range is easy to determine: it’s precisely the set of
values that appear in the “output” column of the table defining the function.

For square, it’s clear that the range includes no negative numbers, because there’s
no y ∈ R such that y2 < 0. In fact, the range of square is precisely R≥0: for any
x ∈ R≥0, there’s an input to square that produces x as output—specifically √x.

Here’s another example, for a slightly more complex function:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 257

Example 2.59 (The smallest divisor function)
Problem: Define a function sd : Z≥2 → Z≥2 as follows. Given an input n ∈ Z≥2, the

value of sd(n) is the smallest integer k ≥ 2 that evenly divides n. For example:
• sd(2) = 2 (because 2 | 2);
• sd(3) = 3 (because 3 | 3 but 2 6 | 3);
• sd(4) = 2 (because 2 | 4); and
• sd(121) = 11 (because 11 | 121 but 2 6 | 121, 3 6 | 121, . . ., 10 6 | 121).
What are the domain, codomain, and range of sd?

Solution: The domain and codomain of sd are easy to determine: they are both Z≥2.
Any integer n ≥ 2 is a valid input to sd, and we defined the function sd as produc-
ing an integer k ≥ 2 as its output. (The domain and codomain are simply written
in the function’s definition, before and after the arrow in sd : Z≥2 → Z≥2.) The
range is a bit harder to see, but it turns out to be the set P of all prime numbers.
Let’s argue that P is the range of sd by showing that (i) every prime number p ∈ P
is in the range of sd, and (ii) every number p in the range of P is a prime number.
(i) Let p ∈ Z≥2 be any prime number. Then sd(p) = p: by the definition of pri-

mality, the only integers than evenly divide p are 1 and p itself (and 1 ≥ 2 isn’t
true!). Therefore every prime number p is in the range of sd, because there’s an
input to sd such that the output is p.

(ii) Let p be any number in the range of sd—that is, suppose sd(n) = p for some n.
We will argue that pmust be prime. Imagine that pwere instead composite—
that is, there is an integer k satisfying 2 ≤ k < p that evenly divides p. But
then sd(n) = p is impossible: if p evenly divides n, then k also evenly divides n,
and k < p, so k would be a smaller divisor of n. (For example, if n were evenly
divisible by the composite number 15, then n would also be evenly divisible by 3
and 5—two factors of 15—so sd(n) 6= 15.) Therefore every number in the range
of sd is prime.

Putting together the facts from (i) and (ii), we conclude that the range of sd is
precisely the set of all prime numbers.

Problem-solving
tip: Example 2.59
illustrates a useful
general technique
if we wish to show
that two sets A
and B are equal.
One nice way to
establish that A = B
is to show that
A ⊆ B and B ⊆ A.
That’s what we
did to establish
the range of sd in
Example 2.59:
• define P as the

set of all prime
numbers.

• define R as the
range of sd.

We showed in (i)
that every element
of P is in R (that is,
P ⊆ R); and in (ii)
that every element
of R is in P (that is,
R ⊆ P). Together
these facts establish
that R = P.

We will also introduce a minor extension to the set-abstraction notation from Sec-
tion 2.3.1 that’s related to the range of a function. (We used this notation informally
in Example 2.28.) Consider a function f : A → B and a set U ⊆ A. We denote by
{f (x) : x ∈ U} the set of all output values of the function f when it’s applied to the
elements x ∈ U:

Definition 2.47 (Set abstraction using functions)
For a function f : A → B and a set U ⊆ A, we write {f (x) : x ∈ U} as shorthand for the set
{b ∈ B : there exists some u ∈ U for which f (u) = b}.

Remember that order and repetition of elements in a set don’t matter, which means
that the set {f (x) : x ∈ A} is precisely the range of the function f : A → B.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

258 CHAPTER 2. BASIC DATA TYPES

A visual representation of functions
The table-based and symbolic representations of functions that we’ve discussed

fully represent a function, but sometimes a more visual representation of a function
is clearer. Consider a function f : A → B. We can give a picture representing f by
putting the elements of A into one column, the elements of B into a second column,
and drawing an arrow from each a ∈ A to the value of f (a) ∈ B. Notice that the
definition of a function guarantees that every element in the first column has one and only
one arrow going from it to the second column: if f : A → B is a function, then every a ∈ A is
assigned a unique output f (a) ∈ B. Here’s a simple example:

Example 2.60 (A picture of a function)
Figure 2.49 displays a function f : {1, . . . , 5} → {10, . . . , 15}, where f (1) = 10 and
f (2) = f (4) = 11 and f (3) = 12 and f (5) = 13.

We can read the domain, codomain, and range directly from this picture: the do-

1

2

3

4

5

10

11

12

13

14

15

A Bf

Figure 2.49: A
picture of a function
f : A → B, where
A = {1, . . . , 5} and
B = {10, . . . , 15}.

main is the set of elements in the first column; the codomain is the set of elements in
the second column; and the range is the set of elements in the second column for which
there is at least one incoming arrow. For instance, the range of f from Example 2.60 is
{10, 11, 12, 13}. (There are no arrows pointing to 14 or 15, so these two numbers are in
the codomain but not the range of f .)

Function composition
Suppose we have two functions f : A → B and g : B → C. Given an input a ∈ A, we

can find f (a) ∈ B, and then apply g to map f (a) to an element of C, namely g(f (a)) ∈ C.
This successive application of f and g defines a new function, called the composition of
f and g, whose domain is A and whose codomain is C:

Definition 2.48 (Function composition)
For two functions f : A → B and g : B → C, the function g ◦ f : A → C maps an element
a ∈ A to g(f (a)) ∈ C. The function g ◦ f is called the composition of f and g.

Notice a slight oddity of the notation: g ◦ f applies the function f first and the function
g second, even though g is written first.

Here’s an example of the functions that result from composing two simple functions
in four different ways:

Example 2.61 (Function composition, four ways)
Let f : R → R and g : R → R be defined by f (x) := 2x + 1 and g(x) := x2.
1. The function g ◦ f , given an input x, produces output

g(f (x)) = g(2x + 1) = (2x + 1)2 = 4x2 + 4x + 1.
2. The function f ◦ g maps x to f (g(x)) = f (x2) = 2x2 + 1.
3. The function g ◦ g maps x to g(g(x)) = g(x2) = (x2)2 = x4.
4. The function f ◦ f maps x to f (f (x)) = f (2x + 1) = 2(2x + 1) + 1 = 4x + 3.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 259

1

2

3

4

5

10

11

12

13

14

15

A Bf
10

11

12

13

14

15

20

21

23

24

B Cg
1

2

3

4

5

10

11

12

13

14

15

20

21

23

24

A B Cf g
1

2

3

4

5

20

21

23

24

A Cg ◦ f

Figure 2.50: A
picture of functions
f : A → B and
g : B → C, first
separately and then
pasted together.
The third panel
shows g ◦ f , based
on successively
following two
arrows from the
second panel.

As with many function-
related concepts, the visual
representation of functions
gives a nice way of thinking
about function compo-
sition: the function g ◦ f
corresponds to the “short-
circuiting” of the pictures of
the functions f and g. Here
is a small example of this
visualization:

Example 2.62 (Function composition, by picture)
Figure 2.50 shows functions f : A → B and g : B → C. Their composition g ◦ f is given
by following two arrows in the diagram. For example, the value of (g ◦ f)(1) is g(f (1)),
which is g(11) because f (1) = 11. And g(11) = 24 because of g’s arrow from 11 to 24.

2.5.2 Onto and One-to-One Functions
We now turn to two special categories of functions—onto and one-to-one functions—
that are distinguished by how many different input values (always at least one? never
more than one?) are mapped to each output value.

Onto functions
A function f : A → B is onto if every possible output in B is, in fact, an actual output:

Definition 2.49 (Onto functions)
A function f : A → B is called onto if, for every b ∈ B, there exists at least one a ∈ A for
which f (a) = b. An onto function is also sometimes called a surjective function.

Alternatively, using the terminology of Section 2.5.1, a function f is onto if f ’s codomain
equals f ’s range. As an example, here are two of our previous functions, one of which
is onto and one of which isn’t:

Example 2.63 (An onto function)
The function not : {True, False} → {True, False} is onto: there’s an input value that
produces True (namely False), and there’s an input value that produces False (namely
True). Every element of the codomain is “hit” by not, so the function is onto.

Example 2.64 (A non-onto function)
The function quantize : {0, 1, . . . , 255} → {0, 1, . . . , 255} from Example 2.56 is not onto.
Recall that the only output values achieved were {26, 78, 130, 182, 234}. For example,

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

260 CHAPTER 2. BASIC DATA TYPES

then, there is no value of x for which quantize(x) = 42. Thus 42 is not in the range of
quantize, and therefore this function is not onto.

Here is a collection of a few more examples, where we’ll try to construct onto and
non-onto functions meeting a certain description:

Example 2.65 (Sample onto/non-onto functions)
Problem: Let A := {0, 1, 2} and B := {3, 4}. Give an example of a function that satisfies

the following descriptions; if there’s no such function, explain why it’s impossible.
1. an onto function f : A → B.
2. a function g : A → B that is not onto.
3. an onto function h : B → A.

Solution: The first two are possible, but the third is not:
1. Define f (0) := 3, f (1) := 4, and f (2) := 4.
2. Define g(0) := 3, g(1) := 3, and g(2) := 3.
3. Impossible! A function h whose domain is {3, 4} only has two output values,

namely h(3) and h(4). For a function whose codomain is {0, 1, 2} to be onto, we
need three different output values to be achieved. These two conditions cannot
be simultaneously satisfied, so there is no onto function from B to A.

0

1

2

3

4

A Bf
0

1

2

3

4

A Bg

Figure 2.51: An
onto function
f : {0, 1, 2} → {3, 4}
and a non-
onto function
g : {0, 1, 2} → {3, 4}.

It may be easier to think about onto functions using the
visual representation that we just introduced: a function f
is onto if there’s at least one arrow pointing at every element in
the second column. Figure 2.51 illustrates the functions from
Example 2.65.1 and Example 2.65.2; the fact that f is onto and
g is not onto is immediately visible.

One-to-one functions
An onto function f : A → B guarantees that every element b ∈ B is “hit at least

once” by f—that is, that b = f (a) for at least one a ∈ A. A one-to-one function f : A → B
guarantees that every element b ∈ B is “hit at most once” by f :

Definition 2.50 (One-to-one functions)
A function f : A → B is called one-to-one if, for any b ∈ B, there is at most one a ∈ A such
that f (a) = b. A one-to-one function is also sometimes called an injective function.

(Terminologically, a one-to-one function sits in contrast to a many-to-one function, in
which many different input values map to the same output value. Thinking about
what a many-to-one function would mean may help to make the name “one-to-one”
more intuitive.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 261

Taking it further: One of the many places that functions are used in computer science is in designing
the data structure known as a hash table, discussed on p. 267. The idea is that we will store a piece of data
called x in a location h(x), for some function h called a hash function. We want to choose h to ensure that
this function is “not-too-many-to-one” so that no location has to store too much information.

As an example, we’ll consider two of our previous functions, double and quantize,

x double(x)
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14

Figure 2.52: The
double function.

and evaluate whether they are one-to-one:

Example 2.66 (A one-to-one function)
The function double : {0, 1, . . . , 7} → Z, defined in Example 2.55, is one-to-one.
By examining the table of outputs for the function (reproduced in Figure 2.52), we
see that no number appears more than once in the second column. Because every
element of the codomain is “hit” by double at most once, the function is one-to-one.

Observe that double : {0, 1, . . . , 7} → Z is not onto, because there are elements of the
codomain that are “hit” zero times—but it is one-to-one, because no element of the
codomain is hit twice. Here’s an example of a function that is not one-to-one:

Example 2.67 (A non–one-to-one function)
The function quantize : {0, 1, . . . , 255} → {0, 1, . . . , 255} from Example 2.56 is not
one-to-one. Recall that quantize(42) = 26 and quantize(17) = 26. Thus 26 is the output
for two or more distinct inputs, and therefore this function is not one-to-one.

0

1

2

3

4

5

6

A Bf
0

1

2

3

4

5

6

A Bg

Figure 2.53: A one-
to-one function f
and a non–one-
to-one function g.

As with the definition of onto, it may be easier to think
about one-to-one functions using our visual two-column
representation: a function f is one-to-one if there’s at most
one arrow pointing at every element in the second column. Here
are two simple examples using this visual perspective: the
function f in Figure 2.53 is one-to-one, because no element
of B has multiple incoming arrows. But the function g is not
one-to-one, because 4 ∈ B has two incoming arrows.

One-to-one and onto functions
One way of restating the definitions of onto and one-to-one functions is as follows.

Let f : A → B be a function. Then

• f is onto if, for every b ∈ B, we have |{a ∈ A : f (a) = b}| ≥ 1.
• f is one-to-one if, for every b ∈ B, we have |{a ∈ A : f (a) = b}| ≤ 1.

Therefore a function f : A → B that is both one-to-one and onto guarantees that
|{a ∈ A : f (a) = b}| = 1— that is, for any b ∈ B, there is exactly one element a ∈ A
so that f (a) = b. (There is at most one such a because f is one-to-one, and at least one
such a because f is onto.) A function with both of these properties is called a bijection:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

262 CHAPTER 2. BASIC DATA TYPES

Definition 2.51 (Bijection)
A function f : A → B is called a bijection if f is one-to-one and onto—that is, if
|{a ∈ A : f (a) = b}| = 1 for every b ∈ B.

Here are two examples of bijections:

Example 2.68 (Two bijections)
The function not : {True, False} → {True, False} from Example 2.53 and the function
f : R → R defined by f (x) := x− 1 are both bijections.

For not, there’s exactly one input value whose output is True, namely False; and
there’s exactly one input value whose output is False, namely True.

Similarly, for f , for every b ∈ R, there is exactly one a such that f (a) = b: specifically,
the value a = b + 1.

If f : A → B is a bijection, then every input in A is assigned by f to a unique value in
B. We can define a new function, denoted f−1, that reverses this assignment—given
b ∈ B, the function f−1(b) identifies the a ∈ A to which bwas assigned by f . This
function f−1 called the inverse of f :

Definition 2.52 (Function inverses)
Let f be a bijection. Then f−1 : B → A is a function called the inverse of f , where f−1(b) = a
whenever f (a) = b.

Here is an example of finding inverses of a few functions:

Example 2.69 (Three inverses)
Problem: What is the inverse of each of the following functions?

1. f : R → R, where f (x) = x
2 .

2. square : R≥0 → R≥0, where square(x) = x2.
3. not : {True, False} → {True, False}.

Solution: 1. We can find the function f−1, the inverse of f , by solving the equation
y = x

2 for x. We see that 2y = x. Thus the function f−1 : R → R is given by
f−1(y) = 2y. For any real number x ∈ R, we have that f (x) = x

2 and f−1(x2) = x.
(For example, f (3) = 1.5 and f−1(1.5) = 3.)

2. Notice that square : R≥0 → R≥0 is a bijection—otherwise this problem wouldn’t
be solvable!—because the domain and the codomain are both the equal to the
set of nonnegative real numbers. (For example, 32 = 9 and (−3)2 = 9; if we
had allowed both negative and positive inputs, then square would not have been
one-to-one. And there’s no x ∈ R such that x2 = −9; if we had allowed negative
outputs, then square would not have been onto.) The inverse of square is the
function square−1(y) = √y.

3. Note that not(not(True)) = not(False) = True and not(not(False)) = not(True) =
False. Thus the inverse of the function not is the function not itself!

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 263

If f : A → B is a bijection, then, for any a ∈ A, observe that applying f−1 to f (a) gives a
back as output: that is, f−1(f (a)) = a. In other words, the function f−1 ◦ f is the identity
function, defined by id : A → A where id(a) := a.

0

1

2

3

4

5

6

7

A Bf
0

1

2

3

4

5

6

7

A B
f−1

Figure 2.54: A bijec-
tion f : {0, 1, 2, 3} →
{4, 5, 6, 7} and
its inverse
f−1 : {4, 5, 6, 7} →
{0, 1, 2, 3}.

A bijection f : A → B has exactly one arrow coming into
every element in the second column, and by definition it
also has exactly one arrow leaving every element in the first
column. The inverse of f is precisely the function that results
from reversing the direction of each arrow. (The fact that
every right-hand column element has exactly one incoming
arrow under f is precisely what guarantees that reversing the
direction of each arrow still results in the arrow diagram of a
function.)

Figure 2.54 shows an example of a bijection and its inverse illustrated in this man-
ner. This picture-based approach should help to illustrate why a function that is not
onto or that is not one-to-one fails to have an inverse. If f : A → B is not onto, then
there exists some element b∗ ∈ B that’s never the value of f , so f−1(b∗) would be unde-
fined. On the other hand, if f is not one-to-one, then there exists b† such that f (a) = b†
and f (a′) = b† for a 6= a′; thus f−1(b†) would have to be both a and a′, which is forbidden
by the definition of a function.

2.5.3 Polynomials
We’ll turn now to polynomials, a special type of function whose input and output are
both real numbers, and where f (x) is the sum of powers of x:

Definition 2.53 (Polynomial)
A polynomial is a function f : R → R of the form

f (x) = a0 + a1x + a2x2 + · · · + akxk

where each ai ∈ R and ak 6= 0, for some k ∈ Z≥0. (More compactly, we can write this
function as f (x) = ∑k

i=0 aixi.)
The real numbers a0, a1, . . . , ak are called the coefficients of the polynomial, and the values

a0, a1x, a2x2, . . . , akxk being added together are called the terms of the polynomial.

Here are a few examples:

Figure 2.55: A
graph of the poly-
nomial h(x) = x2− 2.

Example 2.70 (Some polynomials)
Here are a few polynomials: f (x) = 7x, g(x) = x202 − 201x111, and h(x) = x2 − 2.
The function h is graphed in Figure 2.55—in other words, for every x ∈ R, the point
〈x, h(x)〉 is drawn.

There are two additional definitions related to polynomials that will be useful. The
first is the degree of the polynomial p(x), which is the highest power of x in p’s terms:

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

264 CHAPTER 2. BASIC DATA TYPES

Definition 2.54 (Degree)
The degree of a polynomial f (x) = ∑k

i=0 aixi is the largest index i such that ai 6= 0—that is,
the highest power of x with a nonzero coefficient.

Here are a few examples:

Example 2.71 (Some degrees)
For the polynomials f (x) = x + x3 and g(x) = x9, the degree of f is 3 and the degree
of g is 9. For the polynomial p(x) with a0 = 1, a1 = 3, and a2 = 0, the degree of p is 1,
because p(x) = 1 + 3x + 0x2 = 1 + 3x.

(a) Degree 0. (b) Degree 1. (c) Degree 2. (d) Degree 3. (e) Degree 4.

Figure 2.56: Graphs
of some polynomi-
als of degree 0, 1, 2,
3, and 4.

Some more examples of
polynomials with small
degrees (namely 0, 1, 2,
3, and 4) are shown in
Figure 2.56.

The second useful
notion about a polyno-
mial p(x) is a root, which
is a value of x where the graph of p crosses the x axis:

Definition 2.55 (Roots)
The roots of a polynomial p(x) are the values in the set {x ∈ R : p(x) = 0}.

Here are a few simple examples:

Example 2.72 (Some roots)
The roots of the polynomial f (x) = x + x2 are 0 and −1. For the polynomial g(x) = x9,
the only root is 0.

A useful general theorem relates the number of different roots for a polynomial to
its degree: a polynomial pwith degree k has at most k different values of x for which
p(x) = 0 (unless p is always equal to 0):

Theorem 2.3 ((Nonzero) polynomials of degree k have at most k roots)
Let p(x) be a polynomial of degree at most k. Then p has at most k roots unless p(x) is zero
for every value x ∈ R.

When p(x) is zero for every value x ∈ R, we sometimes write p(x) ≡ 0 and say that p is
identically zero.

We won’t give a formal proof of Theorem 2.3, but here’s one way to convince your-
self of the basic idea. Think about how many times a polynomial of degree k can
“change direction” from increasing to decreasing or from decreasing to increasing.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 265

Observe that a polynomial pmust change directions between any two roots. (Draw a
picture!) A polynomial of degree 0 never changes direction, so it’s either always zero
or never zero. A polynomial p(x) of degree d ≥ 1 can change directions only at a point
where its slope is precisely equal to zero—that is, a point x where the derivative p′ of
p satisfies p′(x) = 0. Using calculus, we can show that the derivative of a polynomial
of degree d ≥ 1 is a polynomial of degree d − 1. The idea of a proof by mathematical
induction is to combine the above intuition to prove the theorem.

Taking it further: Here’s some more detailed intuition of how to prove Theorem 2.3 using a proof by
mathematical induction; see Chapter 5 for much more detail on this form of proof.

Think first about a degree-zero polynomial—that is, a constant function p(x) = a. The theorem is
clear for this case: either a = 0 (in which case p(x) ≡ 0); or a 6= 0, in which case p(x) 6= 0 for any x. (See
Figure 2.56(a).)

Now think about a degree-1 polynomial—that is, p(x) = ax + b for a 6= 0. The derivative of p is a
constant function—namely p′(x) = a 6= 0. Imagine what it would mean for p to have two roots: as we
move from smaller x to larger x, at some point r we cross the x-axis, say from p(r − ε) < 0 to p(r + ε) > 0.
(See Figure 2.56(b).) In order to find another root larger than r, the function p would have to change from
increasing to decreasing—in other words, there would have to be a point at which p′(x) = 0. But we just
argued that a degree-zero polynomial like p′(x) that is not identically zero is never zero. So we can’t find
another root.

Now think about a degree-2 polynomial—that is, p(x) = ax2 + bx + c for a 6= 0. After a root, p will have
to change direction to head back toward the x-axis. That is, between any two roots of p, there must be a
point where the derivative of p is zero: that is, there is a root of the degree-one polynomial p′(x) = 2ax + b
between any two roots of p. But p′ has at most one root, as we just argued, so p has at most two roots.

And so forth! We can apply the same argument for degree 3, then degree 4, and so on, up to any
degree k. (See Chapter 5.)

2.5.4 Algorithms
While functions are a valuable mathematical abstraction, computer scientists are fun-
damentally interested in computing things. So, in addition to the type of functions that
we’ve discussed so far in this section, we will also often talk about mapping an in-
put x to a corresponding output f (x) in the way that a computer program would, by
computing the value of f (x) using an algorithm:

Definition 2.56 (Algorithm)
An algorithm is step-by-step procedure to transform an input into an output.

In other words, an algorithm is function—but specified as a sequence of simple oper-
ations, of the type that could be written as a program in your favorite programming
language; in fact, these step-by-step procedures are even called functions in many pro-
gramming languages. (It’s probably worth noting that it’s unusual for a book like this
one to introduce algorithms in the context of functions. But, because the point of an
algorithm really is to transform inputs into outputs, it can be helpful to think of an
algorithm as a description a function f that specifies how to calculate the output f (x)
from a given input x, instead of simply describing what the value f (x) is.)

We will write algorithms in pseudocode, rather than in any particular programming
language. In other words, we will specify the steps of the algorithm in a style that is
neither Python nor Java nor English, but something in between; it’s written in a style
that “looks” like a program, but is designed to communicate the steps to a human

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

266 CHAPTER 2. BASIC DATA TYPES

reader, rather than to a computer executing the code. We will aim to write pseudocode
that can be interpreted straightforwardly by a reader who has used any modern pro-
gramming language; we will always try to avoid getting bogged down in detailed
syntax, and instead emphasize trying to communicate algorithms clearly. Translating
the pseudocode for an algorithm into any programming language should be straight-
forward.

We will make use of the standard elements of any programming language in our
pseudocode: conditionals (“if”), loops (“for” and “while”), function definitions and
function calls (including recursive function calls), and functions returning values. We
will use the symbol “:=” to denote assignment and the symbol “=” to denote equality

Our notation of
:= for assignment
and = for equality
testing is borrowed
from the program-
ming language
Pascal. In a lot of
other programming
languages, like
C and Java and
Python, assignment
is expressed using =

and equality testing
is expressed using
==.testing, so that x := 3 sets the value of x to be 3, and x = 3 is True (if x is 3) or False

(if x is not 3). We assume a basic familiarity with these basic programming constructs
throughout the book.

findMaxIndex(L):
Input: A list L with n ≥ 1 elements L[1], . . . ,L[n].
Output: An index i such that L[i] is the maximum value in L.
1: maxIndex := 1
2: for i := 2 to n:
3: if L[i] > L[maxIndex] then
4: maxIndex := i
5: return maxIndex

Figure 2.57: An
algorithm to find
the index of the
maximum element
of a list.

We will spend significant energy later in the
book on proving algorithms correct (Chapters 4
and 5)—that is, showing that an algorithm com-
putes the correct output for any given input—and
on analyzing the efficiency of algorithms (Chap-
ter 6). But here is one simple example to get us
started:

Example 2.73 (Max finder)
An algorithm to find the index of the maximum element of a list is shown in Fig-
ure 2.57. (More properly, this algorithm finds the index of the first maximum ele-
ment.)

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 267

Computer Science Connections

Hash Tables and Hash Functions
Consider the following scenario: we have a set S of elements that we must

store, each of which is chosen from a universe U of all possible elements. We
need to be able to answer the question “is x in S?” quickly. (We might also
have data associated with each x ∈ S, and seek to find the associated data
rather than just determining membership.) Furthermore, the set Smight
change over time, either by insertion of a new element or deletion of an ex-
isting element. How might we efficiently organize the data to support these
operations?

A hash table, one of the most frequently used data structures in computer
science, is designed to store a set like S, as follows:
• we define a table T[1 . . .n].
• we choose a hash function h : U → {1, . . . ,n}.
• each element x ∈ S is stored in the cell T[h(x)].
There are several different choices about how to handle collisions, when we try
to store two different elements in the same cell, but for simplicity let’s assume
that we store them all in that cell, in a list. For example, see the hash function
and hash table in Figure 2.58:

1 2 3 4 5 6 7 8 9 10

h(x) := (x2 mod 10) + 1

(a) A hash table with hash function h.

1 2 3 4 5 6 7 8 9 10
420 2

8

(b) The table, filled with 4, 2, 8, and 20.

1 2 3 4 5 6 7 8 9 10

0
10
20
30
40
50
60
70
80
90

1
9
11
19
21
29
31
39
41
49
51
59
61
69
71
79
81
89
91
99

2
8
12
18
22
28
32
38
42
48
52
58
62
68
72
78
82
88
92
98

5
15
25
35
45
55
65
75
85
95

4
6
14
16
24
26
34
36
44
46
54
56
64
66
74
76
84
86
94
96

3
7
13
17
23
27
33
37
43
47
53
57
63
67
73
77
83
87
93
97

(c) The table filled with {0, 1, . . . , 99}.

Figure 2.58: A hash table, empty and
filled. If we’re asked to store 4 and 2
and 20 and 8, they would go into cells
h(4) = (16 mod 10) + 1 = 7 and h(2) = 5
and h(20) = 1 and h(8) = 5. Panel (c)
shows every element from the universe
{0, 1, . . . , 99}; the fact that the number
of elements per cell is so variable means
that this hash function does a poor job
of spreading out its inputs across the
table.

To insert a value x into the table, we merely need to compute h(x) and place
the value into the list in the cell T[h(x)]. Answering the question “is x stored in
the table?” is similar; we compute h(x) and look through whatever entries are
stored in that list. As a result, the performance of this data structure is almost
entirely dependent on how many collisions are generated—that is, how long
the lists are in the cells of the table.

A “good” hash function h : U → {1, . . . ,n} is one that distributes the pos-
sible values of U as evenly as possible across the n different cells. The more
evenly the function spreads out U across the cells of the table, the smaller
the typical length of the list in a cell, and therefore the more efficiently the
program would run. (Figure 2.58(c) says that the above hash function is not a
very good one.) Programming languages like Python and Java have built-in
implementations of hash tables, and they use some mildly complex iterative
arithmetic operations in their hash functions. But designing a good hash
function for whatever kind of data you end up storing can be the difference
between a slow implementation and a blazingly fast one.

Incidentally, there are two other concerns with efficiency: first, the hash
function must be able to be computed quickly, and there’s also some clever-
ness in choosing the size of the table and in deciding when to rehash every-
thing in the table into a bigger table if the lists get too long (on average).

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

268 CHAPTER 2. BASIC DATA TYPES

2.5.5 Exercises

Consider the function f : {0, 1, . . . 7} → {0, 1, . . . 7} defined by f (x) := (x2 + 3) mod 8.
2.224 What is f (3)?
2.225 What is f (7)?

2.226 For what x is f (x) = 3?
2.227 Redefine f using a table.

quantize(n) :=





26 if 0 ≤ n ≤ 51
78 if 52 ≤ n ≤ 103
130 if 104 ≤ n ≤ 155
182 if 156 ≤ n ≤ 207
234 if 208 ≤ n ≤ 255

Figure 2.59: The
function from
Example 2.56.

2.228 In Example 2.56, we introduced a function quantize for compressing
a grayscale image to use only five different shades of gray. (See Figure 2.59 for a
reminder of the function.) Using basic arithmetic notation (including ⌊ ⌋ and/or ⌈ ⌉ if
appropriate), redefine quantizewithout using cases.
Let’s generalize the quantization idea from the previous exercise to be a two-argument func-
tion, so that quantize(n, k) takes an input color n ∈ {0, 1, . . . , 255} and a number k of
“quanta.” (We insist that 1 ≤ k ≤ 256.) In other words, k is the number of different equally
spaced output values, and the input color n is translated to the closest of these k values. (The
ranges associated with the quanta are only approximately equal because of issues of integrality: for example, in the
k = 5 case from Figure 2.59, the first four quanta correspond to 52 different colors; the last quantum corresponds to only
256− 52 · 4 = 48 different colors.)
2.229 What are the domain and range of quantize(n, k)?
2.230 Repeat Exercise 2.228 for quantize(n, k). You should ensure that quantize(n, 5) yields the func-
tion from Figure 2.59. (Hint: first determine how big a range of colors should be mapped to a particular quantum,
rounding the size up. Then figure out which quantum the given input n corresponds to.)
2.231 A function f : A → B is said to be c-to-1 if, for every output value b ∈ B, there are exactly c
different values a ∈ A such that f (a) = b. (These functions are useful in counting; see the Division Rule in
Theorem 9.11.) For what values of k is it possible to define a c-to-1 (for some integer c) quantizing function
that transforms into {0, 1, . . . , 255} into a set of k quanta?
2.232 (programming required) Implement quantization for image files, in a programming language of
your choice. Specifically, implement quantize(n, k), and apply it to every pixel of a given image. (You’ll need
to research an image-processing library to use in your program.)

Many of the pieces of basic numerical notation that we’ve introduced can be thought of as functions. For each of the
following, state the domain and range of the given function.
2.233 f (x) = |x|
2.234 f (x) = ⌊x⌋
2.235 f (x) = 2x
2.236 f (x) = log2 x

2.237 f (x) = x mod 2
2.238 f (x) = 2 mod x
2.239 f (x, y) = x mod y
2.240 f (x) = 2 | x

2.241 f (x) = ‖x‖
2.242 f (θ) = 〈cos θ, sin θ〉

2.243 Let T = {1, . . . , 12} × {0, 1, . . . , 59} denote the set of numbers that can be displayed on a digital
clock in twelve-hour mode. Define a function add : T × Z≥0 → T so that add(t, x) denotes the time that’s x
minutes later than t. Do so using only standard symbols from arithmetic.

Define the functions f (x) := x mod 10, g(x) := x + 3, and h(x) := 2x. What are the following? (That is, rewrite
the definition of the given function using a single algebraic expression. For example, the function g ◦ g is given by the
definition (g ◦ g)(x) = g(g(x)) = x + 6.)
2.244 f ◦ f
2.245 h ◦ h

2.246 f ◦ g
2.247 g ◦ h

2.248 h ◦ g
2.249 f ◦ h

2.250 f ◦ g ◦ h

Let f (x) := 3x + 1 and let g(x) := 2x. Identify a function h such that . . .
2.251 . . . g ◦ h and f are identical. 2.252 . . . h ◦ g and f are identical.

Which of the following functions f : {0, 1, 2, 3} → {0, 1, 2, 3} are onto?
2.253 f (x) = x
2.254 f (x) = x2 mod 4
2.255 f (x) = x2 − x mod 4

2.256 f (0) = 3, f (1) = 2, f (2) = 1, f (3) = 0
2.257 f (0) = 1, f (1) = 2, f (2) = 1, f (3) = 2

Which of the following functions f : {0, 1, 2, 3} → {0, 1, . . . , 7} are one-to-one?
2.258 f (x) = x2 mod 8
2.259 f (x) = x3 mod 8
2.260 f (x) = (x3 − x) mod 8

2.261 f (x) = (x3 + 2x) mod 8
2.262 f (0) = 3, f (1) = 1, f (2) = 4, f (3) = 1

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.5. FUNCTIONS 269

9

8

3 5

7

6

9 8 7 3 5 6
1 2 3 4 5 6

Figure 2.60: A
maximum heap,
as a tree and as an
array.

A heap is a data structure that is used to represent a collection of items, each of which has an associated
priority. (See p. 529.) A heap can be represented as a complete binary tree—a binary tree with no “holes”
as you read in left-to-right, top-to-bottom order—but a heap can also be stored more efficiently as an array,
in which the elements are stored in that same left-to-right and top-to-bottom order. (See Figure 2.60.) To
do so, we define three functions that allow us to compute the index of the parent of a node; the index of the
left child of a node; and the index of the right child of a node. (For example, the parent of the node labeled
8 in Figure 2.60 is labeled 9, the left child of the node labeled 8 is labeled 3, and the right child is labeled 5.)
Here are the functions: given an index i into the array, we define

parent(i) :=
⌊ i
2

⌋
left(i) := 2i right(i) := 2i + 1.

For example, the node labeled 8 has index 2 in the array, and parent(2) = 1 (the index of the node labeled
9); left(2) = 4 (the index of the node labeled 3); and right(2) = 5 (the index of the node labeled 5).
2.263 Suppose that we have a heap stored as an array A[1 . . .n]. State the domain and range of the
function parent. Is parent one-to-one?
2.264 State the domain and range of left and right for the heap as stored in A[1 . . . n]. Are left and right
one-to-one?
Give both a mathematical description and an English-language description of the meanings of the following heap-
related functions. Assume for the purposes of these questions that the array A is infinite (that is, don’t worry about the
possibility of encountering an i such that left(i) or right(i) is undefined).
2.265 parent ◦ left
2.266 parent ◦ right

2.267 left ◦ parent
2.268 right ◦ parent

What are the inverses of the following functions?
2.269 f : R → R, where f (x) = 3x + 1.
2.270 g : R≥0 → R≥0, where g(x) = x3.

2.271 h : R≥0 → R≥1, where h(x) = 3x .

2.272 Why doesn’t the function f : {0, . . . , 23} → {0, . . . , 11} where f (n) = n mod 12 have an inverse?

What are the degrees of the following polynomials?
2.273 p(x) = 3x3 + 2x2 + x + 0
2.274 p(x) = 9x3

2.275 p(x) = 4x4 + x2 − (2x)2

Suppose that p and q are polynomials, both with degree 7. What are the smallest and largest possible degrees of the
following polynomials?
2.276 f (x) = p(x) + q(x)
2.277 f (x) = p(x) · q(x)

2.278 f (x) = p(q(x))

Give an example of a polynomial p of degree 2 such that . . .
2.279 . . . p has exactly 0 roots.
2.280 . . . p has exactly 1 root.

2.281 . . . p has exactly 2 roots.

2.282 The median of a list L of n numbers is the number in the “middle” of L in sorted order. Describe an
algorithm to find the median of a list L. (Don’t worry about efficiency.) You may find it useful to make use of
the algorithm in Figure 2.57.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

270 CHAPTER 2. BASIC DATA TYPES

2.6 Chapter at a Glance

Booleans, Numbers, and Arithmetic
A Boolean value is True or False. The integers Z are {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. The
real numbers R are the integers and all numbers in between. The closed interval [a, b]
consists of all real numbers x where a ≤ x ≤ b; the open interval (a, b) excludes a and b.
The rational numbers Q are those numbers that can be represented as a/b for integers a
and b 6= 0. Here is some useful notation involving numbers:

• exponentiation: bk is b · b · · · · · b, where b is multiplied k times;
• logarithms: logb x is the number y such that by = x;
• absolute value: |x| is x for x ≥ 0, and |x| = −x for x < 0;
• floor and ceiling: ⌊x⌋ is the largest integer n ≤ x; ⌈x⌉ is the smallest integer n ≥ x;
• modulus: n mod k is the remainder when n is divided by k.

If n mod d = 0, then d is a factor of n or evenly divides n, written d |n. If 2 |n for a positive
integer n, then n is even (“has even parity”); otherwise n is odd. An integer n ≥ 2 is
prime if it has no positive integer factors other than 1 and n; otherwise n is composite.
(Note that 0 and 1 are neither prime nor composite.)

For a collection of numbers x1, x2, . . . , xn, their sum x1 + x2 + · · · + xn is written
formally as ∑n

i=1 xi, and their product x1 · x2 · · · · · xn is written ∏n
i=1 xi.

Sets: Unordered Collections
A set is an unordered collection of objects called elements. A set can be specified by
listing its elements inside braces, as {x1, x2, . . . , xn}. A set can also be denoted by
{x : P(x)}, which contains all objects x such that P(x) is true. The set of possible val-
ues x that are considered is the universe U, which is sometimes left implicit.

Standard sets include the empty set {} (also written ∅), which contains no elements;
the integers Z; the real numbers R; and the booleans {True, False}. We write Z≥0 =
{0, 1, 2, . . .} and Z<0 = {−1,−2, . . .}, etc. For a set A and an object x, the expression
x ∈ A (“x is in A”) is true whenever x is in the set A. (So y ∈ {x : P(x)}whenever
P(y) = True, and y ∈ {x1, x2 . . . , xn} whenever xi = y for some i.) The cardinality of a set
A, written |A|, is the number of distinct elements in A.

Given two sets A and B, the union of A and B is A ∪ B = {x : x ∈ A or x ∈ B}. The
intersection of A and B is A ∩ B = {x : x ∈ A and x ∈ B}. The set difference of A and
B is A − B = {x : x ∈ A and x /∈ B}. The complement of a set A is ∼A = U − A =
{x : x ∈ U and x 6∈ A}, where U is the universe.

A subset of a set B is a set A such that every element of A is also an element of B;
this relationship is denoted by A ⊆ B. If A is a subset of B, then B is a superset of A,
written B ⊇ A. A proper subset of B is a set A that is a subset of B but A 6= B, written
A ⊂ B. Such a set B is a proper superset of A, written B ⊃ A. Two sets A and B are
disjoint if A ∩ B = ∅. A partition of a set S is a collection of sets A1,A2, . . . ,Ak, where
A1 ∪A2 ∪ · · · ∪Ak = S and, for any distinct i and j, the sets Ai and Aj are disjoint.

The power set of a set A, written P(A), is the set of all subsets of A.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

2.6. CHAPTER AT A GLANCE 271

Sequences, Vectors, and Matrices: Ordered Collections
A sequence (or tuple, (ordered) pair, triple, quadruple, . . . , n-tuple, . . .) is an ordered col-
lection of objects called components or entries, written inside angle brackets. The set
A× B = {〈a, b〉 : a ∈ A and b ∈ B} is the Cartesian product of sets A and B; the set A× B
contains all pairs where the first component comes from A and the second from B. For
a set S and a number n ≥ 0, the set Sn denotes the n-fold Cartesian product of S with
itself: Sn = S× S× . . .× S, where S occurs n times in this product.

A vector (or n-vector) is an element of Rn, for some positive integer n ≥ 2. (An
element of R1 = R is called a scalar.) A bit vector is an element of {0, 1}n. Vectors are
sometimes written in square brackets: x = [x1, x2, . . . , xn]. For a vector x, write xi to
denote the ith component of x. (But xi is meaningless unless i ∈ {1, 2, . . . , n}.) The size
or dimensionality of x ∈ Rn is n.

For a vector x ∈ Rn and a real number α ∈ R, the scalar product αx is a vector where
(αx)i = αxi. For two vectors x, y ∈ Rn, the sum of x and y is a vector x + y, where
(x + y)i = xi + yi. The dot product of two vectors x, y ∈ Rn is x • y = ∑n

i=1 xiyi. Both x + y
and x • y are meaningless unless x and y have the same dimensionality.

M =




M1,1 M1,2 . . . M1,m
M2,1 M2,2 . . . M2,m
...

...
. . .

...
Mn,1 Mn,2 . . . Mn,m




Figure 2.61: A
matrix.

An n-by-m matrix M is an element of (Rn)m, which is also sometimes
written Rn×m. Such a matrixM has n rows and m columns, as in Fig-
ure 2.61. A matrix M ∈ Rn×m is square if n = m. For a size n, the identity
matrix is I ∈ Rn×n has ones on the main diagonal (the entries Ii,i = 1) and
zeros everywhere else.

Given a matrixM ∈ Rn×m and a real number α ∈ R, the matrix αM is specified by
(αM)i,j = αMi,j. Given two matrices M,M′ ∈ Rn×m, the matrix M +M′ is specified by
(M +M′)i,j = Mi,j +M′

i,j. (The sumM +M′ is meaningless ifM and M′ have different
dimensions.) The product of two matrices A ∈ Rn×m and B ∈ Rm×p is a matrix
AB ∈ Rn×p whose components are given by (AB)i,j = ∑m

k=1 Ai,kBk,j. (More compactly,
(AB)i,j = Ai,(1...m) • B(1...m),j.) If the number of rows in A is different from the number
of columns in B then AB is meaningless. The inverse of M is a matrix M−1 such that
MM−1 = I (if any such matrix M−1 exists).

Functions
A function f : A → Bmaps every element a ∈ A to some element f (a) ∈ B. The
domain of f is A and the codomain is B. The image or range of f is {f (x) : x ∈ A}, the set
of elements of the codomain “hit” by some element of A according to f .

The composition of a function f : A → B and g : B → C is written g ◦ f : A → C, and
(g ◦ f)(x) = g(f (x)). A function f : A → B is one-to-one or injective if f (x) = f (y) implies
that x = y. The function f is onto or surjective if the image is equal to the codomain. If
f : A → B is one-to-one and onto, it is bijective. For a bijection f : A → B, the function
f−1 : B → A is the inverse of f , where f−1(b) = awhen f (a) = b.

A polynomial p : R → R is a function p(x) = a0 + a1x + · · · + akxk, where each ai ∈ R is
a coefficient. The degree of p is k. The roots of p are {x : p(x) = 0}. A polynomial of degree
k that is not always zero has at most k different roots.

An algorithm is a step-by-step procedure that transforms an input into an output.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

272 CHAPTER 2. BASIC DATA TYPES

Key Terms and Results

Key Terms
Booleans, Numbers, Arithmetic
• booleans, integers, reals, rationals
• open intervals, closed intervals
• absolute value |x|, floor ⌊x⌋, ceiling ⌈x⌉
• exponentiation, logarithms
• modulus, remainder, divides
• even, odd, prime, parity
• summation ∑, product ∏
• nested summations, nested products

Sets
• set, element, membership, cardinality
• exhaustive enumeration
• set abstraction, universe
• the empty set ∅ = {}
• Venn diagram
• complement ∼, union ∪, intersection ∩
• set difference −
• (proper) subset, (proper) superset
• disjoint sets
• partitions
• power set

Sequences, Vectors, Matrices
• sequence, list, ordered pair, n-tuple
• Cartesian product
• vector, dot product
• matrix, identity matrix
• matrix multiplication
• matrix inverse

Functions
• domain, codomain, image/range
• function composition
• one-to-one, onto functions
• bijection, inverse
• polynomial, degree, roots
• algorithm

Key Results
Booleans, Numbers, and Arithmetic
1. The value of bn is b · b · · · b, multiplied together n times. If

n < 0, then bn = 1/(b−n). For rational exponents, b1/m is
the number x such that xm = b, and bn/m = (b1/m)n.

2. For a positive real number b 6= 1 and a real number x > 0,
the quantity logb x (the log base b of x) is the real number
y such that by = x.

3. Consider integers k > 0 and n. Then k | n (“k divides n”) if
n
k is an integer—or, equivalently, if n mod k = 0.

4. As long as the terms being added remain unchanged, we
can reindex a summation (for example, shifting the
variable over which the sum is taken, or reversing the
order of nested sums) without affecting the total value of
the sum. The same is true for products.

Sets: Unordered Collections
1. A set can be specified using exhaustive enumeration (a

list of its elements), or by abstraction (a condition
describing when an object is an element of the set).

2. Two sets S and T are equal if every element of S is an
element of T and every element of T is an element of S.

Sequences, Vectors, and Matrices
1. For vectors x, y ∈ Rn, the dot product of x and y is

x • y = ∑n
i=1 xiyi.

2. The product AB of two matrices A ∈ Rn×m and B ∈ Rm×p

is an n-by-pmatrixM ∈ Rn×p whose components are
given byMi,j = ∑m

k=1 Ai,kBk,j.

Functions
1. A one-to-one and onto function f : A → B has an inverse

function f−1 : B → A, where f (a) = b precisely when
f−1(b) = a.

2. A polynomial of degree k that is not always zero has at
most k different roots.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © David Liben-Nowell 2020–2021. This version was posted on April 5, 2021.

