Central processing unit

- “Brains” of the computer
- 2 parts
 - control unit: executes computer programs, step by step
 - ALU (arithmetic/logic unit): mathematical and logical calculations (if x is true, do y)
- a.k.a “processor”

Data storage

- Memory: temporary storage inside the computer
 - RAM, e.g.
- “Secondary” storage device: long-term storage
 - hard drive
 - CD/DVD drives
 - tape drive
 - floppy drive
Hard drive

Input/output devices

- Input: keyboard, mouse, CD/DVD drive, USB drive, etc.
- Output: monitor, printer, speakers, CD writer, etc.

Today: How data is stored in computers

Data types to store

- Text (characters)
- Numbers (integer, decimal)
- Audio
- Video
- Pictures
- Programs
- Formatting
- ...
The math part: Number systems

- We use a decimal system
 - digits: 0, 1, 2, ..., 9
 - aka base-10
 - all numbers are combinations of the digits 0-9
- Number systems are *positional*
 - e.g.: $1428 = 1 \times 10^3 + 4 \times 10^2 + 2 \times 10^1 + 8 \times 10^0$

Base n

- Contains digits 0, 1, ..., $n-1$
- Examples:
 - base 3: 0, 1, 2
 - base 5: 0, 1, 2, 3, 4
 - base 11: ???
 - any bases higher than 10 use letters
 - base 11: 0, 1, ..., 9, A
 - base 16: 0, 1, ..., F
 - 456 could be in base 7, 8, 9, ...

Converting from base n to base 10

- Procedure: multiply each digit in the number by the base raised to the proper positional power, then add all of the products together
- Example: 1476
 - base 12 to base 10: $1 \times 12^3 + 4 \times 12^2 + 7 \times 12^1 + 6 \times 12^0 = 2394$
 - base 8 to base 10: $1 \times 8^3 + 4 \times 8^2 + 7 \times 8^1 + 6 \times 8^0 = 830$
 - base 4 to base 10: ???
 - (can't do it! base 4 only has digits 0-3)

Powers of 2 bases

- Binary: base 2 {0,1}
- Octal: base 8 {0,1,...,7}
- Hexadecimal: base 16 {0,1,...,9,A,B,C,D,E,F}
Examples

- Convert 1101010 to decimal:
 - $1\times2^6 + 1\times2^5 + 1\times2^3 + 1\times2^1 = 106$

- Convert 456 from octal to decimal:
 - $4\times8^2 + 5\times8^1 + 6\times8^0 = 302$

- Convert $4AC$ from hexadecimal to decimal:
 - $4\times16^2 + 10\times16^1 + 12\times16^0 = 1196$
The architecture of a computer

from Computer Science Illuminated, 1st edition, by Dale and Lewis. © 2002 by Jones and Bartlett Inc.
Central processing unit

- “Brains” of the computer
- 2 parts
 - control unit: executes computer programs, step by step
 - ALU (arithmetic/logic unit): mathematical and logical calculations (if x is true, do y
- a.k.a “processor”
Data storage

• Memory: temporary storage inside the computer
 – RAM, e.g.

• “Secondary” storage device: long-term storage
 – hard drive
 – CD/DVD drives
 – tape drive
 – floppy drive
Hard drive

from Computer Science Illuminated, 1st edition, by Dale and Lewis. © 2002 by Jones and Bartlett Inc.
Input/output devices

- Input: keyboard, mouse, CD/DVD drive, USB drive, etc.
- Output: monitor, printer, speakers, CD writer, etc.
Today: How data is stored in computers
Data types to store

- Text (characters)
- Numbers (integer, decimal)
- Audio
- Video
- Pictures
- Programs
- Formatting
- ...
The math part: Number systems

• We use a decimal system
 – digits: 0, 1, 2, ..., 9
 – aka *base*-10
 – all numbers are combinations of the digits 0-9

• Number systems are *positional*
 – e.g.: 1428 = 1 *1000 + 4 * 100 + 2 * 10 + 8 * 1
 = 1* 10³ + 4 * 10² + 2 * 10¹ + 8 * 10⁰
Base n

• Contains digits 0, 1, ..., $n-1$

• Examples:
 – base 3: 0, 1, 2
 – base 5: 0, 1, 2, 3, 4
 – base 11: ???
 • any bases higher than 10 use letters
 • base 11: 0, 1, ..., 9, A
 • base 16: 0, 1, ..., F
 – 456 could be in base 7, 8, 9, ...
Converting from base \(n \) to base 10

- **Procedure:** multiply each digit in the number by the base raised to the proper positional power, then add all of the products together

- **Example:** 1476
 - base 12 to base 10: \(1*12^3 + 4*12^2 + 7*12^1 + 6*12^0 = 2394 \)
 - base 8 to base 10: \(1*8^3 + 4*8^2 + 7*8^1 + 6*8^0 = 830 \)
 - base 4 to base 10: ???
 - (can't do it! base 4 only has digits 0-3)
Powers of 2 bases

- Binary: base 2 \{0,1\}
- Octal: base 8 \{0,1,...,7\}
- Hexadecimal: base 16 \{0,1,...,9,A,B,C,D,E,F\}
Examples

• Convert 1101010 to decimal:
 \[1 \times 2^6 + 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^1 = 106\]

• Convert 456 from octal to decimal:
 \[4 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 = 302\]

• Convert 4AC from hexadecimal to decimal:
 \[4 \times 16^2 + 10 \times 16^1 + 12 \times 16^0 = 1196\]