1
On the Point of this Book

In which our heroes decide, possibly encouraged by a requirement for
graduation, to set out to explore the world.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (C) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

102 CHAPTER 1. ON THE POINT OF THIS BOOK

Why You Might Care

Just because some of us can read and write and do a
little math, that doesn’t mean we deserve to conquer
the Universe.

Kurt Vonnegut (1922-2007)
Hocus Pocus (1990)

This book is designed for an undergraduate student who has taken a computer sci-
ence class or three—most likely, you are a sophomore or junior prospective or current
computer science major taking your first non-programming-based CS class. If you
are a student in this position, you may be wondering why you’re taking this class (or
why you have to take this class!). Computer science students taking a class like this one
sometimes don’t see why this material has anything to do with computer science—
particularly if you enjoy CS because you enjoy programming.

I want to be clear: programming is awesome! I get lost in code all the time—let’s
not count the number of hours that I spent writing the code to draw the fractals in
Figure 5.1 in IATEX, for example. (I&TEX, the tool used to typeset this book, is the stan-
dard typesetting package for computer scientists, and it’s actually also a full-fledged, if
somewhat bizarre, programming language.)

But there’s more to CS than programming. In fact, many seemingly unrelated prob-
lems rely on the same sorts of abstract thinking. It’s not at all obvious that an optimiz-
ing compiler (a program that translates source code in a programming language like C
into something directly executable by a computer) would have anything important in
common with a program to play chess perfectly. But, in fact, they’re both tasks that are
best understood using logic (Chapter 3) as a central component of any solution. Simi-
larly, filtering spam out of your inbox (“given a message 1, should m be categorized as
spam?”) and doing speech recognition (“given an audio stream s of a person speaking
in English, what is the best ‘transcript’ reflecting the words spoken in s?”") are both
best understood using probability (Chapter 10).

And these, of course, are just examples; there are many, many ways in which we
can gain insight and efficiency by thinking more abstractly about the commonalities of
interesting and important CS problems. That is the goal of this book: to introduce the
kind of mathematical, formal thinking that will allow you to understand ideas that are
shared among disparate applications of computer science—and to make it easier for
you to make your own connections, and to extend CS in even more new directions.

How To Use This Book

Read much, but not many Books.

Benjamin Franklin (1706-1790)
Poor Richard’s Almanack (1738)

The brief version of the advice for how to use this book is: it’s your book; use it how-
ever you'd like. (Will Shortz, the puzzle editor of The New York Times, gives the anal-
ogous advice about crossword puzzles when he’s asked whether Googling for an

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

103

answer is cheating.) But my experience is that students do best when they read ac-
tively, with scrap paper close by; most people end up with a deeper understanding of a
problem by trying to solve it themselves first, before they look at the solution.

I've assumed throughout that you're comfortable with programming in at least one
language, including familiarity with recursion. It doesn’t much matter which particu-
lar programming language you know; we’ll use features that are shared by almost all
modern languages—things like conditionals, loops, functions, and recursion. You may
or may not have had more than one programming-based CS course; many, but not all,
institutions require Data Structures as a prerequisite for this material. There are times
in the book when a data structures background may give you a deeper understanding
(but the same is true in reverse if you study data structures after this material). There
are similarly a handful of topics for which rudimentary calculus background is valu-
able. But knowing/remembering calculus will be specifically useful only a handful of
times in this book; the mathematical prerequisite for this material is really algebra and
“mathematical maturity,” which basically means having some degree of comfort with
the idea of a mathematical definition and with the manipulation of a mathematical
expression. (The few places where calculus is helpful are explicitly marked.)

There are 10 chapters after this one in the book.
2 data types

Their dependencies are as shown at right. Aside from l

these dependencies, there are some occasional refer- 3 logie
ences to other chapters, but these references are light. l

If you've skipped Chapter 6—many instructors will

choose not cover this material, as it is frequently in- 4 proos
cluded in a course on Algorithms instead of this one— l

5 _induction

then it will still be useful to have an informal sense of
O,), and O notation in the context of the worst-case / l \
6 7

running time of an algorithm. (You might skim Sec- 8) 1

. ati . h
tions 6.1 and 6.6 before reading Chapters 7-11.) :ﬂ;;ﬁﬁrgi riﬁrexél;;r relations - couning graphs/trees
I've tried to include some helpful tips for problem [
solving in the margins throughout the book, along with 10
probability

a few warnings about common confusions and some

notes on terminology/ notation that may be helpful in

keeping the words and symbols straight. There are also two kinds of extensions to the
main material. The “Taking it Further” blocks give more technical details about the
material under discussion—an alternate way of thinking about a definition, or a way
that a concept is used in CS or a related field. You should read the “Taking it Further”
blocks if—but only if'—you find them engaging. Each section also ends with one or
more boxed-off “Computer Science Connections” that show how the core material can
be used to solve a wide variety of (interesting, I hope!) CS applications. No matter how
interesting the core technical material may be, I think that it is what we can do with it
that makes it worth studying.

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

104 CHAPTER 1. ON THE POINT OF THIS BOOK

What This Book Is About

All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei (1564-1642)

This book focuses on discrete mathematics, in which the entities of interest are dis-
tinct and separate. Discrete mathematics contrasts with continuous mathematics, as Be careful; there

in calculus, which addresses infinitesimally small objects, which cannot be separated. are two different
words that are pro-

We’ll use summations rather than integrals, and we’ll generally be thinking about nounced identically:

things more like the integers (“1,2,3,...”) than like the real numbers (“all numbers discrete, adj.: indi-
between 7 and 42”). Because this book is mostly focused on non-programming-based vidually separate
parts of computer science, in general the “output” that you produce when solving a and distinct.

problem will be something different from a program. Most typically, you will be asked discreet, adj.: care-
ful and judicious

to answer some question (quantitatively or qualitatively) and to justify that answer— in speech, espe-

that is, to prove your answer. (A proof is an ironclad, airtight argument that convinces cially to maintain
its reader of your claim.) Remember that your task in solving a problem is to persuade privacy or avoid
embarrassment.

your reader that your purported solution genuinely solves the problem. Above all, that
You wouldn’t read a

book about discreet
mathematics;
instead, someone

means that your main task in writing is communication and persuasion.

There are three very reasonable ways of thinking about this book.

View #1 is that this book is about the mathematical foundations of computation. who trusts you
This book is designed to give you a firm foundation in mathematical concepts that are Tfﬁflgﬁi"g;ghare
1 1!
crucial to computer science: sets and sequences and functions, logic, proofs, probabil- sure no one was

ity, number theory, graphs, and so forth. eavesdropping.

View #2 is that this book is about practice. Essentially no particular example that
we consider matters; what’s crucial is for you to get exposure to and experience with
formal reasoning. Learning specific facts about specific topics is less important than
developing your ability to reason rigorously about formally defined structures.

View #3 is that this book is about applications of computer science: it’s about error-
correcting codes (how to represent data redundantly so that the original information
is recoverable even in the face of data corruption); cryptography (how to communi-
cate securely so that your information is understood by its intended recipient but not
by anyone else); natural language processing (how to interpret the “meaning” of an
English sentence spoken by a human using an automated customer service system);
and so forth. But, because solutions to these problems rely fundamentally on sets and
counting and number theory and logic, we have to understand basic abstract struc-
tures in order to understand the solutions to these applied problems.

In the end, of course, all three views are right: I hope that this book will help to in-
troduce some of the foundational technical concepts and techniques of theoretical
computer science, and I hope that it will also help demonstrate that these theoretical
approaches have relevance and value in work throughout computer science—in topics
both theoretical and applied. And I hope that it will be at least a little bit of fun.

Bon voyage!

A revised version of this material has been / will be published by Cambridge University Press as Connecting Discrete Mathematics
and Computer Science by David Liben-Nowell, and an older edition of the material was published by John Wiley & Sons, Inc as
Discrete Mathematics for Computer Science. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. (©) David Liben-Nowell 2020-2021. This version was posted on April 5, 2021.

