
Plagiarism Detection

Noah Carnahan Marcus Huderle Nick Jones Cole Stephan Tony Tran
Zach Wood-Doughty

March 17, 2014

1 Introduction

Plagiarism is certainly a problem in today’s world, and it probably has been ever since writing was
invented. Developing an effective, automated tool for detecting plagiarism is both practically useful
and theoretically interesting. Our project aimed explore and implement various methods of plagiarism
detection. This field is relatively young, so many of the papers we read were published in the past fifteen
years.

There are two overarching plagiarism detection schemes that we studied and implemented. The first
is called intrinsic detection, and the second is called extrinsic detection. While the ultimate goal of each
is to detect potential plagiarism, they are completely different approaches to the problem and address
different types of plagiarism.

Intrinsic detection does not rely on any external documents to detect plagiarism. Rather, it tries to
detect shifts in writing style within a suspicious document. For example, if a student paid his or her
older brother to write the conclusion of a paper, intrinsic detection should be able to detect that the
conclusion was not written by the same person as the rest of the paper.

Extrinsic detection is the more traditional model of plagiarism detection. Given a suspicious document
and a body of source documents, extrinsic detection identifies pieces of the suspicious document that
originate from the source document. This may seem like a simple string matching problem, however,
we’ll need to apply some more sophisticated methods to obtain any meaningful results.

1.1 Corpus Description

For this project, we made use of the PAN-plagiarism-corpus-2009 (see [1]) to test the effectiveness of our
detection algorithms. The corpus is constructed of two sets of documents: suspicious documents and
source documents. Suspicious documents are documents where plagiarism has been artificially inserted
for others to try to detect, and source documents are the sources for said plagiarism. In each case of pla-
giarism, text has been taken from a source document, modified, and inserted into a suspicious document.
The degree of difficulty to which the plagiarism is hidden is dependent on the modification the source
text went through. In this corpus, there are three types of modifications: paraphrasing, part-of-speech
reordering, and random text operations.

Paraphrasing: When a source text is paraphrased, a random number of words within the text are
replaced with random synonyms or antonyms.

Source Text: “Mr. Dursley always sat with his back to the window in his office on the ninth floor.”

Modified Text: “Mr. Dursley always propped his back on the glass window on the ninth floor of the office”

Parts-of-Speech Reordering: When a source text undergoes this type of modification, matching
parts-of-speech tokens are randomly swapped within the sentence.

Source Text: “Mr. Dursley always sat with his back to the window in his office on the ninth floor.”

Modified Text: “window always sat with his floor to the Mr. Dursley in his office on the ninth back.”

1

Random Text Operations: This type of modification takes a source text and performs random word
replacements and random re-ordering to create the artificial plagiarism.

Source Text: “Mr. Dursley always sat with his back to the window in his office on the ninth floor.”

Modified Text: “sat with glass his work place ninth level Mr. always back on the Dursley to the.”

Another instance of artificial plagiarism that can be found in our suspicious documents is a simple
insertion where text is inserted into a suspicious document with no modifications.

1.2 ROC Curves

To measure the quality of our tool, we used the area under the curve of the receiver operating character-
istic (ROC) curve. For each passage, our tool doesn’t output a binary classification of plagiarism or not
plagiarism, but instead outputs a confidence that each passage is plagiarized. These confidences range
between 0 and 1. A threshold t can then be chosen. We then classify each passage with a confidence
greater than t as plagiarism and all others as not plagiarism. The ROC curve plots the false positive
rate and the true positive rate at various thresholds. To generate the curve, we vary t, adding points to
the graph as we go, so that first all n passages have a greater confidence, then all n − 1 passages, then
all n− 2, and so on.

Ideally, all plagiarized passages would have greater confidences than all non-plagiarized passages. In
this case, the curve runs straight up the y-axis to the point (0,1) then straight across to the point (1,1).
If the tool performs as well as random, then we would expect the false positive rate and the true positive
rate to be equal at any threshold. Therefore, the curve would run along the diagonal in this situation.

We can compare two ROC curves to each other by looking at the area under the curve (AUC). In
the ideal situation, the AUC is 1. In the situation where the tool performs as well as random, the AUC
is 0.5. Thus, greater AUC corresponds to better performance. We want to get this number as close to 1
as possible.

1.3 Precision & Recall

Because our corpus came from the PAN-Plagiarism 2009 Conference, we also considered the measures
used by this conference to measure the effectiveness of our tool. The conference defines precision and
recall specifically for the plagiarism detection task. The base “unit of retrieval” is the character – in
other words, a classifier is evaluated based on its precision and recall for each individual character. It
should be noted, that these definitions expect binary inputs: we must classify each character as either
“plagiarized” or “not plagiarized.”

While we were intrigued by the idea of comparing our results to those of previous research, we
found the above metrics to be limiting. In order to calculate these metrics, we must introduce another
parameter to our system: a threshold value. When using AUC as our metric, we are able to capture the
effectiveness of our system across a wide variety of thresholds. For that reason, we chose AUC as our
primary metric of success. To see the specific details of these metrics, please see [1].

2 Intrinsic Detection

Recall that the goal of intrinsic plagiarism detection is to find passages within a document which appear
to be significantly different from the rest of the document. In order to do so, we break the process down
into three steps.

1. Atomization – Deconstruct a document into passages.

2. Feature Extraction – Quantify the style of each passage by extracting stylometric features based
on linguistic properties of the text. Each passage is represented numerically as a vector of feature
values.

2

3. Classification – Compare the feature vectors of passages to one another; those passages that are
significantly different will have higher confidences of plagiarism. Return a confidence that a passage
was plagiarized.

2.1 Atomization

The first step in analyzing a full document is to break the document down into smaller chunks, or
passages. Each passage can then be analyzed independently and compared to one another. We use the
terms passage and atom interchangeably, and refer to the smallest unit of text as an atom type. Possible
atom types, from smallest to largest, include word, sentence, paragraph, and n-character.

We would like to use a small atom type in order to be as exact as possible with our plagiarism
detection. In other words, it’s preferable to be able to classify individual sentences as being plagiarized
rather than classifying a two-page-long passage as plagiarism.

On the other hand, a small atom type leaves our detection system with less data to work with.
Stylometric features (discussed below) are meant to quantify an author’s writing style – with more text
to work with, these features are more likely to capture the author’s style. If a feature is extracted from
a small atom type (such a sentence), there is less text to work with.

We immediately found that small atom types simply didn’t provide enough to information to quantify
a writer’s style effectively. As a result, the two atom types used were paragraph and n-character, where
n = 5000 was taken from Stein [2].

2.2 Stylometric Feature Extraction

Once we have split our text into passages via atomization, we need a way to analyze those passages
quantitatively. The goal of feature extraction is to develop “features” that tell us something about the
writing style of a particular passage. If a particular passage differs significantly in these features from
the rest of the passages in the document, we might be suspicious that the passage was plagiarized.

A feature is analogous to a mathematical function: it takes in an input (a passage of text) and
produces an output (a value that somehow quantifies of that text). We tried to use features that would
assign meaningful numerical values to the text they were applied to. In particular, many of our features
tried to measure the complexity of writing style in some way or another.

Two examples of features we implemented are average sentence length and syntactic complexity.
Average sentence length is a fairly intuitive feature that simply returns the average number of words per
sentence within the passage. While it is obvious that authors do not always maintain the same average
sentence length throughout their work, we might hope that authors would be in general fairly consistent.
This feature would at least be likely to distinguish between the writing of a PhD student and that of
a fifth grader. The second example feature, syntactic complexity, is a more complicated quantification
of writing style. It takes a weighted sum of various parts of speech—subordinating conjunctions, wh-
pronouns, and verb forms—as a one-off measure of complexity at the syntax level. We took this formula

3

(and slightly modified it) from a linguistics paper we found [3]. This feature proved to be fairly good at
distinguishing between distinct authors.

We implemented 40 base features. To further extend our capabilities to analyze text, we implemented
a framework that would allow us to take averages and standard deviations across feature values within
the text. For example, a feature like syntactic complexity, which operated at the sentence level, could
be averaged over each sentence in a paragraph, giving a paragraph feature, average syntactic complexity.
This framework extended our total number of features from 40 to 74. All 74 features are listed in the
features appendix.

The process of feature extraction takes in the passages created by atomization, and runs each of
those passages through some subset (say, of size n) of our features. Each feature gives a value to each
passage, and so each passage gets a “feature vector” of the n values it has received from the features.
Once we have a feature vector for each passage, we could consider plotting them in n-dimensional space,
and trying to analyze them graphically. Intuitively, we would expect the true author’s passages to be
close together in this graph, and any plagiarized passages would be far away. To do this analysis, we
will turn to the task of classification, which tries to decide how suspicious a given passage is, based on
its feature vector.

2.3 Classification

k-means Clustering
The first approach we took to classification was k-means clustering. The basic idea was to cluster the
feature vectors from our passages and base our confidence of plagiarism on these clusters. Ideally, we
could use k = 2, meaning one cluster would be the “plagiarized” cluster of passages and the other
would be the “non-plagiarized” cluster. We made the assumption that the larger of the two clusters
corresponded to the true author’s passages, and the smaller was made up of plagiarized passages. Then,
the confidence of a given passage being plagiarized was a scaled distance from the “non-plagiarized”
centroid.

confidence =
distance from notplag

distance from notplag + distance from plag

This notion of confidence can be extended to any k > 2. In preliminary testing, we found that using
k > 2 did not improve our results and therefore stuck to k = 2 whenever using k-means.

Outlier Detection
Our outlier detection techniques were based on those discussed in [2]. Since outlier detection ended up
being our most successful classification technique (see results), we’ll describe it in more detail.

For a given document D, consider the distribution of feature f over all p passages in D. Ignoring the
e most extreme values of f (e = 1, but we tried varying e), take the mean and standard deviation of the
observed values of f . We assume that the true author writes within feature f drawing from a normal
distribution derived from the observed mean and observed SD. Since the assumption that features are
normally distributed is a stretch to begin with, we also tried centering the distribution at its median.
This appeared to perform markedly worse.

For each passage, calculate the probability of feature f coming from the PDF of the normal distri-
bution calculated above (this is considered to be the probability of not being plagiarized). Similarly,
assume the plagiarized distribution to be uniform with minimum equal to min(f) and maximum equal
to max(f). Then the probability of being plagiarized comes from the PDF of the uniform distribution
described previously.

To combine these “probabilities”, we simply use

P [plagiarized]

P [plagiarized] + P [not plagiarized]

to output a confidence of a given passage being plagiarized. The next step is to use multiple features
and combine their confidences. Following the standard use in the literature [2], we follow a Naive Bayes
assumption that features are distributed independent of one another. Thus, the confidence that a given
passage is plagiarized comes from multiplying those confidences output by each individual feature.

4

Hidden Markov Modeling
Another form of classification that we used was Hidden Markov Modeling. In this system, we consider

the atomized representation of our suspicious document to be the output of a Markovian State Machine.
We consider a two-state machine whose states produce either plagiarized or non-plagiarized output.
Using Viterbi’s algorithm we generatively calculate the most probable state sequence of the machine,
the idea being that when the machine transitions into the plagiarized state we believe the corresponding
passage to be plagiarism.

This approach intuitively fits the problem set-up in that it takes into account the adjacency of the
passages within the document. Normally, instances of plagiarism are continuous and once a transition
into plagiarism is encountered we found that it is more probable for the next passage to be plagiarized
than if the previous passage was non-plagiarized.

Determining confidence in these assignments is still done using distance from cluster centroid and can
be expanded by including a notion of confidence based on the severity of the transition into the current
plagiarized section. In this way, we account for the local degree to which the writing style changed in our
confidence assignments by saying that a larger transition signifies a more obvious writing style switch.
Similarly the extent of the transition out of a plagiarized section can be taken into account by measuring
the degree to which the author’s writing style has returned to normal i.e., compares to the last known
non-plagiarized passage.

The machine was trained on a small set of 50 documents. The initial transition probabilities were
taken from the actual transition probabilities however, the training set we used only partially accounted
for the wide variety of documents found in our final evaluation set and some of the documents contained
no plagiarism. The emission probabilities were left untrained as to account for each document’s individual
nature as the feature representations of the primary author vary by document.

2.4 Feature Selection

The classification schemes described above can be used with any arbitrary number of features simply by
adding another dimension to each feature vector. Since we developed 74 features, a natural next step
would be to find specific sets of features which work well together. Hypothetically, multiple features
which perform well individually would perform even better when combined. With 274 possible feature
sets, we needed a simple way to test “logical” combinations of features.

One approach we took was a greedy algorithm for combining good features. The basic idea is to find
the best individual feature; try combining every other feature, and select the best pair of features based
on the above combinations. Once the best pair has been selected, try all sets of three that include the
two already chosen features. The algorithm proceeds in this manner until using all features.

More formally:

Algorithm 1: Greedy Feature Selection

remaining features := all features
for n = 1 ... total number of features do

for f ∈ remaining features do
Try best seen (of size n− 1) + f

end
Record best combination of size n (from above for-loop)

end

We found that this approach didn’t yield promising results. Adding additional features did not
significantly improve the feature set’s performance. Summary results will be given below. It should be
noted that none of the smaller subsets of features performed better than using all features at once.

While finding a good set of features to work with is one possibility, we could generalize this approach
to place weights on each feature. “Better” features would learn to have high weights and more influence
on the final classification. This approach is outlined next.

5

2.5 Feature Combination

A logical step to take when using features to identify potentially plagiarized passages in a document
is to combine features. Individually, features tend to yield mediocre results. However, it is a reason-
able assumption that layering multiple features together could produce better plagiarism classifications.
There are many different approaches to this problem, and we have implemented a variety of techniques,
including neural networks, evolutionary algorithms, genetic programming, and logistic regression. Some
of these methods output a set of weights that are directly multiplied with the raw values of features
for a given passage. More commonly, the output is a set of weights are are applied to the individual
confidences obtained by clustering on each individual feature. The methods with which we experimented
are detailed below.

Neural Networks
The neural network approach outputs a set of confidence weights for a given feature set. The process is
fairly straightforward. First, the network is trained until convergence or specified number of iterations.
Then, the trained network can be used as a classifier, just like k-means or outlier detection. We won’t
discuss how neural networks work, but these are the important facts about the way we trained our neural
networks. The input nodes are mapped to confidences of the individual features obtained by classifying
using outlier detection. The hidden layer consisted of roughly twice the number of features, and there
was a single output node whose values are clamped to [0, 1] when evaluating the network. To train
the network, we feed the individual confidences of the features into the network and provide the correct
classification for the current passage (1=plagiarized, 0=not plagiarized).

Unfortunately, we weren’t able to train any neural networks that were effective. The problem of
overfitting to the training data was challenging and was never resolved. Much more work could be done
here.

Evolutionary Algorithm
We used an evolutionary algorithm setup to output both raw feature weights and confidence weights for a
given feature set. However, no significant results were produced for raw feature weights. Unfortunately,
evolving the weights effectively requires a massive amount of computing, so we needed to limit the
population size, number of generations, and the quality of the fitness function to ensure that training
didn’t take days. We used a population size of around fifteen individuals, which was evolved over 100
generations. The genome of an individual was simply an array containing weights. Elements of the
genome were mutated by adding a sample from a gaussian distribution. The fitness function is arguably
the most critical part of the evolutionary algorithm. We evaluated fitness by computing the area under
the ROC curve when evaluating suspect 100 documents in our corpus. Of course, the fitness (area under
the ROC curve) is trying to be maximized in our case.

This approach had the same problems as neural networks. They took a long time to train, and over-
fitting was an obstacle that wasn’t solved. There are an overwhelming amount of parameters to tweak in
evolutionary algorithms, so much more work could also be done with this approach to combining features.

Genetic Programming
We also tried using a genetic programming library, PyGene, to evolve an evaluation tree that would
combine features together in some clever way. PyGene includes a straightforward genetic programming
implementation, into which we plugged in feature values as terminals, and math functions (addition,
multiplication, exponentiation, etc) as nonterminals. The fitness function for the evolution was the area
under the ROC curve for the first 50 documents of our training set. We ran the implementation with
a starting population of 100 individuals, for ten generations. We used PyGene’s default settings for
mutation and crossover rates.

2.6 Intrinsic Results

For brevity’s sake, we have only included a small subset of our results. The results table compares
different atom types and classification types. As is suggested by these results (and others which we have
omitted), we found that using 5000-characters as our atom type and outlier detection as our classification
method were most successful. Thus, we used these parameters when working on feature selection and

6

Figure 1: 5000-character atom type and outlier detection on one document. Each row corresponds to a
passage. The leftmost column shows the ground truth: red indicates the passage was plagiarized, white
that it was not.

feature weighting.

Features Description Atom Type Classification AUC
Best single (Gunning Fog Index) 5000-chars Outlier .622
Best single (Avg. Intern. Word Freq. Class) 5000-chars k-means .596
Best single (Flesch Reading Ease) Paragraph Outlier .568
Best single (Flesch Reading Ease) Paragraph k-means .575
All 5000-chars Outlier .645
All 5000-chars k-means .604
All Paragraph Outlier .488
All Paragraph k-means .562

2.7 Discussion

Combining features did not work as well as we had anticipated. Based on the results displayed above
there are two questions to consider:

1. How can adding more features make our system worse?

2. Why don’t the addition of more features improve our performance

1. It should be noted that only certain atom type/classification techniques combinations (such as out-
lier detection and paragraph atom type) saw a decreased performance when adding more features.
In these cases, the intuition is as follows: some features perform well using paragraphs and outlier
detection – these features capture the signal of an author’s writing style. If we add in “bad” fea-
tures, we’re essentially adding noise to our classification problem, thereby covering the true signal
given by the good features.

2. As is shown in the heatmap above, most features succeed at catching the same plagiarized passages,
while most features fail to capture other passages. There are two explanations for this behavior:

7

first of all, some passages may simply be more difficult to detect. In addition, it’s possible that
our features are more “similar” than we thought originally, and are measuring similar aspects of
writing style.

Consider one “good” feature which catches some subset of plagiarized passages. When we add
additional features which also capture those same passages, we don’t catch any of the other pla-
giarized passages. Thus we won’t see an improvement in our performance – we’re simply more
confident that the already-identified passages were plagiarized.

3 Extrinsic Detection

Extrinsic detection is the second method we used, which takes advantage of comparisons with other
documents to detect plagiarism. In a real-world detection tool, we might test a document for plagiarism
by comparing its text to a vast number of documents from the internet. With the corpus we used,
we instead compared our suspicious documents to a large set of source documents (from which all
plagiarized sections were taken). Due to time constraints, we cannot simply compare every word of a
suspicious document to every word of all source documents – this would take far too long. To address
this, we use “fingerprinting” to create a compact representation of our documents to lessen the number
of comparisons made, speeding up our computations. We will soon explain what fingerprinting is and
the different techniques we used to do it.

Much like in our intrinsic detection, however, we first need to work with a reasonably-sized pieces of
text, before we can do fingerprinting and comparisons. This motivated the following framework:

1. Atomization – Deconstruct a document into passages.

2. Fingerprinting – Fingerprint the passage to obtain a compact representation of that passage.

3. Comparison – Use similarity measures to determine similarity between fingerprints obtained from
our suspicious document and any source documents.

3.1 Fingerprinting

As previously mentioned, fingerprinting is a method for representing text in a compact form. Specifically,
a fingerprint is simply a set of integers, so it logically follows that the process of fingerprinting is the
conversion of text to a set of integers. On a fundamental level, fingerprinting addresses the potentially-
problematic string matching problem. Given some suspicious passage, one could imagine a scheme in
which parts of the passage are compared against parts of documents in an external corpus. This would
work perfectly if plagiarism only came in the form of blatant copy/pasting. When word rearrangements
and synonym replacements are thrown into the mix, naive string matching won’t work as well.

By identifying individual parts of a passage, rather than the whole passage, fingerprinting removes
the notion of word order in a passage. This means that it should be able to detect word reorderings along
with synonym replacements, since most of the original passage is preserved. Note that fingerprinting
is highly reliant on the preservation of some of the original passage. Fingerprinting will not solve the
problem of complete paraphrasing, since none of the original passage would be left intact. Hoad and
Zobel [4] present a thorough overview of these methods, and we have based much of our work on theirs.

There are two steps to generating a fingerprint for a given passage.

1. Select a subset of n-grams from the passage

2. Generate a hash value for each n-gram

An n-gram is simply a sequence of n words. For example, “Dursley went to” is an example of a
3-gram. We implemented four different n-gram selection algorithms, and each is attempting to identify
the n-grams in a passage that are potentially more significant than other n-grams in the passage. Each
algorithm also makes the important tradeoff on the size of the fingerprint. On one hand, imagine using
every possible n-gram in a passage. The fingerprint will be as big as the original passage, so the fingerprint
is actually no less compact than the original passage. Therefore, this will slow down the comparison with
other fingerprints. On the other hand, imagine only using a single n-gram. The fingerprint representation

8

of the passage will be extremely compact! Comparisons will be fast, but very little information about
the original passage is stored in the fingerprint, which is obviously a problem.

Once a set of n-grams for a passage has been generated, each n-gram is run through a hash function,
which produces an integer. For example, we might have h(“Dursley went to”) = 4235. The details of
the actual hash function aren’t important, but the values generated by the hash function are modded by
a large number, so there is a limit on the highest possible value.

Each of the four n-gram selection algorithms is described below using the following sentence as the
input passage:

“Mr. Dursley always sat with his back to the window in his office on the ninth floor.”

Full Fingerprinting
Full fingerprinting is a very naive method of generating a fingerprint. It creates a large fingerprint that
is essentially as large as the number of words in the original passage. The algorithm is simple. Simply
select all possible n-grams in a passage. If n = 3, the resulting fingerprint for the example passage will
be the following:

3-grams = {“Mr. Dursley always”, “Dursley always sat”, . . . , “the ninth floor”}

kth-in-sentence
This is the simplest n-gram selection method. Simply split the passage into sentence. Then, for each
sentence, select the n-gram that is centered around the kth word in the sentence. Using k = 5, n = 3
with the example sentence yields the following 3-grams:

3-grams = {“with his back”}

Note that kth-in-sentence yields very small fingerprints, so it results in the fastest running time. Al-
though, it doesn’t store much information from the original passage, so other selection methods yield
better performance.

Anchor Selection
Anchor selection aims to be clever about which n-grams it selects. Anchors are defined as 2-character
strings, such as “th” or “ma”. For a given set of anchors and a given passage, the algorithm identifies all
words that contain any of the anchors and centers n-grams around them. This selection method is highly
dependent on the anchors that are used. If extremely common anchors are used, such as “th”, then too
many n-grams will be selected, which results in a large fingerprint size. Of course, if rare anchors are
used, such as “zi”, then very few n-grams will be selected, resulting in miniscule fingerprints.

By analyzing anchor frequencies in Project Gutenberg, we chose a set of ten anchors with moderately
high frequency. Here is the set:

anchors = {“ul”, “ay”, “oo”, “yo”, “si”, “ca”, “am”, “ie”, “mo”, “rt”, }

As you can see, the example sentence contains two instances of these anchors.

“Mr. Dursley always sat with his back to the window in his office on the ninth floor.”

Using 3-grams, we’ll center a 3-gram around each of the words that contain an anchor. In this
example, the resulting set of 3-grams is

3-grams = {“Dursley always sat”, “the ninth floor”}

Winnowing
Winnowing is the most complex n-gram selection method we implemented, and it is based directly off
of the work of Schleimer, Wilkerson, and Aiken[5]. Like anchor selection, it aims to generate n-grams
around significant parts of a passage. However, the significance some part of a sentence is determined
by the hash function, not the actual language being used in the passage. Furthermore, winnowing works
at the character level, rather than the word level. Specifically, it works with k-grams, which are simply
k contiguous characters in a passage.

The algorithm works as follows:

9

1. Generate array a of all k-grams

2. Move a sliding window of width w across a. Each time you move the window, select the k-gram in
the window with the smallest hash value.

Walking through this algorithm on the example sentence is not important enough to illustrate this
algorithm. One could imagine the results being something like this:

3-grams = {“Dur”, “ays”, “bac”, “ind”, “off”, “the”, “thf”}

3.2 Fingerprint Similarity Measures

After generating fingerprints for passages, we need a way to compare the fingerprints to determine
whether or not plagiarism might be present. Recall the fact that fingerprints are sets of integers. This
means that we can use set similarity measures to represent the confidence of plagiarism between some
suspicious passage and a potential source passage. Ideally, a similarity of 1 will indicate 100% confidence
of plagiarism, and a similarity of 0 will indicate 0% confidence of plagiarism. We implemented and tested
two different set similarity measures, which are described below.

Jaccard Similarity
Jaccard similarity is a very common set similarity measure that is used in a wide variety of applications.
It is defined as

jaccard(A,B) =
|A ∩B|
|A ∪B|

where A is the suspect fingerprint and B is the source fingerprint.

Containment Similarity
Containment similarity is not a standard set similarity measure, but it has an interesting property that
seemed like it could be more effective than jaccard similarity. Containment similarity is nearly identical
to jaccard similarity, except the denominator is only the number of elements in the suspect fingerprint.
Again, let A be the suspect fingerprint and B be the source fingerprint.

containment(A,B) =
|A ∩B|
|A|

The interesting property of containment similarity is that if a suspect passage is plagiarized from a
small portion of some source passage, containment similarity will yield a very high similarity. However,
jaccard similarity will yield a much smaller similarity in this case. Therefore, we hypothesized that
containment similarity would do a better job at generating confidences of plagiarism. From our tests,
our hypothesis was rejected because both similarity measures performed equally.

3.3 Database

Testing both the intrinsic and extrinsic parts of our tool required the use of a database. We used a
Postgres database for this purpose.

On the intrinsic side, we stored feature values in the database to allow for easy reuse. We also wanted
to get results for thousands of documents for any given set of parameters, and extracting the feature
vectors for all of these documents took some time. By storing the feature values in a database, we could
easily try different combinations of features and different clustering methods and such without having
to recalculate the features.

On the extrinsic side, we used a database to store passage fingerprints. We used the database as a
sort of index to look up potential source passages by hashes. To avoid calculating the similarity between
every suspect passage and every source passage, we used the database to retrieve only passages whose
fingerprints overlapped with a given suspect passage by at least one hash. The database had the following
structure:

10

CREATE TABLE documents (

did serial,

name text,

path text,

xml_path text,

is_source boolean

);

CREATE TABLE passages (

pid serial,

did integer,

atom_num integer,

atom_type text

);

CREATE TABLE methods (

mid serial,

atom_type text,

method_name text,

n integer,

k integer,

hash_size integer

);

CREATE TABLE hashes (

is_source boolean,

pid integer,

mid integer,

hash_value integer

);
The hashes table made it easy to retrieve overlapping fingerprints. We simply used the following

select statement:

SELECT pid FROM hashes WHERE

hash_value = <my_val> AND mid = <my_mid> AND is_source = ’t’;

3.4 Extrinsic Results

There are many parameters to play around with when testing our extrinsic system. One can change the
fingerprinting method, the comparison method, hash length, atom type. One thing that we found was
that 5000-character passages performed better than paragraph passages:

Fingerprint Method Similarity Measure Atom Type AUC
full jaccard 5000-chars .95
full jaccard paragraph .90

We also found that full fingerprinting gave us the best ROC AUC. However, anchor fingerprinting,
which is much faster than full fingerprinting, does not perform worse by a very large margin:

Fingerprint Method Similarity Measure Atom Type AUC
full jaccard 5000-chars .95
winnow-k jaccard 5000-chars .94
anchor jaccard 5000-chars .92
kth in sent jaccard 5000-chars .89

Additionally, the two similarity measures almost always result in the same ROC AUC:

Fingerprint Method Similarity Measure Atom Type AUC
full jaccard 5000-chars .95
full containment 5000-chars .95

4 Combining Intrinsic & Extrinsic

After implementing both intrinsic and extrinsic detection schemes, we were interested to see whether it
might be possible to combine the two approaches and get better results than either could by itself. We
approached this task in a fairly simple way–we classified each passage in a suspicious document using
both intrinsic and extrinsic detection, and then looked for a clever way to combine the two resulting
confidences of plagiarism. We tried several ways of combining the two confidence values, but it turned
out that the simple arithmetic mean garnered the best results.

The intuition behind this approach of combining confidences was that if one detection scheme com-
pletely missed a plagiarized passage, the other scheme might not. Similarly, if one scheme very wrongly
accused a particular passage of plagiarism, the other scheme might balance out the incorrect accusation.

11

We found that our results for this combination method depended heavily on how well intrinsic and
extrinsic detection did on their own. While intrinsic never performed incredibly well, extrinsic could get
near-perfect results. When extrinsic had an area under the curve measure of .95 or .97 while intrinsic was
around .6 or .65, combining the two schemes did not improve our results. But under different conditions,
when extrinsic was not as dominant, the combination was able to significantly improve the area under
the curve measure by .05 or more.

While this analysis didn’t give us anything conclusive about the results of combining intrinsic and
extrinsic, it hints that if we were to actually attempt to detect plagiarism in the real world (where
extrinsic detection might not have access to all the source documents it requires), combining both
approaches might be a very beneficial technique.

5 Future Work

Given more time, we would focus our work primarily on improving our intrinsic detection tool. While
we were unable to find an effective method for combining features, there are still a number of approaches
worth considering. More specifically, ensemble learning is a natural next step. If we consider each feature
as an independent classifier, we could use various ensemble learning methods to combine these indepen-
dent classifiers into one single classifier. On a similar note, we could investigate better combination
methods designed specifically for one-class classifiers. While we use a simple Naive Bayes approach to
combining one-class classifiers, Tax [6] suggests a number of alternatives.

We would also spend more time implementing and researching new features. In particular, we would
implement features that measure different aspects of a writer’s style. While the majority of our features
measure some sort of “complexity” of an author’s writing, there are a number of other possibilities.
Sentiment analysis is one example: for a given passage, how “positive” or “negative” is the mood of
the author’s writing? “Recency” of an author’s writing would also be an interesting feature that could
potentially capture the era of a writer. For example, such a feature could answer the question: “what was
the average year that the words from a given passage were added to the Merriam-Webster dictionary?”

12

6 Appendix: Features

average_sentence_length

average_syllables_per_word

avg_external_word_freq_class

avg_internal_word_freq_class

evolved_feature_five

evolved_feature_four

evolved_feature_six

evolved_feature_three

evolved_feature_two

flesch_kincaid_grade

flesch_reading_ease

gunning_fog_index

honore_r_measure

num_chars

punctuation_percentage

stopword_percentage

syntactic_complexity

syntactic_complexity_average

yule_k_characteristic

avg(average_syllables_per_word)

std(average_syllables_per_word)

word_unigram,is

word_unigram,of

avg(avg(average_syllables_per_word))

avg(std(average_syllables_per_word))

avg(avg_external_word_freq_class)

std(avg_external_word_freq_class)

avg(avg(avg_external_word_freq_class))

avg(std(avg_external_word_freq_class))

avg(avg_internal_word_freq_class)

std(avg_internal_word_freq_class)

avg(avg(avg_internal_word_freq_class))

avg(std(avg_internal_word_freq_class))

avg(num_chars)

std(num_chars)

avg(avg(num_chars))

avg(std(num_chars))

avg(stopword_percentage)

std(stopword_percentage)

avg(avg(stopword_percentage))

avg(std(stopword_percentage))

avg(syntactic_complexity)

std(syntactic_complexity)

avg(avg(syntactic_complexity))

word_unigram,been

word_unigram,the

avg(std(syntactic_complexity))

avg(average_sentence_length)

std(average_sentence_length)

avg(syntactic_complexity_average)

std(syntactic_complexity_average)

pos_trigram,NN,VB,NN

pos_trigram,NN,NN,VB

pos_trigram,VB,NN,NN

pos_trigram,NN,IN,NP

pos_trigram,NN,NN,CC

pos_trigram,NNS,IN,DT

pos_trigram,DT,NNS,IN

pos_trigram,VB,NN,VB

pos_trigram,DT,NN,IN

pos_trigram,NN,NN,NN

pos_trigram,NN,IN,DT

pos_trigram,NN,IN,NN

pos_trigram,VB,IN,DT

vowelness_trigram,C,V,C

vowelness_trigram,C,V,V

vowelness_trigram,V,V,C

vowelness_trigram,V,V,V

13

References

[1] Martin Potthast Benno Stein Andreas Eiselt and Alberto Barrón-Cedeno Paolo Rosso. Overview of
the 1st international competition on plagiarism detection. In 3rd PAN WORKSHOP. UNCOVERING
PLAGIARISM, AUTHORSHIP AND SOCIAL SOFTWARE MISUSE, page 1.

[2] Benno Stein, Nedim Lipka, and Peter Prettenhofer. Intrinsic plagiarism analysis. Language Resources
and Evaluation, 45(1):63–82, 2011.

[3] Benedikt Szmrecsanyi. On operationalizing syntactic complexity. Jadt-04, 2:1032–1039, 2004.

[4] Timothy C Hoad and Justin Zobel. Methods for identifying versioned and plagiarized documents.
Journal of the American society for information science and technology, 54(3):203–215, 2003.

[5] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 76–85. ACM, 2003.

[6] David MJ Tax. One-class classification. 2001.

14

